JP2016216779A - Grain oriented magnetic steel sheet and production method therefor - Google Patents
Grain oriented magnetic steel sheet and production method therefor Download PDFInfo
- Publication number
- JP2016216779A JP2016216779A JP2015102466A JP2015102466A JP2016216779A JP 2016216779 A JP2016216779 A JP 2016216779A JP 2015102466 A JP2015102466 A JP 2015102466A JP 2015102466 A JP2015102466 A JP 2015102466A JP 2016216779 A JP2016216779 A JP 2016216779A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- annealing
- steel sheet
- cold
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 69
- 239000010959 steel Substances 0.000 title claims abstract description 69
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000000137 annealing Methods 0.000 claims abstract description 117
- 238000005261 decarburization Methods 0.000 claims abstract description 37
- 238000004070 electrodeposition Methods 0.000 claims abstract description 17
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims description 26
- 238000005097 cold rolling Methods 0.000 claims description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- 229910052742 iron Inorganic materials 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910052718 tin Inorganic materials 0.000 claims description 9
- 229910052839 forsterite Inorganic materials 0.000 claims description 8
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052711 selenium Inorganic materials 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052714 tellurium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 239000003795 chemical substances by application Substances 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000010960 cold rolled steel Substances 0.000 abstract 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 39
- 238000000034 method Methods 0.000 description 35
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 24
- 239000000047 product Substances 0.000 description 23
- 239000011701 zinc Substances 0.000 description 20
- 238000001953 recrystallisation Methods 0.000 description 18
- 239000003112 inhibitor Substances 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 239000011572 manganese Substances 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 238000005868 electrolysis reaction Methods 0.000 description 7
- 239000002659 electrodeposit Substances 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- 238000002791 soaking Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 229910004283 SiO 4 Inorganic materials 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 4
- 238000005238 degreasing Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Natural products OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- WHMDKBIGKVEYHS-IYEMJOQQSA-L Zinc gluconate Chemical compound [Zn+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O WHMDKBIGKVEYHS-IYEMJOQQSA-L 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 235000014012 manganese gluconate Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- -1 titanates Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 235000011478 zinc gluconate Nutrition 0.000 description 1
- 239000011670 zinc gluconate Substances 0.000 description 1
- 229960000306 zinc gluconate Drugs 0.000 description 1
Images
Landscapes
- Electroplating Methods And Accessories (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、方向性電磁鋼板とその製造方法に関し、具体的には、製品コイルの全幅に亘って優れた磁気特性と被膜特性を有する方向性電磁鋼板とその製造方法に関するものである。 The present invention relates to a grain-oriented electrical steel sheet and a method for manufacturing the grain-oriented electrical steel sheet. Specifically, the present invention relates to a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties over the entire width of a product coil and a method for producing the grain-oriented electrical steel sheet.
電磁鋼板は、変圧器やモータの鉄心等として広く用いられている軟磁性材料であり、中でも方向性電磁鋼板は、結晶方位がGoss方位と呼ばれる{110}<001>方位に高度に集積し、磁気特性に優れているため、主として大型の変圧器の鉄心等に使用されている。変圧器における無負荷損(エネルギーロス)を低減するためには、低鉄損であることが必要である。 Electrical steel sheets are soft magnetic materials that are widely used as iron cores for transformers and motors. Among them, grain oriented electrical steel sheets are highly integrated in the {110} <001> orientation, in which the crystal orientation is called the Goss orientation, Because of its excellent magnetic properties, it is mainly used for iron cores of large transformers. In order to reduce the no-load loss (energy loss) in the transformer, it is necessary to have a low iron loss.
方向性電磁鋼板の鉄損を低減する方法としては、Si含有量の増加や、板厚の低減、二次再結晶粒の配向性向上、二次再結晶組織の細粒化、鋼板への張力付与、鋼板表面の平滑化などが有効である。上記の方法のうち、二次再結晶をコントロールして二次結晶粒の配向性を向上させたり、二次再結晶組織を細粒化したりする方法には、インヒビター成分の種類や量、冷延圧下率、一次再結晶焼鈍パターン、二次再結晶前の表面状態など、様々な要素が影響することが知られている。 Methods for reducing the iron loss of grain-oriented electrical steel sheets include increasing the Si content, reducing the plate thickness, improving the orientation of secondary recrystallized grains, refining the secondary recrystallized structure, and tensioning the steel sheet. Application and smoothing of the steel sheet surface are effective. Among the above methods, the method of controlling the secondary recrystallization to improve the orientation of the secondary crystal grains and the method of refining the secondary recrystallization structure include the type and amount of the inhibitor component, cold rolling. It is known that various factors such as rolling reduction, primary recrystallization annealing pattern, and surface state before secondary recrystallization influence.
ところで、二次再結晶前の表面状態を改善して、良好な磁気特性を得る方法としては、例えば、特許文献1には、冷間圧延により最終板厚に仕上げた鋼板表面に、Cu,Sn,Co,Niから選ばれる1種または2種以上の金属または合金を0.1〜70mg/m2電着させ、しかる後、脱炭焼鈍を行うことにより、コイルの全長全幅にわたって、欠陥のない均一で密着性に優れる被膜を有し、かつ、磁気特性にも優れる方向性けい素鋼板を得る技術が開示されている。
By the way, as a method for improving the surface state before secondary recrystallization and obtaining good magnetic properties, for example, in
また、特許文献2には、インヒビター成分を含有しない鋼スラブを素材として用い、一次再結晶焼鈍、焼鈍分離剤の塗布に先立ち、鋼板表面にSi,Cu,Sn,Co,Niのうちから選んだ1種または2種以上の金属含有物を該金属元素換算で合計0.1〜50mg/m2の範囲で電着させることにより、優れた磁気特性、被膜特性を得る技術が開示されている。 Patent Document 2 uses a steel slab that does not contain an inhibitor component as a raw material, and is selected from Si, Cu, Sn, Co, and Ni on the steel plate surface prior to primary recrystallization annealing and application of an annealing separator. A technique for obtaining excellent magnetic properties and coating properties by electrodepositing one or two or more kinds of metal-containing materials in a range of 0.1 to 50 mg / m 2 in total in terms of the metal element is disclosed.
さらに、特許文献3には、最終冷延後の鋼板表面粗さを算術平均粗さRaで0.40μm以下に調整した後、脱炭焼鈍に先立って、電解脱脂法によって鋼板表面にSiを含有する電着物を0.1mg/m2以上付着する洗浄処理を施し、次いで、脱炭焼鈍の雰囲気を調整することにより、工業的生産においても安定して高磁束密度の製品を得る技術が開示されている。 Furthermore, in Patent Document 3, the steel sheet surface roughness after the final cold rolling is adjusted to an arithmetic average roughness Ra of 0.40 μm or less, and then Si is contained on the steel sheet surface by electrolytic degreasing prior to decarburization annealing. Disclosed is a technique for stably obtaining a high magnetic flux density product even in industrial production by performing a cleaning process to adhere 0.1 mg / m 2 or more of electrodeposits to be deposited and then adjusting the atmosphere of decarburization annealing. ing.
しかしながら、特許文献1に開示の技術では、仕上焼鈍中にCuやSnが鋼中に侵入して析出物を作ることにより、二次再結晶が不安定となることがある。特に、二次再結晶焼鈍は、高温長時間、コイルに巻き取られた状態でバッチ焼鈍されるため、コイルの内巻部と外巻部、および、板幅方向の端部と中央部では、温度履歴が異なっていたり、また、雰囲気ガスの流通性も異なっていたりする。そのため、コイル内部で均一な二次再結晶粒を発現させることが難しいという問題がある。
また、特許文献2に開示の技術では、特許文献1と同様、CuやSnが鋼中に侵入して析出物を作ることや、コイル内部の焼鈍温度不均一に起因して、製品コイル内の磁気特性や被膜特性のバラツキが大きくなるという問題がある。
さらに、特許文献3に開示の技術では、脱炭焼鈍前にSi電着物を形成させるが、Siの電着物自体が脱炭焼鈍時のバリアとなってSiO2の内部酸化を不均一にすることがある。すなわち、僅かな電解浴の経時変化により、電解前の洗浄が不均一であったりすると、Si電着物が板面に均一に付着せず、サブスケールの保護性が不均一となる。その結果、製品コイル内の磁気特性のバラツキが大きくなったり、被膜のムラが発生したりするという問題がある。
However, in the technique disclosed in
Moreover, in the technique disclosed in Patent Document 2, as in
Furthermore, in the technique disclosed in Patent Document 3, a Si electrodeposit is formed before decarburization annealing, but the Si electrodeposit itself becomes a barrier during decarburization annealing and makes the internal oxidation of SiO 2 nonuniform. There is. That is, if the cleaning before electrolysis is non-uniform due to a slight change in the electrolytic bath over time, the Si electrodeposit is not uniformly adhered to the plate surface, and the subscale protection becomes non-uniform. As a result, there is a problem that variation in magnetic characteristics in the product coil is increased or unevenness of the coating occurs.
本発明は、従来技術が抱える上記の問題点に鑑みてなされたものであり、その目的は、コイル全幅にわたって均一かつ良好な磁気特性、被膜特性を有する方向性電磁鋼板を提供するとともに、その製造方法を提案する。 The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to provide a grain-oriented electrical steel sheet having uniform and good magnetic properties and coating properties over the entire width of the coil, and its manufacture. Suggest a method.
発明者らは、上記課題の解決に向けて鋭意検討を重ねた。その結果、酸化性雰囲気中で脱炭焼鈍を施す前に特定の金属を鋼板表面に電着させて、上記焼鈍で形成される内部酸化層を改善することで、製品コイルの全長全幅にわたって均一かつ良好な磁気特性、被膜特性を有する方向性電磁鋼板が得られることを見出し、本発明を開発した。 The inventors have intensively studied to solve the above problems. As a result, before applying decarburization annealing in an oxidizing atmosphere, a specific metal is electrodeposited on the surface of the steel sheet, and the internal oxide layer formed by the annealing is improved, so that the entire length of the product coil is uniform and The present invention was developed by finding that a grain-oriented electrical steel sheet having good magnetic properties and coating properties can be obtained.
すなわち、本発明は、フォルステライト質下地被膜を有する方向性電磁鋼板であって、下地被膜中に、Feよりも卑でSiよりも貴な元素を含有し、かつ、上記下地被膜表面を蛍光X線で分析したときの上記元素の板幅中央部の強度Icに対する板幅端部の強度Ieの比(Ie/Ic)が0.7〜1.3の範囲にあることを特徴とする方向性電磁鋼板である。 That is, the present invention is a grain-oriented electrical steel sheet having a forsterite undercoating, wherein the undercoating contains an element that is more base than Fe and noble than Si, and the surface of the undercoating is fluorescent X The directionality characterized in that the ratio (Ie / Ic) of the strength Ie at the end of the plate width to the strength Ic at the center of the plate width of the element when analyzed by a line is in the range of 0.7 to 1.3. It is a magnetic steel sheet.
また、本発明は、C:0.01〜0.08mass%、Si:2.0〜4.5mass%、Mn:0.02〜0.20mass%を含有し、さらに、Al:0.010〜0.050mass%およびN:0.003〜0.020mass%を含有し、あるいは、Al:0.010〜0.050mass%、N:0.003〜0.020mass%、S:0.005〜0.030mass%および/またはSe:0.005〜0.030mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなく、あるいは、熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、PH2O/PH2を0.20〜0.70とする雰囲気で脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、最終の冷間圧延後から脱炭焼鈍までの間に、Feよりも卑でSiよりも貴な元素を片面あたり0.1〜70mg/m2電着させ、しかる後、脱炭焼鈍を行うことを特徴とする上記の方向性電磁鋼板の製造方法である。 Moreover, this invention contains C: 0.01-0.08mass%, Si: 2.0-4.5mass%, Mn: 0.02-0.20mass%, Furthermore, Al: 0.010- It contains 0.050 mass% and N: 0.003-0.020 mass%, or Al: 0.010-0.050 mass%, N: 0.003-0.020 mass%, S: 0.005-0 0.030 mass% and / or Se: 0.005 to 0.030 mass%, with the balance being Fe and unavoidable impurities hot-rolled into a hot-rolled sheet, without subjecting to hot-rolled sheet annealing or, after being subjected to hot rolled sheet annealing, once or a final thickness of the cold-rolled sheet by two or more cold rolling sandwiching the intermediate annealing, and from 0.20 to 0.70 the P H2O / P H2 Decarburized in an atmosphere In the method for producing a grain-oriented electrical steel sheet consisting of a series of steps in which an annealing separator is applied to the steel sheet surface and finish-annealed, after the final cold rolling to decarburization annealing, than Fe. A method for producing a grain-oriented electrical steel sheet according to the above, characterized in that a base and noble element than Si is electrodeposited in an amount of 0.1 to 70 mg / m 2 per side and thereafter decarburization annealing is performed.
また、本発明は、C:0.01〜0.08mass%、Si:2.0〜4.5mass%、Mn:0.02〜0.20mass%、Al:0.01mass%未満、N:0.005mass%未満、S:0.0050mass%未満およびSe:0.0050mass%未満を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなく、あるいは、熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、PH2O/PH2を0.20〜0.70とする雰囲気で脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、最終の冷間圧延後から脱炭焼鈍までの間に、Feよりも卑でSiよりも貴な元素を片面あたり0.1〜70mg/m2電着させ、しかる後、脱炭焼鈍を行うことを特徴とする上記の方向性電磁鋼板の製造方法である。 Further, the present invention includes C: 0.01 to 0.08 mass%, Si: 2.0 to 4.5 mass%, Mn: 0.02 to 0.20 mass%, Al: less than 0.01 mass%, N: 0 0.005 mass%, S: less than 0.0050 mass%, and Se: less than 0.0050 mass%, with the balance being Fe and inevitable impurities, hot rolled into a hot-rolled sheet, hot-rolled sheet annealed Or after performing hot-rolled sheet annealing, a cold-rolled sheet having a final sheet thickness is formed by cold rolling at least once with intermediate or intermediate annealing, and P H2O / P H2 is 0.20 to 0.20. In a method for producing a grain-oriented electrical steel sheet comprising a series of steps in which an annealing separator is applied to the steel sheet surface after finishing decarburizing annealing in an atmosphere of 0.70 and finish annealing is performed after the final cold rolling. Until charcoal annealing, Fe Even nobler element is per side 0.1~70mg / m 2 electrodeposited than Si in less noble, thereafter, a method of manufacturing the oriented electrical steel sheet and performing decarburization annealing.
本発明の方向性電磁鋼板の製造方法に用いる上記鋼素材は、上記成分組成に加えてさらに、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.001〜0.03mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.0010〜0.0100mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。 In addition to the above component composition, the steel material used in the method for producing a grain-oriented electrical steel sheet according to the present invention further includes Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, and Cu: 0. 0.01 to 0.50 mass%, P: 0.005 to 0.50 mass%, Sb: 0.005 to 0.50 mass%, Sn: 0.005 to 0.50 mass%, Bi: 0.001 to 0.03 mass %, Mo: 0.005 to 0.100 mass%, B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.0100 mass%, Nb: 0.0010 to 0.0100 mass%, V: 0.00. 1 type or 2 types or more chosen from 001-0.010mass% and Ta: 0.001-0.010mass% are characterized by the above-mentioned.
本発明によれば、製品コイルの全板幅に亘って均一かつ良好な磁気特性と被膜特性を有する方向性電磁鋼板を安定して製造し、提供することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to manufacture stably and provide the grain-oriented electrical steel sheet which has a uniform and favorable magnetic characteristic and film characteristic over the whole board width of a product coil.
まず、本発明を開発する契機となった実験について説明する。
C:0.065mass%、Si:3.44mass%、Mn:0.08mass%、Al:0.03mass%およびN:0.008mass%を含有する鋼を溶製し、連続鋳造法で鋼スラブとした後、1410℃に再加熱し、熱間圧延して板厚2.4mmの熱延板とし、1050℃×60秒の熱延板焼鈍を施した後、一次冷間圧延して中間板厚の1.8mmとし、1120℃×80秒の中間焼鈍を施した後、200℃の温間圧延により最終板厚0.23mmの冷延板とした。
First, an experiment that triggered the development of the present invention will be described.
Steel containing C: 0.065 mass%, Si: 3.44 mass%, Mn: 0.08 mass%, Al: 0.03 mass% and N: 0.008 mass%, and a steel slab by a continuous casting method After that, it was reheated to 1410 ° C., hot-rolled to obtain a hot-rolled sheet having a thickness of 2.4 mm, subjected to hot-rolled sheet annealing at 1050 ° C. × 60 seconds, and then subjected to primary cold rolling to an intermediate sheet thickness. After being subjected to intermediate annealing at 1120 ° C. for 80 seconds, a cold rolled sheet having a final sheet thickness of 0.23 mm was obtained by warm rolling at 200 ° C.
次いで、上記冷延板をアルカリ液で脱脂し、酸洗した後、さらに、電解脱脂を行った。このときの電解液には、3mass%のNaOHに、界面活性剤としてモノアルキル硫酸塩を0.5mass%溶解し、さらに、グルコン酸亜鉛(C12H22O14Zn)を1.5mass%添加したものと、添加しないものの2種類を用いた。これらの液中で、鋼板を陰極として電解処理し、Znを片面当たり0〜100mg/m2の範囲で変化して電析させた。なお、Znの電着量は、蛍光X線で測定し、予め作成した検量線から求めた。
次いで、50vol%H2−50vol%N2、露点62.5℃の湿潤雰囲気下で、840℃の温度に100秒間保持する、脱炭焼鈍を施した。
Next, the cold-rolled sheet was degreased with an alkaline solution, pickled, and further subjected to electrolytic degreasing. In this case, 0.5% by mass of monoalkyl sulfate as a surfactant is dissolved in 3% by mass of NaOH, and 1.5% by mass of zinc gluconate (C 12 H 22 O 14 Zn) is added. Two types were used: those prepared and those not added. In these liquids, electrolytic treatment was performed using a steel plate as a cathode, and Zn was electrodeposited while changing in a range of 0 to 100 mg / m 2 per side. In addition, the electrodeposition amount of Zn was measured with fluorescent X-rays and obtained from a calibration curve prepared in advance.
Subsequently, decarburization annealing was performed in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 and a dew point of 62.5 ° C., and maintained at a temperature of 840 ° C. for 100 seconds.
その後、主剤を酸化マグネシウムとし、添加剤として酸化チタンをTi換算で5mass%添加した焼鈍分離剤を鋼板表面に塗布し、乾燥した後、この鋼板を、二次再結晶焼鈍と水素雰囲気下で1200℃の温度に7時間保持する純化焼鈍からなる仕上焼鈍を施した後、未反応の焼鈍分離剤を除去し、絶縁被膜を塗布した後、被膜の焼付けを兼ねた平坦化焼鈍を800℃×30秒で施し、製品コイルとした。 Thereafter, an annealing separator containing 5% by mass of titanium oxide as an additive was added to the steel plate surface and dried, and then the steel plate was subjected to secondary recrystallization annealing and 1200 in a hydrogen atmosphere. After performing a final annealing consisting of a purification annealing that is maintained at a temperature of 7 ° C. for 7 hours, an unreacted annealing separator is removed, an insulating film is applied, and a flattening annealing that also serves as a baking of the film is performed at 800 ° C. × 30 It was applied in seconds to obtain a product coil.
上記のようにして得た製品コイルについて、磁気特性(鉄損W17/50、磁束密度B8)と被膜密着性を調査した。
なお、磁気特性は、SST法(Single Sheet Tester)で測定した。
また、被膜密着性は、上記製品板に800℃×2時間の歪取焼鈍を施した後、径の異なる丸棒に鋼板を巻き付け、被膜が剥離しなかった最小の径を求めることで評価した。
上記測定の結果を図1に示した。この図から、磁気特性、被膜密着性とも、Zn電着量が増加するとともに改善されるが、ある量を超えると、逆に劣化する傾向が認められる。
The product coil obtained as described above was examined for magnetic properties (iron loss W 17/50 , magnetic flux density B 8 ) and film adhesion.
The magnetic properties were measured by the SST method (Single Sheet Tester).
Further, the film adhesion was evaluated by obtaining the minimum diameter at which the film did not peel off after the steel sheet was wound on a round bar having a different diameter after the product plate was subjected to 800 ° C. × 2 hours of strain relief annealing. .
The results of the measurement are shown in FIG. From this figure, both the magnetic properties and the film adhesion are improved as the Zn electrodeposition amount increases, but when it exceeds a certain amount, the tendency to deteriorate is recognized.
このような現象が起こるメカニズムについて、現時点では十分に明らかとなっていないが、発明者らは以下のように考えている。
まず、Znを電着しない場合には、脱炭焼鈍において、鋼板表面直下に、内部酸化物としてSiO2とFe2SiO4粒子が生成する。さらに、露点が高いときには、すなわち、酸化性が高いときには、上記に加えて、外部酸化物としてFeOが生成する。このFeOは、その後の仕上焼鈍中に分解して酸素を放出し、インヒビターを分解したり、被膜の形成に悪影響を与えたりする、いわゆる「追加酸化」を起こして、磁気特性や被膜特性を劣化させる。また、FeOが生成しない場合でも、仕上焼鈍前にMgOをスラリー化した焼鈍分離剤中に含まれる水和水が、仕上焼鈍温度の高まりとともに雰囲気ガス中に放出され、これが鋼板表面のFeを酸化させて同様の悪影響をもたらす。
Although the mechanism by which such a phenomenon occurs is not sufficiently clear at present, the inventors consider as follows.
First, when Zn is not electrodeposited, SiO 2 and Fe 2 SiO 4 particles are formed as internal oxides immediately under the surface of the steel sheet in the decarburization annealing. Further, when the dew point is high, that is, when the oxidizing property is high, in addition to the above, FeO is generated as an external oxide. This FeO decomposes during the subsequent finish annealing to release oxygen, decomposes the inhibitor and adversely affects the formation of the film, causing so-called "additional oxidation", degrading the magnetic properties and film properties. Let Even when FeO is not generated, the hydration water contained in the annealing separator into which MgO is slurried before finish annealing is released into the atmospheric gas as the finish annealing temperature increases, which oxidizes Fe on the steel sheet surface. Cause similar adverse effects.
一方、Znを脱炭焼鈍の前に電着させた場合には、脱炭焼鈍時には、ZnはFeよりも卑でSiよりも貴な元素であるため、すなわち、ZnはFeよりも酸化され易く、Siよりも酸化され難いため、脱炭焼鈍を行っても、Siは、Znの存在如何に関わらずSiO2粒子となって内部酸化物(層)を形成する。しかし、Fe2SiO4は、Feより酸化され易い元素であるZnの存在により、(Zn,Fe)2SiO4になる。また、露点(酸化性)が高いときに生成するFeOも、Znの存在により(Zn,Fe)Oとなる。 On the other hand, when Zn is electrodeposited before decarburization annealing, during decarburization annealing, Zn is a lower element than Fe and noble than Si, that is, Zn is more easily oxidized than Fe. Since Si is less oxidized than Si, even if decarburization annealing is performed, Si forms SiO 2 particles and forms an internal oxide (layer) regardless of the presence of Zn. However, Fe 2 SiO 4 becomes (Zn, Fe) 2 SiO 4 due to the presence of Zn, which is an element that is more easily oxidized than Fe. Further, FeO generated when the dew point (oxidation property) is high is also changed to (Zn, Fe) O due to the presence of Zn.
これらのZn酸化物は、Feよりも化学的結合力が強いため、仕上焼鈍中に分解して酸素を放出することなく焼鈍分離剤のMgOと反応し、その後、MgイオンとZnイオンが置換することにより、フォルステライト質(Mg2SiO4)の下地被膜を形成する。その結果、Znを電着しない場合と比較して、追加酸化が起こり難いため、磁気特性、被膜特性が改善されるものと考えられる。 Since these Zn oxides have a stronger chemical bonding force than Fe, they react with the annealing separator MgO without being decomposed and releasing oxygen during finish annealing, and then the Mg ions and Zn ions are substituted. As a result, a forsterite (Mg 2 SiO 4 ) undercoat is formed. As a result, it is considered that additional oxidation is less likely to occur compared to the case where Zn is not electrodeposited, so that the magnetic properties and film properties are improved.
さらに、注目すべきことは、このような金属の電着は、仕上焼鈍中の焼鈍の不均一を緩和する効果を有するということである。
仕上焼鈍は、コイルに巻かれた状態で行われるため、板幅方向の中央部と端部では、焼鈍雰囲気の条件が大きく異なっている。すなわち、板幅中央部では、上述したMgOの水和水やFeOの還元により放出された酸素が長時間滞留して悪影響を受けるのに対し、板幅端部では、放出された酸素分や水分は速やかに系外に抜けてしまう。そのため、板幅中央部は板幅端部に比べて追加酸化を受けやすく、磁気特性や被膜特性が劣化しやすくなる。しかし、Zn等の金属を電着しておくと、このような追加酸化の発現が抑制されるため、板幅端部や板幅中央部でも均一な特性の鋼板が得られるのである。なお、同様の効果は、コイルの内巻部と外巻部についても起こり、製品コイルの長手方向の特性の均一性が改善される。
本発明は、上記の新規な知見に基き、開発したものである。
Furthermore, it should be noted that such metal electrodeposition has the effect of mitigating annealing non-uniformity during finish annealing.
Since the finish annealing is performed in a state of being wound around a coil, the conditions of the annealing atmosphere are greatly different between the center portion and the end portion in the plate width direction. That is, in the central portion of the plate width, the hydrated water of MgO and the oxygen released by the reduction of FeO stay for a long time and are adversely affected. Will quickly get out of the system. Therefore, the central portion of the plate width is more susceptible to additional oxidation than the end portion of the plate width, and the magnetic characteristics and the film characteristics are likely to deteriorate. However, when a metal such as Zn is electrodeposited, the occurrence of such additional oxidation is suppressed, so that a steel plate having uniform characteristics can be obtained even at the plate width end portion and the plate width central portion. The same effect also occurs in the inner and outer winding portions of the coil, and the uniformity of the longitudinal characteristics of the product coil is improved.
The present invention has been developed based on the above novel findings.
次に、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)の成分組成について説明する。
C:0.01〜0.08mass%
Cは、0.01mass%に満たないと、粒界強化効果が失われ、スラブに割れが生じて、製造に支障を来たしたり、表面欠陥が発生したりするようになる。一方、0.08mass%を超えると、酸化性雰囲気で行う脱炭焼鈍の工程で、磁気時効の起こらない0.005mass%以下に脱炭・低減することが難しくなる。よって、Cは0.01〜0.08mass%の範囲とするのが好ましい。より好ましくは0.02〜0.080mass%の範囲である。
Next, the component composition of the steel material (slab) used for manufacture of the grain-oriented electrical steel sheet of the present invention will be described.
C: 0.01-0.08 mass%
If C is less than 0.01 mass%, the grain boundary strengthening effect is lost, and the slab is cracked, resulting in hindrance to production and surface defects. On the other hand, when it exceeds 0.08 mass%, it becomes difficult to decarburize and reduce to 0.005 mass% or less where magnetic aging does not occur in the decarburization annealing process performed in an oxidizing atmosphere. Therefore, C is preferably in the range of 0.01 to 0.08 mass%. More preferably, it is the range of 0.02-0.080 mass%.
Si:2.0〜4.5mass%
Siは、鋼の比抵抗を高め、鉄損を低減するのに必要な元素である。この効果は、2.0mass%未満の含有量では十分ではなく、一方、4.5mass%を超えると、加工性が低下し、圧延して製造すること困難となる。よって、Siは2.0〜4.5mass%の範囲とするのが好ましい。より好ましくは2.5〜4.2mass%の範囲である。
Si: 2.0 to 4.5 mass%
Si is an element necessary for increasing the specific resistance of steel and reducing iron loss. For this effect, a content of less than 2.0 mass% is not sufficient. On the other hand, if it exceeds 4.5 mass%, the workability deteriorates and it becomes difficult to roll and manufacture. Therefore, Si is preferably in the range of 2.0 to 4.5 mass%. More preferably, it is the range of 2.5-4.2 mass%.
Mn:0.02〜0.20mass%
Mnは、鋼の熱間加工性を改善するために必要な元素である。上記効果は、0.02mass%未満では十分ではなく、一方、0.20mass%を超えると、製品板の磁束密度が低下するようになる。よって、Mnは0.02〜0.20mass%の範囲とするのが好ましい。より好ましくは0.03〜0.15mass%の範囲である。
Mn: 0.02 to 0.20 mass%
Mn is an element necessary for improving the hot workability of steel. If the effect is less than 0.02 mass%, it is not sufficient. On the other hand, if it exceeds 0.20 mass%, the magnetic flux density of the product plate decreases. Therefore, Mn is preferably in the range of 0.02 to 0.20 mass%. More preferably, it is the range of 0.03-0.15 mass%.
上記C,SiおよびMn以外の成分は、二次再結晶を生じさせるために、インヒビターを利用する場合と、しない場合とで異なる。
まず、二次再結晶を生じさせるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときには、AlおよびNを、それぞれAl:0.010〜0.050mass%、N:0.003〜0.020mass%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビターを利用するときには、前述した量のMnと、S:0.005〜0.030mass%およびSe:0.005〜0.030mass%のうちの1種または2種を含有させるのが好ましい。それぞれの添加量が、上記下限値より少ないと、インヒビター効果が十分に得られず、一方、上記上限値を超えると、インヒビター成分がスラブ加熱時に未固溶で残存し、磁気特性の低下をもたらす。なお、AlN系とMnS・MnSe系のインヒビターは併用して用いてもよい。
Components other than C, Si and Mn are different depending on whether or not an inhibitor is used in order to cause secondary recrystallization.
First, when an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are changed to Al: 0.010 to 0.050 mass%, N: 0.003, respectively. It is preferable to make it contain in the range of -0.020 mass%. When using an MnS / MnSe-based inhibitor, the amount of Mn described above and one or two of S: 0.005 to 0.030 mass% and Se: 0.005 to 0.030 mass% are contained. It is preferable to do so. If the amount of each additive is less than the above lower limit value, the inhibitor effect is not sufficiently obtained. On the other hand, if the amount exceeds the above upper limit value, the inhibitor component remains undissolved during slab heating, resulting in a decrease in magnetic properties. . AlN and MnS / MnSe inhibitors may be used in combination.
一方、二次再結晶を生じさせるためにインヒビターを利用しない場合には、上述したインヒビター形成成分であるAl,N,SおよびSeの含有量を極力低減し、Al:0.01mass%未満、N:0.0050mass%未満、S:0.0050mass%未満およびSe:0.0030mass%未満に低減した鋼素材を用いるのが好ましい。 On the other hand, when an inhibitor is not used to cause secondary recrystallization, the content of Al, N, S and Se, which are the above-described inhibitor forming components, is reduced as much as possible, Al: less than 0.01 mass%, N : It is preferable to use a steel material reduced to less than 0.0050 mass%, S: less than 0.0050 mass%, and Se: less than 0.0030 mass%.
本発明の方向性電磁鋼板の製造に用いる鋼素材は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、磁気特性の改善を目的として、上記成分に加えて、Ni:0.010〜1.50mass%、Cr:0.01〜0.50mass%、Cu:0.01〜0.50mass%、P:0.005〜0.50mass%、Sb:0.005〜0.50mass%、Sn:0.005〜0.50mass%、Bi:0.001〜0.03mass%、Mo:0.005〜0.100mass%、B:0.0002〜0.0025mass%、Te:0.0005〜0.0100mass%、Nb:0.0010〜0.0100mass%、V:0.001〜0.010mass%およびTa:0.001〜0.010mass%のうちから選ばれる1種または2種以上を適宜添加してもよい。なお、より好ましくは、Ni:0.01〜0.5mass%、Cr:0.01〜0.3mass%、Cu:0.01〜0.3mass%、P:0.005〜0.2mass%、Sb:0.005〜0.07mass%、Sn:0.005〜0.2mass%、Bi:0.005〜0.03mass%、Mo:0.005〜0.05mass%、B:0.0002〜0.0020mass%の範囲である。 In the steel material used for manufacturing the grain-oriented electrical steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities. However, in order to improve the magnetic properties, in addition to the above components, Ni: 0.010 to 1.50 mass%, Cr: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, P : 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, Sn: 0.005-0.50 mass%, Bi: 0.001-0.03 mass%, Mo: 0.005-0 100 mass%, B: 0.0002 to 0.0025 mass%, Te: 0.0005 to 0.0100 mass%, Nb: 0.0010 to 0.0100 mass%, V: 0.001 to 0.010 mass%, and Ta: One or more selected from 0.001 to 0.010 mass% may be added as appropriate. More preferably, Ni: 0.01-0.5 mass%, Cr: 0.01-0.3 mass%, Cu: 0.01-0.3 mass%, P: 0.005-0.2 mass%, Sb: 0.005-0.07 mass%, Sn: 0.005-0.2 mass%, Bi: 0.005-0.03 mass%, Mo: 0.005-0.05 mass%, B: 0.0002- It is in the range of 0.0020 mass%.
次に、本発明の方向性電磁鋼板の製造方法について説明する。
前述した成分組成を有する鋼を常法の精錬プロセスで溶製した後、従来公知の造塊−分塊圧延法または連続鋳造法で鋼素材(スラブ)を製造してもよいし、あるいは、直接鋳造法で100mm以下の厚さの薄鋳片を製造してもよい。上記スラブは常法に従い、例えば、インヒビター成分を含有する場合には1400℃程度まで加熱した後、一方、インヒビター成分を含まない場合には1300℃以下の温度に加熱した後、熱間圧延に供する。なお、インヒビター成分を含有しない場合には、鋳造後、加熱することなく直ちに熱間圧延してもよい。また、薄鋳片の場合には、熱間圧延してもよいし、熱間圧延を省略してそのまま以後の工程に進めてもよい。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
A steel material (slab) may be manufactured by a conventionally known ingot-bundling rolling method or continuous casting method after melting the steel having the above-described component composition by a conventional refining process, or directly. A thin slab having a thickness of 100 mm or less may be manufactured by a casting method. The slab is subjected to a conventional method. For example, when it contains an inhibitor component, it is heated to about 1400 ° C. On the other hand, when it does not contain an inhibitor component, it is heated to a temperature of 1300 ° C. or lower and then subjected to hot rolling. . In addition, when not containing an inhibitor component, you may hot-roll immediately after casting, without heating. In the case of a thin slab, hot rolling may be performed, or hot rolling may be omitted and the subsequent process may be performed as it is.
上記熱間圧延して得た熱延板は、その後、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の均熱温度は、良好な磁気特性を得るため、800〜1150℃の範囲とするのが好ましい。800℃未満では、熱間圧延で形成されたバンド組織が残留し、整粒の一次再結晶組織を得ることが難しくなり、二次再結晶粒の成長が阻害される。一方、1150℃を超えると、熱延板焼鈍後の粒径が粗大化し過ぎて、やはり整粒の一次再結晶組織を得ることが難しくなるからである。 Thereafter, the hot-rolled sheet obtained by hot rolling is subjected to hot-rolled sheet annealing as necessary. The soaking temperature of this hot-rolled sheet annealing is preferably in the range of 800 to 1150 ° C. in order to obtain good magnetic properties. If it is less than 800 degreeC, the band structure formed by hot rolling will remain, it will become difficult to obtain the primary recrystallized structure of a sized grain, and the growth of a secondary recrystallized grain will be inhibited. On the other hand, when the temperature exceeds 1150 ° C., the grain size after hot-rolled sheet annealing becomes too coarse, and it becomes difficult to obtain a primary recrystallized structure of sized particles.
次いで、熱延後あるいは熱延板焼鈍後の熱延板は、1回の冷間圧延または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とする。上記中間焼鈍の焼鈍温度は、900〜1200℃の範囲とするのが好ましい。900℃未満では中間焼鈍後の再結晶粒が細かくなり、さらに、一次再結晶組織におけるGoss核が減少して製品板の磁気特性が低下する。一方、1200℃を超えると、熱延板焼鈍のときと同様、結晶粒が粗大化し過ぎて整粒の一次再結晶組織を得ることが難しくなる。 Next, the hot-rolled sheet after hot-rolling or after hot-rolled sheet annealing is made into a cold-rolled sheet having a final sheet thickness by one or more cold rolling or two or more cold rollings sandwiching the intermediate annealing. The annealing temperature of the intermediate annealing is preferably in the range of 900 to 1200 ° C. If it is less than 900 ° C., the recrystallized grains after the intermediate annealing become finer, and further, Goss nuclei in the primary recrystallized structure are reduced and the magnetic properties of the product plate are deteriorated. On the other hand, when the temperature exceeds 1200 ° C., the crystal grains become too coarse as in the case of hot-rolled sheet annealing, and it becomes difficult to obtain a primary recrystallized structure of grain size.
また、最終板厚とする冷間圧延(最終冷間圧延)は、磁気特性をより向上するためには、圧延時の鋼板温度を100〜300℃に上昇させて圧延する温間圧延を採用したり、冷間圧延の途中で100〜300℃の温度で時効処理を1回または複数回施したりして、一次再結晶集合組織を改善するのが有効である。 In order to further improve the magnetic properties, the cold rolling with the final sheet thickness (final cold rolling) employs warm rolling in which the steel sheet temperature during rolling is increased to 100 to 300 ° C and rolled. It is effective to improve the primary recrystallization texture by performing aging treatment once or a plurality of times at a temperature of 100 to 300 ° C. during the cold rolling.
最終板厚とした冷延板は、前述した仕上焼鈍における追加酸化を防止するため、脱炭焼鈍までの段階で、Feよりも卑でかつSiよりも貴な元素を鋼板表面に電着(電析)させることが重要である。ここで、上記Feよりも卑でかつSiよりも貴とは、脱炭焼鈍で内部酸化層が形成される高温時において、Feよりも酸化し易く、Siよりも酸化し難いことをいう。このような特性を有する金属元素としては、Ti,Mn,Ta,Zn,Cr等を挙げることができる。 In order to prevent additional oxidation in the above-described finish annealing, the cold-rolled sheet having the final thickness is electrodeposited with an element that is baser than Fe and nobler than Si on the surface of the steel sheet (electrodeposition). Analysis) is important. Here, the term “baser than Fe and noble than Si” means that it is easier to oxidize than Fe and harder to oxidize than Si at a high temperature when an internal oxide layer is formed by decarburization annealing. Examples of the metal element having such characteristics include Ti, Mn, Ta, Zn, and Cr.
上記金属の電着(付着)量は、片面あたり0.1mg/m2以上70mg/m2以下の範囲とする必要がある。なお、電着は、1回でなく、複数回に分けて行ってもよいが、その際は、電着量が上記範囲となるようにすればよい。電着量が0.1mg/m2未満では上記効果が十分に得られず、一方、70mg/m2よりも多いと、脱炭焼鈍の前に電着させた金属の酸化によって、脱炭焼鈍中に鋼板表面から内部に酸素が拡散するのが妨げられるため、酸素目付量不足となって被膜特性が劣化する。好ましい電着量は0.1mg/m2以上50mg/m2以下の範囲である。
The electrodeposition of metal (adhesion) amount is required to be a per side 0.1 mg / m 2 or more 70 mg / m 2 or less. In addition, although electrodeposition may be performed in multiple times instead of once, in that case, the amount of electrodeposition should be within the above range. The effect is insufficient in the electrodeposition of less than 0.1 mg / m 2, whereas, when it is more than 70 mg / m 2, by oxidation of the metal is electrodeposited before the decarburization annealing, decarburization annealing Since oxygen is prevented from diffusing from the surface of the steel sheet to the inside, the amount of oxygen is insufficient, and the film characteristics are deteriorated. A preferable electrodeposition amount is in the range of 0.1 mg /
なお、上記金属を電着する方法は、電着物の密着性を確保するため、および、電着量の制御が容易であることから、電解析出法を採用する。最も簡便な方法は、通常の電気めっきである。めっき浴は、地鉄の溶解を防ぐため、水酸化ナトリウムや珪酸ナトリウムなどを溶解したアルカリ浴を用いることが望ましい。これに、所望の金属イオンを含む化合物を溶解させる。アルカリ浴で溶解する金属化合物としては、EDTA(エチレンジアミン四酢酸;Ethylenediaminetetraacetic Acid)や、グルコン酸などの金属キレート塩を用いるのが好適である。さらに、このアルカリ浴には、鋼板に付着した油分を離脱、乳化させるために界面活性剤を添加するのが好ましい。このようなめっき浴で電解すると、金属電着とともに電解脱脂を兼ねて行うこともできる。 In addition, the method for electrodepositing the metal employs an electrolytic deposition method in order to ensure the adhesion of the electrodeposit and to easily control the amount of electrodeposition. The simplest method is normal electroplating. As the plating bath, it is desirable to use an alkaline bath in which sodium hydroxide, sodium silicate or the like is dissolved in order to prevent dissolution of the base iron. In this, a compound containing a desired metal ion is dissolved. As a metal compound that dissolves in an alkaline bath, it is preferable to use a metal chelate salt such as EDTA (ethylenediaminetetraacetic acid) or gluconic acid. Furthermore, it is preferable to add a surfactant to the alkaline bath in order to remove and emulsify the oil adhering to the steel plate. When electrolysis is performed in such a plating bath, it is possible to perform electrolytic degreasing together with metal electrodeposition.
なお、金属電着量の制御は、電流密度と時間を調節することにより可能である。因みに、本発明程度の金属付着量であれば、電流密度は0.1〜100A/dm2程度、電解時間は0.1〜10秒程度で電着させることができる。
電解処理は、定電流電解、交番電流電解のいずれも可能である。交番電流電解では、鋼板がマイナス極となるときの電解時間の合計が上記範囲に収まるようにすればよい。
The amount of metal electrodeposition can be controlled by adjusting the current density and time. Incidentally, if the amount of metal adhesion is about the present invention, the current density can be electrodeposited in about 0.1 to 100 A / dm 2 , and the electrolysis time can be about 0.1 to 10 seconds.
The electrolytic treatment can be either constant current electrolysis or alternating current electrolysis. In the alternating current electrolysis, the total electrolysis time when the steel plate becomes a negative pole may be set within the above range.
上記金属電着を施した冷延板は、その後、脱炭焼鈍を施す。均熱温度は700〜900℃、均熱時間は30〜300秒の範囲とするのが好ましい。均熱温度が700℃未満、もしくは均熱時間が30秒未満では、脱炭が不十分となったり、一次再結晶粒が小さ過ぎて、製品板の磁気特性が劣化し、一方、900℃を超えたり300秒を超えたりすると、一次再結晶粒が大きくなり過ぎて、やはり製品板の磁気特性が劣化する。 Then, the cold-rolled sheet subjected to the metal electrodeposition is subjected to decarburization annealing. It is preferable that the soaking temperature is 700 to 900 ° C., and the soaking time is 30 to 300 seconds. If the soaking temperature is less than 700 ° C or the soaking time is less than 30 seconds, decarburization is insufficient, the primary recrystallized grains are too small, and the magnetic properties of the product plate are deteriorated. If it exceeds 300 seconds or exceeds 300 seconds, the primary recrystallized grains become too large, and the magnetic properties of the product plate are deteriorated.
この脱炭焼鈍は、鋼板の表層(表面直下)にサブスケール(SiO2)を形成させる工程であるが、この時、前工程で電着した金属が鋼中に侵入すると同時に、鋼板表面で酸化される。この鋼板表面の酸化物は、後工程の仕上焼鈍における追加酸化を抑えて、磁気特性を改善する働きがある。 This decarburization annealing is a process of forming a subscale (SiO 2 ) on the surface layer (directly below the surface) of the steel sheet. At this time, the metal electrodeposited in the previous process penetrates into the steel and simultaneously oxidizes on the steel sheet surface. Is done. The oxide on the surface of the steel sheet has a function of improving magnetic properties by suppressing additional oxidation in the subsequent finish annealing.
上記サブスケールを形成するためには、上記脱炭焼鈍における雰囲気は、水蒸気−水素分圧比PH2O/PH2で0.20〜0.70の範囲の酸化性雰囲気(脱炭雰囲気)とする必要がある。これにより、鋼中に形成されるサブスケールの量や、電着金属の酸化量を適正化することができる。好ましいPH2O/PH2は0.30〜0.60の範囲である。なお、鋼素材として、C濃度が0.005mass%以下のものを用いる場合には、脱炭は、磁気時効を防止する観点からは不要であるが、表面直下にサブスケールを形成させる観点から上記脱炭雰囲気とすることが好ましい。 In order to form the subscale, the atmosphere in the decarburization annealing needs to be an oxidizing atmosphere (decarburization atmosphere) in the range of 0.20 to 0.70 at a steam-hydrogen partial pressure ratio P H2O / P H2. There is. Thereby, the quantity of the subscale formed in steel and the oxidation amount of an electrodeposited metal can be optimized. Preferred P H2O / P H2 is in the range of 0.30 to 0.60. In addition, when a steel material having a C concentration of 0.005 mass% or less is used, decarburization is not necessary from the viewpoint of preventing magnetic aging, but from the viewpoint of forming a subscale immediately below the surface. A decarburizing atmosphere is preferable.
なお、上記脱炭焼鈍では、雰囲気を一定条件とする必要はなく、例えば、前半と後半の2段階に分けて後半を低露点(還元性)として還元処理を施したり、あるいは、加熱時の雰囲気と均熱時の雰囲気を別々にしたりしてもよい。さらに、加熱過程における昇温速度を50℃/s以上に高める急速加熱としたり、脱炭焼鈍後に窒化処理を施したりしてもよい。 In the above decarburization annealing, the atmosphere does not have to be a constant condition. For example, the first half and the second half are divided into two stages, and the latter half is subjected to a reduction treatment with a low dew point (reducibility), or the atmosphere at the time of heating. And the soaking atmosphere may be made different. Furthermore, rapid heating that raises the temperature rising rate in the heating process to 50 ° C./s or more may be performed, or nitriding may be performed after decarburization annealing.
次いで、上記脱炭焼鈍を施した鋼板表面に焼鈍分離剤を塗布する。上記焼鈍分離剤としては、フォルステライト被膜を形成するため、主剤としてMgOを50mass%以上含むものを使用するが、上記MgOには、添加材として、TiやCa,Sr,Mn,Mo,Fe,Cu,Zn,Ni,Sn,Al,K,Li,Kなどの酸化物、硫酸塩、塩化物、ホウ酸塩、珪酸塩、硝酸塩、チタン酸塩、水酸化物などのうちから選ばれる1種または2種以上を添加したものを用いてもよい。 Next, an annealing separator is applied to the surface of the steel plate subjected to the decarburization annealing. As the annealing separator, for forming a forsterite film, a material containing 50 mass% or more of MgO is used as a main agent. In MgO, Ti, Ca, Sr, Mn, Mo, Fe, One selected from oxides such as Cu, Zn, Ni, Sn, Al, K, Li, K, sulfates, chlorides, borates, silicates, nitrates, titanates, hydroxides, etc. Or what added 2 or more types may be used.
上記の焼鈍分離剤を塗布した鋼板は、その後、コイルに巻き取った状態で、二次再結晶を起こさせた後、純化処理を行う仕上焼鈍を施す。この仕上焼鈍により、Goss方位に高度に集積させた二次再結晶組織を発達させるとともに、フォルステライト被膜を形成させることができる。仕上焼鈍の温度は、二次再結晶の発現のためには800℃以上への昇温が必要であり、また、二次再結晶を完了させるためには1100℃まで昇温することが好ましい。引き続いて行われる純化焼鈍は、フォルステライト被膜を形成させるため、1200℃程度の温度まで昇温するのが好ましい。また、インヒビター形成成分を含まない鋼素材を用いる場合には、純化処理は不要であるが、フォルステライト被膜を形成させるため、1200℃程度まで昇温するのが好ましい。 The steel sheet coated with the annealing separator is then subjected to finish annealing in which it is subjected to a purification treatment after causing secondary recrystallization in a state of being wound around a coil. By this finish annealing, a secondary recrystallized structure highly accumulated in the Goss orientation can be developed and a forsterite film can be formed. The temperature of the finish annealing needs to be raised to 800 ° C. or higher for the purpose of secondary recrystallization, and is preferably raised to 1100 ° C. to complete the secondary recrystallization. In the subsequent purification annealing, it is preferable to raise the temperature to about 1200 ° C. in order to form a forsterite film. In addition, when using a steel material that does not contain an inhibitor-forming component, purification treatment is not necessary, but it is preferable to raise the temperature to about 1200 ° C. in order to form a forsterite film.
仕上焼鈍を施した鋼板は、その後、鋼板表面に付着した未反応の焼鈍分離剤を除去するための水洗やブラッシング、酸洗等を行った後、絶縁被膜を塗布し、上記被膜の焼付けと形状矯正を兼ねた平坦化焼鈍を施して最終製品とするのが好ましい。 The steel sheet that has undergone finish annealing is then washed with water, brushed, pickled, etc. to remove unreacted annealing separator adhering to the surface of the steel sheet, then coated with an insulating film, and then baked and shaped. It is preferable to carry out flattening annealing that also serves as correction to obtain a final product.
このようにして製造された方向性電磁鋼板は、下地被膜中に含まれる鋼板表面に電着した金属の濃度を蛍光X線で測定したときに、板幅中央部の強度Icに対する板幅端部の強度Ieの比(Ie/Ic)が0.7〜1.3倍の範囲となる。ここで、上記板幅端部の強度Ieとは、仕上焼鈍後、残留した焼鈍分離剤を除去した後の鋼板両エッジを30mm耳切りした後の両幅端部から100mm幅のサンプルを切り出し、その表面を蛍光X線で測定したときの電着した金属の値である。なお、製品板に絶縁被膜が被成されている場合には、アルカリ洗浄等で上記被膜を除去してから蛍光X線で測定する。Ie/Icの値が上記範囲にある方向性電磁鋼板は、磁気特性と被膜特性が良好で、板幅方向で均一である。しかし、Ie/Icが0.7より小さい場合や、1.3より高い場合には、磁気特性や被膜特性が劣るだけでなく、板幅方向で不均一となる。 The grain-oriented electrical steel sheet manufactured in this way has a plate width end with respect to the strength Ic at the center of the plate width when the concentration of the metal electrodeposited on the steel plate surface contained in the undercoat is measured by fluorescent X-rays. The ratio of the strength Ie (Ie / Ic) is in the range of 0.7 to 1.3 times. Here, the strength Ie of the plate width end portion is a sample having a width of 100 mm cut out from both width end portions after the end of 30 mm of the steel plate edges after removing the remaining annealing separator after finish annealing, It is the value of the electrodeposited metal when the surface is measured with fluorescent X-rays. In addition, when an insulating film is formed on the product plate, the film is removed by alkali cleaning or the like and then measured with fluorescent X-rays. A grain-oriented electrical steel sheet having an Ie / Ic value in the above range has good magnetic properties and coating properties, and is uniform in the plate width direction. However, when Ie / Ic is smaller than 0.7 or higher than 1.3, not only the magnetic properties and the film properties are inferior, but also non-uniform in the plate width direction.
なお、鉄損をより低減したい場合には、本発明の方法で製品板とした後、あるいは、本発明の方法で製品板とする途中工程において、磁区細分化処理を施すことが有効である。磁区細分化の方法としては、従来から常用されている、製品板に溝を形成する方法や、製品板表面にレーザーや電子ビームを照射して線状または点状の熱歪や衝撃歪を導入する方法、最終板厚に冷間圧延した後の中間工程で、鋼板表面にエッチング加工を施して溝を形成したりする方法等を用いることができる。特に、本発明の製品板は、被膜の密着性に優れ、電子ビームを照射しても被膜が剥落することがないので、電子ビーム照射による磁区細分化処理に好適である。 When it is desired to further reduce the iron loss, it is effective to perform the magnetic domain fragmentation process after the product plate is formed by the method of the present invention or in the intermediate process of forming the product plate by the method of the present invention. As a method for subdividing magnetic domains, a conventionally used method is to form a groove in the product plate, or a linear or dotted thermal strain or impact strain is introduced by irradiating the surface of the product plate with a laser or an electron beam. And a method of forming a groove by etching the steel sheet surface in an intermediate step after cold rolling to the final plate thickness. In particular, the product plate of the present invention is excellent in the adhesiveness of the coating, and the coating does not peel off even when irradiated with an electron beam. Therefore, the product plate is suitable for magnetic domain fragmentation treatment by electron beam irradiation.
C:0.070mass%、Si:3.43mass%、Mn:0.08mass%、Al:0.02mass%、N:0.008mass%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを連続鋳造法で製造し、1350℃の温度に再加熱した後、熱間圧延して板厚2.4mmの熱延板とし、1000℃×50秒の熱延板焼鈍を施した後、または、熱延板焼鈍を施すことなく、一次冷間圧延により1.8mmの中間板厚とし、1100℃×20秒の中間焼鈍を施した後、二次冷間圧延して最終板厚が0.23mmの冷延板に仕上げた。その後、この冷延板を脱脂した後、珪酸ナトリウム30g/L、界面活性剤5g/Lに種々のEDTA金属塩を添加した電解液を用いて、浴温70℃、電流密度0.1〜20A/dm2で0〜15秒間の電解処理を施し、種々の量の金属電着物を付着させた後、50vol%H2−50vol%N2、露点50〜65℃の湿潤雰囲気下で、840℃の温度に100秒間保持する脱炭焼鈍を施した。
次いで、MgOを主体とする焼鈍分離剤をスラリー状にして鋼板表面に塗布、乾燥した後、二次再結晶させた後、さらに、1200℃×10時間の純化処理を行う仕上焼鈍を施した。仕上焼鈍の雰囲気は、純化処理する1200℃保定時はH2、昇温時および降温時はN2とした。その後、リン酸マグネシウム−コロイド状シリカを主成分とする絶縁被膜を塗布し、焼き付けて製品コイルとした。
A steel slab containing C: 0.070 mass%, Si: 3.43 mass%, Mn: 0.08 mass%, Al: 0.02 mass%, N: 0.008 mass% with the balance being Fe and inevitable impurities. After being manufactured by a continuous casting method and reheated to a temperature of 1350 ° C., it is hot-rolled to form a hot-rolled sheet having a thickness of 2.4 mm and subjected to hot-rolled sheet annealing at 1000 ° C. × 50 seconds, or Without applying hot-rolled sheet annealing, the intermediate sheet thickness is set to 1.8 mm by primary cold rolling, and after intermediate annealing at 1100 ° C. for 20 seconds, the second sheet is subjected to secondary cold rolling to obtain a final sheet thickness of 0.23 mm. Finished in cold rolled sheet. Thereafter, this cold-rolled sheet was degreased, and then an electrolytic solution obtained by adding various EDTA metal salts to sodium silicate 30 g / L and a surfactant 5 g / L, a bath temperature of 70 ° C., and a current density of 0.1 to 20 A. / Dm 2 for 0-15 seconds to deposit various amounts of electrodeposited metal, then 840 ° C. in a humid atmosphere of 50 vol% H 2 -50 vol% N 2 , dew point 50-65 ° C. The decarburization annealing which hold | maintains for 100 second at the temperature of was performed.
Next, an annealing separator mainly composed of MgO was applied in the form of a slurry to the surface of the steel sheet, dried, and then subjected to secondary recrystallization, and then subjected to a finish annealing for carrying out a purification treatment at 1200 ° C. for 10 hours. The atmosphere of the finish annealing was H 2 when maintaining at 1200 ° C. for the purification treatment, and N 2 when raising and lowering the temperature. Thereafter, an insulating film mainly composed of magnesium phosphate-colloidal silica was applied and baked to obtain a product coil.
このようにして得た製品コイルの長手方向中央部からサンプルを採取し、板幅中央部、および、エッジを30mm切り落とした両端部から、それぞれ幅100mmの試験片を切り出し、それぞれの磁気特性(磁束密度B8、鉄損W17/50)と曲げ密着性(曲げ剥離径)を測定した。なお、板幅端部の磁気特性、曲げ密着性は、両幅端部の平均値を求めた。
また、同様にして別途採取した試験片について、アルカリ洗浄で絶縁被膜を除去してフォルステライト質の下地被膜を露出させた後、蛍光X線で下地被膜中の電着金属濃度を分析し、板幅中央部の強度Icに対する板幅端部の強度Ieの比(Ie/Ic)を求めた。なお、両幅端部の強度Ieには、両幅端部の平均値を用いた。
上記測定の結果を表1に示した。この表から、本発明に適合する条件で金属を電着した鋼板は、いずれも磁気特性と被膜密着性が良好であるだけでなく、板幅の中央部と端部の差が小さく、均一であることがわかる。
A sample is taken from the longitudinal center part of the product coil obtained in this way, and a test piece having a width of 100 mm is cut out from the center part of the plate width and both ends from which the edge is cut off by 30 mm, and each magnetic characteristic (magnetic flux) Density B 8 , iron loss W 17/50 ) and bending adhesion (bending peel diameter) were measured. In addition, the magnetic value and bending adhesiveness of the plate width end portion were obtained by calculating the average value of both width end portions.
Similarly, after removing the insulating coating by alkali washing to expose the forsterite base coating, the electrodeposited metal concentration in the base coating was analyzed by fluorescent X-rays. The ratio (Ie / Ic) of the strength Ie at the edge portion of the plate width to the strength Ic at the width center portion was determined. The average value of both width ends was used as the strength Ie of both width ends.
The measurement results are shown in Table 1. From this table, the steel plates electrodeposited with metal under the conditions suitable for the present invention not only have good magnetic properties and film adhesion, but also have a small difference between the center and end of the plate width and are uniform. I know that there is.
表2に記載した成分組成を有し、残部がFeおよび不可避的不純物からなる種々の鋼スラブを連続鋳造法で製造し、1380℃の温度に再加熱した後、熱間圧延して板厚2.0mmの熱延板とし、1030℃×10秒の熱延板焼鈍を施した後、冷間圧延して最終板厚0.23mmの冷延板に仕上げた。その後、この冷延板を脱脂した後、水酸化ナトリウム30g/L、界面活性剤5g/Lに種々のグルコン酸マンガンを添加した電解液を用いて、浴温70℃、電流密度2A/dm2で1秒間の電解処理を施して、金属を電着させた。その後、50vol%H2−50vol%N2、露点50〜65℃の湿潤雰囲気下で、840℃の温度に100秒間保持する脱炭焼鈍を施した。
次いで、MgOを主体とする焼鈍分離剤をスラリー状にして鋼板表面に塗布、乾燥した後、二次再結晶させた後、さらに、1200℃×10時間の純化処理を行う仕上焼鈍を施した。仕上焼鈍の雰囲気は、純化処理する1200℃保定時はH2、昇温時および降温時はN2とした。その後、リン酸マグネシウム−コロイド状シリカを主成分とする絶縁被膜を塗布し、焼き付けて製品コイルとした。
Various steel slabs having the composition shown in Table 2 and the balance consisting of Fe and inevitable impurities are manufactured by a continuous casting method, reheated to a temperature of 1380 ° C., and then hot-rolled to obtain a thickness of 2 A hot-rolled sheet of 0.0 mm was subjected to hot-rolled sheet annealing at 1030 ° C. for 10 seconds, and then cold-rolled to finish a cold-rolled sheet having a final sheet thickness of 0.23 mm. Then, after degreasing this cold-rolled sheet, using an electrolytic solution in which various manganese gluconates were added to 30 g / L of sodium hydroxide and 5 g / L of a surfactant, the bath temperature was 70 ° C., the current density was 2 A / dm 2. The electrode was subjected to electrolytic treatment for 1 second to electrodeposit metal. Thereafter, decarburization annealing was performed for 100 seconds at a temperature of 840 ° C. in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 and a dew point of 50 to 65 ° C.
Next, an annealing separator mainly composed of MgO was applied in the form of a slurry to the surface of the steel sheet, dried, and then subjected to secondary recrystallization, and then subjected to a finish annealing for carrying out a purification treatment at 1200 ° C. for 10 hours. The atmosphere of the finish annealing was H 2 when maintaining at 1200 ° C. for the purification treatment, and N 2 when raising and lowering the temperature. Thereafter, an insulating film mainly composed of magnesium phosphate-colloidal silica was applied and baked to obtain a product coil.
上記のようにして得た仕上焼鈍板の磁気特性(鉄損W17/50)、曲げ密着性(曲げ剥離径)および(Ie/Ic)を、実施例1と同様にして測定し、その結果を表2に示した。この表から、本発明に適合する成分組成を有する鋼素材を用いて、本発明に適合する条件で製造した鋼板は、いずれも磁気特性と被膜密着性が良好であるだけでなく、板幅の中央部と端部の差が小さく、均一であることがわかる。 The magnetic properties (iron loss W 17/50 ), bending adhesion (bending peel diameter) and (Ie / Ic) of the finish-annealed plate obtained as described above were measured in the same manner as in Example 1, and the result Are shown in Table 2. From this table, using steel materials having a composition suitable for the present invention, the steel sheets manufactured under the conditions suitable for the present invention not only have good magnetic properties and film adhesion, It can be seen that the difference between the central portion and the end portion is small and uniform.
Claims (4)
Al:0.010〜0.050mass%およびN:0.003〜0.020mass%を含有し、あるいは、
Al:0.010〜0.050mass%、N:0.003〜0.020mass%、S:0.005〜0.030mass%および/またはSe:0.005〜0.030mass%を含有し、残部がFeおよび不可避的不純物からなる鋼素材を熱間圧延して熱延板とし、熱延板焼鈍を施すことなく、あるいは、熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、PH2O/PH2を0.20〜0.70とする雰囲気で脱炭焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造方法において、
最終の冷間圧延後から脱炭焼鈍までの間に、Feよりも卑でSiよりも貴な元素を片面あたり0.1〜70mg/m2電着させ、しかる後、脱炭焼鈍を行うことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 C: 0.01 to 0.08 mass%, Si: 2.0 to 4.5 mass%, Mn: 0.02 to 0.20 mass%,
Al: 0.010-0.050 mass% and N: 0.003-0.020 mass%, or
Al: 0.010-0.050 mass%, N: 0.003-0.020 mass%, S: 0.005-0.030 mass% and / or Se: 0.005-0.030 mass%, the remainder Hot rolled a steel material consisting of Fe and inevitable impurities to form a hot-rolled sheet, or without performing hot-rolled sheet annealing, or after hot-rolled sheet annealing, once or twice with intermediate annealing more to a final thickness of the cold-rolled sheet by cold rolling, was subjected to decarburization annealing in an atmosphere to 0.20 to 0.70 of P H2O / P H2, the annealing separator was coated on the surface of the steel sheet, In the manufacturing method of grain-oriented electrical steel sheet consisting of a series of steps for finish annealing,
Between the last cold rolling and the decarburization annealing, 0.1 to 70 mg / m 2 electrodeposition per side of the element that is lower than Fe and noble than Si is performed, and then decarburization annealing is performed. The method for producing a grain-oriented electrical steel sheet according to claim 1.
最終の冷間圧延後から脱炭焼鈍までの間に、Feよりも卑でSiよりも貴な元素を片面あたり0.1〜70mg/m2電着させ、しかる後、脱炭焼鈍を行うことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 C: 0.01 to 0.08 mass%, Si: 2.0 to 4.5 mass%, Mn: 0.02 to 0.20 mass%, Al: less than 0.01 mass%, N: less than 0.005 mass%, S : A steel material containing less than 0.0050 mass% and Se: less than 0.0050 mass%, the balance being Fe and unavoidable impurities is hot rolled into a hot-rolled sheet, without subjecting the hot-rolled sheet to annealing, or , it was subjected to hot rolled sheet annealing, the atmosphere to a final thickness of the cold-rolled sheet by between two or more cold rolling sandwiching once or intermediate annealing, and from 0.20 to 0.70 the P H2O / P H2 In the manufacturing method of grain-oriented electrical steel sheet consisting of a series of steps of applying annealing separator to the steel sheet surface and finishing annealing after decarburizing annealing in
Between the last cold rolling and the decarburization annealing, 0.1 to 70 mg / m 2 electrodeposition per side of the element that is lower than Fe and noble than Si is performed, and then decarburization annealing is performed. The method for producing a grain-oriented electrical steel sheet according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015102466A JP6341382B2 (en) | 2015-05-20 | 2015-05-20 | Oriented electrical steel sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015102466A JP6341382B2 (en) | 2015-05-20 | 2015-05-20 | Oriented electrical steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016216779A true JP2016216779A (en) | 2016-12-22 |
JP6341382B2 JP6341382B2 (en) | 2018-06-13 |
Family
ID=57580149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015102466A Active JP6341382B2 (en) | 2015-05-20 | 2015-05-20 | Oriented electrical steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6341382B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113302317A (en) * | 2019-01-16 | 2021-08-24 | 日本制铁株式会社 | Method for producing grain-oriented electromagnetic steel sheet |
WO2022196704A1 (en) * | 2021-03-15 | 2022-09-22 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet and manufacturing method therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6196080A (en) * | 1986-04-03 | 1986-05-14 | Nippon Steel Corp | Separating agent for annealing for grain-oriented electrical steel sheet |
JPS621819A (en) * | 1985-06-28 | 1987-01-07 | Kawasaki Steel Corp | Production of grain oriented silicon steel sheet |
JPH03243795A (en) * | 1990-02-20 | 1991-10-30 | Kawasaki Steel Corp | Production of silicon steel sheet having fine appearance of coating film |
JPH07188759A (en) * | 1993-12-28 | 1995-07-25 | Kawasaki Steel Corp | Production of grain-oriented silicon steel sheet excellent in magnetic property |
JP2000355717A (en) * | 1999-06-15 | 2000-12-26 | Kawasaki Steel Corp | Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production |
-
2015
- 2015-05-20 JP JP2015102466A patent/JP6341382B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS621819A (en) * | 1985-06-28 | 1987-01-07 | Kawasaki Steel Corp | Production of grain oriented silicon steel sheet |
JPS6196080A (en) * | 1986-04-03 | 1986-05-14 | Nippon Steel Corp | Separating agent for annealing for grain-oriented electrical steel sheet |
JPH03243795A (en) * | 1990-02-20 | 1991-10-30 | Kawasaki Steel Corp | Production of silicon steel sheet having fine appearance of coating film |
JPH07188759A (en) * | 1993-12-28 | 1995-07-25 | Kawasaki Steel Corp | Production of grain-oriented silicon steel sheet excellent in magnetic property |
JP2000355717A (en) * | 1999-06-15 | 2000-12-26 | Kawasaki Steel Corp | Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113302317A (en) * | 2019-01-16 | 2021-08-24 | 日本制铁株式会社 | Method for producing grain-oriented electromagnetic steel sheet |
CN113302317B (en) * | 2019-01-16 | 2024-01-09 | 日本制铁株式会社 | Method for producing grain-oriented electrical steel sheet |
WO2022196704A1 (en) * | 2021-03-15 | 2022-09-22 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet and manufacturing method therefor |
JPWO2022196704A1 (en) * | 2021-03-15 | 2022-09-22 | ||
JP7428259B2 (en) | 2021-03-15 | 2024-02-06 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP6341382B2 (en) | 2018-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6512412B2 (en) | Directional electromagnetic steel sheet and method of manufacturing the same | |
CN111411294A (en) | Grain-oriented electromagnetic steel sheet | |
JP7299511B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
KR20160138253A (en) | Method for producing oriented electromagnetic steel sheet | |
JP2020063510A (en) | Directional electromagnetic steel sheet, and manufacturing method thereof | |
JP7235058B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP6769587B1 (en) | Electrical steel sheet and its manufacturing method | |
JP7269505B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7230930B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2019163518A (en) | Method of producing unidirectional magnetic steel sheet | |
JP2019099827A (en) | Manufacturing method of grain-oriented electromagnetic steel sheet | |
JP6341382B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP6687919B2 (en) | Grain-oriented electrical steel sheet and method for manufacturing the same | |
JP7299512B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP6844110B2 (en) | Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet | |
JP7269504B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7315857B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2019099839A (en) | Manufacturing method of oriented electromagnetic steel sheet | |
JP7151792B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7230929B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7255761B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP2019085632A (en) | Grain-oriented electrical steel sheet and production method for the same | |
JP2011111653A (en) | Method for producing grain-oriented magnetic steel sheet | |
WO2021085421A1 (en) | Grain-oriented electromagnetic steel sheet and method for manufacturing same | |
WO2023068236A1 (en) | Grain-oriented electromagnetic steel sheet and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180501 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6341382 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |