JP2016215266A - Manufacturing method of molding metal mold - Google Patents
Manufacturing method of molding metal mold Download PDFInfo
- Publication number
- JP2016215266A JP2016215266A JP2015106431A JP2015106431A JP2016215266A JP 2016215266 A JP2016215266 A JP 2016215266A JP 2015106431 A JP2015106431 A JP 2015106431A JP 2015106431 A JP2015106431 A JP 2015106431A JP 2016215266 A JP2016215266 A JP 2016215266A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- mold frame
- cooling
- tank body
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 178
- 239000002184 metal Substances 0.000 title claims abstract description 178
- 238000000465 moulding Methods 0.000 title claims abstract description 91
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 44
- 238000001816 cooling Methods 0.000 claims abstract description 149
- 238000000034 method Methods 0.000 claims abstract description 65
- 239000000956 alloy Substances 0.000 claims abstract description 58
- 239000012809 cooling fluid Substances 0.000 claims abstract description 50
- 238000002844 melting Methods 0.000 claims abstract description 43
- 230000008018 melting Effects 0.000 claims abstract description 43
- 239000012530 fluid Substances 0.000 claims abstract description 35
- 238000010992 reflux Methods 0.000 claims abstract description 31
- 238000007711 solidification Methods 0.000 claims abstract description 30
- 230000008023 solidification Effects 0.000 claims abstract description 30
- 238000005266 casting Methods 0.000 claims abstract description 24
- 230000007246 mechanism Effects 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims description 66
- 239000002826 coolant Substances 0.000 claims description 17
- 238000003825 pressing Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 abstract description 27
- 230000003134 recirculating effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 48
- 229910045601 alloy Inorganic materials 0.000 description 27
- 239000003507 refrigerant Substances 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 16
- 229910052782 aluminium Inorganic materials 0.000 description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- 239000013078 crystal Substances 0.000 description 16
- 239000011701 zinc Substances 0.000 description 16
- 229910052725 zinc Inorganic materials 0.000 description 16
- 239000010949 copper Substances 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000000498 cooling water Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 238000005482 strain hardening Methods 0.000 description 10
- 238000001746 injection moulding Methods 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 230000000630 rising effect Effects 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000012768 molten material Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 1
Images
Landscapes
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
本発明は成形用金型の製造方法及び成形用金型に係り、特に、機械加工性に優れた低融点合金材による成形用金型の製造方法及び成形用金型に関する。 The present invention relates to a method for manufacturing a molding die and a molding die, and more particularly to a method for manufacturing a molding die using a low melting point alloy material excellent in machinability and a molding die.
金属製や合成樹脂製の部品をプレス加工等の塑性加工や射出成形等により製造するための金型が知られており、合金化された鉄鋼材料が一般に用いられている。近時、製品流行サイクルの短期化、多品種少量生産のニーズに対応して機械加工性が良好で低コストでありながらプレス加工等に求められる強度、耐久性を有する金型のニーズが高まっている。従来、ZAS等の低融点合金を用いたプレス金型が特許文献1において示唆されている。 Metal molds for producing metal or synthetic resin parts by plastic working such as press working or injection molding are known, and alloyed steel materials are generally used. Recently, there has been a growing need for molds that have the strength and durability required for press processing, etc. while having good machinability and low cost in response to the need for shortening the product trend cycle and low volume production. Yes. Conventionally, Patent Document 1 suggests a press die using a low melting point alloy such as ZAS.
特許文献1では、アルミニウム及び銅の合金成分比を高くして鉄に対する耐摩耗性を向上させた亜鉛合金金型が提案されている。しかしながら、特許文献1の金型では、材料として耐摩耗性向上のためにアルミニウム、銅の多量の合金元素が添加されており、製造コストが高い。また、特許文献1の金型では主にアルミニウム、銅等の合金成分を添加しているので、融点が高く、比重が大きい成分の多量添加により流動性が低下しやすい。このため、成分偏析や逆引け、内引け(鋳物内部の引け巣)も生じやすく、これらを考慮する必要から成分設計が複雑で時間がかかる。さらに、アルミニウムの多量添加により亜鉛溶湯より軽いアルミニウム相が浮上するため、この部分で凝固温度が高くなる結果、上部より凝固が始まり、最終的に下部付近が最終凝固部となり逆引けを生じやすい(この点、汎用品のZAS合金では下部から凝固が始まり上部が最終凝固部となり外引けとなる。)。そして、このような現象を防止するために、ガスバーナーによって鋳物上部を加熱し最終凝固部を上部にもってくるトップヒート手法が用いられるが、加熱により冷却速度が低下するため、冷却速度向上による結晶粒微細化強化が期待できず、硬度低下するおそれがあった。 Patent Document 1 proposes a zinc alloy mold in which the alloy component ratio of aluminum and copper is increased to improve the wear resistance against iron. However, in the metal mold of Patent Document 1, a large amount of alloy elements of aluminum and copper are added as materials to improve wear resistance, and the manufacturing cost is high. Moreover, in the metal mold | die of patent document 1, since alloy components, such as aluminum and copper, are mainly added, fluidity | liquidity falls easily by adding a large amount of components with high melting point and large specific gravity. For this reason, component segregation, reverse shrinkage, and internal shrinkage (shrinkage cavities inside the casting) are likely to occur, and the component design is complicated and takes time because these must be taken into consideration. Furthermore, the aluminum phase lighter than the zinc melt rises due to the addition of a large amount of aluminum. As a result, the solidification temperature rises in this part. In this regard, in the general-purpose ZAS alloy, solidification starts from the lower part, and the upper part becomes the final solidified part and is closed.) In order to prevent such a phenomenon, a top heat method is used in which the upper part of the casting is heated by a gas burner and the final solidified part is brought to the upper part. Grain refinement strengthening could not be expected, and there was a risk that the hardness would decrease.
本発明は上記従来の課題に鑑みてなされたものであり、その目的は、低廉なコストでありながら良好な機械加工性と強度並びに耐久性にも優れた成形用金型の製造方法並びに成形用金型を提供することにある。 The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a method for manufacturing a molding die having excellent machinability, strength and durability at a low cost and for molding. To provide molds.
上記課題を解決するために、本発明に係る成形用金型の製造方法は、低融点合金材溶湯を成形用金型の鋳型枠に注湯する工程(S1)と、低融点合金材溶湯を充填した鋳型枠の上面以外の全外周又は上面を含む全外周について溶湯の最終凝固部を所定の冷却速度以上の冷却速度で冷却する工程(S2、S3)と、溶湯が凝固して所定の凝固温度のときに鋳型枠から取り出してプレス加圧する工程(S4)と、を含んで構成される。 In order to solve the above problems, a method for manufacturing a molding die according to the present invention includes a step (S1) of pouring a low melting point alloy material molten metal into a mold frame of the molding die, and a low melting point alloy material molten metal. A step (S2, S3) of cooling the final solidified portion of the molten metal at a cooling rate equal to or higher than a predetermined cooling rate for the entire outer periphery other than the upper surface of the filled mold frame or the entire outer periphery including the upper surface; A step (S4) of taking out from the mold frame and press-pressing at a temperature.
その際、溶湯の冷却速度が0.8℃/s以上であるとよい。 At that time, the cooling rate of the molten metal is preferably 0.8 ° C./s or more.
また、凝固した溶湯の加圧時の素材温度が50℃±5℃の範囲内の温度であるとよい。 Moreover, it is good for the raw material temperature at the time of pressurization of the solidified molten metal to be the temperature in the range of 50 degreeC +/- 5 degreeC.
また、溶湯の冷却は、注湯する鋳型枠全体を開放型又は閉鎖型の槽体に収容し、冷却用流体の自動供給装置により溶湯の素材温度に対応して槽体に冷却用流体を自動供給することにより行うとよい。 In addition, the entire mold frame to be poured is accommodated in an open or closed tank body, and the cooling fluid is automatically supplied to the tank body according to the material temperature of the molten metal by an automatic cooling fluid supply device. It is good to do by supplying.
また、冷却用流体の自動供給装置20は、注湯する鋳型枠11と、鋳型枠11の外側に導入配置させる冷却用流体16と、を収容し得る上面開放型の第1槽体12Aと、第1槽体12Aを収容し第1槽体から溢流する冷却用流体16を回収する第2槽体13と、第2槽体13内の流体162を第1槽体12A内に還流させる還流機構22と、還流機構による還流経路22aに設けた流体の冷却装置24と、を含むとよい。
In addition, the cooling fluid
さらに、鋳型枠の外周に冷媒流体を投入しながら鋳型枠内の溶湯を冷却する際に、下から上方向に周方向の冷却位置が層状に移動しながら冷却させるとよい。 Furthermore, when the molten metal in the mold frame is cooled while supplying the coolant fluid to the outer periphery of the mold frame, the cooling position in the circumferential direction may be moved in layers from the bottom to the bottom.
また、本発明に係る成形用金型は、低融点合金材溶湯10を成形用金型の鋳型枠11に注湯し、低融点合金材溶湯を充填した鋳型枠の上面以外の全外周又は上面を含む全外周を冷却しながら溶湯の最終凝固部を0.8℃/s以上の冷却速度で冷却し、溶湯が凝固して素材温度が50℃±5℃の範囲内の温度であるときに鋳型枠11から取り出してプレス加圧により製造して構成される。
Further, the molding die according to the present invention is such that the low melting point alloy material
その際、該成形用金型がブリネル硬度が151以上、引張強さが302N/mm2以上、を充足するようにするのが好ましい。 In that case, it is preferable that the molding die satisfy a Brinell hardness of 151 or more and a tensile strength of 302 N / mm 2 or more.
本発明の成形用金型の製造方法によれば、低融点合金材溶湯を成形用金型の鋳型枠に注湯する工程と、低融点合金材溶湯を充填した鋳型枠の上面以外の全外周又は上面を含む全外周について溶湯の最終凝固部を所定の冷却速度以上の冷却速度で冷却する工程と、溶湯が凝固して所定の凝固温度のときに鋳型枠から取り出してプレス加圧する工程と、を含む構成であるから、汎用の亜鉛基合金で低廉なコストで良好な機械加工性を保持しつつ、鋳型枠に対して局部的にあるいは複数分散して冷却するのではなく全周について同時に冷却することにより溶湯素材の結晶粒の微細化部が高密度に形成され、組織を強化して硬度、並びに強度を大幅に向上させることができる。 According to the method for manufacturing a molding die of the present invention, a step of pouring a low melting point alloy material molten metal into the mold frame of the molding die, and the entire outer periphery other than the upper surface of the mold frame filled with the low melting point alloy material molten metal Or the process of cooling the final solidification part of the molten metal at a cooling rate equal to or higher than a predetermined cooling rate for the entire outer periphery including the upper surface, the process of taking out from the mold frame and press-pressing when the molten metal solidifies and has a predetermined solidification temperature, The general-purpose zinc-based alloy is a general-purpose zinc-based alloy that maintains good machinability at a low cost, and at the same time cools the entire circumference of the mold frame instead of cooling locally or in multiple dispersions. By doing so, the refinement | miniaturization part of the crystal grain of a molten material is formed in high density, and a structure | tissue can be strengthened and hardness and intensity | strength can be improved significantly.
その際、溶湯の冷却速度が0.8℃/s以上で、凝固した溶湯の加圧時の素材温度を50℃±5℃とすることにより、結晶粒微細化と加圧加工硬化により汎用の亜鉛基合金でありながら、硬度を大幅に向上させ、ひいては耐久性をも向上させることができる。 At that time, the cooling rate of the molten metal is 0.8 ° C./s or more, and the material temperature at the time of pressurization of the solidified molten metal is 50 ° C. ± 5 ° C. Although it is a zinc-based alloy, the hardness can be greatly improved, and the durability can be improved.
また、溶湯の冷却は、注湯する鋳型枠全体を開放型又は閉鎖型の槽体に収容し、冷却用流体の自動供給装置により溶湯の素材温度に対応して槽体に冷却用流体を自動供給することにより行うので、400℃程度の高温との熱交換を上回る冷却用の冷媒供給を連続して行って急速冷却を確実に実現し得る。 In addition, the entire mold frame to be poured is accommodated in an open or closed tank body, and the cooling fluid is automatically supplied to the tank body according to the material temperature of the molten metal by an automatic cooling fluid supply device. Since it is performed by supplying, rapid cooling can be realized reliably by continuously supplying cooling refrigerant exceeding heat exchange with a high temperature of about 400 ° C.
また、冷却用流体の自動供給装置は、注湯する鋳型枠と、鋳型枠の外側に導入配置させる冷却用流体と、を収容し得る上面開放型の第1槽体と、第1槽体を収容し第1槽体から溢流する冷却用流体を回収する第2槽体と、第2槽体内の流体を第1槽体内に還流させる還流機構と、還流機構による還流経路に設けた流体の冷却装置と、を含む構成であるから、溶湯冷却用の冷媒供給を連続して行って急速冷却を確実に実現し得る。 An automatic cooling fluid supply apparatus includes a first tank body having an open top surface capable of accommodating a mold frame for pouring, a cooling fluid introduced and disposed outside the mold frame, and a first tank body. A second tank body that collects the cooling fluid that overflows from the first tank body, a reflux mechanism that recirculates the fluid in the second tank body into the first tank body, and a fluid provided in a reflux path by the reflux mechanism. Therefore, rapid cooling can be realized reliably by continuously supplying a coolant for cooling the molten metal.
鋳型枠の外周に冷媒流体を投入しながら鋳型枠内の溶湯を冷却する際に、下から上方向に周方向の冷却位置が層状に移動しながら冷却させるから、冷媒の積層位置が全周について同時に上昇しながら冷却するから、結晶粒の微細化部が高密度に積層形成され、組織を強化して硬度、並びに強度を大幅に向上させることができる。同時に耐摩耗性も向上させる。 When cooling the molten metal in the mold frame while supplying the coolant fluid to the outer periphery of the mold frame, the cooling position in the circumferential direction moves from bottom to top while cooling in layers, so the stacking position of the refrigerant is all around Since cooling is performed while rising at the same time, crystal grain refined portions are stacked and formed at a high density, and the structure can be strengthened to significantly improve the hardness and strength. At the same time, wear resistance is improved.
また、本発明の成形用金型によれば、低融点合金材溶湯を成形用金型の鋳型枠に注湯し、低融点合金材溶湯を充填した鋳型枠の上面以外の全外周又は上面を含む全外周を冷却しながら溶湯の最終凝固部を0.8℃/s以上の冷却速度で冷却し、溶湯が凝固して素材温度が50℃±5℃の範囲内の温度であるときに鋳型枠から取り出してプレス加圧により製造した成形用金型であるから、汎用の亜鉛基合金で低廉なコストで良好な機械加工性を保持しつつ、鋳型枠に対して局部的にあるいは複数分散して冷却するのではなく全周について同時に冷却することにより溶湯素材の結晶粒の微細化部が高密度に形成される結果、組織を強化して硬度、並びに強度を大幅に向上させることができる。 Further, according to the molding die of the present invention, the low melting point alloy material molten metal is poured into the mold frame of the molding die, and the entire outer periphery or top surface other than the top surface of the mold frame filled with the low melting point alloy material molten metal is poured. The final solidification part of the molten metal is cooled at a cooling rate of 0.8 ° C./s or more while cooling the entire outer periphery, and the mold is solidified when the molten metal is solidified and the material temperature is in the range of 50 ° C. ± 5 ° C. Because it is a molding die that is produced by press-pressing it out of the frame, it is a general-purpose zinc-based alloy that can be dispersed locally or in multiple locations on the mold frame while maintaining good machinability at low cost. By cooling the entire circumference at the same time instead of cooling, the refined portion of the crystal grains of the molten material is formed at a high density. As a result, the structure can be strengthened and the hardness and strength can be greatly improved.
また、本発明の成形用金型によれば、上記成形用金型が、ブリネル硬度が151以上、引張強さが302N/mm2以上、を充足する成形用金型であるから、市販のZAS材を用いて簡単な方法で従来にない高い硬度並びに強度を保持し、さらに耐久性も保持し得る。 According to the molding die of the present invention, since the molding die is a molding die satisfying a Brinell hardness of 151 or more and a tensile strength of 302 N / mm 2 or more, a commercially available ZAS. It is possible to maintain unprecedented high hardness and strength by a simple method using a material, and also to maintain durability.
本発明は、プレスや射出成形等の物品の成形加工に用いられる成形機の金型自体の製造方法並びに金型に関するものである。ダイやパンチ等の金属加工等のプレス成形用金型や熱可塑性樹脂を高圧で射出充填して成形する際の金型などが含まれる。 The present invention relates to a method of manufacturing a mold itself of a molding machine used for molding an article such as a press or injection molding, and a mold. Examples include a mold for press molding such as metal processing such as a die and a punch, and a mold for injection-filling and molding a thermoplastic resin at a high pressure.
図1,2は、本発明の成形用金型の製造方法を実現する原理構成説明図であり、溶湯を充填した鋳型枠の冷却方法が異なる図1(a)、図1(b)の工程と、それぞれ冷却後硬化した素材をプレス加圧する図1(c)の工程と、を含む。すなわち、本発明の成形用金型の製造方法は、低融点合金材溶湯を成形用金型の鋳型枠に注湯する工程と、低融点合金材溶湯を充填した鋳型枠の上面以外の全外周又は上面を含む全外周について溶湯の最終凝固部を所定の冷却速度以上の冷却速度で冷却する工程と、溶湯が凝固して所定の凝固温度のときに鋳型枠から取り出してプレス加圧する工程と、を含む。 1 and 2 are explanatory views of the principle configuration for realizing the method of manufacturing a molding die according to the present invention, and the steps shown in FIGS. 1A and 1B are different in the cooling method of the mold frame filled with molten metal. And the step of FIG. 1 (c) in which the material cured after cooling is press-pressed. That is, the method for producing a molding die of the present invention includes a step of pouring a low melting point alloy material molten metal into a mold frame of the molding die and an entire outer periphery other than the upper surface of the mold frame filled with the low melting point alloy material molten metal. Or the process of cooling the final solidification part of the molten metal at a cooling rate equal to or higher than a predetermined cooling rate for the entire outer periphery including the upper surface, the process of taking out from the mold frame and press-pressing when the molten metal solidifies and has a predetermined solidification temperature, including.
本発明において低融点合金材は、具体的には亜鉛(Zn)を主材とし、これにアルミニウム(Al)、銅(Cu)、マグネシウム(Mg)等の合金成分金属を含む、融点がたとえば400℃程度の亜鉛基合金(ZAS)である。合金成分として上記以外の少量の金属成分を含むものでもよい。本発明では、特にアルミニウム、銅が5.0wt%以下、マグネシウム0.1wt%以下程度の汎用のZAS材を用いて従来では想定困難な強度と耐久性を保持する金型を製造する。ちなみに、汎用ZAS材を用いて、鋳型枠への注湯→鋳造→冷却・取り出しによる方法で製造した金型のブリネル硬度HB101,引張強さ215N/mm2、ショット数1,800程度(絞り成形)である。 In the present invention, the low-melting-point alloy material specifically includes zinc (Zn) as a main material, and contains an alloy component metal such as aluminum (Al), copper (Cu), magnesium (Mg), and the melting point is 400, for example. It is a zinc-based alloy (ZAS) at about ° C. The alloy component may contain a small amount of metal components other than those described above. In the present invention, a mold that maintains strength and durability, which is difficult to imagine in the past, is manufactured using a general-purpose ZAS material in which aluminum and copper are 5.0 wt% or less and magnesium is 0.1 wt% or less. By the way, with a general-purpose ZAS material, the mold manufactured by the method of pouring into the mold frame → casting → cooling and taking out, Brinell hardness HB101, tensile strength 215N / mm 2 , shot number about 1,800 (drawing molding) is there.
図1(a)は、冷却工程において注湯した鋳型枠を収容する槽体の一部開放型冷却方法の原理構成図であり、ZAS材のインゴットを溶解した溶湯10を成形用金型の鋳型枠11に注湯させ(図示せず)、この注湯した鋳型枠11を該鋳型枠11より大きな槽体12に収容させ、鋳型枠11と槽体12の壁面との間隙14に冷媒流体を投入して鋳型枠11の全周側面及び底面を冷却させることにより注湯された溶湯を冷却させる。このとき、冷媒流体を鋳型枠の外壁面全体に接触させて側壁面、底壁面を同時に冷却しさらに溶湯を急速冷却することにより凝固時の溶湯組織について結晶粒を微細化させ組織を強化させて硬度並びに強度を大幅に向上させる。
FIG. 1A is a principle configuration diagram of a partially open cooling method for a tank body that accommodates a mold frame poured in a cooling process, and a
次に図1(c)において、硬化した溶湯素材を鋳型枠11から取り出して反転させた状態でキャビティ面側となる素材をプレス加圧させる。このとき、素材温度が所定の凝固温度のときにプレス加圧することにより、加工硬化が素材全体について生じ、さらに硬度を向上させる。
Next, in FIG.1 (c), the raw material used as the cavity surface side is press-pressed in the state which took out the hardened molten metal material from the
図1(b)は、冷却工程において注湯した鋳型枠を収容する槽体を鋳型枠を閉鎖空間に配置させて冷却させる閉鎖型槽体による冷却方法の原理構成図であり、室内に冷媒ガス等を供給し、注湯した鋳型枠11の上面を含む全周を急速冷却する点を除いて図1(a)、(c)による場合と同様の構成である。
FIG.1 (b) is a principle block diagram of the cooling method by the closed-type tank body which cools the tank body which accommodates the casting_mold | template poured in the cooling process by arrange | positioning a mold frame in closed space, Etc., and the same configuration as in FIGS. 1A and 1C except that the entire circumference including the upper surface of the poured
図2は、図1(a)による、鋳型枠11を収容する槽体の一部開放型冷却装置の原理作用であり、さらに図5は、そのフローチャート図である。まず、図示しない溶解炉でZASインゴットを溶解し、溶湯をトリベを介して鋳型枠11に注湯する(S1)。ZAS溶湯10を充填した例えば鉄製の鋳型枠11が上面開放した箱形の槽体12に収容されている。そして、鋳型枠11の外周と槽体12との間に間隙14が設けられ、この間隙14内に冷媒流体16が投入されて(S2)、鋳型枠11の外周全体を冷却しさらに内部の溶湯の中心部を冷却する。このとき、冷媒が液体の場合は空隙14に注入されて液位が次第に上昇するにしたがって鋳型枠の断面外周を同時に冷却しこれが層状に上昇変位することにより、局部冷却がなく均質な結晶組織で高い強度を保持する。さらに注湯された鋳型枠11は400℃程度に熱せられているが、これを急速冷却するに十分な冷媒流体の冷却可能温度が保持される。すなわち、溶湯の最終凝固部を所定の冷却速度以上の冷却速度で冷却するために、液位上昇にしたがって下位から上位に向けて溶湯を充填した鋳型枠の上面以外の全外周について層状に冷却する。具体的には、溶湯を、0.8℃/s以上の冷却速度で冷却する(S3)ことにより、好ましい硬度、並びに強度を保持する金型を成形し得ることが実証されている。なお、溶湯10を充填した鋳型枠11の外周は例えば400℃程度に熱されており、例えば冷媒を水とすると、これに接して水は瞬時に高温となる。したがって、高温体である溶湯を担持した鋳型枠を急速冷却するための装置が具体的に必要となる。
FIG. 2 shows the principle operation of the partially open cooling device for the tank body that accommodates the
そして、溶湯10が硬化して所定の凝固温度のときに鋳型枠11から取り出してプレス加圧する(図1(c))。このときの加圧時の素材温度は50℃±5℃の範囲での温度とする(S4)ことによりプレス加圧による加工硬化度が高くなり引け巣等を圧着して硬度を向上させる。
Then, when the
次に、図3により、本発明の実施形態に係る上面開放型槽体による冷却用流体の自動供給装置20を説明するが、前述したように、本発明方法において槽体を閉鎖型(図1(b))としても適用し得る。実施形態による冷却用流体の自動供給装置20は、注湯する鋳型枠11と、冷却用流体(冷媒)16と、を収容し得る上面開放型の第1槽体12Aと、第1槽体12Aを収容し第1槽体から溢流する冷却用流体を回収する第2槽体13と、第2槽体13内の流体162を第1槽体12A内に還流させる還流機構22と、還流機構22による還流経路22aに設けた流体の冷却装置24と、を含む。
Next, referring to FIG. 3, an
図において、鋳型枠11は、ZAS溶湯10を充填した例えば鉄製の型枠であり、本実施形態においては最終的に成形する金型のパンチ部分の射込み成形用の型枠を例示している。そして、パンチの土台側を上面側として第1槽体12A内に収容している。型枠の上面は開口11aしており、この開口からトリベ26により溶解したZAS材を型枠内に流し入れる。型枠内への注湯は第1槽体12A内に空の鋳型枠11を配置させた状態で注湯してもよいし、注湯後に溶湯を保持した鋳型枠を第1槽体12A内に移送させてもよい。
In the figure, a
第1槽体12Aは、注湯して溶湯を保持した高温の鋳型枠11を型枠ごと外周から冷却して内部の溶湯を冷却する作用を与えるためのであり、実施形態では、上面のみを開放し鋳型枠11を収容して槽の壁面との間に間隙14を形成し得る大きさの箱形の槽で形成されている。間隙14は、例えば公共の水道水等の冷却用流体を投入して400℃程度の温度を有する鋳型枠を外周全体から冷却する際の冷却流体保持部である。鋳型枠内の溶湯は急速冷却する必要があるから、冷却用流体は連続して間隙14に投入され、第1槽体12Aからオーバフロー水として槽外に溢流する。
The
本実施形態において、第1槽体12Aは第2槽体13内に全体が収容されている。第2槽体13は、第1槽体12Aを収容し第1槽体12Aから溢流する冷却流体を保持する流体保持手段であり、この保持された流体は還流機構22により冷却装置を経由して冷却水として再び第1槽体12A内に供給される。
In the present embodiment, the entire
還流機構22は、第2槽体13内において第1槽体12Aとともに設置されたポンプ32と、第2槽体13外に設置されポンプ32に接続された水槽34と、水槽34に接続された冷却装置24と、冷却装置から第1槽体12Aに冷却水を供給する供給管36と、を含む。ポンプ32と水槽34、並びに水槽34と冷却装置24とは、それぞれ第1、第2接続管路38,40で接続されている。冷却装置24は、チラーユニット等からなる冷却用水の冷却手段であり、冷却される熱媒体で水との熱交換で水槽34からの水を冷却して供給管36から低温の水を第1槽体12Aの間隙14に供給する。第1槽体12Aに投入されて鋳型枠11の高温に接触して温水化した水は、第1槽体12Aを溢流してポンプ32で吸引され、水槽34に送られる。なお、図示しない鋳型枠内の溶湯の最終凝固部の温度を計測する温度センサ、第1槽体12A内の水温を計測する温度センサ、冷却速度管理用の制御装置により、溶湯の最終凝固部の冷却速度(例えば単位時間ごとに温度計測)を監視して所要の冷却速度を維持するように保持されている。
The
次に、本発明の実施形態に係る成形用金型の製造工程について図4により説明すると、
図示しない溶解炉でインゴットを溶解した400℃程度のZAS溶湯を鋳型枠11に注湯する(図4(a))。その際、鋳型枠11は、キャビティ面と対向側の底部に対応する開口面を上面にして配置される。なお、図4(a)では鋳型枠を収容する第1、第2槽体12A、13の図示は省略している。次に、冷却水として循環して用いられる最初の冷却用水を第1槽体12Aの鋳型枠と槽璧との間隙14内に注水する。
Next, the manufacturing process of the molding die according to the embodiment of the present invention will be described with reference to FIG.
A ZAS melt of about 400 ° C. in which the ingot is melted in a melting furnace (not shown) is poured into the mold frame 11 (FIG. 4A). At this time, the
冷媒としての水は、図2、図4(b)に示すように水位を上昇しながら鋳型枠外周を下位から上位に向けて溶湯を充填した鋳型枠の上面以外の全外周について層状に冷却する。これによって、鋳型枠に対して局部的にあるいは複数分散して冷却するのではなく水位で全周について同時に上昇しながら冷却する指向制御により結晶粒の微細化部が高密度に積層形成され、組織を強化して硬度、並びに強度を大幅に向上させることができる。同時に耐摩耗性も向上させる。特に、溶湯の冷却速度を0.8℃/s以上の速度とすることにより引け巣の抑制と結晶粒及び晶出物の微細化効果により素材硬度が向上する。溶湯の冷却速度が0.8℃/s未満の場合は、凝固時の固化体の結晶粒が粗大化し硬度を低下させる。間隙14内の水は溶湯を含む鋳型枠11と熱交換されて昇温し、鋳型枠11の上面高さあるいはその付近に至ると槽璧から溢流し(図4(b))、第2槽体13内に回収される。回収された温水はポンプ32で吸引されて水槽34を経由してチラーユニット24に圧送される。チラーユニットでは冷凍機による冷媒と熱交換された温水が冷水化され、供給管36から再び第1槽体12Aの間隙14に投入される。この還流機構22により冷媒水が循環され、常に溶湯を保持した鋳型枠11の外周に接して溶湯を急速冷却する。
As shown in FIG. 2 and FIG. 4 (b), the water as the coolant cools in a layered manner on the entire outer periphery except the upper surface of the mold frame that is filled with molten metal with the water level rising from the lower side toward the upper side. . As a result, the crystal grain refinement part is formed in high density by directing control that cools while simultaneously rising around the entire circumference at the water level, instead of cooling locally or in a plurality of dispersed manner with respect to the mold frame. By strengthening, hardness and strength can be greatly improved. At the same time, wear resistance is improved. In particular, by setting the cooling rate of the molten metal to a rate of 0.8 ° C./s or more, the material hardness is improved by the suppression of shrinkage and the effect of refining crystal grains and crystallized substances. When the cooling rate of the molten metal is less than 0.8 ° C./s, the crystal grains of the solidified body at the time of solidification become coarse and the hardness is lowered. The water in the
溶湯の最終凝固部が50℃±5℃であるときに、凝固固化した素材(10−1)を鋳型枠から取り出し、図4(c)のようにプレス機の下台上にキャビティ部が上面側となるように反転させて配置させる。 When the final solidified portion of the molten metal is 50 ° C. ± 5 ° C., the solidified and solidified material (10-1) is taken out from the mold frame, and the cavity portion is on the upper side of the lower base of the press as shown in FIG. Invert and arrange so that
そして、素材の温度が50℃±5℃であるときにプレス加圧する(図4(d))。プレス加圧によって、加工硬化による転移密度が増加し、硬度が向上する。加圧時の素材温度が50℃±5℃とする理由は、この温度範囲のときに加圧すると加工硬化が効果的に生じ、金型の強度を保持することが実験的に証明されている。プレス加圧時の温度が45℃未満の場合は加工時に割れを生じ、55℃を超える場合は、加工硬化量が小さいため望ましい強度が得られない。 Then, pressurization is performed when the temperature of the material is 50 ° C. ± 5 ° C. (FIG. 4D). Pressurization increases the transition density due to work hardening and improves the hardness. The reason why the material temperature at the time of pressurization is 50 ° C. ± 5 ° C. is experimentally proved that work hardening effectively occurs when the pressure is applied within this temperature range, and the strength of the mold is maintained. . When the temperature at the time of press pressurization is less than 45 ° C., cracking occurs during processing, and when it exceeds 55 ° C., a desired strength cannot be obtained because the work hardening amount is small.
溶湯の冷却は、注湯する鋳型枠全体を開放型又は閉鎖型の槽体に収容し、冷却用流体の自動供給装置により溶湯の素材温度に対応して槽体に冷却用流体を自動供給することにより行うものであり、冷却の具体的方法は上記実施形態による上面解放の一部開放型槽体に限らず、図1(b)の閉鎖型槽体内に注湯した鋳型枠を配置させて冷媒ガス等の気体を供給しながら冷却する構成としてもよい。この場合においても、鋳型枠に対して局部的にあるいは複数分散して冷却するのではなく全周について同時に冷却することにより結晶粒の微細化部が高密度に形成され、組織を強化して硬度、並びに強度を大幅に向上させることができる。 For the cooling of the molten metal, the entire mold frame to be poured is accommodated in an open or closed tank body, and the cooling fluid is automatically supplied to the tank body in accordance with the material temperature of the molten metal by an automatic cooling fluid supply device. The specific method of cooling is not limited to the partially open-type tank body with the upper surface opened according to the above embodiment, but a poured mold frame is arranged in the closed-type tank body in FIG. It is good also as a structure cooled while supplying gas, such as refrigerant gas. Even in this case, the crystal frame is refined at a high density by simultaneously cooling the entire circumference of the mold frame instead of being locally or dispersed and cooling, thereby strengthening the structure and increasing the hardness. In addition, the strength can be greatly improved.
上記の工程により成形した成形用金型は、低融点合金材溶湯10を成形用金型の鋳型枠11に注湯し、低融点合金材溶湯10を充填した鋳型枠11の上面以外の全外周又は上面を含む全外周を冷却しながら溶湯の最終凝固部を0.8℃/s以上の冷却速度で冷却し、溶湯が凝固して素材温度が50℃±5℃の範囲内の温度であるときに鋳型枠から取り出してプレス加圧により製造した成形用金型であり、該金型は、ブリネル硬度が151以上、引張強さが302N/mm2以上、を充足する。これらの条件を具備すれば、低コストで機械加工性及び金型精度が良好であり、さらに、ショット数も7,500回以上程度の耐久性を保持できて、少量多品種製造の要請に応えることが可能である。
The molding die molded by the above-described process is performed by pouring the low melting point alloy material molten
上記の方法によりプレス加圧により成形された鋳物は、キャビティを直接に形成する面を最終的に機械加工して金型を完成するが、素材が例えば汎用のZAS材料であるから、この際の機械加工性が良好で加工時間が短く、行程も少なく済ませることができる。さらに、本発明の方法では製造される金型による成形品によっては必要となる部材等を担持する鋳ぐるみ成形なども行うことができる。 The casting formed by press-pressing according to the above method is finally machined on the surface directly forming the cavity to complete the mold. However, since the material is, for example, a general-purpose ZAS material, Good machinability, short processing time, and less stroke. Further, in the method of the present invention, cast-fill molding that supports a member or the like that is necessary depending on a molded product by a manufactured mold can be performed.
本発明の成形用金型の製造方法により成形された金型は、金属加工等のプレス成形用金型に限らず、熱可塑性樹脂を高圧で射出充填して成形する射出成形用の金型にも適用し得る。 The mold formed by the manufacturing method of the mold for molding of the present invention is not limited to a metal mold for press molding such as metal processing, but is an injection mold for molding by injection filling a thermoplastic resin at a high pressure. Can also be applied.
次に、本発明の成形用金型の製造方法の実施例を示す。
<実施例1>
Next, an example of the manufacturing method of the molding die of the present invention will be shown.
<Example 1>
鉄製ルツボにて、汎用の亜鉛基合金ZAS(アルミニウム4.1wt%、銅3.0wt%、マグネシウム0.04wt%、亜鉛 残部)を400〜450℃で溶解し、液相線温度に対して過熱度が30℃を超えない範囲の溶湯を、台部サイズ:横幅150mm、長さ390mm、高さ55mm、パンチ頭部サイズ:横幅150mm、長さ150mm、高さ105mmのパンチ形状金型用鋳型枠に注湯する。鋳型枠は、SUS409L、板厚2mmの鋼板の溶接構造(箱型)となっており、鋳型枠は実際の金型成形時に使用する際のキャビティ面を下側として配置する。注湯完了後、鋳型枠内の溶湯表面の酸化物をハケを用いて除去した後、融点直上の溶湯温度域で槽璧と鋳型枠との間隙にチラーユニットから水を供給して鋳型枠内の溶湯(直接には鋳型枠の外周)の強制冷却を行った。素材上面温度が60℃程度に達したら、槽体から鋳型枠ごと取り出して鋳型枠を反転させ、素材を取り出して成形金型のキャビティ面すなわち鋳造時に下側が上面になるようにプレス下型にセットした。鋳型から取り出した素材キャビティ面の温度が50℃程度に達したら、可動型を45mm/s以上の速度で下降させ、面圧220MPa以上で加圧(自由鍛造)した。これによって、このときの据え込み量は10mm程度であった。
A general-purpose zinc-based alloy ZAS (aluminum 4.1 wt%, copper 3.0 wt%, magnesium 0.04 wt%, zinc balance) is melted at 400-450 ° C in an iron crucible, and the degree of superheat to the liquidus temperature is 30 Molten metal in a range not exceeding ℃ is poured into a mold frame for a punch-shaped mold having a base size:
図6に、上記の方法で製造した金型素材について実施例及び比較例の性能評価を行った。それぞれブリネル試験機、引張荷重試験機を用いて硬度(HB)、引張強さ(N/mm2)、ショット数値を得た。なお、図6の実施例1〜7では、データ取得時のショット数を示しており、実際にはその後の継続テストで20,000ショット以上をカウントしてなお稼働中のものが存在することが実験的に確認されている。 In FIG. 6, the performance evaluation of the example and the comparative example was performed on the mold material manufactured by the above method. The hardness (HB), tensile strength (N / mm 2 ), and shot value were obtained using a Brinell tester and a tensile load tester, respectively. In addition, in Examples 1 to 7 in FIG. 6, the number of shots at the time of data acquisition is shown, and in actuality, there may still be those that are still in operation after counting 20,000 shots or more in the subsequent test. It has been confirmed experimentally.
実施例1〜7が冷却速度、加圧温度条件を充足した金型で、実施例8〜13はいずれか又は両方の条件を具備しない金型であり、比較例1,2は、プレス加圧しなかった場合の結果である。なお、ショット数について、汎用のZASでは、ベンチマークで1,800である。 Examples 1 to 7 are molds satisfying the cooling rate and pressurizing temperature conditions, Examples 8 to 13 are molds that do not have either or both conditions, and Comparative Examples 1 and 2 are press-pressed. It is a result when there is no. The number of shots is 1,800 as a benchmark in general-purpose ZAS.
以上説明した本発明の成形用金型の製造方法並びに成形用金型は、上記の実施形態のみに限定されるものではなく、特許請求の範囲に記載した発明の本質を逸脱しない範囲においてなされる任意の改変も本発明に含まれる。また、発明の名称、特許請求の範囲並びに実施形態の説明で特に区別してはいないが、本発明の特許請求の範囲に記載の要件を充足する限り、完成品金型の他、金型面の最終機械加工前の半製品金型も本発明に含まれる。 The manufacturing method and the molding die of the molding die of the present invention described above are not limited to the above-described embodiments, and are made within the scope not departing from the essence of the invention described in the claims. Any modifications are also included in the present invention. Further, although not particularly distinguished in the description of the title of the invention, the scope of claims, and the embodiments, as long as the requirements described in the scope of claims of the present invention are satisfied, in addition to the finished product mold, Semi-finished molds before final machining are also included in the present invention.
本発明の成形用金型の製造方法及び成形用金型は、自動車部品、各種産業用機器、それらの部品、一般生活雑貨その他のプレスあるいは射出成型用金型分野において利用することができる。 The method for producing a molding die and the molding die of the present invention can be used in the field of automobile parts, various industrial equipment, parts thereof, general household goods and other press or injection molding dies.
10 溶湯
11 鋳型枠
12 槽体
12A 第1槽体
13 第2槽体
14 間隙
16 冷媒流体
20 流体の自動供給装置
22 還流機構
24 冷却装置
32 ポンプ
34 水槽
36 供給管
DESCRIPTION OF
本発明は成形用金型の製造方法及び成形用金型に係り、特に、機械加工性に優れた低融点合金材による成形用金型の製造方法に関する。 The present invention relates to a method for manufacturing a molding die and a molding die, and more particularly, to a method for manufacturing a molding die using a low melting point alloy material excellent in machinability.
金属製や合成樹脂製の部品をプレス加工等の塑性加工や射出成形等により製造するための金型が知られており、合金化された鉄鋼材料が一般に用いられている。近時、製品流行サイクルの短期化、多品種少量生産のニーズに対応して機械加工性が良好で低コストでありながらプレス加工等に求められる強度、耐久性を有する金型のニーズが高まっている。従来、ZAS等の低融点合金を用いたプレス金型が特許文献1において示唆されている。 Metal molds for producing metal or synthetic resin parts by plastic working such as press working or injection molding are known, and alloyed steel materials are generally used. Recently, there has been a growing need for molds that have the strength and durability required for press processing, etc. while having good machinability and low cost in response to the need for shortening the product trend cycle and low volume production. Yes. Conventionally, Patent Document 1 suggests a press die using a low melting point alloy such as ZAS.
特許文献1では、アルミニウム及び銅の合金成分比を高くして鉄に対する耐摩耗性を向上させた亜鉛合金金型が提案されている。しかしながら、特許文献1の金型では、材料として耐摩耗性向上のためにアルミニウム、銅の多量の合金元素が添加されており、製造コストが高い。また、特許文献1の金型では主にアルミニウム、銅等の合金成分を添加しているので、融点が高く、比重が大きい成分の多量添加により流動性が低下しやすい。このため、成分偏析や逆引け、内引け(鋳物内部の引け巣)も生じやすく、これらを考慮する必要から成分設計が複雑で時間がかかる。さらに、アルミニウムの多量添加により亜鉛溶湯より軽いアルミニウム相が浮上するため、この部分で凝固温度が高くなる結果、上部より凝固が始まり、最終的に下部付近が最終凝固部となり逆引けを生じやすい(この点、汎用品のZAS合金では下部から凝固が始まり上部が最終凝固部となり外引けとなる。)。そして、このような現象を防止するために、ガスバーナーによって鋳物上部を加熱し最終凝固部を上部にもってくるトップヒート手法が用いられるが、加熱により冷却速度が低下するため、冷却速度向上による結晶粒微細化強化が期待できず、硬度低下するおそれがあった。 Patent Document 1 proposes a zinc alloy mold in which the alloy component ratio of aluminum and copper is increased to improve the wear resistance against iron. However, in the metal mold of Patent Document 1, a large amount of alloy elements of aluminum and copper are added as materials to improve wear resistance, and the manufacturing cost is high. Moreover, in the metal mold | die of patent document 1, since alloy components, such as aluminum and copper, are mainly added, fluidity | liquidity falls easily by adding a large amount of components with high melting point and large specific gravity. For this reason, component segregation, reverse shrinkage, and internal shrinkage (shrinkage cavities inside the casting) are likely to occur, and the component design is complicated and takes time because these must be taken into consideration. Furthermore, the aluminum phase lighter than the zinc melt rises due to the addition of a large amount of aluminum. As a result, the solidification temperature rises in this part. In this regard, in the general-purpose ZAS alloy, solidification starts from the lower part, and the upper part becomes the final solidified part and is closed.) In order to prevent such a phenomenon, a top heat method is used in which the upper part of the casting is heated by a gas burner and the final solidified part is brought to the upper part. Grain refinement strengthening could not be expected, and there was a risk that the hardness would decrease.
本発明は上記従来の課題に鑑みてなされたものであり、その目的は、低廉なコストでありながら良好な機械加工性と強度並びに耐久性にも優れた成形用金型の製造方法並びに成形用金型を提供することにある。 The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a method for manufacturing a molding die having excellent machinability, strength and durability at a low cost and for molding. To provide molds.
上記課題を解決するために、本発明に係る成形用金型の製造方法は、融点としての液相線温度を超える過熱度を30℃の範囲として少なくとも400〜450℃で溶解する低融点合金材溶湯を成形用金型の鋳型枠に注湯する工程(S1)と、該低融点合金材溶湯を充填した鋳型枠の上面以外の全外周又は上面を含む全外周について溶湯の最終凝固部を所定の冷却速度以上の冷却速度で冷却する工程(S2、S3)と、溶湯が凝固して所定の凝固温度のときに鋳型枠から取り出してプレス加圧する工程(S4)と、を含んで構成される。 In order to solve the above problems, a method for producing a molding die according to the present invention is a low melting point alloy material that melts at a temperature of at least 400 to 450 ° C. with a superheat degree exceeding the liquidus temperature as the melting point in the range of 30 ° C. predetermined and a step of pouring the molten metal into a mold frame of the mold (S1), the entire periphery including the entire circumference or upper surface other than the top surface of the flask filled with the low melting point alloy melt the final solidification portion of the molten metal And a step of cooling at a cooling rate equal to or higher than the cooling rate (S2, S3) and a step of taking out from the mold frame and pressurizing (S4) when the molten metal is solidified and at a predetermined solidification temperature. .
その際、溶湯の冷却速度が0.8℃/s以上であるとよい。 At that time, the cooling rate of the molten metal is preferably 0.8 ° C./s or more.
また、凝固した溶湯の加圧時の素材温度が50℃±5℃の範囲内の温度であるとよい。 Moreover, it is good for the raw material temperature at the time of pressurization of the solidified molten metal to be the temperature in the range of 50 degreeC +/- 5 degreeC.
また、溶湯の冷却は、注湯する鋳型枠全体を開放型又は閉鎖型の槽体に収容し、冷却用流体の自動供給装置により溶湯の素材温度に対応して槽体に冷却用流体を自動供給することにより行うとよい。 In addition, the entire mold frame to be poured is accommodated in an open or closed tank body, and the cooling fluid is automatically supplied to the tank body according to the material temperature of the molten metal by an automatic cooling fluid supply device. It is good to do by supplying.
また、冷却用流体の自動供給装置20は、注湯する鋳型枠11と、鋳型枠11の外側に導入配置させる冷却用流体16と、を収容し得る上面開放型の第1槽体12Aと、第1槽体12Aを収容し第1槽体から溢流する冷却用流体16を回収する第2槽体13と、第2槽体13内の流体162を第1槽体12A内に還流させる還流機構22と、還流機構による還流経路22aに設けた流体の冷却装置24と、を含むとよい。
In addition, the cooling fluid
さらに、鋳型枠の外周に冷媒流体を投入しながら鋳型枠内の溶湯を冷却する際に、下から上方向に周方向の冷却位置が層状に移動しながら冷却させるとよい。 Furthermore, when the molten metal in the mold frame is cooled while supplying the coolant fluid to the outer periphery of the mold frame, the cooling position in the circumferential direction may be moved in layers from the bottom to the bottom.
本発明の成形用金型の製造方法によれば、低融点合金材溶湯を成形用金型の鋳型枠に注湯する工程と、低融点合金材溶湯を充填した鋳型枠の上面以外の全外周又は上面を含む全外周について溶湯の最終凝固部を所定の冷却速度以上の冷却速度で冷却する工程と、溶湯が凝固して所定の凝固温度のときに鋳型枠から取り出してプレス加圧する工程と、を含む構成であるから、汎用の亜鉛基合金で低廉なコストで良好な機械加工性を保持しつつ、鋳型枠に対して局部的にあるいは複数分散して冷却するのではなく全周について同時に冷却することにより溶湯素材の結晶粒の微細化部が高密度に形成され、組織を強化して硬度、並びに強度を大幅に向上させることができる。 According to the method for manufacturing a molding die of the present invention, a step of pouring a low melting point alloy material molten metal into the mold frame of the molding die, and the entire outer periphery other than the upper surface of the mold frame filled with the low melting point alloy material molten metal Or the process of cooling the final solidification part of the molten metal at a cooling rate equal to or higher than a predetermined cooling rate for the entire outer periphery including the upper surface, the process of taking out from the mold frame and press-pressing when the molten metal solidifies and has a predetermined solidification temperature, The general-purpose zinc-based alloy is a general-purpose zinc-based alloy that maintains good machinability at a low cost, and at the same time cools the entire circumference of the mold frame instead of cooling locally or in multiple dispersions. By doing so, the refinement | miniaturization part of the crystal grain of a molten material is formed in high density, and a structure | tissue can be strengthened and hardness and intensity | strength can be improved significantly.
その際、溶湯の冷却速度が0.8℃/s以上で、凝固した溶湯の加圧時の素材温度を50℃±5℃とすることにより、結晶粒微細化と加圧加工硬化により汎用の亜鉛基合金でありながら、硬度を大幅に向上させ、ひいては耐久性をも向上させることができる。 At that time, the cooling rate of the molten metal is 0.8 ° C./s or more, and the material temperature at the time of pressurization of the solidified molten metal is 50 ° C. ± 5 ° C. Although it is a zinc-based alloy, the hardness can be greatly improved, and the durability can be improved.
また、溶湯の冷却は、注湯する鋳型枠全体を開放型又は閉鎖型の槽体に収容し、冷却用流体の自動供給装置により溶湯の素材温度に対応して槽体に冷却用流体を自動供給することにより行うので、400℃程度の高温との熱交換を上回る冷却用の冷媒供給を連続して行って急速冷却を確実に実現し得る。 In addition, the entire mold frame to be poured is accommodated in an open or closed tank body, and the cooling fluid is automatically supplied to the tank body according to the material temperature of the molten metal by an automatic cooling fluid supply device. Since it is performed by supplying, rapid cooling can be realized reliably by continuously supplying cooling refrigerant exceeding heat exchange with a high temperature of about 400 ° C.
また、冷却用流体の自動供給装置は、注湯する鋳型枠と、鋳型枠の外側に導入配置させる冷却用流体と、を収容し得る上面開放型の第1槽体と、第1槽体を収容し第1槽体から溢流する冷却用流体を回収する第2槽体と、第2槽体内の流体を第1槽体内に還流させる還流機構と、還流機構による還流経路に設けた流体の冷却装置と、を含む構成であるから、溶湯冷却用の冷媒供給を連続して行って急速冷却を確実に実現し得る。 An automatic cooling fluid supply apparatus includes a first tank body having an open top surface capable of accommodating a mold frame for pouring, a cooling fluid introduced and disposed outside the mold frame, and a first tank body. A second tank body that collects the cooling fluid that overflows from the first tank body, a reflux mechanism that recirculates the fluid in the second tank body into the first tank body, and a fluid provided in a reflux path by the reflux mechanism. Therefore, rapid cooling can be realized reliably by continuously supplying a coolant for cooling the molten metal.
鋳型枠の外周に冷媒流体を投入しながら鋳型枠内の溶湯を冷却する際に、下から上方向に周方向の冷却位置が層状に移動しながら冷却させるから、冷媒の積層位置が全周について同時に上昇しながら冷却するから、結晶粒の微細化部が高密度に積層形成され、組織を強化して硬度、並びに強度を大幅に向上させることができる。同時に耐摩耗性も向上させる。 When cooling the molten metal in the mold frame while supplying the coolant fluid to the outer periphery of the mold frame, the cooling position in the circumferential direction moves from bottom to top while cooling in layers, so the stacking position of the refrigerant is all around Since cooling is performed while rising at the same time, crystal grain refined portions are stacked and formed at a high density, and the structure can be strengthened to significantly improve the hardness and strength. At the same time, wear resistance is improved.
また、本発明の成形用金型によれば、低融点合金材溶湯を成形用金型の鋳型枠に注湯し、低融点合金材溶湯を充填した鋳型枠の上面以外の全外周又は上面を含む全外周を冷却しながら溶湯の最終凝固部を0.8℃/s以上の冷却速度で冷却し、溶湯が凝固して素材温度が50℃±5℃の範囲内の温度であるときに鋳型枠から取り出してプレス加圧により製造した成形用金型であるから、汎用の亜鉛基合金で低廉なコストで良好な機械加工性を保持しつつ、鋳型枠に対して局部的にあるいは複数分散して冷却するのではなく全周について同時に冷却することにより溶湯素材の結晶粒の微細化部が高密度に形成される結果、組織を強化して硬度、並びに強度を大幅に向上させることができる。 Further, according to the molding die of the present invention, the low melting point alloy material molten metal is poured into the mold frame of the molding die, and the entire outer periphery or top surface other than the top surface of the mold frame filled with the low melting point alloy material molten metal is poured. The final solidification part of the molten metal is cooled at a cooling rate of 0.8 ° C./s or more while cooling the entire outer periphery, and the mold is solidified when the molten metal is solidified and the material temperature is in the range of 50 ° C. ± 5 ° C. Because it is a molding die that is produced by press-pressing it out of the frame, it is a general-purpose zinc-based alloy that can be dispersed locally or in multiple locations on the mold frame while maintaining good machinability at low cost. By cooling the entire circumference at the same time instead of cooling, the refined portion of the crystal grains of the molten material is formed at a high density. As a result, the structure can be strengthened and the hardness and strength can be greatly improved.
また、本発明の成形用金型によれば、上記成形用金型が、ブリネル硬度が151以上、引張強さが302N/mm2以上、を充足する成形用金型であるから、市販のZAS材を用いて簡単な方法で従来にない高い硬度並びに強度を保持し、さらに耐久性も保持し得る。 According to the molding die of the present invention, since the molding die is a molding die satisfying a Brinell hardness of 151 or more and a tensile strength of 302 N / mm 2 or more, a commercially available ZAS material is used. It is possible to maintain unprecedented high hardness and strength by a simple method, and also to maintain durability.
本発明は、プレスや射出成形等の物品の成形加工に用いられる成形機の金型自体の製造方法並びに金型に関するものである。ダイやパンチ等の金属加工等のプレス成形用金型や熱可塑性樹脂を高圧で射出充填して成形する際の金型などが含まれる。 The present invention relates to a method of manufacturing a mold itself of a molding machine used for molding an article such as a press or injection molding, and a mold. Examples include a mold for press molding such as metal processing such as a die and a punch, and a mold for injection-filling and molding a thermoplastic resin at a high pressure.
図1,2は、本発明の成形用金型の製造方法を実現する原理構成説明図であり、溶湯を充填した鋳型枠の冷却方法が異なる図1(a)、図1(b)の工程と、それぞれ冷却後硬化した素材をプレス加圧する図1(c)の工程と、を含む。すなわち、本発明の成形用金型の製造方法は、低融点合金材溶湯を成形用金型の鋳型枠に注湯する工程と、低融点合金材溶湯を充填した鋳型枠の上面以外の全外周又は上面を含む全外周について溶湯の最終凝固部を所定の冷却速度以上の冷却速度で冷却する工程と、溶湯が凝固して所定の凝固温度のときに鋳型枠から取り出してプレス加圧する工程と、を含む。 1 and 2 are explanatory views of the principle configuration for realizing the method of manufacturing a molding die according to the present invention, and the steps shown in FIGS. 1A and 1B are different in the cooling method of the mold frame filled with molten metal. And the step of FIG. 1 (c) in which the material cured after cooling is press-pressed. That is, the method for producing a molding die of the present invention includes a step of pouring a low melting point alloy material molten metal into a mold frame of the molding die and an entire outer periphery other than the upper surface of the mold frame filled with the low melting point alloy material molten metal. Or the process of cooling the final solidification part of the molten metal at a cooling rate equal to or higher than a predetermined cooling rate for the entire outer periphery including the upper surface, the process of taking out from the mold frame and press-pressing when the molten metal solidifies and has a predetermined solidification temperature, including.
本発明において低融点合金材は、具体的には亜鉛(Zn)を主材とし、これにアルミニウム(Al)、銅(Cu)、マグネシウム(Mg)等の合金成分金属を含む、融点がたとえば400℃程度の亜鉛基合金(ZAS)である。合金成分として上記以外の少量の金属成分を含むものでもよい。本発明では、特にアルミニウム、銅が5.0wt%以下、マグネシウム0.1wt%以下程度の汎用のZAS材を用いて従来では想定困難な強度と耐久性を保持する金型を製造する。ちなみに、汎用ZAS材を用いて、鋳型枠への注湯→鋳造→冷却・取り出しによる方法で製造した金型はブリネル硬度HB101,引張強さ215N/mm2、ショット数1,800程度(絞り成形)である。 In the present invention, the low-melting-point alloy material specifically includes zinc (Zn) as a main material, and contains an alloy component metal such as aluminum (Al), copper (Cu), magnesium (Mg), and the melting point is 400, for example. It is a zinc-based alloy (ZAS) at about ° C. The alloy component may contain a small amount of metal components other than those described above. In the present invention, a mold that maintains strength and durability, which is difficult to imagine in the past, is manufactured using a general-purpose ZAS material in which aluminum and copper are 5.0 wt% or less and magnesium is 0.1 wt% or less. By the way, using a general-purpose ZAS material, the mold manufactured by pouring into the mold frame → casting → cooling and taking out has a Brinell hardness HB101, a tensile strength of 215 N / mm2, and a shot number of about 1,800 (drawing). .
図1(a)は、冷却工程において注湯した鋳型枠を収容する槽体の一部開放型冷却方法の原理構成図であり、ZAS材のインゴットを溶解した溶湯10を成形用金型の鋳型枠11に注湯させ(図示せず)、この注湯した鋳型枠11を該鋳型枠11より大きな槽体12に収容させ、鋳型枠11と槽体12の壁面との間隙14に冷媒流体を投入して鋳型枠11の全周側面及び底面を冷却させることにより注湯された溶湯を冷却させる。このとき、冷媒流体を鋳型枠の外壁面全体に接触させて側壁面、底壁面を同時に冷却しさらに溶湯を急速冷却することにより凝固時の溶湯組織について結晶粒を微細化させ組織を強化させて硬度並びに強度を大幅に向上させる。
FIG. 1A is a principle configuration diagram of a partially open cooling method for a tank body that accommodates a mold frame poured in a cooling process, and a
次に図1(c)において、硬化した溶湯素材を鋳型枠11から取り出して反転させた状態でキャビティ面側となる素材をプレス加圧させる。このとき、素材温度が所定の凝固温度のときにプレス加圧することにより、加工硬化が素材全体について生じ、さらに硬度を向上させる。
Next, in FIG.1 (c), the raw material used as the cavity surface side is press-pressed in the state which took out the hardened molten metal material from the
図1(b)は、冷却工程において注湯した鋳型枠を収容する槽体を鋳型枠を閉鎖空間に配置させて冷却させる閉鎖型槽体による冷却方法の原理構成図であり、室内に冷媒ガス等を供給し、注湯した鋳型枠11の上面を含む全周を急速冷却する点を除いて図1(a)、(c)による場合と同様の構成である。
FIG.1 (b) is a principle block diagram of the cooling method by the closed-type tank body which cools the tank body which accommodates the casting_mold | template poured in the cooling process by arrange | positioning a mold frame in closed space, Etc., and the same configuration as in FIGS. 1A and 1C except that the entire circumference including the upper surface of the poured
図2は、図1(a)による、鋳型枠11を収容する槽体の一部開放型冷却装置の原理作用であり、さらに図5は、そのフローチャート図である。まず、図示しない溶解炉でZASインゴットを溶解し、溶湯をトリベを介して鋳型枠11に注湯する(S1)。ZAS溶湯10を充填した例えば鉄製の鋳型枠11が上面開放した箱形の槽体12に収容されている。そして、鋳型枠11の外周と槽体12との間に間隙14が設けられ、この間隙14内に冷媒流体16が投入されて(S2)、鋳型枠11の外周全体を冷却しさらに内部の溶湯の中心部を冷却する。このとき、冷媒が液体の場合は空隙14に注入されて液位が次第に上昇するにしたがって鋳型枠の断面外周を同時に冷却しこれが層状に上昇変位することにより、局部冷却がなく均質な結晶組織で高い強度を保持する。さらに注湯された鋳型枠11は400℃程度に熱せられているが、これを急速冷却するに十分な冷媒流体の冷却可能温度が保持される。すなわち、溶湯の最終凝固部を所定の冷却速度以上の冷却速度で冷却するために、液位上昇にしたがって下位から上位に向けて溶湯を充填した鋳型枠の上面以外の全外周について層状に冷却する。具体的には、溶湯を、0.8℃/s以上の冷却速度で冷却する(S3)ことにより、好ましい硬度、並びに強度を保持する金型を成形し得ることが実証されている。なお、溶湯10を充填した鋳型枠11の外周は例えば400℃程度に熱されており、例えば冷媒を水とすると、これに接して水は瞬時に高温となる。したがって、高温体である溶湯を担持した鋳型枠を急速冷却するための装置が具体的に必要となる。
FIG. 2 shows the principle operation of the partially open cooling device for the tank body that accommodates the
そして、溶湯10が硬化して所定の凝固温度のときに鋳型枠11から取り出してプレス加圧する(図1(c))。このときの加圧時の素材温度は50℃±5℃の範囲での温度とする(S4)ことによりプレス加圧による加工硬化度が高くなり引け巣等を圧着して硬度を向上させる。
Then, when the
次に、図3により、本発明の実施形態に係る上面開放型槽体による冷却用流体の自動供給装置20を説明するが、前述したように、本発明方法において槽体を閉鎖型(図1(b))としても適用し得る。実施形態による冷却用流体の自動供給装置20は、注湯する鋳型枠11と、冷却用流体(冷媒)16と、を収容し得る上面開放型の第1槽体12Aと、第1槽体12Aを収容し第1槽体から溢流する冷却用流体を回収する第2槽体13と、第2槽体13内の流体162を第1槽体12A内に還流させる還流機構22と、還流機構22による還流経路22aに設けた流体の冷却装置24と、を含む。
Next, referring to FIG. 3, an
図において、鋳型枠11は、ZAS溶湯10を充填した例えば鉄製の型枠であり、本実施形態においては最終的に成形する金型のパンチ部分の射込み成形用の型枠を例示している。そして、パンチの土台側を上面側として第1槽体12A内に収容している。型枠の上面は開口11aしており、この開口からトリベ26により溶解したZAS材を型枠内に流し入れる。型枠内への注湯は第1槽体12A内に空の鋳型枠11を配置させた状態で注湯してもよいし、注湯後に溶湯を保持した鋳型枠を第1槽体12A内に移送させてもよい。
In the figure, a
第1槽体12Aは、注湯して溶湯を保持した高温の鋳型枠11を型枠ごと外周から冷却して内部の溶湯を冷却する作用を与えるものであり、実施形態では、上面のみを開放し鋳型枠11を収容して槽の壁面との間に間隙14を形成し得る大きさの箱形の槽で形成されている。間隙14は、例えば公共の水道水等の冷却用流体を投入して400℃程度の温度を有する鋳型枠を外周全体から冷却する際の冷却流体保持部である。鋳型枠内の溶湯は急速冷却する必要があるから、冷却用流体は連続して間隙14に投入され、第1槽体12Aからオーバフロー水として槽外に溢流する。
The
本実施形態において、第1槽体12Aは第2槽体13内に全体が収容されている。第2槽体13は、第1槽体12Aを収容し第1槽体12Aから溢流する冷却流体を保持する流体保持手段であり、この保持された流体は還流機構22により冷却装置を経由して冷却水として再び第1槽体12A内に供給される。
In the present embodiment, the entire
還流機構22は、第2槽体13内において第1槽体12Aとともに設置されたポンプ32と、第2槽体13外に設置されポンプ32に接続された水槽34と、水槽34に接続された冷却装置24と、冷却装置から第1槽体12Aに冷却水を供給する供給管36と、を含む。ポンプ32と水槽34、並びに水槽34と冷却装置24とは、それぞれ第1、第2接続管路38,40で接続されている。冷却装置24は、チラーユニット等からなる冷却用水の冷却手段であり、冷却される熱媒体で水との熱交換で水槽34からの水を冷却して供給管36から低温の水を第1槽体12Aの間隙14に供給する。第1槽体12Aに投入されて鋳型枠11の高温に接触して温水化した水は、第1槽体12Aを溢流してポンプ32で吸引され、水槽34に送られる。なお、図示しない鋳型枠内の溶湯の最終凝固部の温度を計測する温度センサ、第1槽体12A内の水温を計測する温度センサ、冷却速度管理用の制御装置により、溶湯の最終凝固部の冷却速度(例えば単位時間ごとに温度計測)を監視して所要の冷却速度を維持するように保持されている。
The
次に、本発明の実施形態に係る成形用金型の製造工程について図4により説明すると、
図示しない溶解炉でインゴットを溶解した400℃程度のZAS溶湯を鋳型枠11に注湯する(図4(a))。その際、鋳型枠11は、キャビティ面と対向側の底部に対応する開口面を上面にして配置される。なお、図4(a)では鋳型枠を収容する第1、第2槽体12A、13の図示は省略している。次に、冷却水として循環して用いられる最初の冷却用水を第1槽体12Aの鋳型枠と槽璧との間隙14内に注水する。
Next, the manufacturing process of the molding die according to the embodiment of the present invention will be described with reference to FIG.
A ZAS melt of about 400 ° C. in which the ingot is melted in a melting furnace (not shown) is poured into the mold frame 11 (FIG. 4A). At this time, the
冷媒としての水は、図2、図4(b)に示すように水位を上昇しながら鋳型枠外周を下位から上位に向けて溶湯を充填した鋳型枠の上面以外の全外周について層状に冷却する。これによって、鋳型枠に対して局部的にあるいは複数分散して冷却するのではなく水位で全周について同時に上昇しながら冷却する指向制御により結晶粒の微細化部が高密度に積層形成され、組織を強化して硬度、並びに強度を大幅に向上させることができる。同時に耐摩耗性も向上させる。特に、溶湯の冷却速度を0.8℃/s以上の速度とすることにより引け巣の抑制と結晶粒及び晶出物の微細化効果により素材硬度が向上する。溶湯の冷却速度が0.8℃/s未満の場合は、凝固時の固化体の結晶粒が粗大化し硬度を低下させる。間隙14内の水は溶湯を含む鋳型枠11と熱交換されて昇温し、鋳型枠11の上面高さあるいはその付近に至ると槽璧から溢流し(図4(b))、第2槽体13内に回収される。回収された温水はポンプ32で吸引されて水槽34を経由してチラーユニット24に圧送される。チラーユニットでは冷凍機による冷媒と熱交換された温水が冷水化され、供給管36から再び第1槽体12Aの間隙14に投入される。この還流機構22により冷媒水が循環され、常に溶湯を保持した鋳型枠11の外周に接して溶湯を急速冷却する。
As shown in FIG. 2 and FIG. 4 (b), the water as the coolant cools in a layered manner on the entire outer periphery except the upper surface of the mold frame that is filled with molten metal with the water level rising from the lower side toward the upper side. . As a result, the crystal grain refinement part is formed in high density by directing control that cools while simultaneously rising around the entire circumference at the water level, instead of cooling locally or in a plurality of dispersed manner with respect to the mold frame. By strengthening, hardness and strength can be greatly improved. At the same time, wear resistance is improved. In particular, by setting the cooling rate of the molten metal to a rate of 0.8 ° C./s or more, the material hardness is improved by the suppression of shrinkage and the effect of refining crystal grains and crystallized substances. When the cooling rate of the molten metal is less than 0.8 ° C./s, the crystal grains of the solidified body at the time of solidification become coarse and the hardness is lowered. The water in the
溶湯の最終凝固部が50℃±5℃であるときに、凝固固化した素材(10−1)を鋳型枠から取り出し、図4(c)のようにプレス機の下台上にキャビティ部が上面側となるように反転させて配置させる。 When the final solidified portion of the molten metal is 50 ° C. ± 5 ° C., the solidified and solidified material (10-1) is taken out from the mold frame, and the cavity portion is on the upper side of the lower base of the press as shown in FIG. Invert and arrange so that
そして、素材の温度が50℃±5℃であるときにプレス加圧する(図4(d))。プレス加圧によって、加工硬化による転移密度が増加し、硬度が向上する。加圧時の素材温度が50℃±5℃とする理由は、この温度範囲のときに加圧すると加工硬化が効果的に生じ、金型の強度を保持することが実験的に証明されている。プレス加圧時の温度が45℃未満の場合は加工時に割れを生じ、55℃を超える場合は、加工硬化量が小さいため望ましい強度が得られない。 Then, pressurization is performed when the temperature of the material is 50 ° C. ± 5 ° C. (FIG. 4D). Pressurization increases the transition density due to work hardening and improves the hardness. The reason why the material temperature at the time of pressurization is 50 ° C. ± 5 ° C. is experimentally proved that work hardening effectively occurs when the pressure is applied within this temperature range, and the strength of the mold is maintained. . When the temperature at the time of press pressurization is less than 45 ° C., cracking occurs during processing, and when it exceeds 55 ° C., a desired strength cannot be obtained because the work hardening amount is small.
溶湯の冷却は、注湯する鋳型枠全体を開放型又は閉鎖型の槽体に収容し、冷却用流体の自動供給装置により溶湯の素材温度に対応して槽体に冷却用流体を自動供給することにより行うものであり、冷却の具体的方法は上記実施形態による上面解放の一部開放型槽体に限らず、図1(b)の閉鎖型槽体内に注湯した鋳型枠を配置させて冷媒ガス等の気体を供給しながら冷却する構成としてもよい。この場合においても、鋳型枠に対して局部的にあるいは複数分散して冷却するのではなく全周について同時に冷却することにより結晶粒の微細化部が高密度に形成され、組織を強化して硬度、並びに強度を大幅に向上させることができる。 For the cooling of the molten metal, the entire mold frame to be poured is accommodated in an open or closed tank body, and the cooling fluid is automatically supplied to the tank body in accordance with the material temperature of the molten metal by an automatic cooling fluid supply device. The specific method of cooling is not limited to the partially open-type tank body with the upper surface opened according to the above embodiment, but a poured mold frame is arranged in the closed-type tank body in FIG. It is good also as a structure cooled while supplying gas, such as refrigerant gas. Even in this case, the crystal frame is refined at a high density by simultaneously cooling the entire circumference of the mold frame instead of being locally or dispersed and cooling, thereby strengthening the structure and increasing the hardness. In addition, the strength can be greatly improved.
上記の工程により成形した成形用金型は、低融点合金材溶湯10を成形用金型の鋳型枠11に注湯し、低融点合金材溶湯10を充填した鋳型枠11の上面以外の全外周又は上面を含む全外周を冷却しながら溶湯の最終凝固部を0.8℃/s以上の冷却速度で冷却し、溶湯が凝固して素材温度が50℃±5℃の範囲内の温度であるときに鋳型枠から取り出してプレス加圧により製造した成形用金型であり、該金型は、ブリネル硬度が151以上、引張強さが302N/mm2以上、を充足する。これらの条件を具備すれば、低コストで機械加工性及び金型精度が良好であり、さらに、ショット数も7,500回以上程度の耐久性を保持できて、少量多品種製造の要請に応えることが可能である。
The molding die molded by the above-described process is performed by pouring the low melting point alloy material molten
上記の方法によりプレス加圧により成形された鋳物は、キャビティを直接に形成する面を最終的に機械加工して金型を完成するが、素材が例えば汎用のZAS材料であるから、この際の機械加工性が良好で加工時間が短く、行程も少なく済ませることができる。さらに、本発明の方法では製造される金型による成形品によっては必要となる部材等を担持する鋳ぐるみ成形なども行うことができる。 The casting formed by press-pressing according to the above method is finally machined on the surface directly forming the cavity to complete the mold. However, since the material is, for example, a general-purpose ZAS material, Good machinability, short processing time, and less stroke. Further, in the method of the present invention, cast-fill molding that supports a member or the like that is necessary depending on a molded product by a manufactured mold can be performed.
本発明の成形用金型の製造方法により成形された金型は、金属加工等のプレス成形用金型に限らず、熱可塑性樹脂を高圧で射出充填して成形する射出成形用の金型にも適用し得る。 The mold formed by the manufacturing method of the mold for molding of the present invention is not limited to a metal mold for press molding such as metal processing, but is an injection mold for molding by injection filling a thermoplastic resin at a high pressure. Can also be applied.
次に、本発明の成形用金型の製造方法の実施例を示す。
<実施例1>
Next, an example of the manufacturing method of the molding die of the present invention will be shown.
<Example 1>
鉄製ルツボにて、汎用の亜鉛基合金ZAS(アルミニウム4.1wt%、銅3.0wt%、マグネシウム0.04wt%、亜鉛 残部)を400〜450℃で溶解し、液相線温度に対して過熱度が30℃を超えない範囲の溶湯を、台部サイズ:横幅150mm、長さ390mm、高さ55mm、パンチ頭部サイズ:横幅150mm、長さ150mm、高さ105mmのパンチ形状金型用鋳型枠に注湯する。鋳型枠は、SUS409L、板厚2mmの鋼板の溶接構造(箱型)となっており、鋳型枠は実際の金型成形時に使用する際のキャビティ面を下側として配置する。注湯完了後、鋳型枠内の溶湯表面の酸化物をハケを用いて除去した後、融点直上の溶湯温度域で槽璧と鋳型枠との間隙にチラーユニットから水を供給して鋳型枠内の溶湯(直接には鋳型枠の外周)の強制冷却を行った。素材上面温度が60℃程度に達したら、槽体から鋳型枠ごと取り出して鋳型枠を反転させ、素材を取り出して成形金型のキャビティ面すなわち鋳造時に下側が上面になるようにプレス下型にセットした。鋳型から取り出した素材キャビティ面の温度が50℃程度に達したら、可動型を45mm/s以上の速度で下降させ、面圧220MPa以上で加圧(自由鍛造)した。これによって、このときの据え込み量は10mm程度であった。
A general-purpose zinc-based alloy ZAS (aluminum 4.1 wt%, copper 3.0 wt%, magnesium 0.04 wt%, zinc balance) is melted at 400-450 ° C in an iron crucible, and the degree of superheat to the liquidus temperature is 30 Molten metal in a range not exceeding ℃ is poured into a mold frame for a punch-shaped mold having a base size:
図6に、上記の方法で製造した金型素材について実施例及び比較例の性能評価を行った。それぞれブリネル試験機、引張荷重試験機を用いて硬度(HB)、引張強さ(N/mm2)、ショット数値を得た。なお、図6の実施例1〜7では、データ取得時のショット数を示しており、実際にはその後の継続テストで20,000ショット以上をカウントしてなお稼働中のものが存在することが実験的に確認されている。 In FIG. 6, the performance evaluation of the example and the comparative example was performed on the mold material manufactured by the above method. The hardness (HB), tensile strength (N / mm2), and shot value were obtained using a Brinell tester and a tensile load tester, respectively. In addition, in Examples 1 to 7 in FIG. 6, the number of shots at the time of data acquisition is shown, and in actuality, there may still be those that are still in operation after counting 20,000 shots or more in the subsequent test. It has been confirmed experimentally.
実施例1〜7が冷却速度、加圧温度条件を充足した金型で、実施例8〜13はいずれか又は両方の条件を具備しない金型であり、比較例1,2は、プレス加圧しなかった場合の結果である。なお、ショット数について、汎用のZASでは、ベンチマークで1,800である。 Examples 1 to 7 are molds satisfying the cooling rate and pressurizing temperature conditions, Examples 8 to 13 are molds that do not have either or both conditions, and Comparative Examples 1 and 2 are press-pressed. It is a result when there is no. The number of shots is 1,800 as a benchmark in general-purpose ZAS.
以上説明した本発明の成形用金型の製造方法並びに成形用金型は、上記の実施形態のみに限定されるものではなく、特許請求の範囲に記載した発明の本質を逸脱しない範囲においてなされる任意の改変も本発明に含まれる。また、発明の名称、特許請求の範囲並びに実施形態の説明で特に区別してはいないが、本発明の特許請求の範囲に記載の要件を充足する限り、完成品金型の他、金型面の最終機械加工前の半製品金型も本発明に含まれる。 The manufacturing method and the molding die of the molding die of the present invention described above are not limited to the above-described embodiments, and are made within the scope not departing from the essence of the invention described in the claims. Any modifications are also included in the present invention. Further, although not particularly distinguished in the description of the title of the invention, the scope of claims, and the embodiments, as long as the requirements described in the scope of claims of the present invention are satisfied, in addition to the finished product mold, Semi-finished molds before final machining are also included in the present invention.
本発明の成形用金型の製造方法及び成形用金型は、自動車部品、各種産業用機器、それらの部品、一般生活雑貨その他のプレスあるいは射出成型用金型分野において利用することができる。 The method for producing a molding die and the molding die of the present invention can be used in the field of automobile parts, various industrial equipment, parts thereof, general household goods and other press or injection molding dies.
10 溶湯
11 鋳型枠
12 槽体
12A 第1槽体
13 第2槽体
14 間隙
16 冷媒流体
20 流体の自動供給装置
22 還流機構
24 冷却装置
32 ポンプ
34 水槽
36 供給管
DESCRIPTION OF
Claims (8)
低融点合金材溶湯を充填した鋳型枠の上面以外の全外周又は上面を含む全外周について溶湯の最終凝固部を所定の冷却速度以上の冷却速度で冷却する工程と、
溶湯が凝固して所定の凝固温度のときに鋳型枠から取り出してプレス加圧する工程と、を含むことを特徴とする成形用金型の製造方法。 Pouring a low melting point alloy material molten metal into a mold frame of a molding die;
Cooling the final solidified part of the molten metal at a cooling rate equal to or higher than a predetermined cooling rate for the entire outer periphery other than the upper surface of the mold frame filled with the low melting point alloy material molten metal or the entire outer periphery including the upper surface;
And a step of taking out from the mold frame and press-pressing when the molten metal is solidified and at a predetermined solidification temperature.
冷却用流体の自動供給装置により溶湯の素材温度に対応して槽体に冷却用流体を自動供給することにより行うことを特徴とする請求項1ないし3のいずれかに記載の成形用金型の製造方法。 The molten metal is cooled by storing the entire casting mold frame in an open or closed tank body,
4. The molding die according to claim 1, wherein the cooling fluid is automatically supplied to the tank body in accordance with the material temperature of the molten metal by an automatic cooling fluid supply device. 5. Production method.
注湯する鋳型枠と、鋳型枠の外側に導入配置させる冷却用流体と、を収容し得る上面開放型の第1槽体と、
第1槽体を収容し第1槽体から溢流する冷却用流体を回収する第2槽体と、
第2槽体内の流体を第1槽体内に還流させる還流機構と、
還流機構による還流経路に設けた流体の冷却装置と、を含むことを特徴とする請求項4記載の成形用金型の製造方法。 Automatic cooling fluid supply device
A first tank body with an open top surface capable of accommodating a casting mold frame for pouring, and a cooling fluid introduced and disposed outside the casting mold frame;
A second tank body that houses the first tank body and collects the cooling fluid overflowing from the first tank body;
A reflux mechanism for refluxing fluid in the second tank into the first tank;
The method for manufacturing a molding die according to claim 4, further comprising a fluid cooling device provided in a reflux path by the reflux mechanism.
下から上方向に周方向の冷却位置が層状に移動しながら冷却させることを特徴とする請求項5記載の成形用金型の製造方法。 When cooling the molten metal in the mold frame while charging the coolant fluid to the outer periphery of the mold frame,
6. The method for manufacturing a molding die according to claim 5, wherein the cooling position in the circumferential direction is moved from bottom to top while moving in layers.
低融点合金材溶湯を充填した鋳型枠の上面以外の全外周又は上面を含む全外周を冷却しながら溶湯の最終凝固部を0.8℃/s以上の冷却速度で冷却し、
溶湯が凝固して素材温度が50℃±5℃の範囲内の温度であるときに鋳型枠から取り出してプレス加圧により製造した成形用金型。 Pouring the low melting point alloy material molten metal into the mold frame of the mold,
Cooling the final solidified part of the molten metal at a cooling rate of 0.8 ° C./s or more while cooling the entire outer periphery other than the upper surface of the mold frame filled with the low melting point alloy material molten metal or the entire outer periphery including the upper surface,
A mold for molding which is produced by pressing and taking out from the mold frame when the molten metal solidifies and the temperature of the material is in the range of 50 ° C. ± 5 ° C.
8. The molding die according to claim 7, wherein a Brinell hardness of 151 or more and a tensile strength of 302 N / mm 2 or more are satisfied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015106431A JP5864011B1 (en) | 2015-05-26 | 2015-05-26 | Manufacturing method of mold for molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015106431A JP5864011B1 (en) | 2015-05-26 | 2015-05-26 | Manufacturing method of mold for molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5864011B1 JP5864011B1 (en) | 2016-02-17 |
JP2016215266A true JP2016215266A (en) | 2016-12-22 |
Family
ID=55346934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015106431A Active JP5864011B1 (en) | 2015-05-26 | 2015-05-26 | Manufacturing method of mold for molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5864011B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210091031A (en) * | 2020-01-13 | 2021-07-21 | 김순길 | Apparatus for manufacturing of fiber-reinforced composite structure |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113145709A (en) * | 2021-02-03 | 2021-07-23 | 重庆大学 | Sheet forming soft die structure with enhanced additive manufacturing insert and manufacturing method thereof |
CN115213382B (en) * | 2022-07-06 | 2024-06-25 | 栋梁铝业有限公司 | Multi-field coupling device for aluminum alloy continuous casting |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0647148B2 (en) * | 1987-08-04 | 1994-06-22 | 蛇の目ミシン工業株式会社 | Mold |
JP4523144B2 (en) * | 2000-11-13 | 2010-08-11 | 本田技研工業株式会社 | Mold manufacturing method |
JP2002187133A (en) * | 2000-12-20 | 2002-07-02 | Honda Motor Co Ltd | Method for manufacturing mold made of low melting point alloy |
JP2003340653A (en) * | 2002-05-20 | 2003-12-02 | Honda Motor Co Ltd | Method of manufacturing mold |
-
2015
- 2015-05-26 JP JP2015106431A patent/JP5864011B1/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210091031A (en) * | 2020-01-13 | 2021-07-21 | 김순길 | Apparatus for manufacturing of fiber-reinforced composite structure |
KR102288285B1 (en) * | 2020-01-13 | 2021-08-10 | 김순길 | Apparatus for manufacturing of fiber-reinforced composite structure |
Also Published As
Publication number | Publication date |
---|---|
JP5864011B1 (en) | 2016-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102069172A (en) | Composite casting method of aluminum cooling plate | |
US6808004B2 (en) | Semi-solid molding method | |
CN105018851A (en) | Steel for mold, and mold | |
CN103846392B (en) | The casting method of spheroidal graphite cast-iron knuckle | |
CN1326646C (en) | Vacuum pump impeller integral casting process | |
JP5864011B1 (en) | Manufacturing method of mold for molding | |
CN103320651A (en) | Fine-grained zinc-based alloy for die and preparation process thereof | |
JP2019166825A (en) | Reusable mold for injection molding and molding method | |
CA2309900A1 (en) | Making precision castings using thixotropic materials | |
CN106734955A (en) | A kind of aluminium alloy steering gear housing casting process | |
CN104259437A (en) | Tubular casting and production process thereof | |
US7971628B2 (en) | Method and apparatus for die casting of parts | |
CN111575545B (en) | High-strength die-casting alloy material for mobile phone middle plate and preparation method and application thereof | |
US10384262B2 (en) | Die-casting apparatus, die-casting method, and diecast article | |
KR20170002592U (en) | Multiple runner die casting mold for heat sink defect reduction | |
KR101061947B1 (en) | Die casting mold equipment | |
CN218532766U (en) | Novel metallurgical casting drawing of patterns device | |
JP2021090978A (en) | Die-cast device and method of manufacturing die-cast product | |
CN218015607U (en) | Horizontal pouring mold with pouring gate positioned at middle lower part of parting surface | |
US11472083B2 (en) | Injection mold master unit die back plate cooling with metal backfilled plastic mold | |
CN206677153U (en) | A kind of kirsite photoelectricity bracket Belt-type tools | |
JP2009262196A (en) | Casting method and mold | |
CN109909482B (en) | Semi-open type pouring process for sand-lined metal mold | |
CN104190895A (en) | Aluminum-based composite material small-deformation pressure part forming method | |
JP2019130843A (en) | Mold and method for producing resin molded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5864011 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |