Nothing Special   »   [go: up one dir, main page]

JP2016121530A - Intake device and intake method - Google Patents

Intake device and intake method Download PDF

Info

Publication number
JP2016121530A
JP2016121530A JP2016077304A JP2016077304A JP2016121530A JP 2016121530 A JP2016121530 A JP 2016121530A JP 2016077304 A JP2016077304 A JP 2016077304A JP 2016077304 A JP2016077304 A JP 2016077304A JP 2016121530 A JP2016121530 A JP 2016121530A
Authority
JP
Japan
Prior art keywords
water
intake
cooling
controller
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016077304A
Other languages
Japanese (ja)
Other versions
JP5959135B2 (en
Inventor
幸蔵 山崎
Kozo Yamazaki
幸蔵 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016077304A priority Critical patent/JP5959135B2/en
Publication of JP2016121530A publication Critical patent/JP2016121530A/en
Application granted granted Critical
Publication of JP5959135B2 publication Critical patent/JP5959135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an intake device capable of: efficiently taking in moisture in the air; cooling and condensing the same with a heat exchanger; and supplying the same as hot water or cold water through a supply port.SOLUTION: An intake mechanism 1 to take in moisture in the air has: an air intake controller 7 which controls air volume or an air flow rate by detecting a change in external temperature with a temperature sensor 2; and a cooling controller 8 which controls cooling performance of a heat exchanger 5 in conjunction with the air intake controller 7. The intake mechanism can efficiently take water in response to the change in the external temperature by using the cooling controller 8 in a manner that: decreases a cooling temperature when the external temperature increases; and appropriately increases the cooling temperature when the external temperature decreases.SELECTED DRAWING: Figure 1

Description

本発明は、大気中から水分を取出す取水装置に関するものであり、外気温に応じて取入れられる空気の風量又は風速を制御すると共に、熱交換器の冷却能力に応じて大気を効率よく冷却して水分を取り出せるようにしたものである。
さらに、熱交換器の冷却能力をより効率よくするため、逆浸透膜浄水器からの排水をコンプレッサーの冷却に利用して廃棄水の生じないリサイクルを実現した取水方法を提供するものである。
The present invention relates to a water intake device that extracts moisture from the atmosphere, and controls the air volume or speed of air taken in according to the outside air temperature, and efficiently cools the air in accordance with the cooling capacity of the heat exchanger. The water can be taken out.
Furthermore, in order to make the cooling capacity of the heat exchanger more efficient, a water intake method that realizes recycling without generating waste water by using the waste water from the reverse osmosis membrane water purifier for cooling the compressor is provided.

従来、大気中から水分を取入れ飲料水等の生活用水に用いる装置は、種々提案されてきた。それぞれ造水装置、取水装置或いは給水装置の名称で、大気の温度と熱交換器による冷却温度との温度差により凝縮して取り出している。   Conventionally, various apparatuses that take in moisture from the atmosphere and use it for domestic water such as drinking water have been proposed. Each of them is the name of a fresh water generator, a water intake device or a water supply device, and is condensed and taken out due to the temperature difference between the temperature of the atmosphere and the cooling temperature by the heat exchanger.

特開昭53−108651公報 凝縮型空気乾燥装置JP, 53-108651, A Condensation type air dryer 特開昭57−38929公報 造水装置JP, 57-38929, A 特許第4593698号公報 取水装置Japanese Patent No. 4593698 特表2002−505409公報 造水装置Special table 2002-505409 gazette 特開2004−190235号公報 大気中の水分を用いた浄水器JP, 2004-190235, A Water purifier using moisture in the atmosphere 特開2010−106486号公報 給水装置JP 2010-106486 A Water Supply Device

しかし、風量(風速)の制御と冷却器の制御を個別的に制御するだけではなく、大気取入コントローラーと冷却コントローラーとが連動し、熱交換器の冷却能力を十分に働かせなくては、効率よく水分を取り出すことができない。   However, not only the air volume (wind speed) control and the cooler control are individually controlled, but the air intake controller and the cooling controller work together, and the cooling capacity of the heat exchanger must be fully utilized. Can't get water well.

上記の課題を解決するため、外気温に応じて吸気ファンで取水機構に取入れられた大気の風量又は風速を制御する大気取入コントローラーと、この大気取入コントローラーと連動する冷却コントローラーとを設け、中央処理装置(CPU)によって熱交換器による冷却温度を制御し、効率のよい熱交換器の冷却能力によって取水を実現するようにした。
「熱交換器の冷却能力」は、外気温、取水機構に取入れられる大気の風量(風速)及びコンプレッサーの冷媒で決まる熱交換器による冷却温度により一定ではない。
本発明では、大気取入コントローラーと連動する冷却コントローラーを設け、熱交換器のステンレスフィンの表面温度を中央処理装置により制御して、効率のよい熱交換器の冷却能力によって、大気中の水分を取出すようにした。
表2に示したのは、外気温と取入れられる大気の風量(風速)とから取水効率のよい熱交換器による冷却温度の範囲を示した経験値である。
In order to solve the above problems, an air intake controller that controls the air volume or speed of the air taken into the water intake mechanism by the intake fan according to the outside air temperature, and a cooling controller that works in conjunction with the air intake controller are provided. The cooling temperature by the heat exchanger was controlled by the central processing unit (CPU), and water intake was realized by the efficient cooling capacity of the heat exchanger.
The “cooling capacity of the heat exchanger” is not constant depending on the outside air temperature, the air volume (air speed) taken into the intake mechanism, and the cooling temperature by the heat exchanger determined by the refrigerant of the compressor.
In the present invention, a cooling controller that is linked to the atmospheric intake controller is provided, and the surface temperature of the stainless fins of the heat exchanger is controlled by the central processing unit, and the moisture in the atmosphere is reduced by the efficient cooling capacity of the heat exchanger. I tried to take it out.
Table 2 shows empirical values indicating the range of cooling temperature by a heat exchanger with good water intake efficiency based on the outside air temperature and the air volume (wind speed) of the air taken in.

さらに、取水機構から取出された大気中の水分を一旦貯水タンクへ貯留し、加圧ポンプにより逆浸透膜浄水器へ送り、この浄水器を通して浄水し飲料水としている。この逆浸透膜浄水器から出る排水を、コンプレッサーの冷却に利用することにより、熱交換器の冷却能力をより向上させて、効率の良い水分の取出を実現するものである。   Furthermore, the moisture in the atmosphere taken out from the water intake mechanism is temporarily stored in a water storage tank, sent to a reverse osmosis membrane water purifier by a pressure pump, and purified through this water purifier to obtain drinking water. By using the drainage discharged from the reverse osmosis membrane water purifier for cooling the compressor, the cooling capacity of the heat exchanger is further improved, and efficient water extraction is realized.

本発明では、吸気ファンとコンプレッサーとを、それぞれの制御基盤で制御するほか、外気温との関係で大気取入コントローラーにより取水機構へ取入れられる大気の風量(風速)規制及び冷却コントローラーにより効率のよい熱交換器の冷却能力を制御できるようになっている。   In the present invention, the intake fan and the compressor are controlled by the respective control bases, and the air flow rate (wind speed) regulation introduced into the water intake mechanism by the air intake controller in relation to the outside air temperature and the cooling controller is more efficient. The cooling capacity of the heat exchanger can be controlled.

さらに、取水機構により取出した水分を逆浸透膜浄水器で浄水して飲料水とする他、逆浸透膜浄水器からの排水を廃棄することなく、この排水をコンプレッサーの外周に巻きつけられた銅管を通すことにより、コンプレッサーの温度上昇を抑え、冷媒温度を調節し熱交換器の冷却能力を高め、性能維持が極めて有効となった。   In addition, the water extracted by the water intake mechanism is purified with a reverse osmosis membrane water purifier to make drinking water, and the waste water from the reverse osmosis membrane water purifier is discarded without being discarded. By passing the pipe, the temperature rise of the compressor was suppressed, the refrigerant temperature was adjusted, the cooling capacity of the heat exchanger was increased, and the performance maintenance became extremely effective.

従って、従来より15〜25%程度コンプレッサーの冷媒による熱交換器の冷却速度が速くなり、大気中から得る水滴も同じく15〜25%効率よく取水することができるようになった。(表3参照)   Therefore, the cooling rate of the heat exchanger by the refrigerant of the compressor is about 15 to 25% faster than before, and water droplets obtained from the atmosphere can also be efficiently taken in by 15 to 25%. (See Table 3)

本発明の取水機構を示す説明図。Explanatory drawing which shows the water intake mechanism of this invention. 本発明の取水方法を示す説明図。Explanatory drawing which shows the water intake method of this invention.

図1において、1は取水機構で、外気の温度センサー2を有し、空気中のゴミを取り除くフィルター3と、殺菌器4と、コンプレッサーを備えた熱交換器5と、一つ又は複数の吸気ファン6とを有している。   In FIG. 1, reference numeral 1 denotes a water intake mechanism, which has an outside air temperature sensor 2, a filter 3 for removing dust in the air, a sterilizer 4, a heat exchanger 5 equipped with a compressor, and one or a plurality of intake air. And a fan 6.

殺菌器4は、プラズマイオン発生器などを用い機器のまわり及び機器周辺の約6畳〜8畳程度の範囲でウイルス、バクテリアなどを殺菌するようになっている。
熱交換器5は、コンプレッサーを起動したとき、冷媒を圧縮して冷媒パイプへ送出する。冷媒パイプは、ステンレスフィンの表面を冷却し、熱交換器による冷却温度が決まる。
The sterilizer 4 uses a plasma ion generator or the like to sterilize viruses, bacteria, etc. in the range of about 6 to 8 tatami around and around the equipment.
When the compressor is started, the heat exchanger 5 compresses the refrigerant and sends it out to the refrigerant pipe. The refrigerant pipe cools the surface of the stainless fin, and the cooling temperature by the heat exchanger is determined.

7は、大気取入コントローラーで、温度センサー2によって外気温を感知し、吸気ファンによって取入れられる大気の風量(風速)を制御するものである。   Reference numeral 7 denotes an air intake controller which senses the outside air temperature by the temperature sensor 2 and controls the air volume (wind speed) of the air taken in by the intake fan.

外気温35℃で、湿度45%のとき、コンプレッサーを備えた熱交換器5による冷却温度が一定の場合、吸気ファン6による大気の風量(風速)を小さくして効率を高めるようにした。   When the outside air temperature is 35 ° C. and the humidity is 45% and the cooling temperature by the heat exchanger 5 provided with the compressor is constant, the air volume (wind speed) of the air by the intake fan 6 is reduced to increase the efficiency.

これは、35℃の温風を熱交換器に当てることは、温度が上昇し、取水の効率が下がることになるので、吸気ファンによる大気の風量(風速)を小さくし、熱交換器による冷却温度を上げることなく、効率よく取水するものである。   This is because applying hot air of 35 ° C to the heat exchanger increases the temperature and lowers the efficiency of water intake, so the air volume (wind speed) by the intake fan is reduced and cooling by the heat exchanger is performed. Efficient water intake without increasing the temperature.

また、外気温15℃で湿度45%の大気状態のとき、吸気ファンによる大気の風量(風速)を大きくして大量の外気を取り込むことにより、より多くの取水を得ることができる。外気温を感知する温度センサー2のデータDTを大気取入コントローラー7に送り、制御データDT1 を吸気ファン6に送る。   Further, when the outside air temperature is 15 ° C. and the humidity is 45%, more intake water can be obtained by increasing the air volume (wind speed) of the atmosphere by the intake fan and taking in a large amount of outside air. Data DT of the temperature sensor 2 that senses the outside air temperature is sent to the air intake controller 7, and control data DT 1 is sent to the intake fan 6.

8は、冷却コントローラーで、大気取入コントローラー7と連動することにより効果を発揮する。外気温の変化に対応して、外気温が高くなれば熱交換器による冷却温度を下げ,外気温が低くなれば、冷却温度を適宜上げることにより、より効率よく取水できる。   Reference numeral 8 denotes a cooling controller, which is effective when interlocked with the air intake controller 7. In response to changes in the outside air temperature, if the outside air temperature becomes high, the cooling temperature by the heat exchanger is lowered, and if the outside air temperature becomes low, water can be taken in more efficiently by appropriately raising the cooling temperature.

9は中央処理装置(CPU)であり、外気温の変化に応じて大気取入コントローラー7及び冷却コントローラー8を個別に制御する他、コンプレッサーの冷媒送り量で決まる熱交換器による冷却温度、冷媒の状況等の変化に応じて冷却コントローラーを制御し、効率のよい熱交換器の冷却能力をもつようになっている。   Reference numeral 9 denotes a central processing unit (CPU) that individually controls the air intake controller 7 and the cooling controller 8 according to changes in the outside air temperature, as well as the cooling temperature and refrigerant flow determined by the heat exchanger determined by the refrigerant feed amount of the compressor. The cooling controller is controlled according to changes in the situation, etc., so that it has an efficient heat exchanger cooling capacity.

表2に示すように、外気温が10℃、20℃、30℃、40℃の場合、取入れられる大気の風量(風速)が強、中、弱強、弱と変化するとき、冷却器としての熱交換器の表面温度は0℃、−1.5℃、−4℃、−5℃とすることによって、効率のよい熱交換器の冷却能力を得ることを経験値として知った。
また、外気温が0℃以下の場合は、除霜ランプが点灯し、30分後にコンプレッサーをOFFにし、吸気ファンを強運転で10分行うようにした。
As shown in Table 2, when the outside air temperature is 10 ° C., 20 ° C., 30 ° C., 40 ° C., the air volume (wind speed) of the air taken in changes as strong, medium, weak strong, weak, as a cooler It has been known as an empirical value that an effective heat exchanger cooling capacity can be obtained by setting the surface temperature of the heat exchanger to 0 ° C., −1.5 ° C., −4 ° C., and −5 ° C.
Further, when the outside air temperature was 0 ° C. or lower, the defrost lamp was turned on, the compressor was turned off after 30 minutes, and the intake fan was operated for 10 minutes with strong operation.

図2は取水方法を示す経路である。
本発明では、外気温と熱交換器による冷却温度との温度差によって大気を冷却し、水滴を生成する。この水分は貯水タンク10(14リットル)に一旦貯水され、一定量貯水後、逆浸透膜浄水器15に加圧ポンプ13で送出し、ろ過浄水後、温水タンク16又は冷水タンク18に送水される。適宜飲料水として供給口17より85〜95℃の温水として取出せるようにし、また供給口19から冷水5〜15℃を取り出せるようにした。
FIG. 2 is a route showing a water intake method.
In the present invention, the atmosphere is cooled by the temperature difference between the outside air temperature and the cooling temperature by the heat exchanger, and water droplets are generated. This water is temporarily stored in the water storage tank 10 (14 liters), and after a certain amount of water is stored, it is sent to the reverse osmosis membrane water purifier 15 by the pressure pump 13, and after filtered water purification, is sent to the hot water tank 16 or the cold water tank 18. . Appropriate drinking water can be taken out as hot water at 85 to 95 ° C. from the supply port 17, and cold water at 5 to 15 ° C. can be taken out from the supply port 19.

5は熱交換器で、コンプレッサー22の起動により、冷媒を圧縮して冷媒パイプで熱交換器5へ送出し、ステンレスフィンの表面を冷却し、大気中から吸気ファン6により取入れられた空気を冷却して水滴をつくる。
10は貯水タンクで、水滴を約14リットル貯水できる。フロートスイッチ付きである。
Reference numeral 5 denotes a heat exchanger. When the compressor 22 is started, the refrigerant is compressed and sent to the heat exchanger 5 through a refrigerant pipe, the surface of the stainless fin is cooled, and the air taken in from the atmosphere by the intake fan 6 is cooled. And make water drops.
A water storage tank 10 can store about 14 liters of water droplets. With float switch.

12は携帯バケツなどの水容器で、手動切替バルブ11を作動して、災害時などに取水
を取り出せるようにした。
13は加圧ポンプで、貯水タンクの水を逆浸透膜浄水器15に送り、ろ過させる。
12 is a water container such as a portable bucket, and the manual switching valve 11 is operated so that water can be taken out in the event of a disaster.
13 is a pressurizing pump, which sends the water in the water storage tank to the reverse osmosis membrane water purifier 15 for filtration.

14はプレフィルターで、10ミクロンセディメントフィルターと5ミクロンカーボンフィルターによって粗ごみを処理する。   14 is a pre-filter, which treats coarse waste with a 10 micron sediment filter and a 5 micron carbon filter.

15は逆浸透膜浄水器で、メンブレンは0.0001ミクロンの微細孔を持つ複合膜であり、バクテリア、ウイルス、重金属などの有害物を限りなく除去する。最後にはポストカーボンを設け、前記フィルターと共に4層構造のフィルターとなっている。
16は温水タンクで、タンク周縁に460Wのヒートバンド16aを設けて加熱可能とし、85〜95℃の熱湯を得る。
Reference numeral 15 denotes a reverse osmosis membrane water purifier, and the membrane is a composite membrane having fine pores of 0.0001 micron, and removes harmful substances such as bacteria, viruses and heavy metals as much as possible. Finally, post carbon is provided to form a four-layer filter together with the filter.
A hot water tank 16 is provided with a 460 W heat band 16 a at the periphery of the tank to enable heating, and 85 to 95 ° C. hot water is obtained.

18は冷水タンクで、周縁には冷却パイプ18aを設け、冷媒を送り、冷水を得るようになっている。
冷水タンク18には、温水タンク16の熱湯が電磁弁(H)を介してポンプ20により冷水タンクへ移入され、熱湯殺菌することができる。なお、タイマーで3分程度殺菌してから、貯水タンク10へ流入させリサイクルさせる。
Reference numeral 18 denotes a cold water tank. A cooling pipe 18a is provided at the periphery of the cold water tank so that a coolant is sent to obtain cold water.
The hot water in the hot water tank 16 is transferred to the cold water tank 18 by the pump 20 via the solenoid valve (H) and can be sterilized with hot water. In addition, after sterilizing with a timer for about 3 minutes, it flows into the water storage tank 10 and is recycled.

リサイクルは、一日一回熱湯殺菌方式を採用できる。これは深夜時間(例えば午前1時)になると、冷水タンク18下の電磁弁(S)を開放して全ての貯水を放出する(時間設定。次に満水状態(HL)にある温水タンク16のヒーター16aをONにし、タンク内の温水を再沸騰させ、例えば80〜90℃に達すると電磁弁(H)をONとし、ポンプ20により、温水タンク16から冷水タンク18へ送水する。温水タンク16で、温水がレベルLLになったことを検知後、電磁弁とポンプをOFFとする。   For recycling, a hot water sterilization method can be adopted once a day. At midnight (for example, 1:00 am), the solenoid valve (S) under the cold water tank 18 is opened to release all stored water (time setting. Next, the hot water tank 16 in the full water state (HL) is discharged. The heater 16a is turned on, the hot water in the tank is boiled again, for example, when the temperature reaches 80 to 90 ° C., the solenoid valve (H) is turned on, and water is supplied from the hot water tank 16 to the cold water tank 18 by the pump 20. After detecting that the hot water has reached level LL, the solenoid valve and the pump are turned off.

設定時間後(例30分)、コンプレッサーを起動させ、冷却パイプ18aに冷媒を送り、熱交換器のステンレスフィンが冷却され大気から冷水を造る。一度殺菌された水は、水温9℃以下になると菌の増殖が極端に低くなる。冷水タンク18内に流入する水は逆浸透膜浄水器によりろ過されているので、菌は除去されており、リサイクルが支障なく行われる。   After the set time (for example, 30 minutes), the compressor is started, the refrigerant is sent to the cooling pipe 18a, the stainless fins of the heat exchanger are cooled, and cold water is produced from the atmosphere. Once the water has been sterilized, the growth of bacteria becomes extremely low when the water temperature is 9 ° C. or lower. Since the water flowing into the cold water tank 18 is filtered by the reverse osmosis membrane water purifier, the bacteria are removed and the recycling can be performed without any trouble.

逆浸透膜浄水器から生じる排水は、コンプレッサー22に巻付けた銅管の中を通すことによりコンプレッサーを冷却し、熱交換器が安定的な冷却温度を維持し、安定した効率によって大気中から水滴を作り出すようになっている。なお、コンプレッサーの位置は貯水タンク10と同レベルにあり、逆浸透膜浄水器の排水がコンプレッサー22の銅管24内に循環するようになり、コンプレッサーの冷却を継続するようになっている。   The wastewater generated from the reverse osmosis membrane water purifier passes through the copper pipe wound around the compressor 22 to cool the compressor, the heat exchanger maintains a stable cooling temperature, and water drops from the atmosphere with stable efficiency. Is to produce. In addition, the position of the compressor is at the same level as the water storage tank 10, and the drainage of the reverse osmosis membrane water purifier circulates in the copper pipe 24 of the compressor 22, so that the cooling of the compressor is continued.

以下、殺菌方法について説明する。   Hereinafter, the sterilization method will be described.

5〜15℃の冷水タンク部分で、一般細菌が多く発生するが、本製品では温水タンクからの熱水を冷水タンクに移送して行う熱湯殺菌と逆浸透膜浄水器による浄水作用を用いているので、ほぼ完全に菌の発生を1cc/100個以内という水道法基準以下が得られ、ほぼ0にすることに成功した。
殺菌手段としては、塩素殺菌、熱湯殺菌がもっとも有効であり、銀、UVなどから比べると、数段殺菌能力がある。
A lot of general bacteria are generated in the 5-15 ° C cold water tank, but this product uses the hot water sterilization performed by transferring hot water from the hot water tank to the cold water tank and the water purification action by the reverse osmosis membrane water purifier. As a result, the generation of bacteria within 1 cc / 100 or less was almost completely achieved, which was almost zero.
As the sterilization means, chlorine sterilization and hot water sterilization are the most effective, and have several sterilization ability compared with silver, UV and the like.

本発明では、取水機構により取出された大気中の水分を一旦貯水タンクに貯留し、加圧
ポンプで逆浸透膜浄水器へ送り、ろ過し浄水する手段と、ろ過された浄水を温水タンク又
は冷水タンクへ送水する手段と、必要に応じて温水又は冷水として供給口から取出す手段
と、冷水タンクに移送された浄水は、一定時間後又は随時電磁弁を経て貯水タンクへ還元
するリサイクル手段と、前記逆浸透膜浄水器からの排水を廃棄することなく、熱交換器の
コンプレッサーの外周に巻きつけた銅管を通して、コンプレッサーを冷却する手段とから
成り、熱交換器の冷却能力を効率よく制御することを特徴としている。
In the present invention, water in the atmosphere taken out by the water intake mechanism is temporarily stored in a water storage tank, sent to a reverse osmosis membrane water purifier with a pressure pump, filtered and purified, and the filtered purified water is warm water tank or cold water. Means for sending water to the tank, means for taking out from the supply port as hot water or cold water as necessary, and recycling means for returning the purified water transferred to the cold water tank to a water storage tank after a certain time or as needed via an electromagnetic valve; It consists of a means for cooling the compressor through a copper tube wrapped around the outer periphery of the compressor of the heat exchanger without discarding the waste water from the reverse osmosis membrane water purifier, and efficiently controlling the cooling capacity of the heat exchanger It is characterized by.

本発明の取水方法によると、100% のリサイクルが実現できた。通常飲料水として使用する場合、(20リットル/日)で、一切捨て水が発生しないようになっている。
通常は大気中から熱交換器によって、水温25℃、湿度70%で12から14リットル、また水温10℃、湿度40%で8から10リットルを生成するが、災害非常時には、家庭用の災害救済手段を搭載し、池、一般河川、風呂の残り湯等を飲料水にするシステムを付設することができる。
According to the water intake method of the present invention, 100% recycling was realized. When used as normal drinking water, it is (20 liters / day) so that no waste water is generated.
Usually, from the atmosphere, heat exchangers produce 12 to 14 liters at a water temperature of 25 ° C and 70% humidity, and 8 to 10 liters at a water temperature of 10 ° C and humidity of 40%. It is possible to attach a system to make ponds, general rivers, bath remaining hot water, etc. into drinking water.

この場合、水温25℃の場合、200ml/min x 60 x 24時間 で、288リットルが生成される。2リットルペットボトルに換算すると。144本分に匹敵する。
図中の符号25は、熱交換器から冷却されて出てくる水滴を受けて貯水タンクに貯めるときのフィルターを示している。
In this case, when the water temperature is 25 ° C., 288 liters are produced at 200 ml / min × 60 × 24 hours. When converted to a 2-liter plastic bottle. Comparable to 144.
Reference numeral 25 in the drawing indicates a filter that receives water droplets that are cooled from the heat exchanger and stores them in a water storage tank.

本製品では、給水工事が一切不要であり、電源があれば、大気中より水を作ることができる。また災害時用の給水口を設けておけば、水道水を足して使用することができる。この場合、水道水と直結させるような水道工事を一切不要とした。従って、場所を選ばず、どこでも設置可能である。   This product does not require any water supply work, and if it has a power supply, it can produce water from the atmosphere. If a water supply port for disasters is provided, tap water can be added. In this case, there was no need for waterworks to be directly connected to tap water. Therefore, it can be installed anywhere regardless of location.

本製品の原水は、熱交換器によって、温度差を利用して大気中から水分を取出しているので、蒸留水のようにカルシュウム、マグネシュウムのような硬度分が極めて少ない水であり、軟水である。軟水は、逆浸透膜の除去性能に与える負荷を大幅に軽減し、リサイクルを可能としている。   Since the raw water of this product is extracted from the atmosphere using a temperature difference with a heat exchanger, it is water with extremely low hardness such as calcium and magnesium like distilled water and soft water. . Soft water significantly reduces the load on reverse osmosis membrane removal performance and enables recycling.

表1に示すように、本発明の原水は大気中の水分として常に10PPM程度の水となる。原水を97%除去率の逆浸透膜浄水器を使用してろ過した場合、排水は原水に1.8を掛けた数値となる。
冷水タンク又は温水タンクへ送られた飲料水は、排水のリサイクルを繰返して行なっても、原水の逆浸透膜浄水器による浄水と同じ値となり、リサイクル回数を延ばすことができる。

Figure 2016121530

Figure 2016121530

As shown in Table 1, the raw water of the present invention is always about 10 PPM as atmospheric moisture. When raw water is filtered using a reverse osmosis membrane water purifier with a 97% removal rate, the wastewater is a value obtained by multiplying the raw water by 1.8.
Even if the drinking water sent to the cold water tank or the hot water tank is repeatedly recycled, the water becomes the same value as the water purified by the reverse osmosis membrane water purifier of the raw water, and the number of recycling can be increased.
Figure 2016121530

Figure 2016121530

また、逆浸透膜の負担係数は300PPM以上になると、負荷が大幅に大きくなるので、リサイクル回数を6回程度に限定するのが普通であるが、本発明の場合は、原水が大気中の水分であり、雑菌を除いて逆浸透膜浄水器でろ過した場合、6回にとどまらずリサイクル回数を延ばすことを可能とした。   In addition, when the load coefficient of the reverse osmosis membrane is 300 PPM or more, the load is significantly increased. Therefore, it is normal to limit the number of recycling to about six times. However, in the present invention, the raw water is the moisture in the atmosphere. When filtering with a reverse osmosis membrane water purifier excluding various bacteria, it was possible to extend the number of recycles, not limited to six.

大阪市の水道水は100PPM 程度であり、排水は一回目で1.8を掛けた180PPMとなるので、2回目のリサイクルで324PPMになる。従って、リサイクルは無理である。   The city's tap water is about 100PPM, and the drainage is 180PPM multiplied by 1.8 at the first time, so it becomes 324PPM at the second recycling. Therefore, recycling is impossible.

本発明では、原水が蒸留水の総溶解固形物、無機イオン(TDS)と比較して値が低い水
であるので、繰り返しリサイクル可能となっている。なお、リサイクルの途中で、大気中
から取水するので、排水が希釈され理論値では、リサイクルは何回でも問題なく行われる
こととなる。
In the present invention, since the raw water is water having a lower value than the total dissolved solids of distilled water and inorganic ions (TDS), it can be recycled repeatedly. In addition, since water is taken from the air in the middle of recycling, the waste water is diluted and the theoretical value means that the recycling can be performed any number of times without problems.

外気温の変化に対してもっとも効率よく取水するには、冷却コントローラーを設けて中
央処理装置により熱交換器による冷却温度を制御する。取水機構に取入れられた大気の風
量(風速)が、強、中、弱強、弱と変化するのに対応して、冷却器としての熱交換器の表
面温度は0℃〜−5℃とすることが、効率のよい熱交換器の冷却能力を最良であることを
知った。(表2参照)
In order to take water most efficiently in response to changes in the outside air temperature, a cooling controller is provided and the cooling temperature by the heat exchanger is controlled by the central processing unit. The surface temperature of the heat exchanger as a cooler is set to 0 ° C. to −5 ° C. in response to changes in the air volume (wind speed) of the air taken into the intake mechanism as strong, medium, weak strong, and weak. Found that the cooling capacity of an efficient heat exchanger was the best. (See Table 2)

表3は本発明で逆浸透膜浄水器からの排水を、コンプレッサーの外周に巻きつけた銅管
の中を通すことにより、コンプレッサーを冷却した場合、取水が増量されることを示す表
である。

Figure 2016121530
Table 3 is a table showing that water intake is increased when the compressor is cooled by passing the waste water from the reverse osmosis membrane water purifier in the present invention through a copper pipe wound around the outer periphery of the compressor.
Figure 2016121530

熱交換器 : ケイワイ技研製(ステンレスフィン仕様)
冷媒 : 代替フロンR134a
コンプレッサー: ハイリー(海立)製BSA645CR-RIENC
銅管 : 7重巻き (6Φ)
Heat exchanger: Made by KAI GIKEN (Stainless steel fin specification)
Refrigerant: Alternative Freon R134a
Compressor: Hailey BSA645CR-RIENC
Copper tube: 7 rolls (6Φ)

表3は環境条件1,2,3のいずれの場合にも、温度センサーによって感知した外気温
に対して、逆浸透膜浄水器からの排液を利用してコンプレッサーを冷却した場合(本発明
)と利用しない場合との取水効果の比較表である。いずれの場合も取水の増量が明らかで
ある。冷却ファンによる風速(4m/sec)を一定として得たデータである。
Table 3 shows the case where the compressor is cooled by using the drainage from the reverse osmosis membrane water purifier with respect to the outside air temperature detected by the temperature sensor in any of the environmental conditions 1, 2 and 3 (the present invention). It is a comparison table of the water intake effect when not using it. In either case, the increase in water intake is obvious. This is data obtained by keeping the wind speed (4m / sec) by the cooling fan constant.

外気温9.3℃で得られた水分の量は、17%の増量が認められ、外気温25℃前後で
20〜25%の増量が認められた。
The amount of water obtained at an outside temperature of 9.3 ° C. was found to increase by 17%, and an increase of 20 to 25% was observed at around 25 ° C. outside temperature.

本発明では大気取入れコントローラーによって、取水機構に取入れられる大気の風量(風速)を制御する他、これと連動する冷却コントローラーを設けて、中央処理装置を用いて効率のよい熱交換器の冷却能力を維持しているので、取水効率が極めて高くなっている。しかも、水道工事を必要とせず、逆浸透膜浄水器を通してリサイクルを実現しているので、場所を選ばず、電源さえ確保できれば、運転が容易である。   In the present invention, the air intake controller controls the air volume (wind speed) of the air taken into the water intake mechanism, and also provides a cooling controller that works in conjunction with this to provide an efficient heat exchanger cooling capacity using a central processing unit. As it is maintained, the water intake efficiency is extremely high. In addition, recycling is realized through reverse osmosis membrane water purifiers without requiring waterworks, so operation is easy as long as a power source can be secured regardless of location.

1:取水機構
2:温度センサー
3:フィルター
4:殺菌器
5:熱交換器
6:吸気ファン
7:大気取入コントローラー
8:冷却コントローラー
9:中央処理装置(CPU)
10:貯水タンク
13:加圧ポンプ
14:プレフィルター
15:逆浸透膜浄水器
16:温水タンク
17:温水供給口
18:冷水タンク
19:冷水供給口
20:ポンプ
21:電磁弁
22:コンプレッサー
23:排水
24:銅管
1: Intake mechanism 2: Temperature sensor 3: Filter 4: Sterilizer 5: Heat exchanger 6: Intake fan 7: Air intake controller 8: Cooling controller 9: Central processing unit (CPU)
10: Water storage tank 13: Pressurizing pump 14: Prefilter 15: Reverse osmosis membrane water purifier 16: Hot water tank 17: Hot water supply port 18: Cold water tank 19: Cold water supply port 20: Pump 21: Electromagnetic valve 22: Compressor 23: Drainage 24: Copper pipe

Claims (8)

大気中の水分を取水する取水機構に、外気の温度変化によって風量または風速をコントロールする大気取入コントローラーを設け、この大気取入コントローラーと連動して熱交換器の冷却能力をコントロールする冷却コントローラーを設けたことを特徴とする取水装置。   An air intake controller that controls the air volume or speed according to the temperature change of the outside air is installed in the intake mechanism that takes in moisture in the atmosphere, and a cooling controller that controls the cooling capacity of the heat exchanger in conjunction with this air intake controller A water intake device characterized by being provided. 大気中の水分を取水する取水機構に、外気の温度変化によって風量または風速をコントロールする大気取入コントローラーを設け、この大気取入コントローラーと連動して熱交換器の冷却能力をコントロールする冷却コントローラーを設け、全体として中央演算装置により制御し、さらに熱交換器のコンプレッサーを逆浸透膜の排水を利用して冷却することを特徴とする取水装置。   An air intake controller that controls the air volume or speed according to the temperature change of the outside air is installed in the intake mechanism that takes in moisture in the atmosphere, and a cooling controller that controls the cooling capacity of the heat exchanger in conjunction with this air intake controller A water intake device characterized in that it is provided and controlled as a whole by a central processing unit, and further the compressor of the heat exchanger is cooled using the drainage of the reverse osmosis membrane. 取水機構が、空気中のゴミを取り除くフィルターと、殺菌器と、コンプレッサーを備えた熱交換器と、一つ又は複数の吸気ファンとから構成されている請求項1又は2記載の取水装置。   The water intake device according to claim 1 or 2, wherein the water intake mechanism includes a filter that removes dust in the air, a sterilizer, a heat exchanger including a compressor, and one or a plurality of intake fans. 大気取入コントローラーが、取水機構に設けた外気温度を感知する温度センサーと、感知された温度に応じて吸気ファンの風量又は風速を制御する制御部とから構成されている請求項1から3の内1つに記載された取水装置。   4. The air intake controller according to claim 1, further comprising: a temperature sensor that senses an outside air temperature provided in the water intake mechanism; and a controller that controls an air volume or a wind speed of the intake fan according to the sensed temperature. The water intake device described in one of them. 冷却コントローラーが、大気取入コントローラーの制御部と連動して熱交換器の冷却能力を制御する冷却制御部とから構成されている請求項1から4の内1つに記載された取水装置。   The water intake device according to any one of claims 1 to 4, wherein the cooling controller includes a cooling control unit that controls the cooling capacity of the heat exchanger in conjunction with the control unit of the atmospheric intake controller. 大気中の水分を取水機構により、外気温に応じて制御される熱交換器により凝縮する手段と、生じた水を一旦貯水タンクに集め、加圧ポンプによりプレフィルター、逆浸透膜を通してろ過し浄水する手段と、ろ過された浄水を温水タンク又は冷水タンクへ送水する手段と、必要に応じて温水又は冷水として供給口から取り出せる手段と、冷水タンクに移送された浄水は、一定時間後又は随時電磁弁を経て貯水タンクへ還元するリサイクル手段と、前記逆浸透膜からの排水を廃棄することなく、熱交換器のコンプレッサーの外周に巻きつけた銅管を通して、コンプレッサーを冷却する手段とから成り、熱交換器の冷却能力を効率よく制御することを特徴とする取水方法。   Means to condense the moisture in the atmosphere with a heat exchanger controlled according to the outside air temperature by the water mechanism, collect the generated water once in a water storage tank, and filter it through a prefilter and reverse osmosis membrane with a pressure pump Means for sending filtered purified water to a hot water tank or a cold water tank, means for taking out hot water or cold water as needed from the supply port, and purified water transferred to the cold water tank is electromagnetic after a certain time or as needed. Recycling means that returns to the water storage tank through a valve, and means for cooling the compressor through a copper pipe wound around the outer periphery of the compressor of the heat exchanger without discarding the waste water from the reverse osmosis membrane. A water intake method characterized by efficiently controlling the cooling capacity of the exchanger. 逆浸透膜を経て温水タンクと冷水タンクに送水された水を、温水タンクの周縁に設けたヒートバンドにより80〜95℃に加熱し、電磁弁を介して加熱水を冷却タンクに送水して熱湯殺菌をするようにした請求項6記載の取水方法。   The water sent to the hot water tank and the cold water tank through the reverse osmosis membrane is heated to 80-95 ° C. by a heat band provided at the periphery of the hot water tank, and the heated water is sent to the cooling tank via a solenoid valve to The water intake method according to claim 6, wherein the water is sterilized. 緊急時又は災害時には、水道の蛇口からの水を貯水タンクに加えて、大気中の水分と合わせ、ろ過浄水された温水又は冷水を得るようにした請求項6又は7に記載の取水方法。   The water intake method according to claim 6 or 7, wherein in an emergency or disaster, water from a tap is added to a water storage tank so as to be combined with moisture in the atmosphere to obtain filtered or purified hot or cold water.
JP2016077304A 2016-04-07 2016-04-07 Water intake device and water intake method Active JP5959135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016077304A JP5959135B2 (en) 2016-04-07 2016-04-07 Water intake device and water intake method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016077304A JP5959135B2 (en) 2016-04-07 2016-04-07 Water intake device and water intake method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012255531A Division JP5918110B2 (en) 2012-11-21 2012-11-21 Water intake device and water intake method

Publications (2)

Publication Number Publication Date
JP2016121530A true JP2016121530A (en) 2016-07-07
JP5959135B2 JP5959135B2 (en) 2016-08-02

Family

ID=56328275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016077304A Active JP5959135B2 (en) 2016-04-07 2016-04-07 Water intake device and water intake method

Country Status (1)

Country Link
JP (1) JP5959135B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870571B1 (en) * 2017-05-19 2018-06-22 엘지전자 주식회사 Air conditioner with humidification module without water supply
CN108265784A (en) * 2018-02-01 2018-07-10 卞策 The outer potable water collection processor of household portable
CN109555187A (en) * 2018-12-04 2019-04-02 海南洋创新能源科技有限公司 A kind of heat reclaiming system of air water machine
WO2021246365A1 (en) * 2020-06-03 2021-12-09 株式会社創建 Water production apparatus and water production method
JP2021186642A (en) * 2020-06-03 2021-12-13 株式会社創建 Water generator and water generation method
JP7188723B1 (en) 2022-06-24 2022-12-13 株式会社デンケン Water production equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368784A (en) * 2018-04-13 2019-10-25 奇鼎科技股份有限公司 Dehumidification device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371598A (en) * 2001-06-15 2002-12-26 Hitachi Ltd Fresh water generator
JP2004190235A (en) * 2002-12-09 2004-07-08 Atsuo Majima Water purifier using moisture in atmosphere
JP2006526089A (en) * 2003-04-16 2006-11-16 ジェイ. レイディー,ジェームズ Water generator
JP2008002131A (en) * 2006-06-22 2008-01-10 Eiji Shiraishi Emergency potable water producing device
JP4228035B2 (en) * 2004-09-09 2009-02-25 英弥 腰山 Water extraction method and apparatus having a scraping function for extracting water from the atmosphere

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371598A (en) * 2001-06-15 2002-12-26 Hitachi Ltd Fresh water generator
JP2004190235A (en) * 2002-12-09 2004-07-08 Atsuo Majima Water purifier using moisture in atmosphere
JP2006526089A (en) * 2003-04-16 2006-11-16 ジェイ. レイディー,ジェームズ Water generator
JP4228035B2 (en) * 2004-09-09 2009-02-25 英弥 腰山 Water extraction method and apparatus having a scraping function for extracting water from the atmosphere
JP2008002131A (en) * 2006-06-22 2008-01-10 Eiji Shiraishi Emergency potable water producing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101870571B1 (en) * 2017-05-19 2018-06-22 엘지전자 주식회사 Air conditioner with humidification module without water supply
CN108265784A (en) * 2018-02-01 2018-07-10 卞策 The outer potable water collection processor of household portable
CN109555187A (en) * 2018-12-04 2019-04-02 海南洋创新能源科技有限公司 A kind of heat reclaiming system of air water machine
WO2021246365A1 (en) * 2020-06-03 2021-12-09 株式会社創建 Water production apparatus and water production method
JP2021186642A (en) * 2020-06-03 2021-12-13 株式会社創建 Water generator and water generation method
JP2021188434A (en) * 2020-06-03 2021-12-13 株式会社創建 Water generating method
JP7188723B1 (en) 2022-06-24 2022-12-13 株式会社デンケン Water production equipment
JP2024002521A (en) * 2022-06-24 2024-01-11 株式会社デンケン Water production device

Also Published As

Publication number Publication date
JP5959135B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
JP5918110B2 (en) Water intake device and water intake method
JP5959135B2 (en) Water intake device and water intake method
US5517829A (en) Apparatus for producing filtered drinking water
AU660842B2 (en) A water distillation system
US20190352193A1 (en) Device for the Purification of Water Using a Heat Pump
US20080276630A1 (en) Energy saving and environmentally friendly atmospheric dehumidifier chiller for drinking purposes
EP1017630B1 (en) Apparatus for obtaining pure water from crude water
WO2009048421A1 (en) Energy saving and environmentally friendly mobile atmospheric dehumidifier for water generator and drinking purposes
US20190031546A1 (en) Atmospheric water generation system using multi-stage filtration and method of forming same
WO2019188670A1 (en) Exhaust heat recovery-reuse system for water treatment equipment in semiconductor production facility
JP2007533440A (en) Sterilization system
KR100982701B1 (en) Water purifing apparatus
WO2018019006A1 (en) Air conversion, condensation and electromagnetization system
TW478948B (en) Hybrid distillation method and apparatus
WO2000010922A1 (en) Treatment of aqueous wastes
WO2010058171A2 (en) Water production apparatus and method
JP3181375U (en) Water intake equipment
WO2017008814A1 (en) System and method for purification of contaminated liquid
KR20120003141A (en) Temperature controllable device to make drinking water
JP2016107178A (en) Water treatment system
US20200239347A1 (en) Atmospheric water generation system using multi-stage filtration and method of forming same
JP5687036B2 (en) Hot spring water supply system and hot spring water supply method
US8584480B1 (en) Adaptable water harvesting apparatus
KR200393345Y1 (en) Water-generating apparatus
JP7294103B2 (en) Fresh water system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160414

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160414

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5959135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250