Nothing Special   »   [go: up one dir, main page]

JP2016113417A - Antiviral composition, antiviral agent, photocatalyst and virus deactivation method - Google Patents

Antiviral composition, antiviral agent, photocatalyst and virus deactivation method Download PDF

Info

Publication number
JP2016113417A
JP2016113417A JP2014254025A JP2014254025A JP2016113417A JP 2016113417 A JP2016113417 A JP 2016113417A JP 2014254025 A JP2014254025 A JP 2014254025A JP 2014254025 A JP2014254025 A JP 2014254025A JP 2016113417 A JP2016113417 A JP 2016113417A
Authority
JP
Japan
Prior art keywords
copper
antiviral composition
silica
titanium oxide
antiviral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014254025A
Other languages
Japanese (ja)
Inventor
壮 宮石
So Miyaishi
壮 宮石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2014254025A priority Critical patent/JP2016113417A/en
Priority to KR1020150173823A priority patent/KR20160073307A/en
Priority to TW104141523A priority patent/TWI581713B/en
Priority to CN201510917093.9A priority patent/CN105685098A/en
Publication of JP2016113417A publication Critical patent/JP2016113417A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/20Method-related aspects
    • A61L2209/21Use of chemical compounds for treating air or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Inorganic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Catalysts (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antiviral composition that expresses an excellent antiviral property in a bright place, and an antiviral agent and a photocatalyst, and a virus deactivation method.SOLUTION: An antiviral composition according to the present invention comprises silica-coated titanium oxide carrying BiVO, and a divalent copper compound. A virus deactivation method according to the present invention deactivates virus by using the antiviral composition, the antiviral agent or the photocatalyst according to the present invention.SELECTED DRAWING: None

Description

本発明は、ウイルスを不活化する抗ウイルス性組成物、その抗ウイルス性組成物を含む、抗ウイルス剤、光触媒、およびウイルス不活性化方法に関する。   The present invention relates to an antiviral composition that inactivates a virus, an antiviral agent, a photocatalyst, and a virus inactivating method including the antiviral composition.

近年、人体の健康に悪影響を及ぼす新たなウイルスが発見されており、その感染の拡大が強く懸念されている。そのようなウイルス性感染症の拡大を防ぐ材料として光触媒が注目されている(たとえば、特許文献1および2参照)。   In recent years, new viruses have been discovered that adversely affect human health, and there is a strong concern about the spread of infection. A photocatalyst has attracted attention as a material for preventing the spread of such viral infections (see, for example, Patent Documents 1 and 2).

特許文献1には、CuO/TiO(質量%比)=1.0〜3.5の範囲で銅を含有するアナターゼ型酸化チタンからなるファージ・ウイルスの不活性化剤が記載されている。銅を含む酸化チタンがファージ・ウイルスを不活化することを見出すことにより、特許文献1に記載の発明の不活性化剤は完成に至った。特許文献2には、白金担持酸化タングステン粒子は可視光照射下で抗ウイルス活性を発現することが記載されている。 Patent Document 1 describes a phage virus inactivating agent comprising anatase-type titanium oxide containing copper in the range of CuO / TiO 2 (mass% ratio) = 1.0 to 3.5. By finding that titanium oxide containing copper inactivates phage viruses, the inactivation agent of the invention described in Patent Document 1 has been completed. Patent Document 2 describes that platinum-supported tungsten oxide particles exhibit antiviral activity under visible light irradiation.

バナジン酸ビスマス(以下、「BiVO」と記載)は優れた可視光応答型水分解光触媒として広く知られている(たとえば、非特許文献1〜2参照)。そのバンドギャップは2.3eV程度であり、3.0〜3.2eVである酸化チタンのバンドギャップに比べて小さい。つまり、光触媒材料としてよく知られている酸化チタンに比べて、より長波長側の光(可視光)を光触媒に対して有効に利用できる。大気圧下で安価に可視光応答性のBiVO微粉末を製造する方法として、特許文献3に記載の尿素加水分解法が広く知られている。 Bismuth vanadate (hereinafter referred to as “BiVO 4 ”) is widely known as an excellent visible light responsive water-splitting photocatalyst (see, for example, Non-Patent Documents 1 and 2). The band gap is about 2.3 eV, which is smaller than the band gap of titanium oxide, which is 3.0 to 3.2 eV. That is, light (visible light) on a longer wavelength side can be effectively used for the photocatalyst as compared with titanium oxide, which is well known as a photocatalytic material. The urea hydrolysis method described in Patent Document 3 is widely known as a method for producing BiVO 4 fine powder that is responsive to visible light at low pressure under atmospheric pressure.

酸化チタンは優れた担体として広く知られている(例えば非特許文献4)。近年、BiVOを高分散に担持させた酸化チタンと、2価銅化合物とを含有する組成物が極めて高い抗ウイルス活性を有することも分かっている。さらに、BiVOが微細に担持されているほどその抗ウイルス活性が向上することも分かっている。 Titanium oxide is widely known as an excellent carrier (for example, Non-Patent Document 4). In recent years, it has also been found that a composition containing titanium oxide carrying BiVO 4 in a highly dispersed state and a divalent copper compound has extremely high antiviral activity. Furthermore, it is also known that the antiviral activity is improved as BiVO 4 is more finely supported.

特許第4646210号公報Japanese Patent No. 4646210 特開2011−136984号公報JP 2011-136984 A 特許3790189号公報Japanese Patent No. 3790189

J.Phys.Chem.B2006,110,pp11352−11360J. et al. Phys. Chem. B2006, 110, pp11352-11360 J.Am.Chem.Soc.1999,121,pp11459−11467J. et al. Am. Chem. Soc. 1999, 121, pp11459-11467 光機能材料研究会、会報光触媒 vol.37、p.31−32(2012)Photofunctional Materials Study Group, Newsletter Photocatalyst vol. 37, p.31-32 (2012) 中沢義彦(2008). 触媒便覧、株式会社講談社Nakazawa Yoshihiko (2008). Catalyst Handbook, Kodansha Co., Ltd.

特許文献1では、CuO/TiOのサンプルについて、紫外線照射下(実施例1〜4、比較例3〜4)、可視光照射下(比較例2)および暗所(比較例1)で抗ウイルス性評価を行っている。そして、可視光照射下(比較例2)および暗所(比較例1)では、ファージ・ウイルス不活性化効果は全くなかった。ところで、近年急速に普及している白色LED蛍光灯の光は紫外光を含まない。特許文献1に記載のファージ・ウイルスの不活性化剤は、暗所下および可視光照射下で、抗ウイルス活性が全くないことから、白色LED蛍光灯下でも抗ウイルス活性が全くないことが予想される。このため、特許文献1に記載されたファージ・ウイルスの不活性化剤の内装材への応用は極めて限定的になる。
一方、特許文献2に記載の白金担持酸化タングステン粒子は、可視光照射下において抗ウイルス性が発現しているものの、白金および酸化タングステンが極めて希少で高価であるため、白金担持酸化タングステン粒子の産業上の利用は困難である。
In Patent Document 1, a sample of CuO / TiO 2 is antiviral under ultraviolet irradiation (Examples 1 to 4, Comparative Examples 3 to 4), under visible light irradiation (Comparative Example 2), and in the dark (Comparative Example 1). We are conducting sex assessment. Under the visible light irradiation (Comparative Example 2) and in the dark (Comparative Example 1), there was no phage / virus inactivating effect. By the way, the light of the white LED fluorescent lamp which has spread rapidly in recent years does not include ultraviolet light. The phage / virus inactivating agent described in Patent Document 1 has no antiviral activity even in the dark and under visible light irradiation, and therefore is expected to have no antiviral activity even under a white LED fluorescent lamp. Is done. For this reason, the application to the interior material of the phage virus inactivating agent described in Patent Document 1 is extremely limited.
On the other hand, the platinum-supported tungsten oxide particles described in Patent Document 2 exhibit antiviral properties under visible light irradiation, but platinum and tungsten oxide are extremely rare and expensive. The above use is difficult.

また、特許文献3に記載の方法を応用して、BET比表面積が25m/gより小さい酸化チタンにBiVOを担持させ、さらに2価銅化合物を含有させると、明所において極めて高い抗ウイルス活性が発現する。しかしながら、BET比表面積が25m/gより小さいと、スラリー化した際の分散性、および材に塗布した際の透明性が良好ではない。そこで、BET比表面積が25m/g以上の酸化チタンにBiVOを担持しようとすると、BiVOを担持する際の反応がうまく進行せず、結果、2価銅化合物を含有させても抗ファージ活性がほとんど発現しなかった。
上記のように、従来においては、可視光を含む明所において実用的な抗ウイルス性組成物は提供されていない。
In addition, when the method described in Patent Document 3 is applied and BiVO 4 is supported on titanium oxide having a BET specific surface area of less than 25 m 2 / g and a divalent copper compound is further contained, antiviral is extremely high in a bright place. Activity is expressed. However, if the BET specific surface area is less than 25 m 2 / g, the dispersibility when slurried and the transparency when applied to the material are not good. Therefore, when trying to support BiVO 4 on titanium oxide having a BET specific surface area of 25 m 2 / g or more, the reaction at the time of supporting BiVO 4 does not proceed well. As a result, even when a divalent copper compound is contained, anti-phage Little activity was expressed.
As described above, conventionally, no practical antiviral composition has been provided in a bright place including visible light.

本発明は、上述の課題を解決するためになされたものであり、紫外光のない明所においても優れた抗ウイルス性を発現できる抗ウイルス性組成物、該抗ウイルス性組成物を含有する抗ウイルス剤、該抗ウイルス性組成物を含有する光触媒、さらにはウイルス不活化方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an antiviral composition capable of expressing excellent antiviral properties even in a bright place without ultraviolet light, and an antiviral composition containing the antiviral composition. It is an object of the present invention to provide a virus agent, a photocatalyst containing the antiviral composition, and a virus inactivation method.

本発明者らは、BiVOが担持されたシリカ被覆酸化チタンと、2価銅化合物とを含有する組成物が、可視光照射下で優れた抗ウイルス活性を発現すること、担体としてシリカ被覆酸化チタンを用いることで、BET比表面積25m/g以上の酸化チタンにもBiVOを担持できること、さらにそのBiVOを担持したシリカ被覆酸化チタンと、2価銅化合物とを含有する抗ウイルス性組成物を使用して、紫外光のない明所において優れた抗ウイルス性を発現する、抗ウイルス性組成物、抗ウイルス剤、光触媒を得られることを見出し、本発明を完成させた。
すなわち、本発明は次の[1]〜[18]の発明を提供するものである。
The inventors of the present invention show that a composition containing a silica-coated titanium oxide carrying BiVO 4 and a divalent copper compound exhibits excellent antiviral activity under visible light irradiation, and silica-coated oxidation as a carrier. By using titanium, it is possible to carry BiVO 4 on titanium oxide having a BET specific surface area of 25 m 2 / g or more, and further, an antiviral composition containing silica-coated titanium oxide carrying BiVO 4 and a divalent copper compound. The present inventors have found that an antiviral composition, an antiviral agent, and a photocatalyst that express excellent antiviral properties in a bright place without ultraviolet light can be obtained using the product, and the present invention has been completed.
That is, the present invention provides the following inventions [1] to [18].

[1]BiVOが担持されたシリカ被覆酸化チタンと、2価銅化合物とを含有する抗ウイルス性組成物。
[2]前記シリカ被覆酸化チタンのBET比表面積が25m/g以上である、上記[1]に記載の抗ウイルス性組成物。
[3]前記シリカ被覆酸化チタンが気相法により作製されたものである上記[1]または[2]に記載の抗ウイルス性組成物。
[4]シリカの割合が、シリカ被覆酸化チタンの100質量部に対し、1〜30質量%である、上記[1]〜[3]のいずれか1に記載の抗ウイルス性組成物。
[5]前記BiVOの質量が、前記シリカ被覆酸化チタン100質量部に対して1〜20質量部である、上記[1]〜[4]のいずれか1に記載の抗ウイルス性組成物。
[6]前記2価銅化合物中の銅元素の割合が、前記シリカ被覆酸化チタンおよびBiVOの合計100質量部に対して0.01〜20質量部である、上記[1]〜[5]のいずれか1に記載の抗ウイルス性組成物。
[7]前記2価銅化合物は、(a)一般式(1):
Cu(OH)X (1)
(式中、Xは陰イオンを示す)
で表される水酸基含有2価銅化合物、(b)2価銅のハロゲン化物、(c)2価銅の無機酸塩、(d)2価銅の有機酸塩、(e)酸化第二銅、(f)硫化銅、(g)アジ化銅(II)、および(h)ケイ酸銅からなる群から選択される1種または2種以上である、上記[1]〜[6]のいずれか1に記載の抗ウイルス性組成物。
[8]一般式(1)のXが、ハロゲン、カルボン酸の共役塩基、無機酸の共役塩基、およびOH基からなる群から選択される1種または2種以上である、上記[7]に記載の抗ウイルス性組成物。
[9]前記一般式(1)におけるXは、Cl、CHCOO、NOおよび(SO1/2からなる群から選択される1種である、上記[7]または[8]に記載の抗ウイルス性組成物。
[10]前記(b)2価銅のハロゲン化物は、塩化銅、フッ化銅、および臭化銅からなる群から選択される1種または2種以上である、上記[7]に記載の抗ウイルス性組成物。
[11](c)2価銅の無機酸塩は、硫酸銅、硝酸銅、ヨウ素酸銅、過塩素酸銅、シュウ酸銅、四ホウ酸銅、硫酸アンモニウム銅、アミド硫酸銅、塩化アンモニウム銅、ピロリン酸銅、および炭酸銅からなる群から選択される1種または2種以上である、上記[7]に記載の抗ウイルス性組成物。
[12](d)2価銅の有機酸塩は2価銅のカルボン酸塩である、上記[7]に記載の抗ウイルス性組成物。
[13]前記2価銅化合物は一般式(1)で表される水酸基含有2価銅化合物である、上記[7]または[8]に記載の抗ウイルス性組成物。
[14]800ルクスの照度の可視光照射60分間で99.0%以上のウイルス不活化能力を有する上記[1]〜[13]のいずれか1に記載の抗ウイルス性組成物。
[15]シリカ被覆酸化チタンと、ビスマスイオンと、バナジン酸イオンと、尿素と、水からなる酸性の懸濁液を、大気圧下で加熱して得られるBiVOが担持された前記シリカ被覆酸化チタンと、前記2価銅化合物とを含有する[1]〜[14]のいずれか1に記載の抗ウイルス性組成物。
[16]上記[1]〜[15]のいずれか1に記載の抗ウイルス性組成物を含有する抗ウイルス剤。
[17]上記[1]〜[15]のいずれか1に記載の抗ウイルス性組成物を含有する光触媒。
[18]上記[1]〜[15]のいずれか1に記載の抗ウイルス性組成物、上記[16]に記載の抗ウイルス剤または上記[17]に記載の光触媒を用いてウイルスを不活化する、ウイルス不活性化方法。
[1] An antiviral composition containing a silica-coated titanium oxide carrying BiVO 4 and a divalent copper compound.
[2] The antiviral composition according to the above [1], wherein the silica-coated titanium oxide has a BET specific surface area of 25 m 2 / g or more.
[3] The antiviral composition according to the above [1] or [2], wherein the silica-coated titanium oxide is produced by a gas phase method.
[4] The antiviral composition according to any one of [1] to [3], wherein the proportion of silica is 1 to 30% by mass with respect to 100 parts by mass of the silica-coated titanium oxide.
[5] The antiviral composition according to any one of the above [1] to [4], wherein the mass of BiVO 4 is 1 to 20 parts by mass with respect to 100 parts by mass of the silica-coated titanium oxide.
[6] The above [1] to [5], wherein the ratio of copper element in the divalent copper compound is 0.01 to 20 parts by mass with respect to 100 parts by mass in total of the silica-coated titanium oxide and BiVO 4 . The antiviral composition according to any one of the above.
[7] The divalent copper compound includes (a) the general formula (1):
Cu 2 (OH) 3 X (1)
(In the formula, X represents an anion)
(B) Divalent copper halide, (c) Divalent copper inorganic acid salt, (d) Divalent copper organic acid salt, (e) Cupric oxide Any one of the above [1] to [6], which is one or more selected from the group consisting of: (f) copper sulfide, (g) copper (II) azide, and (h) copper silicate 2. The antiviral composition according to 1.
[8] In the above [7], X in the general formula (1) is one or more selected from the group consisting of a halogen, a conjugate base of a carboxylic acid, a conjugate base of an inorganic acid, and an OH group. The antiviral composition as described.
[9] In the above [7] or [8], X in the general formula (1) is one selected from the group consisting of Cl, CH 3 COO, NO 3 and (SO 4 ) 1/2 . The antiviral composition as described.
[10] The antibacterial device according to [7], wherein the (b) divalent copper halide is one or more selected from the group consisting of copper chloride, copper fluoride, and copper bromide. Viral composition.
[11] (c) Divalent copper inorganic acid salts include copper sulfate, copper nitrate, copper iodate, copper perchlorate, copper oxalate, copper tetraborate, ammonium sulfate copper, amide copper sulfate, ammonium copper chloride, The antiviral composition according to [7] above, which is one or more selected from the group consisting of copper pyrophosphate and copper carbonate.
[12] The antiviral composition according to [7] above, wherein the organic salt of (d) divalent copper is a divalent copper carboxylate.
[13] The antiviral composition according to [7] or [8] above, wherein the divalent copper compound is a hydroxyl group-containing divalent copper compound represented by the general formula (1).
[14] The antiviral composition according to any one of the above [1] to [13], which has a virus inactivating ability of 99.0% or more after 60 minutes of visible light irradiation with an illuminance of 800 lux.
[15] The silica-coated oxide on which BiVO 4 obtained by heating an acidic suspension composed of silica-coated titanium oxide, bismuth ions, vanadate ions, urea, and water under atmospheric pressure is supported. The antiviral composition according to any one of [1] to [14], comprising titanium and the divalent copper compound.
[16] An antiviral agent comprising the antiviral composition according to any one of [1] to [15].
[17] A photocatalyst containing the antiviral composition according to any one of [1] to [15].
[18] Virus inactivation using the antiviral composition according to any one of [1] to [15] above, the antiviral agent according to [16] above, or the photocatalyst according to [17] above A virus inactivation method.

本発明によれば、紫外光のない明所において優れた抗ウイルス性を発現する、抗ウイルス性組成物、抗ウイルス剤、光触媒およびウイルス不活性化方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the antiviral composition, the antiviral agent, photocatalyst, and virus inactivation method which express the outstanding antiviral property in the bright place without an ultraviolet light can be provided.

以下、本発明を詳細に説明するが、本発明は下記の実施形態に限定されるものではない。なお、本明細書において、「紫外光のない明所(単に「明所」ということもある)」とは波長が400nm以上の可視光が存在するが、紫外光が実質的に存在しない箇所のことをいう。   Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments. In this specification, “a bright place without ultraviolet light (sometimes simply referred to as“ light place ”) is a place where visible light having a wavelength of 400 nm or more exists but ultraviolet light is not substantially present. That means.

[抗ウイルス性組成物]
本発明の抗ウイルス性組成物は、BiVOが担持されたシリカ被覆酸化チタンと、2価銅化合物とを含有する組成物であり、明所において優れた抗ウイルス性が発現する。
[Antiviral composition]
The antiviral composition of the present invention is a composition comprising a silica-coated titanium oxide carrying BiVO 4 and a divalent copper compound, and exhibits excellent antiviral properties in a light place.

<シリカ被覆酸化チタン>
シリカ被覆酸化チタンを用いることで、BET比表面積が25m/g以上の酸化チタンにもBiVOを担持することができる。BiVOを担持する際、酸化チタンを溶媒に分散させ、ビスマスイオンおよびバナジン酸イオンを添加する工程が一般的に想定される。その際、BET比表面積が25m/g以上の酸化チタンを用いると、酸化チタンの表面エネルギーが高いために、ビスマスイオンおよびバナジン酸イオンが速やかに酸化チタン表面に強固に吸着され、その後の工程を経てもBiVOは析出し難いと考えられる。それに対し、シリカ被覆酸化チタンを用いると、シリカにより酸化チタンの表面エネルギーが低下し、ビスマスイオンおよびバナジン酸イオンがほとんど吸着せず、その後の工程を経て徐々にシリカ被覆酸化チタン上にBiVOが析出すると考えられる。
<Silica-coated titanium oxide>
By using silica-coated titanium oxide, BiVO 4 can be supported on titanium oxide having a BET specific surface area of 25 m 2 / g or more. When BiVO 4 is supported, a step of dispersing titanium oxide in a solvent and adding bismuth ions and vanadate ions is generally assumed. At that time, when a titanium oxide having a BET specific surface area of 25 m 2 / g or more is used, since the surface energy of titanium oxide is high, bismuth ions and vanadate ions are quickly and strongly adsorbed on the titanium oxide surface, and the subsequent steps It is considered that BiVO 4 is hardly precipitated even after passing through. On the other hand, when silica-coated titanium oxide is used, the surface energy of titanium oxide is reduced by silica, bismuth ions and vanadate ions are hardly adsorbed, and BiVO 4 is gradually formed on the silica-coated titanium oxide through the subsequent steps. It is thought that it precipitates.

本発明のシリカ被覆酸化チタンは、BiVOを担持することができれば特に限定されない。酸化チタンにシリカを被覆する方法として、例えば、特許第5181408号公報に記載されたような液相法により作製したもの、或いは、例えば、特開2004―231952号公報に記載されたような気相法により作製したものなどが挙げられる。
これらの中で気相法により作製されたシリカ被覆酸化チタンが、製造コストの観点から好ましい。
The silica-coated titanium oxide of the present invention is not particularly limited as long as it can carry BiVO 4 . As a method for coating silica with titanium oxide, for example, a method prepared by a liquid phase method as described in Japanese Patent No. 5181408, or a gas phase as described in Japanese Patent Application Laid-Open No. 2004-231952, for example. And those prepared by the method.
Among these, silica-coated titanium oxide produced by a vapor phase method is preferable from the viewpoint of production cost.

シリカ被覆酸化チタンの酸化チタンは二酸化チタン(TiO)が好ましく、その結晶形としてアナターゼ型酸化チタン、ルチル型酸化チタンおよびブルッカイト型酸化チタンが好ましく、アナターゼ型酸化チタンおよびルチル型酸化チタン型がより好ましい。シリカ被覆酸化チタンのシリカは二酸化ケイ素(SiO)が好ましい。 The titanium oxide of the silica-coated titanium oxide is preferably titanium dioxide (TiO 2 ), and its crystal form is preferably anatase type titanium oxide, rutile type titanium oxide or brookite type titanium oxide, more preferably anatase type titanium oxide or rutile type titanium oxide type. preferable. Silica of the silica-coated titanium oxide is preferably silicon dioxide (SiO 2 ).

本発明で用いるシリカ被覆酸化チタンのBET比表面積(BiVOを担持する前の値)は、好ましくは25m/g以上であり、より好ましくは25〜1000m/gであり、さらに好ましくは30〜500m/gであり、特に好ましくは40〜300m/gである。シリカ被覆酸化チタンのBET比表面積が25m/g以上であると、スラリー化した際の分散性、および材に塗布した際の透明性が良好となる。シリカ被覆酸化チタンのBET比表面積が1000m/g以下であると、抗ウイルス性組成物の塗料化などの抗ウイルス性組成物の応用に当たり、抗ウイルス性組成物の取り扱いが容易になる。ここでBET比表面積とは、窒素吸着によるBET3点法にて測定した比表面積である。 The BET specific surface area (value before supporting BiVO 4 ) of the silica-coated titanium oxide used in the present invention is preferably 25 m 2 / g or more, more preferably 25 to 1000 m 2 / g, and further preferably 30. ~500m a 2 / g, particularly preferably 40 to 300 m 2 / g. When the BET specific surface area of the silica-coated titanium oxide is 25 m 2 / g or more, the dispersibility when slurried and the transparency when applied to the material are improved. When the BET specific surface area of the silica-coated titanium oxide is 1000 m 2 / g or less, handling of the antiviral composition becomes easy in application of the antiviral composition such as coating of the antiviral composition. Here, the BET specific surface area is a specific surface area measured by a BET three-point method by nitrogen adsorption.

本発明で用いるシリカ被覆酸化チタンのシリカの割合は、シリカ被覆酸化チタン中、好ましくは1〜30質量%であり、より好ましくは2〜25質量%であり、さらに好ましくは5〜25質量%である。シリカ量が1質量%以上であると、BiVOを担持させる反応が良好に進行し、シリカ量が30質量%以下であると、比較的高価なシリカ原料の使用量を抑えることができ、経済的である。 The ratio of silica in the silica-coated titanium oxide used in the present invention is preferably 1 to 30% by mass, more preferably 2 to 25% by mass, and further preferably 5 to 25% by mass in the silica-coated titanium oxide. is there. When the amount of silica is 1% by mass or more, the reaction for supporting BiVO 4 proceeds favorably, and when the amount of silica is 30% by mass or less, the amount of relatively expensive silica raw material used can be suppressed. Is.

<BiVO
本発明のシリカ被覆酸化チタンに担持されたBiVOは、可視光領域で高い光触媒活性を示す。BiVOをシリカ被覆酸化チタンに担持する方法には、例えば、固相法および液相法が挙げられる。本発明の抗ウイルス性組成物には、そのいずれをも用いることができるが、好ましくは液相法であり、より好ましくは尿素加水分解法(特許文献3参照)である。公知のBiVOの製造方法、たとえば、上述のBiVOの製造方法において、シリカ被覆酸化チタンをBiVO合成中に添加することによりBiVOをシリカ被覆酸化チタンに担持させることができる。
<BiVO 4 >
BiVO 4 supported on silica-coated titanium oxide of the present invention exhibits high photocatalytic activity in the visible light region. Examples of the method of supporting BiVO 4 on silica-coated titanium oxide include a solid phase method and a liquid phase method. Any of them can be used for the antiviral composition of the present invention, but a liquid phase method is preferred, and a urea hydrolysis method (see Patent Document 3) is more preferred. The method of manufacturing the known BiVO 4, for example, in the manufacturing method described above of BiVO 4, the BiVO 4 by adding silica-coated titanium oxide in BiVO 4 synthesis can be carried on the silica-coated titanium oxide.

BiVOの質量割合は、シリカ被覆酸化チタン100質量部に対して、好ましくは1〜20質量部であり、より好ましくは2〜15質量部であり、さらに好ましくは3〜10質量部である。BiVOの質量が、シリカ被覆酸化チタン100質量部に対して、1〜20質量部であると、抗ウイルス性組成物の明所における抗ウイルス特性が良好になるとともに、抗ウイルス性組成物が鮮やかな黄色の色彩を呈することを抑制できる。また、組成物中のBiおよびV元素の割合を小さくすることができ、経済的である。 The mass ratio of BiVO 4 is preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass, and further preferably 3 to 10 parts by mass with respect to 100 parts by mass of the silica-coated titanium oxide. When the mass of BiVO 4 is 1 to 20 parts by mass with respect to 100 parts by mass of silica-coated titanium oxide, the antiviral properties in the light place of the antiviral composition are improved, and the antiviral composition is Presenting a bright yellow color can be suppressed. Moreover, the ratio of Bi and V elements in the composition can be reduced, which is economical.

<2価銅化合物>
本発明に用いられる2価銅化合物は、銅の価数が2である銅化合物である。2価銅化合物は単独では、明所における抗ウイルス特性を示さない。しかし、BiVOを担持したシリカ被覆酸化チタンと組み合わせることにより、明所における抗ウイルス特性が2価銅化合物に発現する。2価銅化合物は、銅の価数が2である銅化合物であればとくに限定されない。たとえば、2価銅化合物は、(a)下記一般式(1):
Cu(OH)X (1)
(式中、Xは陰イオンを示す)
で表される水酸基含有2価銅化合物、(b)2価銅のハロゲン化物、(c)2価銅の無機酸塩、(d)2価銅の有機酸塩、(e)酸化第二銅、(f)硫化銅、(g)アジ化銅(II)、および(h)ケイ酸銅からなる群から選択される1種または2種以上である。
<Divalent copper compound>
The divalent copper compound used in the present invention is a copper compound having a copper valence of 2. A divalent copper compound alone does not exhibit antiviral properties in the light. However, when combined with silica-coated titanium oxide supporting BiVO 4 , antiviral properties in a light place are expressed in the divalent copper compound. The divalent copper compound is not particularly limited as long as it is a copper compound having a copper valence of 2. For example, the divalent copper compound is (a) the following general formula (1):
Cu 2 (OH) 3 X (1)
(In the formula, X represents an anion)
(B) Divalent copper halide, (c) Divalent copper inorganic acid salt, (d) Divalent copper organic acid salt, (e) Cupric oxide , (F) copper sulfide, (g) copper (II) azide, and (h) one or more selected from the group consisting of copper silicate.

一般式(1)の好ましいX(陰イオン)は、Cl、BrおよびIなどのハロゲン、CHCOOなどのカルボン酸の共役塩基、NO、および(SO1/2などの無機酸の共役塩基ならびにOH基からなる群から選択されるいずれかである。一般式(1)のより好ましいXは、Cl、CHCOO、NO、(SO1/2、およびOH基からなる群から選択される1種である。これらの中では、ハロゲンがさらに好ましく、Cu(OH)Clが最も好ましい。 Preferred X (anions) of general formula (1) are halogens such as Cl, Br and I, conjugated bases of carboxylic acids such as CH 3 COO, NO 3 and inorganic acids such as (SO 4 ) 1/2. One selected from the group consisting of a conjugated base and an OH group. More preferable X in the general formula (1) is one selected from the group consisting of Cl, CH 3 COO, NO 3 , (SO 4 ) 1/2 , and an OH group. Among these, halogen is more preferable, and Cu 2 (OH) 3 Cl is most preferable.

好ましい(b)2価銅のハロゲン化物は、塩化銅、フッ化銅、および臭化銅からなる群から選択される1種または2種以上である。より好ましいのは塩化銅である。   The preferred (b) divalent copper halide is one or more selected from the group consisting of copper chloride, copper fluoride, and copper bromide. More preferred is copper chloride.

好ましい(c)2価銅の無機酸塩は、硫酸銅、硝酸銅、ヨウ素酸銅、過塩素酸銅、シュウ酸銅、四ホウ酸銅、硫酸アンモニウム銅、アミド硫酸銅、塩化アンモニウム銅、ピロリン酸銅、および炭酸銅からなる群から選択される1種または2種以上である。より好ましいのは硫酸銅である。   Preferred inorganic salt of (c) divalent copper is copper sulfate, copper nitrate, copper iodate, copper perchlorate, copper oxalate, copper tetraborate, ammonium sulfate copper, amide copper sulfate, ammonium chloride copper, pyrophosphate One or more selected from the group consisting of copper and copper carbonate. More preferred is copper sulfate.

(d)好ましい2価銅の有機酸塩は、2価銅のカルボン酸塩である。好ましい2価銅のカルボン酸塩には、蟻酸銅、酢酸銅、プロピオン酸銅、酪酸銅、吉草酸銅、カプロン酸銅、エナント酸銅、カプリル酸銅、ペラルゴン酸銅、カプリン酸銅、ミスチン酸銅、パルミチン酸銅、マルガリン酸銅、ステアリン酸銅、オレイン酸銅、乳酸銅、リンゴ酸銅、クエン酸銅、安息香酸銅、フタル酸銅、イソフタル酸銅、テレフタル酸銅、サリチル酸銅、メリト酸銅、シュウ酸銅、マロン酸銅、コハク酸銅、グルタル酸銅、アジピン酸銅、フマル酸銅、グリコール酸銅、グリセリン酸銅、グルコン酸銅、酒石酸銅、アセチルアセトン銅、エチルアセト酢酸銅、イソ吉草酸銅、β‐レゾルシル酸銅、ジアセト酢酸銅、ホルミルコハク酸銅、サリチルアミン酸銅、ビス(2-エチルヘキサン酸)銅、セバシン酸銅、およびナフテン酸銅からなる群から選択される1種または2種以上のものが挙げられる。より好ましいのは酢酸銅である。   (D) A divalent copper organic acid salt is preferably a divalent copper carboxylate. Preferred divalent copper carboxylates include copper formate, copper acetate, copper propionate, copper butyrate, copper valerate, copper caproate, copper enanthate, copper caprylate, copper pelargonate, copper caprate, misty acid Copper, copper palmitate, copper margarate, copper stearate, copper oleate, copper lactate, copper malate, copper citrate, copper benzoate, copper phthalate, copper isophthalate, copper terephthalate, copper salicylate, melittic acid Copper, copper oxalate, copper malonate, copper succinate, copper glutarate, copper adipate, copper fumarate, copper glycolate, copper glycerate, copper gluconate, copper tartrate, copper acetylacetone, copper ethylacetoacetate, isoyoshichi Copper herbate, copper β-resorcylate, copper diacetoacetate, copper formyl succinate, copper salicylamate, copper bis (2-ethylhexanoate), copper sebacate, and naphthenic acid One or more ones selected from the group consisting of and the like. More preferred is copper acetate.

その他の好ましい2価銅化合物には、オキシン銅、アセチルアセトン銅、エチルアセト酢酸銅、トリフルオロメタンスルホン酸銅、フタロシアニン銅、銅エトキシド、銅イソプロポキシド、銅メトキシド、およびジメチルジチオカルバミン酸銅からなる群から選択される1種または2種以上が挙げられる。   Other preferred divalent copper compounds are selected from the group consisting of copper oxine, copper acetylacetone, copper ethylacetoacetate, copper trifluoromethanesulfonate, copper phthalocyanine, copper ethoxide, copper isopropoxide, copper methoxide, and copper dimethyldithiocarbamate. 1 type or 2 types or more to be mentioned.

本発明の2価銅化合物は、好ましくは、上記(a)一般式(1)で表される水酸基含有2価銅化合物、(b)2価銅のハロゲン化物、(c)2価銅の無機酸塩、および(d)2価銅の有機酸塩である。また、不純物が少ないことおよびコストがかからないことから、本発明の2価銅化合物は、さらに好ましくは、上記一般式(1)で表される水酸基含有2価銅化合物である。なお、上記(a)一般式(1)で表される水酸基含有2価銅化合物は、無水物であっても水和物であってもよい。   The divalent copper compound of the present invention is preferably (a) a hydroxyl group-containing divalent copper compound represented by the general formula (1), (b) a divalent copper halide, and (c) an inorganic divalent copper. And (d) an organic acid salt of divalent copper. Moreover, since there are few impurities and cost does not start, the divalent copper compound of this invention is still more preferably a hydroxyl group-containing divalent copper compound represented by the above general formula (1). The (a) hydroxyl group-containing divalent copper compound represented by the general formula (1) may be an anhydride or a hydrate.

本発明の抗ウイルス性組成物に含有される2価銅化合物中の銅元素質量(Cuの質量割合)は、シリカ被覆酸化チタンおよびBiVOの合計100質量部に対して、好ましくは0.01〜20質量部であり、より好ましくは0.1〜20質量部であり、さらに好ましくは0.1〜15質量部であり、とくに好ましくは0.3〜10質量部である。2価銅化合物中の銅元素質量が、シリカ被覆酸化チタンおよびBiVOの合計100質量部に対して0.01質量部以上であると、明所における抗ウイルス特性および抗菌性が良好になる。また、2価銅化合物中の銅元素質量が、シリカ被覆酸化チタンおよびBiVOの合計100質量部に対して20質量部以下であると、BiVOが担持されたシリカ被覆酸化チタンの表面が2価銅化合物により被覆されてしまうことが防止され、抗ウイルス性組成物の光触媒活性を高くできるとともに、少量の抗ウイルス性組成物で、ウイルスを不活化できるので経済的になる。 The copper element mass (mass ratio of Cu) in the divalent copper compound contained in the antiviral composition of the present invention is preferably 0.01 with respect to a total of 100 parts by mass of silica-coated titanium oxide and BiVO 4. It is -20 mass parts, More preferably, it is 0.1-20 mass parts, More preferably, it is 0.1-15 mass parts, Most preferably, it is 0.3-10 mass parts. When the mass of copper element in the divalent copper compound is 0.01 parts by mass or more with respect to 100 parts by mass of the total of silica-coated titanium oxide and BiVO 4 , antiviral properties and antibacterial properties in a bright place are improved. Further, when the mass of copper element in the divalent copper compound is 20 parts by mass or less with respect to 100 parts by mass in total of the silica-coated titanium oxide and BiVO 4 , the surface of the silica-coated titanium oxide supporting BiVO 4 is 2 It is prevented from being covered with a valent copper compound, the photocatalytic activity of the antiviral composition can be increased, and the virus can be inactivated with a small amount of the antiviral composition, which makes it economical.

ここにおいて、シリカ被覆酸化チタンおよびBiVOの合計100質量部に対する2価銅化合物中の銅元素質量は、2価銅化合物の原料、シリカ被覆酸化チタンおよびBiVOの仕込み量から算出することができる。本発明の抗ウイルス性組成物をフッ酸溶液中で加熱して、全溶解して溶解液を作製した。そして、ICP発光分析装置((株)島津製作所製、型番ICPS−7500)を使用して、溶解液から抽出した抽出液をICP法で分析して銅元素量を求めることができる。 Here, copper element mass in divalent copper compound to the total 100 parts by weight of the silica-coated titanium oxide and BiVO 4 can be calculated in the bivalent copper compound precursor, the charged amount of the silica-coated titanium oxide and BiVO 4 . The antiviral composition of the present invention was heated in a hydrofluoric acid solution and completely dissolved to prepare a solution. Then, using an ICP emission analyzer (manufactured by Shimadzu Corporation, model number ICPS-7500), the extract extracted from the solution can be analyzed by the ICP method to determine the amount of copper element.

抗ウイルス性組成物において、2価銅化合物はシリカ被覆酸化チタンおよび/またはBiVOに担持されていてもよい。また、抗ウイルス性組成物において、2価銅化合物は、シリカ被覆酸化チタンおよび/またはBiVOに担持されずに、シリカ被覆酸化チタンおよびBiVOの中に分散していてもよい。 In the antiviral composition, the divalent copper compound may be supported on silica-coated titanium oxide and / or BiVO 4 . In the antiviral composition, the divalent copper compound may be dispersed in silica-coated titanium oxide and BiVO 4 without being supported on silica-coated titanium oxide and / or BiVO 4 .

本発明の抗ウイルス性組成物は、前述のとおり、必須成分として、BiVOが担持されたシリカ被覆酸化チタンと、2価銅化合物とを含有するが、本発明の目的を阻害しない範囲内において、他の任意成分を含有してもよい。ただし、抗ウイルス特性の向上の観点から、抗ウイルス性組成物中における、BiVOが担持されたシリカ被覆酸化チタンと、2価銅化合物との合計含有量は、抗ウイルス性組成物の全質量に対して、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、さらに好ましくは99質量%以上であり、とくに好ましくは100質量%である。 As described above, the antiviral composition of the present invention contains, as essential components, silica-coated titanium oxide on which BiVO 4 is supported and a divalent copper compound, but within a range that does not impair the object of the present invention. Other optional components may be contained. However, from the viewpoint of improving antiviral properties, the total content of the silica-coated titanium oxide carrying BiVO 4 and the divalent copper compound in the antiviral composition is the total mass of the antiviral composition. Is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 99% by mass or more, and particularly preferably 100% by mass.

本発明の抗ウイルス性組成物は、800ルクスの照度の可視光照射60分間で99.0%以上のウイルス不活化能力を有する組成物とすることができる。   The antiviral composition of the present invention can be a composition having a virus inactivating ability of 99.0% or more in 60 minutes of irradiation with visible light having an illuminance of 800 lux.

また、本発明の抗ウイルス性組成物は、シリカ被覆酸化チタンと、ビスマスイオンと、バナジン酸イオンと、尿素と、水からなる酸性の懸濁液を、大気圧下で加熱して得られるBiVOを担持したシリカ被覆酸化チタンと、2価銅化合物とを含有する組成物とすることができる。具体的には、実施例に記載の方法にて製造することができる。 Further, the antiviral composition of the present invention is a BiVO obtained by heating an acidic suspension comprising silica-coated titanium oxide, bismuth ions, vanadate ions, urea and water under atmospheric pressure. 4 is a composition containing silica-coated titanium oxide supporting 4 and a divalent copper compound. Specifically, it can be produced by the method described in the examples.

[抗ウイルス剤および光触媒]
本発明の抗ウイルス剤および光触媒は本発明の抗ウイルス性組成物を含む。これにより、本発明の抗ウイルス剤および光触媒は、明所において優れた抗ウイルス特性を有する。
[Antiviral agents and photocatalysts]
The antiviral agent and photocatalyst of the present invention include the antiviral composition of the present invention. Thereby, the antiviral agent and photocatalyst of the present invention have excellent antiviral properties in the light.

[抗ウイルス性組成物、抗ウイルス剤および光触媒の使用形態]
本発明の抗ウイルス性組成物、抗ウイルス剤および光触媒(以下、「本発明の抗ウイルス性組成物等」ということがある)の使用形態はとくに限定されない。
たとえば、本発明の抗ウイルス性組成物等を、微粉末および顆粒などの固体状の形態で使用してもよい。この場合、たとえば、本発明の抗ウイルス性組成物等を所定の容器に充填して使用する。または、所定の基材の表面および/または内部に本発明の抗ウイルス性組成物等を含ませる使用形態で、本発明の抗ウイルス性組成物等を使用してもよい。一般的には、後者の使用形態が好ましい。なお、上記の基材には、たとえば、繊維、金属、セラミックおよびガラスなどの一般的な部材からなる単一基材、ならびに上述の部材の2種以上の部材からなる複合基材が挙げられる。しかし、基材はこれらに限定されない。
[Usage form of antiviral composition, antiviral agent and photocatalyst]
The usage forms of the antiviral composition, antiviral agent and photocatalyst of the present invention (hereinafter sometimes referred to as “antiviral composition of the present invention”) are not particularly limited.
For example, the antiviral composition of the present invention may be used in a solid form such as fine powder and granules. In this case, for example, the antiviral composition of the present invention is used by filling a predetermined container. Alternatively, the antiviral composition of the present invention may be used in a usage form in which the antiviral composition of the present invention is contained on the surface and / or inside of a predetermined substrate. In general, the latter form of use is preferred. Examples of the base material include a single base material made of general members such as fibers, metals, ceramics, and glass, and a composite base material made of two or more members of the above-described members. However, the substrate is not limited to these.

適宜の手段により剥離可能な、フロアーポリッシュなどのコーティング剤に本発明の抗ウイルス性組成物等を含有させてもよい。また、本発明の抗ウイルス性組成物等を所定の膜に固定化して、本発明の抗ウイルス性組成物等を連続膜の表面に露出させてもよい。また、本発明の抗ウイルス性組成物等を分散させた溶媒を用いて作製した塗料の形態で、本発明の抗ウイルス性組成物等を使用してもよい。   The antiviral composition of the present invention may be contained in a coating agent such as floor polish that can be peeled off by an appropriate means. Further, the antiviral composition or the like of the present invention may be immobilized on a predetermined film, and the antiviral composition or the like of the present invention may be exposed on the surface of the continuous film. In addition, the antiviral composition of the present invention may be used in the form of a paint prepared using a solvent in which the antiviral composition of the present invention is dispersed.

本発明の抗ウイルス性組成物等を基材表面に固定化した材料には、たとえば、バインダーなどの一般的な固定化手段を用いて本発明の抗ウイルス性組成物等を基材表面に固定化した材料などが挙げられる。有機系バインダーおよび無機系バインダーのいずれも、本発明の抗ウイルス性組成物等を固定化するバインダーとして用いることができるが、光触媒物質によるバインダーの分解を避けるために無機系バインダーを用いることが好ましい。バインダーの種類はとくに限定されない。無機系バインダーには、たとえば、光触媒物質を基材表面に固定化するために通常用いられるシリカ系などの無機系バインダーが挙げられる。有機系バインダーには、たとえば、重合および溶媒揮発により薄膜を形成可能な高分子バインダーなどが挙げられる。   For the material in which the antiviral composition or the like of the present invention is immobilized on the substrate surface, the antiviral composition or the like of the present invention is immobilized on the substrate surface by using a general immobilization means such as a binder. Materials that have been converted into materials. Either an organic binder or an inorganic binder can be used as a binder for immobilizing the antiviral composition of the present invention, but it is preferable to use an inorganic binder in order to avoid decomposition of the binder by a photocatalytic substance. . The kind of binder is not particularly limited. Examples of the inorganic binder include silica-based inorganic binders that are usually used for fixing the photocatalytic substance to the substrate surface. Examples of the organic binder include a polymer binder that can form a thin film by polymerization and solvent volatilization.

本発明の抗ウイルス性組成物等を基材内部に含む材料には、たとえば、本発明の抗ウイルス性組成物等を樹脂中に分散させて分散物を作製し、その分散物を硬化させることにより得られる材料が挙げられる。本発明の抗ウイルス性組成物等を分散させる樹脂には天然樹脂および合成樹脂のいずれも使用することができる。合成樹脂には、たとえば、アクリル樹脂、フェノール樹脂、ポリウレタン樹脂、アクリロニトリル/スチレン共重合樹脂、アクリロニトリル/ブタジエン/スチレン共重合(ABS)樹脂、ポリエステル樹脂およびエポキシ樹脂などが挙げられるが、これらの樹脂に限定されない。   For the material containing the antiviral composition or the like of the present invention in the base material, for example, the antiviral composition or the like of the present invention is dispersed in a resin to prepare a dispersion, and the dispersion is cured. The material obtained by is mentioned. As the resin for dispersing the antiviral composition of the present invention, both natural resins and synthetic resins can be used. Synthetic resins include, for example, acrylic resins, phenol resins, polyurethane resins, acrylonitrile / styrene copolymer resins, acrylonitrile / butadiene / styrene copolymer (ABS) resins, polyester resins, and epoxy resins. It is not limited.

本発明の抗ウイルス性組成物等を使用する場所はとくに限定されない。また、本発明の抗ウイルス性組成物等は、水の存在下(たとえば、水中および海水中など)、乾燥状態(たとえば、冬季などにおける低湿度の状態など)、高湿度の状態、または有機物の共存下においても、優れたウイルス不活化特性を有し、持続的にウイルスを不活化することができる。たとえば、壁、床および天井などに本発明の抗ウイルス性組成物等を配置することができる。また、病院および工場などの建築物、工作機械、測定装置類、電化製品の内部および部品(たとえば、冷蔵庫、洗濯機および食器洗浄機などの内部ならびに空気洗浄機のフィルターなど)などの任意の対象物に、本発明の抗ウイルス性組成物等を適用できる。   The place where the antiviral composition of the present invention is used is not particularly limited. Further, the antiviral composition or the like of the present invention can be used in the presence of water (for example, in water and seawater), in a dry state (for example, in a low humidity state in winter, etc.), in a high humidity state, or in an organic matter. Even in the presence of coexistence, it has excellent virus inactivating properties and can inactivate viruses continuously. For example, the antiviral composition of the present invention can be placed on walls, floors, ceilings, and the like. Also, any object such as hospitals and factories such as buildings, machine tools, measuring devices, interiors and parts of electrical appliances (for example, interiors of refrigerators, washing machines, dishwashers, etc. and filters of air cleaners) The antiviral composition of the present invention can be applied to the product.

従来から、インフルエンザ対策のーつとして、セラミックフィルターまたは不織布フィルターに酸化チタンをコーティングするとともに、そのフィルターに紫外線を照射するための光源を組み込んだ空気洗浄機が提案されている。しかし、本発明の抗ウイルス性組成物等を空気洗浄機のフィルターに用いた場合、紫外線光源が必要なくなり、これにより、空気清浄機のコストを低減し、空気清浄機の安全性を高めることができる。   Conventionally, as a countermeasure against influenza, an air cleaning machine has been proposed in which a ceramic filter or a nonwoven fabric filter is coated with titanium oxide and a light source for irradiating the filter with ultraviolet light is incorporated. However, when the antiviral composition or the like of the present invention is used for a filter of an air cleaner, an ultraviolet light source is not necessary, thereby reducing the cost of the air cleaner and increasing the safety of the air cleaner. it can.

[ウイルス不活性化方法]
本発明は、本発明の抗ウイルス性組成物、本発明の抗ウイルス剤または本発明の光触媒を用いてウイルスを不活化する、ウイルス不活性化方法を提供する。上述したように、本発明の抗ウイルス性組成物は抗ウイルス性を発現するので、本発明の抗ウイルス性組成物を用いてウイルスを不活化できる。また、本発明の抗ウイルス剤および光触媒は本発明の抗ウイルス性組成物を含有するので、本発明の抗ウイルス剤または光触媒を用いてウイルスを不活化できる。
[Virus inactivation method]
The present invention provides a virus inactivation method, wherein a virus is inactivated using the antiviral composition of the present invention, the antiviral agent of the present invention or the photocatalyst of the present invention. As described above, since the antiviral composition of the present invention exhibits antiviral properties, it is possible to inactivate viruses using the antiviral composition of the present invention. Moreover, since the antiviral agent and photocatalyst of this invention contain the antiviral composition of this invention, a virus can be inactivated using the antiviral agent or photocatalyst of this invention.

以下、実施例により本発明を詳細に説明するが、本発明は下記の実施例に限定されない。以下のようにして、実施例1〜4および比較例1〜4の試料を作製した。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to the following Example. Samples of Examples 1 to 4 and Comparative Examples 1 to 4 were produced as follows.

以下の実施例で用いたシリカ被覆酸化チタンA(昭和電工セラミックス(株)製、F−4S05、アナターゼ型)、シリカ被覆酸化チタンB(昭和電工セラミックス(株)製、F−4S20、アナターゼ型)、および酸化チタンA(昭和電工セラミックス(株)製、F−4、アナターゼ型)のシリカ量およびBET比表面積を表1に示す。なおシリカ被覆酸化チタンAのシリカ量は、高周波誘導結合プラズマ発光分光分析によって定量し、シリカ被覆酸化チタン中のシリカ(SiO)としての質量%である。BET比表面積は、窒素吸着によるBET3点法にて測定した。 Silica-coated titanium oxide A (F-4S05, anatase type manufactured by Showa Denko Ceramics Co., Ltd.), silica-coated titanium oxide B (F-4S20, anatase type manufactured by Showa Denko Ceramics Co., Ltd.) used in the following examples Table 1 shows the silica amount and BET specific surface area of Titanium Oxide A and T-4 (manufactured by Showa Denko Ceramics Co., Ltd., F-4, anatase type). The silica amount of the silica-coated titanium oxide A is quantified by high-frequency inductively coupled plasma emission spectroscopy, and is mass% as silica (SiO 2 ) in the silica-coated titanium oxide. The BET specific surface area was measured by the BET three-point method by nitrogen adsorption.

Figure 2016113417
Figure 2016113417

<実施例1>
蒸留水300mLに10.000gのシリカ被覆酸化チタンA(昭和電工セラミックス(株)製、品番F−4S05)を懸濁させて懸濁液を作製した。次に、0.752gのBi(NO・5HO(関東化学(株)製)および0.182gのNHVO(関東化学(株)製)をそれぞれ溶解した3.0mLおよび4.0mLの5.0mol/LのHNO溶液を準備し、Bi(NO・5HOを溶解したHNO溶液、NHVOを溶解したHNO溶液の順で懸濁液中に投入した。その後、マグネティックスターラーで400rpmの回転速度で30分間撹拌混合を行った。得られた懸濁液をろ過、乾燥することで、抗ウイルス性組成物のBiおよびV吸着量測定用のサンプルを作製した。
<Example 1>
A suspension was prepared by suspending 10.000 g of silica-coated titanium oxide A (manufactured by Showa Denko Ceramics Co., Ltd., product number F-4S05) in 300 mL of distilled water. Next, Bi (NO 3) of 0.752g 3 · 5H 2 O (manufactured by Kanto Chemical Co.) and 0.182g NH 4 VO 3 3.0mL and was dissolved (Kanto Chemical Co., Ltd.) each 4.0 mL of a 5.0 mol / L HNO 3 solution was prepared, and a suspension of an HNO 3 solution in which Bi (NO 3 ) 3 .5H 2 O was dissolved and an HNO 3 solution in which NH 4 VO 3 was dissolved were in this order. I put it in. Then, stirring and mixing were performed for 30 minutes at a rotational speed of 400 rpm with a magnetic stirrer. The obtained suspension was filtered and dried to prepare a sample for measuring Bi and V adsorption amount of the antiviral composition.

<実施例2>
シリカ被覆酸化チタンAをシリカ被覆酸化チタンB(昭和電工セラミックス(株)製、品番F−4S20)にしたこと以外は、実施例1と同様の方法で実施例2の試料を作製した。
<Example 2>
A sample of Example 2 was produced in the same manner as in Example 1 except that silica-coated titanium oxide A was changed to silica-coated titanium oxide B (manufactured by Showa Denko Ceramics Co., Ltd., product number F-4S20).

<実施例3>
蒸留水300mLに10.000gのシリカ被覆酸化チタンAを懸濁させて懸濁液を作製し、5mol/LのHNO水溶液で懸濁液のpHを1.3に調整した。次に、0.752gのBi(NO・5HO(関東化学(株)製)および0.182gのNHVO(関東化学(株)製)をそれぞれ溶解した3.0mLおよび4.0mLの5mol/LのHNO溶液を準備し、Bi(NO・5HOを溶解したHNO溶液、NHVOを溶解したHNO溶液の順で懸濁液中に投入した。その後、10.000gの尿素(関東化学(株)製)を懸濁液中に投入し、ホットスターラー上で80℃の温度に加熱し、80℃の温度で8時間保持した。得られた懸濁液をろ過、乾燥することで、BiVO/シリカ被覆酸化チタンA(シリカ被覆酸化チタン100質量部に対してBiVOとして5質量部担持)を得た。
<Example 3>
Suspension was prepared by suspending 10.000 g of silica-coated titanium oxide A in 300 mL of distilled water, and the pH of the suspension was adjusted to 1.3 with 5 mol / L HNO 3 aqueous solution. Next, Bi (NO 3) of 0.752g 3 · 5H 2 O (manufactured by Kanto Chemical Co.) and 0.182g NH 4 VO 3 3.0mL and was dissolved (Kanto Chemical Co., Ltd.) each prepare HNO 3 solution 5 mol / L of 4.0mL, Bi (NO 3) 3 · 5H 2 HNO 3 solution O was dissolved, in suspension in the order of HNO 3 solution of NH 4 VO 3 I put it in. Thereafter, 10.000 g of urea (manufactured by Kanto Chemical Co., Inc.) was put into the suspension, heated to a temperature of 80 ° C. on a hot stirrer, and maintained at a temperature of 80 ° C. for 8 hours. The obtained suspension was filtered and dried to obtain BiVO 4 / silica-coated titanium oxide A (supported by 5 parts by mass as BiVO 4 with respect to 100 parts by mass of silica-coated titanium oxide).

蒸留水100mLに6.000gのBiVO/シリカ被覆酸化チタンA粉末を懸濁させて懸濁液を作製し、0.081g(BiVO/シリカ被覆酸化チタンA粉末の100質量部に対して銅で0.5質量部)のCuCl・2HO(関東化学(株)製)をその懸濁液に添加して、10分攪拌した。懸濁液のpHが10になるように、1.0mol/Lの水酸化ナトリウム(関東化学(株)製)水溶液を添加し、30分間攪拌混合を行ってスラリーを得た。このスラリーをろ過し、得られた粉体を純水で洗浄し、80℃で乾燥し、ミキサーで解砕し、実施例1と同様に試料を作製した。なお、CuCl・2HOは加水分解して、Cu(OH)Clになる。pHメーターは、(株)堀場製作所製、D−51を使用して行った。 Distilled water 100mL to suspend the BiVO 4 / silica-coated titanium oxide powder A of 6.000g suspension prepared by, 0.081 g (copper per 100 parts by weight of BiVO 4 / silica-coated titanium oxide powder A 0.5 parts by mass) of CuCl 2 .2H 2 O (manufactured by Kanto Chemical Co., Inc.) was added to the suspension and stirred for 10 minutes. A 1.0 mol / L aqueous solution of sodium hydroxide (manufactured by Kanto Chemical Co., Inc.) was added so that the pH of the suspension was 10, and the mixture was stirred and mixed for 30 minutes to obtain a slurry. The slurry was filtered, and the resulting powder was washed with pure water, dried at 80 ° C., and crushed with a mixer. A sample was prepared in the same manner as in Example 1. CuCl 2 .2H 2 O is hydrolyzed to Cu 2 (OH) 3 Cl. The pH meter was used using D-51 manufactured by Horiba, Ltd.

<実施例4>
シリカ被覆酸化チタンAをシリカ被覆酸化チタンBとしたこと以外は実施例3と同様の方法で実施例4の試料を作製した。
<Example 4>
A sample of Example 4 was produced in the same manner as in Example 3 except that silica-coated titanium oxide A was changed to silica-coated titanium oxide B.

<比較例1>
シリカ被覆酸化チタンAを酸化チタンA(昭和電工セラミックス(株)製、品番F−4)にしたこと以外は、実施例1と同様の方法で比較例1の試料を作製した。
<Comparative Example 1>
A sample of Comparative Example 1 was prepared in the same manner as in Example 1 except that the silica-coated titanium oxide A was changed to titanium oxide A (manufactured by Showa Denko Ceramics Co., Ltd., product number F-4).

<比較例2>
シリカ被覆酸化チタンAを酸化チタンAにしたこと以外は、実施例3と同様の方法で比較例2の試料を作製した。
<Comparative Example 2>
A sample of Comparative Example 2 was produced in the same manner as in Example 3 except that the silica-coated titanium oxide A was changed to titanium oxide A.

<比較例3>
蒸留水300mLに10.000gのシリカ被覆酸化チタンBを懸濁させて懸濁液を作製し、5.0mol/LのHNO水溶液で懸濁液のpHを1.3に調整した。次に、0.752gのBi(NO・5HO(関東化学(株)製)および0.182gのNHVO(関東化学(株)製)をそれぞれ溶解した3.0mLおよび4.0mLの5.0mol/LのHNO溶液を準備し、Bi(NO・5HOを溶解したHNO溶液、NHVOを溶解したHNO溶液の順で懸濁液中に投入した。その後、10.000gの尿素(関東化学(株)製)を懸濁液中に投入し、ホットスターラー上で80℃の温度に加熱し、80℃の温度で8時間保持した。得られた懸濁液をろ過、乾燥することで、比較例3の試料を作製した。pHメーターは、(株)堀場製作所製、D−51を使用して行った。
<Comparative Example 3>
A suspension was prepared by suspending 10.000 g of silica-coated titanium oxide B in 300 mL of distilled water, and the pH of the suspension was adjusted to 1.3 with a 5.0 mol / L HNO 3 aqueous solution. Next, Bi (NO 3) of 0.752g 3 · 5H 2 O (manufactured by Kanto Chemical Co.) and 0.182g NH 4 VO 3 3.0mL and was dissolved (Kanto Chemical Co., Ltd.) each 4.0 mL of a 5.0 mol / L HNO 3 solution was prepared, and a suspension of an HNO 3 solution in which Bi (NO 3 ) 3 .5H 2 O was dissolved and an HNO 3 solution in which NH 4 VO 3 was dissolved were in this order. I put it in. Thereafter, 10.000 g of urea (manufactured by Kanto Chemical Co., Inc.) was put into the suspension, heated to a temperature of 80 ° C. on a hot stirrer, and maintained at a temperature of 80 ° C. for 8 hours. The sample of Comparative Example 3 was produced by filtering and drying the obtained suspension. The pH meter was used using D-51 manufactured by Horiba, Ltd.

<比較例4>
蒸留水100mLに6.000gのシリカ被覆酸化チタンB粉末を懸濁させて懸濁液を作製し、0.081g(シリカ被覆酸化チタンA粉末の100質量部に対して銅で0.5質量部)のCuCl・2HO(関東化学(株)製)をその懸濁液に添加して、10分攪拌した。懸濁液のpHが10になるように、1mol/Lの水酸化ナトリウム(関東化学(株)製)水溶液を添加し、30分間攪拌混合を行ってスラリーを得た。このスラリーをろ過し、得られた粉体を純水で洗浄し、80℃で乾燥し、ミキサーで解砕し、比較例4の試料を作製した。
<Comparative example 4>
Suspension is prepared by suspending 6.000 g of silica-coated titanium oxide B powder in 100 mL of distilled water, and 0.081 g (100 parts by mass of silica-coated titanium oxide A powder is 0.5 parts by mass of copper) CuCl 2 .2H 2 O (manufactured by Kanto Chemical Co., Inc.) was added to the suspension and stirred for 10 minutes. A 1 mol / L aqueous solution of sodium hydroxide (manufactured by Kanto Chemical Co., Inc.) was added so that the pH of the suspension was 10, and the mixture was stirred and mixed for 30 minutes to obtain a slurry. The slurry was filtered, and the obtained powder was washed with pure water, dried at 80 ° C., and crushed with a mixer to prepare a sample of Comparative Example 4.

実施例1、2および比較例1のシリカ被覆酸化チタンおよび酸化チタンに吸着したBiおよびV量を表2に示す。なお吸着したBiおよびVの質量部は、BiまたはVの投入量100質量部に対する値である。BiおよびVの吸着量の測定方法については、後述する。   Table 2 shows the amounts of Bi and V adsorbed on the silica-coated titanium oxide and titanium oxide of Examples 1 and 2 and Comparative Example 1. The mass parts of adsorbed Bi and V are values with respect to 100 parts by mass of Bi or V input. A method of measuring the adsorption amounts of Bi and V will be described later.

実施例3,4の試料および比較例2〜4の試料の組成を、評価結果と合わせて以下の表3に示す。また、Cu(OH)Clの質量部は、シリカ被覆酸化チタンまたは酸化チタンおよびBiVOの合計100質量部に対して、Cuに換算したときの質量部である。測定方法の詳細については後述する。 The compositions of the samples of Examples 3 and 4 and the samples of Comparative Examples 2 to 4 are shown in Table 3 below together with the evaluation results. Further, Cu 2 (OH) 3 Cl in parts by weight, per 100 parts by weight of the silica-coated titanium oxide or titanium oxide and BiVO 4, which is parts by weight when converted into Cu. Details of the measurement method will be described later.

<評価方法>
なお、表1〜表3に記載の実施例1〜4および比較例1〜4の試料についての組成や評価は、以下の方法で測定した。
<Evaluation method>
In addition, the composition and evaluation about the samples of Examples 1-4 and Comparative Examples 1-4 described in Tables 1 to 3 were measured by the following methods.

(高周波誘導結合プラズマ発光分光分析)
高周波誘導結合プラズマ発光分光分析により、実施例1、2および比較例1の投入したBiおよびV中、酸化チタンおよびシリカ被覆酸化チタンに吸着したBiおよびVの質量%を定量した。具体的には、各試料をフッ酸溶液中で加熱して全溶解して溶解液を作製した。そして、ICP発光分析装置((株)島津製作所製、型番ICPS−7500)を使用して溶解液から抽出した抽出液を分析し、組成物中のBiおよびVを定量した。結果を表2に示す。
(High-frequency inductively coupled plasma emission spectroscopy)
The mass% of Bi and V adsorbed on titanium oxide and silica-coated titanium oxide in Bi and V charged in Examples 1 and 2 and Comparative Example 1 was quantified by high frequency inductively coupled plasma optical emission spectrometry. Specifically, each sample was heated in a hydrofluoric acid solution and completely dissolved to prepare a solution. Then, using an ICP emission analyzer (manufactured by Shimadzu Corporation, model number ICPS-7500), the extract extracted from the solution was analyzed, and Bi and V in the composition were quantified. The results are shown in Table 2.

(X線回折測定)
実施例3,4の試料および比較例2、3の試料についてX線回折測定を行い、試料中に存在する、BiおよびVからなる化合物の同定を行った。測定装置にはPANalytical社製の「X’pertPRO」を用い、銅ターゲットを使用し、Cu−Kα1線を用いて、管電圧45kV、管電流40mA、測定範囲2θ=20〜100deg、サンプリング幅0.0167deg、および走査速度3.3deg/minの条件でX線回折測定を行った。結果を表3に示す。
(X-ray diffraction measurement)
X-ray diffraction measurement was performed on the samples of Examples 3 and 4 and the samples of Comparative Examples 2 and 3, and the compounds consisting of Bi and V present in the samples were identified. “X'pertPRO” manufactured by PANalytical is used as a measuring apparatus, a copper target is used, a Cu-Kα1 wire is used, a tube voltage of 45 kV, a tube current of 40 mA, a measurement range 2θ = 20 to 100 deg, a sampling width of 0. X-ray diffraction measurement was performed under the conditions of 0167 deg and a scanning speed of 3.3 deg / min. The results are shown in Table 3.

(BET比表面積)
シリカ被覆酸化チタンA、シリカ被覆酸化チタンB、および酸化チタンAのBET比表面積は、(株)マウンテック製の全自動BET比表面積測定装置「Macsorb,HM model−1208」を用いて、BET3点法により窒素を用いて測定した。結果を表1に示す。
(BET specific surface area)
The BET specific surface area of silica-coated titanium oxide A, silica-coated titanium oxide B, and titanium oxide A was measured using a fully automatic BET specific surface area measuring device “Macsorb, HM model-1208” manufactured by Mountec Co., Ltd. Was measured using nitrogen. The results are shown in Table 1.

(可視光照射下における抗ウイルス特性の評価:LOG(N/N)の測定)
実施例3、4および比較例2〜4の試料の抗ウイルス特性は、バクテリオファージを用いたモデル実験により以下の方法で確認した。なお、バクテリオファージに対する不活化能を抗ウイルス特性のモデルとして利用する方法は、たとえばAppl.Microbiol Biotechnol.,79,pp.127−133(2008)に記載されており、この方法により信頼性のある結果が得られることが知られている。また本測定はJIS R 1706を基礎としている。
(Evaluation of antiviral properties under irradiation with visible light: measurement of LOG (N / N 0 ))
The antiviral properties of the samples of Examples 3 and 4 and Comparative Examples 2 to 4 were confirmed by the following method by model experiments using bacteriophages. A method of using the inactivation ability against bacteriophage as a model of antiviral properties is described in, for example, Appl. Microbiol Biotechnol. 79, pp. 127-133 (2008), and it is known that reliable results can be obtained by this method. This measurement is based on JIS R 1706.

具体的には、実施例3、4の試料および比較例2〜4の試料をガラス板(50mm×50mm×1mm)上にそれぞれ塗布して評価用試料を作製した。実施例3、4の試料および比較例2〜4の試料を上記ガラス板上に2.5mg塗布し、単位面積当たりの塗布量が1.0g/mである評価用試料を作製した。 Specifically, the samples of Examples 3 and 4 and the samples of Comparative Examples 2 to 4 were each applied on a glass plate (50 mm × 50 mm × 1 mm) to prepare evaluation samples. 2.5 mg of the samples of Examples 3 and 4 and the samples of Comparative Examples 2 to 4 were applied on the glass plate to prepare an evaluation sample having a coating amount per unit area of 1.0 g / m 2 .

深型シャーレ内にろ紙を敷き、少量の滅菌水を加えた。ろ紙の上に上記記載の評価用試料を置いた。この上に1/500NBを用いてバクテリオファージ感染価が約6.7×10〜約2.6×10pfu/mlとなるように調製しQβファージ(NBRC20012)懸濁液を100μL滴下し、試料表面とファージとを接触させるためにPET(ポリエチレンテレフタレート)製のフィルムを被せた。この深型シャーレにガラス板で蓋をしたものを、測定用セットとした。同様の測定用セットを複数個用意した。 A filter paper was laid in the deep petri dish, and a small amount of sterilized water was added. The sample for evaluation described above was placed on the filter paper. On top of this, 1/500 NB was used to prepare a bacteriophage infectious titer of about 6.7 × 10 6 to about 2.6 × 10 7 pfu / ml, and 100 μL of Qβ phage (NBRC20012) suspension was added dropwise. Then, a PET (polyethylene terephthalate) film was covered to bring the sample surface into contact with the phage. This deep petri dish covered with a glass plate was used as a measurement set. A plurality of similar measurement sets were prepared.

また、光源として15W白色蛍光灯(パナソニック(株)製、フルホワイト蛍光灯、FL15N)に紫外線カットフィルター(日東樹脂工業(株)製、N−113)を取り付けたものを使用した。照度が800ルクス(照度計:(株)トプコン製、IM−5にて測定)になる位置に複数個の測定用セットを静置した。光照射開始から60分経過後にガラス板上の試料のファージ濃度測定を行った。また、測定時の部屋の照度は200ルクス以下となるようにした。なお、光照射開始からの経過時間は、市販のストップウォッチを使用して測定した。   Further, a 15 W white fluorescent lamp (manufactured by Panasonic Corporation, full white fluorescent lamp, FL15N) attached to an ultraviolet cut filter (Nitto Resin Kogyo Co., Ltd., N-113) was used as a light source. A plurality of sets for measurement were allowed to stand at a position where the illuminance was 800 lux (illuminance meter: measured by Topcon Corporation, IM-5). After 60 minutes from the start of light irradiation, the phage concentration of the sample on the glass plate was measured. In addition, the illuminance of the room at the time of measurement was set to be 200 lux or less. The elapsed time from the start of light irradiation was measured using a commercially available stopwatch.

ファージ濃度の測定は以下の方法で行った。ガラス板上の試料を9.9mlのファージ回収液(SCDLP培地)に浸透させ、振とう機にて10分間振とうさせた。
このファージ回収液をぺプトン入り生理食塩水を用い適宣希釈した。別に培養しておいた5.0×10〜2.0×10個/mlの大腸菌(NBRC106373)培養液とカルシウム添加LB軟寒天培地とを混合した液に、上記の希釈した液を1ml加え混合した後、この液をカルシウム添加LB寒天培地にまき、37℃で15時間培養した後に、ファージのプラーク数を目視で計測した。得られたプラーク数にファージ回収液の希釈倍率を乗じることによってファージ濃度Nを求めた。
The phage concentration was measured by the following method. The sample on the glass plate was infiltrated into 9.9 ml of phage recovery solution (SCDLP medium) and shaken for 10 minutes with a shaker.
This phage recovery solution was appropriately diluted with physiological saline containing peptone. Separately cultured 5.0 × 10 8 to 2.0 × 10 9 cells / ml Escherichia coli (NBRC106373) culture solution and calcium added LB soft agar medium were mixed with 1 ml of the above diluted solution. After the addition and mixing, this solution was spread on a calcium-added LB agar medium and cultured at 37 ° C. for 15 hours, and then the number of phage plaques was visually measured. The phage concentration N was determined by multiplying the number of plaques obtained by the dilution factor of the phage recovery solution.

初期ファージ濃度Nと、所定時間後のファージ濃度Nとから、ファージ相対濃度(LOG(N/N))を求めた。なお、LOG(N/N)の値が小さいほど、つまり絶対値が大きいほど、試料の抗ウイルス特性は優れている。結果を表3に示す。 The phage relative concentration (LOG (N / N 0 )) was determined from the initial phage concentration N 0 and the phage concentration N after a predetermined time. Note that the smaller the value of LOG (N / N 0 ), that is, the greater the absolute value, the better the antiviral properties of the sample. The results are shown in Table 3.

<結果>
以上の実施例、比較例で得られた結果について述べる。
<Result>
The results obtained in the above examples and comparative examples will be described.

Figure 2016113417
Figure 2016113417

Figure 2016113417
Figure 2016113417

(高周波誘導結合プラズマ発光分光分析)
高周波誘導結合プラズマ発光分光分析の表2の結果から、シリカ被覆酸化チタンは酸化チタンと比較して、ビスマスイオンおよびバナジン酸イオンを吸着しづらいことが分かった。
(High-frequency inductively coupled plasma emission spectroscopy)
From the results shown in Table 2 of the high frequency inductively coupled plasma emission spectroscopic analysis, it was found that silica-coated titanium oxide hardly adsorbs bismuth ions and vanadate ions compared to titanium oxide.

(X線回折測定)
XRD回折測定の表3に示す結果から、実施例3、4および比較例3の試料中に存在するBiおよびVからなる化合物は、BiVOであることが分かった。比較例2の試料はピーク強度が弱く、同定できなった。
(X-ray diffraction measurement)
From the results shown in Table 3 of the XRD diffraction measurement, it was found that the compound composed of Bi and V present in the samples of Examples 3 and 4 and Comparative Example 3 was BiVO 4 . The sample of Comparative Example 2 was weak in peak intensity and could not be identified.

(可視光照射下における抗ウイルス特性の評価:LOG(N/N)の測定)
可視光照射下における抗ウイルス特性の評価結果は、表3に示すように、シリカ被覆酸化チタン、BiVO、2価銅化合物の組み合わせの実施例3および4で高い抗ウイルス活性が発現していることが分かった。
(Evaluation of antiviral properties under irradiation with visible light: measurement of LOG (N / N 0 ))
As shown in Table 3, the antiviral properties under visible light irradiation show high antiviral activity in Examples 3 and 4 of the combination of silica-coated titanium oxide, BiVO 4 and divalent copper compound. I understood that.

表1の実施例1、2および比較例1の対比から、シリカ被覆酸化チタンはビスマスイオンおよびバナジン酸イオンを吸着しづらく、さらにシリカ被覆量が大きくなるほどその効果は高いことが明らかとなった。実施例3および4の試料は、800ルクスの照度の可視光照射60分間で99.0%以上のウイルス不活化能力を有することがわかった。表3の実施例3、4および比較例2の対比から、シリカ被覆量が大きくなるほど、BiVOが担持されやすくなり、その結果抗ウイルス活性が向上することが確認された。さらに、実施例4および比較例3、4の対比から、抗ウイルス活性が発現するためには、シリカ被覆酸化チタン、BiVO、および2価銅化合物の組み合わせが重要であることが確認された。 From the comparison of Examples 1 and 2 and Comparative Example 1 in Table 1, it became clear that silica-coated titanium oxide hardly adsorbs bismuth ions and vanadate ions, and that the effect becomes higher as the silica coating amount increases. The samples of Examples 3 and 4 were found to have a virus inactivation ability of 99.0% or more in 60 minutes of visible light irradiation with an illuminance of 800 lux. From the comparison between Examples 3 and 4 and Comparative Example 2 in Table 3, it was confirmed that as the silica coating amount was increased, BiVO 4 was more easily carried, and as a result, the antiviral activity was improved. Furthermore, from the comparison between Example 4 and Comparative Examples 3 and 4 , it was confirmed that the combination of silica-coated titanium oxide, BiVO 4 , and a divalent copper compound was important in order to develop antiviral activity.

Claims (18)

BiVOが担持されたシリカ被覆酸化チタンと、2価銅化合物とを含有する抗ウイルス性組成物。 An antiviral composition comprising silica-coated titanium oxide carrying BiVO 4 and a divalent copper compound. 前記シリカ被覆酸化チタンのBET比表面積が25m/g以上である、請求項1に記載の抗ウイルス性組成物。 The antiviral composition according to claim 1, wherein the silica-coated titanium oxide has a BET specific surface area of 25 m 2 / g or more. 前記シリカ被覆酸化チタンが、気相法により作製されたものである請求項1または2に記載の抗ウイルス性組成物。   The antiviral composition according to claim 1 or 2, wherein the silica-coated titanium oxide is produced by a gas phase method. シリカの割合が、シリカ被覆酸化チタン100質量部中、1〜30質量%である、請求項1〜3のいずれか1項に記載の抗ウイルス性組成物。   The antiviral composition of any one of Claims 1-3 whose ratio of a silica is 1-30 mass% in 100 mass parts of silica covering titanium oxides. 前記BiVOの割合が、前記シリカ被覆酸化チタン100質量部に対して1〜20質量部である、請求項1〜4のいずれか1項に記載の抗ウイルス性組成物。 The proportion of BiVO 4 is, the silica-coated is 1 to 20 parts by weight with respect to the titanium oxide to 100 parts by mass, the antiviral composition according to any one of claims 1-4. 前記2価銅化合物中の銅元素質量が、前記シリカ被覆酸化チタンおよびBiVOの合計100質量部に対して0.01〜20質量部である、請求項1〜5のいずれか1項に記載の抗ウイルス性組成物。 The elemental copper mass in divalent copper compound, wherein 0.01 to 20 parts by weight per 100 parts by weight of the silica-coated titanium oxide and BiVO 4, according to any one of claims 1 to 5 Antiviral composition. 前記2価銅化合物は、(a)一般式(1):
Cu(OH)X (1)
(式中、Xは陰イオンを示す)
で表される水酸基含有2価銅化合物、(b)2価銅のハロゲン化物、(c)2価銅の無機酸塩、(d)2価銅の有機酸塩、(e)酸化第二銅、(f)硫化銅、(g)アジ化銅(II)および(h)ケイ酸銅からなる群から選択される1種または2種以上である、請求項1〜6のいずれか1項に記載の抗ウイルス性組成物。
The divalent copper compound includes (a) the general formula (1):
Cu 2 (OH) 3 X (1)
(In the formula, X represents an anion)
(B) Divalent copper halide, (c) Divalent copper inorganic acid salt, (d) Divalent copper organic acid salt, (e) Cupric oxide Or (f) copper sulfide, (g) copper (II) azide and (h) one or more selected from the group consisting of copper silicate. The antiviral composition as described.
一般式(1)のXが、ハロゲン、カルボン酸の共役塩基、無機酸の共役塩基およびOH基からなる群から選択される1種または2種以上である、請求項7に記載の抗ウイルス性組成物。   The antiviral property according to claim 7, wherein X in the general formula (1) is one or more selected from the group consisting of a halogen, a conjugate base of a carboxylic acid, a conjugate base of an inorganic acid, and an OH group. Composition. 前記一般式(1)におけるXは、Cl、CHCOO、NOおよび(SO1/2からなる群から選択される1種である、請求項7または8に記載の抗ウイルス性組成物。 X in the general formula (1) may, Cl, CH 3 COO, NO is 3 and (SO 4) 1 kind selected from the group consisting of 1/2, antiviral composition according to claim 7 or 8 object. (b)2価銅のハロゲン化物は、塩化銅、フッ化銅、および臭化銅からなる群から選択される、1種または2種以上である、請求項7に記載の抗ウイルス性組成物。   The antiviral composition according to claim 7, wherein the halide of (b) divalent copper is one or more selected from the group consisting of copper chloride, copper fluoride, and copper bromide. . (c)2価銅の無機酸塩は、硫酸銅、硝酸銅、ヨウ素酸銅、過塩素酸銅、シュウ酸銅、四ホウ酸銅、硫酸アンモニウム銅、アミド硫酸銅、塩化アンモニウム銅、ピロリン酸銅、および炭酸銅からなる群から選択される、1種または2種以上である、請求項7に記載の抗ウイルス性組成物。   (C) Divalent copper inorganic acid salt is copper sulfate, copper nitrate, copper iodate, copper perchlorate, copper oxalate, copper tetraborate, ammonium sulfate, copper amidosulfate, copper chloride ammonium, copper pyrophosphate The antiviral composition according to claim 7, wherein the composition is one or more selected from the group consisting of copper carbonate. (d)2価銅の有機酸塩は2価銅のカルボン酸塩である、請求項7に記載の抗ウイルス性組成物。   The antiviral composition according to claim 7, wherein the organic salt of (d) divalent copper is a divalent copper carboxylate. 前記2価銅化合物は一般式(1)で表される水酸基含有2価銅化合物である、上記請求項7または8に記載の抗ウイルス性組成物。   The antiviral composition according to claim 7 or 8, wherein the divalent copper compound is a hydroxyl group-containing divalent copper compound represented by the general formula (1). 800ルクスの照度の可視光照射60分間で99.0%以上のウイルス不活化能力を有する請求項1〜13のいずれか1項に記載の抗ウイルス性組成物。   The antiviral composition according to any one of claims 1 to 13, which has a virus inactivating ability of 99.0% or more in 60 minutes of irradiation with visible light having an illuminance of 800 lux. シリカ被覆酸化チタンと、ビスマスイオンと、バナジン酸イオンと、尿素と、水からなる酸性の懸濁液を、大気圧下で加熱して得られるBiVOが担持された前記シリカ被覆酸化チタンと、前記2価銅化合物とを含有する、請求項1〜14のいずれか1項に記載の抗ウイルス性組成物。 Silica-coated titanium oxide, bismuth ions, vanadate ions, urea, and the silica-coated titanium oxide supporting BiVO 4 obtained by heating an acidic suspension composed of water under atmospheric pressure; The antiviral composition according to any one of claims 1 to 14, comprising the divalent copper compound. 請求項1〜15のいずれか1項に記載の抗ウイルス性組成物を含有する抗ウイルス剤。   The antiviral agent containing the antiviral composition of any one of Claims 1-15. 請求項1〜15のいずれか1項に記載の抗ウイルス性組成物を含有する光触媒。   The photocatalyst containing the antiviral composition of any one of Claims 1-15. 請求項1〜15のいずれか1項に記載の抗ウイルス性組成物、請求項16に記載の抗ウイルス剤または請求項17に記載の光触媒を用いてウイルスを不活化する、ウイルス不活性化方法。   A virus inactivating method comprising inactivating a virus using the antiviral composition according to any one of claims 1 to 15, the antiviral agent according to claim 16, or the photocatalyst according to claim 17. .
JP2014254025A 2014-12-16 2014-12-16 Antiviral composition, antiviral agent, photocatalyst and virus deactivation method Withdrawn JP2016113417A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014254025A JP2016113417A (en) 2014-12-16 2014-12-16 Antiviral composition, antiviral agent, photocatalyst and virus deactivation method
KR1020150173823A KR20160073307A (en) 2014-12-16 2015-12-08 Antiviral composition, antiviral agent, photo catalyst and virus inactivation process
TW104141523A TWI581713B (en) 2014-12-16 2015-12-10 Antiviral compositions, antiviral agents, photocatalysts and virus inactivation methods
CN201510917093.9A CN105685098A (en) 2014-12-16 2015-12-10 Anti-viral combination, antiviral agent, photocatalyst and method for inactivating virus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014254025A JP2016113417A (en) 2014-12-16 2014-12-16 Antiviral composition, antiviral agent, photocatalyst and virus deactivation method

Publications (1)

Publication Number Publication Date
JP2016113417A true JP2016113417A (en) 2016-06-23

Family

ID=56139723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014254025A Withdrawn JP2016113417A (en) 2014-12-16 2014-12-16 Antiviral composition, antiviral agent, photocatalyst and virus deactivation method

Country Status (4)

Country Link
JP (1) JP2016113417A (en)
KR (1) KR20160073307A (en)
CN (1) CN105685098A (en)
TW (1) TWI581713B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144004A (en) * 2017-03-08 2018-09-20 旭化成株式会社 Inorganic compound for photocatalyst, photocatalyst composition, photocatalyst coating film and photocatalyst coating product
JP2019098297A (en) * 2017-12-07 2019-06-24 旭化成株式会社 Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product
CN112080940A (en) * 2020-08-21 2020-12-15 中国科学院金属研究所 Fabric with lasting antibacterial and antiviral properties and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112293435A (en) * 2020-11-02 2021-02-02 成都子之源绿能科技有限公司 Spray and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3790189B2 (en) 2002-06-21 2006-06-28 独立行政法人科学技術振興機構 Novel synthesis method of visible light responsive BiVO4 fine powder, photocatalyst comprising the BiVO4 fine powder, and purification method using the photocatalyst
JP2004330047A (en) * 2003-05-06 2004-11-25 Univ Kanazawa Metal or metal oxide-carrying bismuth vanadate photocatalyst for photodecomposition of endocrine disruptor
JP4646210B2 (en) 2005-02-24 2011-03-09 多木化学株式会社 Phage virus inactivator
KR20120098826A (en) 2009-12-01 2012-09-05 스미또모 가가꾸 가부시끼가이샤 Antiviral agent, and antiviral agent functional product using same
US8975206B2 (en) * 2010-04-16 2015-03-10 Treibacher Industrie Ag Catalyst composition for selective catalytic reduction of exhaust gases
JP5904524B2 (en) * 2010-12-22 2016-04-13 国立大学法人 東京大学 Virus inactivating agent
EP2633907A4 (en) * 2011-06-27 2014-01-08 Showa Denko Kk Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
KR101426745B1 (en) * 2011-12-22 2014-08-13 쇼와 덴코 가부시키가이샤 Copper-and-titanium containing composition and production method therefor
CN102600857A (en) * 2012-03-01 2012-07-25 浙江大学 Preparation method of carbon ball-loaded CuO-BiVO4 heterojunction compound photocatalyst
JP2016113331A (en) * 2014-12-16 2016-06-23 昭和電工株式会社 MANUFACTURING METHOD OF TITANIUM OXIDE CARRYING BiVO4 AND ANTIVIRAL COMPOSITION

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144004A (en) * 2017-03-08 2018-09-20 旭化成株式会社 Inorganic compound for photocatalyst, photocatalyst composition, photocatalyst coating film and photocatalyst coating product
JP2019098297A (en) * 2017-12-07 2019-06-24 旭化成株式会社 Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product
CN112080940A (en) * 2020-08-21 2020-12-15 中国科学院金属研究所 Fabric with lasting antibacterial and antiviral properties and preparation method thereof
CN112080940B (en) * 2020-08-21 2022-01-14 中国科学院金属研究所 Fabric with lasting antibacterial and antiviral properties and preparation method thereof

Also Published As

Publication number Publication date
KR20160073307A (en) 2016-06-24
CN105685098A (en) 2016-06-22
TWI581713B (en) 2017-05-11
TW201632071A (en) 2016-09-16

Similar Documents

Publication Publication Date Title
JP5343176B1 (en) Copper and titanium-containing composition and method for producing the same
JP5570006B2 (en) Virus inactivating agent
TWI523691B (en) Methods of inactivating viruses and articles with antiviral properties
WO2016042913A1 (en) Antibacterial/antiviral composition, antibacterial/antiviral agent, photocatalyst, and bacteria/virus inactivation method
JP5812488B2 (en) Antibacterial antiviral composition and method for producing the same
JP5904524B2 (en) Virus inactivating agent
WO2015125367A1 (en) Antiviral composition, antiviral agent, photocatalyst and virus inactivation method
JP2015059089A (en) Antiviral composition, method for preparing the same, and method for inactivating virus
JP2016113417A (en) Antiviral composition, antiviral agent, photocatalyst and virus deactivation method
KR101767528B1 (en) BiVO₄-CARRIED TITANIUM OXIDE, METHOD FOR MANUFACTURING THE SAME, AND ANTIVIRAL COMPOSITION
JP2016113331A (en) MANUFACTURING METHOD OF TITANIUM OXIDE CARRYING BiVO4 AND ANTIVIRAL COMPOSITION
JP2015097989A (en) Virus removing agent and virus removing method
JP2015150476A (en) PHOTOCATALYST COMPOSITION COMPRISING TITANIUM OXIDE AND CuO
JP2015205254A (en) Photocatalyst composition, antiviral agent and antibacterial agent
JP2015134726A (en) Antiviral composition, production method thereof and virus inactivation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20180202