Nothing Special   »   [go: up one dir, main page]

JP2016178784A - Manufacturing device for magnet member, and manufacturing method thereof - Google Patents

Manufacturing device for magnet member, and manufacturing method thereof Download PDF

Info

Publication number
JP2016178784A
JP2016178784A JP2015056939A JP2015056939A JP2016178784A JP 2016178784 A JP2016178784 A JP 2016178784A JP 2015056939 A JP2015056939 A JP 2015056939A JP 2015056939 A JP2015056939 A JP 2015056939A JP 2016178784 A JP2016178784 A JP 2016178784A
Authority
JP
Japan
Prior art keywords
orientation
magnet
rotor
manufacturing
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015056939A
Other languages
Japanese (ja)
Inventor
萱野 雅浩
Masahiro Kayano
雅浩 萱野
橋本 擁二
Youni Hashimoto
擁二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2015056939A priority Critical patent/JP2016178784A/en
Publication of JP2016178784A publication Critical patent/JP2016178784A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing device for a rotor for an inclusive magnet type motor capable of applying a higher orientation magnetic field to a slot of a rotor core during filling and molding with a bond magnet while using permanent magnets for an orientation magnetic field source.SOLUTION: The manufacturing device comprises: a cylindrical housing part (10) for housing a rotor core (R) including a plurality of slots (s1 or the like) equally disposed around a rotation center axis; an orientation yoke (M) for inducting the orientation magnetic field to be applied to the slots; and permanent magnets (m11-m62) for orientation that are orientation magnetic field excitation sources. The orientation yoke is formed from tabular orientation blades (11-16) that are disposed at an outer circumferential side of the housing part and radially extend in a radial direction from a plurality of positions that are equally arranged in a circumferential direction. An axial width of the orientation blades relating to the present invention is expanded radially outside of radially inner ends (11a-16a) that are located at a side of the housing part.SELECTED DRAWING: Figure 1

Description

本発明は、異方性ボンド磁石を内包した内包磁石型モータ用ロータ等に好適な製造装置およびその製造方法に関する。   The present invention relates to a manufacturing apparatus suitable for an internal magnet type motor rotor including an anisotropic bonded magnet and a manufacturing method thereof.

電動機(発電機を含めて単に「モータ」という。)には種々のタイプがある。最近ではインバータ制御の発達と高磁気特性の希土類磁石の普及に伴い、省電力、高効率、高トルクまたは高出力が望める同期機が着目されている。   There are various types of electric motors (simply called “motors” including generators). Recently, with the development of inverter control and the widespread use of rare earth magnets with high magnetic properties, attention has been focused on synchronous machines that can achieve power saving, high efficiency, high torque or high output.

同期機は、界磁用の永久磁石を回転子(ロータ)、電機子巻線(コイル)を固定子(ステータ)とするモータであって、その電機子巻線に多相交流(AC)が供給されて固定子に生じた回転磁界により回転するモータである。同期機には、界磁用の永久磁石が回転子の表面に配設された表面磁石型モータ(SPM)と、その永久磁石が回転子の内部に配設された内包(埋込)磁石型モータ(IPM)とがあるが、現在では永久磁石の飛散防止を図れる高信頼性のIPMが主流となりつつある。   A synchronous machine is a motor in which a permanent magnet for a field is a rotor (rotor) and an armature winding (coil) is a stator (stator), and multi-phase alternating current (AC) is applied to the armature winding. It is a motor that is rotated by a rotating magnetic field that is supplied to the stator. The synchronous machine includes a surface magnet type motor (SPM) in which field permanent magnets are arranged on the surface of the rotor, and an encapsulated (embedded) magnet type in which the permanent magnets are arranged inside the rotor. There is a motor (IPM), but at present, a highly reliable IPM capable of preventing scattering of permanent magnets is becoming mainstream.

従来のIPMでは、ロータコア内のスロットに所定の寸法に切削や研磨等された希土類焼結磁石が挿入されたロータを用いていた。しかし、焼結磁石は形状自由度が小さく、またスロットへ挿入する際に欠損等が生じ易い。そこで異方性磁石粉末とバインダ樹脂からなるボンド磁石をスロットに配向磁場中で充填成形してなるロータが、IPMに採用されるようになってきた。このようなロータの製造装置(方法)に関連した記載が、例えば、下記の特許文献にある。   In the conventional IPM, a rotor in which a rare earth sintered magnet cut or polished to a predetermined size is inserted into a slot in the rotor core is used. However, the sintered magnet has a small degree of freedom in shape, and is easily damaged when inserted into the slot. Accordingly, a rotor obtained by filling a slot with a bonded magnet made of anisotropic magnet powder and a binder resin in an orientation magnetic field has been adopted for IPM. A description related to such a rotor manufacturing apparatus (method) is, for example, in the following patent document.

特開2003−47212号公報JP 2003-47212 A 特開平5−90053号公報JP-A-5-90053

引用文献1では、ロータコアを収容する下型に配置した永久磁石(配向磁場源)とポールピース(配向ヨーク)によりロータコアのスロットへ配向磁場を印加して、ボンド磁石の充填成形を行っている。配向磁場源に永久磁石を用いることにより、装置(金型)の小型化、多数個取り、汎用成形機の活用等を図ることが可能となる。   In Cited Document 1, a bonded magnet is filled and formed by applying an orientation magnetic field to a slot of a rotor core by a permanent magnet (orientation magnetic field source) and a pole piece (orientation yoke) arranged in a lower mold that accommodates the rotor core. By using a permanent magnet as the orientation magnetic field source, it is possible to reduce the size of the apparatus (mold), to obtain a large number of units, and to use a general-purpose molding machine.

もっとも、電磁石ではなく永久磁石を配向磁場源とする場合、配向磁場が必ずしも十分ではないため、引用文献1では、各ポールピースの周方向両側に、一対の永久磁石を同極を対向させて配置し、ポールピースへ供給する磁束量の確保と配向磁場に活用されない漏洩磁束の低減を図っている。   However, in the case of using a permanent magnet instead of an electromagnet as an orientation magnetic field source, the orientation magnetic field is not always sufficient. Therefore, in Cited Document 1, a pair of permanent magnets are arranged with opposite poles facing each other in the circumferential direction of each pole piece. In addition, the amount of magnetic flux supplied to the pole piece is ensured and the leakage magnetic flux that is not used for the orientation magnetic field is reduced.

また、引用文献2は、IPMの製造装置ではないが、多極異方性円筒状磁石を製造する際の配向装置(金型)を提案している。この配向装置では、同極を対向させて配置した永久磁石(配向磁場源)に挟持されるヨークの周方向幅を拡径方向に狭めると共に、そのヨークの軸方向両端にも同極を対向させた別の永久磁石を配置している。こうして引用文献2では、漏洩磁束をより一層低減し、射出成形されるキャビティ(スロット)へ印加する配向磁場の増大を図っている。   Further, although cited document 2 is not an IPM manufacturing apparatus, it proposes an alignment apparatus (mold) for manufacturing a multipolar anisotropic cylindrical magnet. In this orientation device, the circumferential width of the yoke sandwiched between permanent magnets (orientation magnetic field sources) arranged with the same poles facing each other is narrowed in the diameter increasing direction, and the same poles are also made to face both axial ends of the yoke. Another permanent magnet is arranged. Thus, in the cited document 2, the leakage magnetic flux is further reduced, and the orientation magnetic field applied to the cavity (slot) to be injection molded is increased.

しかし、非常に大きい保磁力を発揮する希土類異方性磁石粒子を用いたボンド磁石を磁場中成形するような場合、従来の配向装置等でも、配向磁場が未だ必ずしも十分ではない。特に、汎用の射出成形機等を用いる場合、配向用永久磁石や配向ヨークの大きさ(体格)が所定範囲内に制約されるため、従来以上に配向磁場を高めることは容易ではなかった。   However, when a bonded magnet using rare earth anisotropic magnet particles exhibiting a very large coercive force is molded in a magnetic field, the orientation magnetic field is not always sufficient even with a conventional orientation device or the like. In particular, when a general-purpose injection molding machine or the like is used, it is not easy to increase the orientation magnetic field more than before because the size (physique) of the orientation permanent magnet and the orientation yoke is restricted within a predetermined range.

本発明はこのような事情に鑑みて為されたものであり、配向磁場源に永久磁石を用いつつ、ボンド磁石の充填成形時により高い配向磁場をロータコアのスロットへ印加できる内包磁石型モータ用ロータ等に好適な製造装置およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a rotor for an internal magnet type motor that can apply a higher orientation magnetic field to a slot of a rotor core when a bonded magnet is filled and molded while using a permanent magnet as an orientation magnetic field source. It is an object of the present invention to provide a manufacturing apparatus suitable for the above and a manufacturing method thereof.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、配向ヨークの軸方向幅(高さ)を径方向外側で大きくし、永久磁石から供給される磁束を収容部側にある径方向の内端部へ集束(集磁)させて、配向ヨークからロータコアのスロットへ効率的に大きな配向磁場を印加させることを思いついた。この着想が有効であることを確認すると共にこの着想を発展させることにより、以降に述べる本発明を完成させるに至った。   As a result of extensive research and trial and error, the present inventor has increased the axial width (height) of the orientation yoke on the outer side in the radial direction so that the magnetic flux supplied from the permanent magnet can be accommodated on the housing side. It was conceived that a large orientation magnetic field was efficiently applied from the orientation yoke to the slot of the rotor core by focusing (magnetizing) on the radially inner end of the rotor. By confirming that this idea is effective and developing this idea, the present invention described below has been completed.

《内包磁石型モータ用ロータの製造装置》
(1)本発明の内包磁石型モータ用ロータの製造装置は、回転中心軸の周囲に複数均等に配設されたスロットを有するロータコアを収容する円筒状の収容部と、該スロットへ印加する配向磁場を誘導する配向ヨークと、該配向磁場の起磁源である配向用永久磁石とを備え、異方性磁石粒子とバインダ樹脂からなる異方性ボンド磁石が該ロータコアのスロット内に配向磁場中で充填成形されてなる内包磁石型モータ用ロータの製造装置であって、前記配向ヨークは、該収容部の外周側に配設されると共に周方向の均等な複数位置から径方向へ放射状に延在する板状の配向翼からなり、前記配向用永久磁石は、該配向翼の周方向側面の両側に同じ磁極を対面させた一対の周方向磁石を該配向翼毎に備え、該配向翼は、該収容部側にある径方向の内端部よりも径方向の外側で軸方向幅が拡大していることを特徴とする。なお、本明細書では適宜、内包磁石型モータ用ロータを単に「IPM」、内包磁石型モータ用ロータを単に「ロータ」といい、内包磁石型モータ用ロータの製造装置を単に「ロータ製造装置」という。
<Embedded magnet type motor rotor manufacturing equipment>
(1) An apparatus for manufacturing a rotor for an internal magnet type motor according to the present invention includes a cylindrical accommodating portion that accommodates a rotor core having a plurality of slots evenly arranged around a rotation center axis, and an orientation applied to the slot. An orientation yoke for inducing a magnetic field and an orientation permanent magnet that is a magnetomotive source of the orientation magnetic field, and an anisotropic bonded magnet made of anisotropic magnet particles and a binder resin are placed in the slot of the rotor core in the orientation magnetic field. And the orientation yoke is disposed on the outer peripheral side of the housing portion and extends radially from a plurality of uniform circumferential positions in the radial direction. Each of the orientation blades has a pair of circumferential magnets facing the same magnetic poles on both sides of the circumferential side surface of the orientation blade. , In the radial direction on the housing side Characterized in that an enlarged axial width at the outer side in the radial direction than parts. In the present specification, as appropriate, the rotor for the internal magnet type motor is simply referred to as “IPM”, the rotor for the internal magnet type motor is simply referred to as the “rotor”, and the manufacturing apparatus for the internal magnet type motor rotor is simply referred to as the “rotor manufacturing apparatus”. That's it.

本発明のロータ製造装置では、配向ヨークを構成する各配向翼が、ロータコアの収容部側にある径方向の内端部よりも径方向の外側で軸方向幅に拡大(拡張)している。これを逆にみれば、径方向の外側から内端部にかけて絞られた形状となっている。このため各配向翼の周方向側面の両側になる周方向磁石から供給された磁束は、ロータコアに最も近い内端部に集束(集磁)するようになる。この内端部による集磁作用により、永久磁石を配向磁場源としつつも、ロータコアのスロットへより強い配向磁場を効率的に印加することができる。   In the rotor manufacturing apparatus of the present invention, each orientation blade constituting the orientation yoke is expanded (expanded) to the axial width on the outer side in the radial direction from the inner end portion in the radial direction on the housing portion side of the rotor core. In other words, the shape is narrowed from the radially outer side to the inner end. For this reason, the magnetic flux supplied from the circumferential magnet on both sides of the circumferential side surface of each orientation blade is focused (magnetized) on the inner end closest to the rotor core. Due to the magnetic collecting action by the inner end portion, it is possible to efficiently apply a stronger orientation magnetic field to the slot of the rotor core while using the permanent magnet as the orientation magnetic field source.

ちなみに、配向翼が径方向の内端部よりも径方向の外側で軸方向幅に拡大しているため、各配向翼に対面する周方向磁石の容積の増大化ひいては総磁束量の増大化も図り易く、各配向翼からロータコアのスロットへより大きな配向磁場を印加することも容易である。但し、配向翼の周方向側面の両側に配置される周方向磁石は、その供給する総磁束量が少なくとも配向翼の内端部の磁性材が飽和磁化に達する程度の大きさ(体積量)であると好ましい。更に、好ましくは、ロータコアの配向成形時に、配向翼に対面するロータコアのスロットの径方向外周側からロータコア外周部に渡る部分の材料が飽和磁化に達すること望ましく、そのためには、上記、配向翼の多くの部分の材料が飽和磁化に達することが望ましい。   By the way, the orientation blades are expanded in the axial width outside the radial inner end of the radial direction, so that the volume of the circumferential magnet facing each orientation blade is increased and the total magnetic flux is also increased. It is easy to plan and it is easy to apply a larger orientation magnetic field from each orientation blade to the slot of the rotor core. However, the circumferential magnets arranged on both sides of the circumferential side surface of the orientation wing are such that the total magnetic flux supplied is at least large enough to reach the saturation magnetization of the magnetic material at the inner end of the orientation wing. Preferably there is. Further, preferably, during the orientation molding of the rotor core, it is desirable that the material in the portion extending from the radial outer peripheral side of the slot of the rotor core facing the orientation blade to the outer periphery of the rotor core reaches saturation magnetization. It is desirable for many parts of the material to reach saturation magnetization.

こうして本発明のロータ製造装置によれば、専用または汎用の射出成形機、トランスファ成形機または圧縮成形機等のいずれを用いる場合でも、異方性磁石粒子が十分に配向したボンド磁石をスロットに有するロータが得られ、IPMの高性能化が図られる。   Thus, according to the rotor manufacturing apparatus of the present invention, the slot has the bonded magnet in which anisotropic magnet particles are sufficiently oriented regardless of whether a dedicated or general-purpose injection molding machine, transfer molding machine or compression molding machine is used. A rotor is obtained, and high performance of the IPM is achieved.

なお、本発明に係る収容部は、ロータコアを収容できる円筒空間が形成されていればよく、収容部を構成する専用部材は必須ではない。例えば、各配向翼と各周方向磁石の内周端面により収容部が形成されてもよい。勿論、非磁性材からなる薄肉円筒部材(非磁性リング)等を別途設けて収容部を形成し、その外周側に各配向翼および各周方向磁石を配置してもよい。   In addition, the accommodating part which concerns on this invention should just form the cylindrical space which can accommodate a rotor core, and the exclusive member which comprises an accommodating part is not essential. For example, the accommodating part may be formed by the inner peripheral end surfaces of the respective orientation blades and the respective circumferential magnets. Of course, a thin cylindrical member (nonmagnetic ring) made of a nonmagnetic material or the like may be separately provided to form the accommodating portion, and each orientation blade and each circumferential magnet may be disposed on the outer peripheral side thereof.

さらにいえば、各配向翼が収容部を構成する円筒部と一体になっていてもよい。この場合、その円筒部で磁気短絡(磁気閉回路)が生じないように、配向翼の内端部が連なる部分は低磁気抵抗(透磁部)とし、それ以外の部分(周方向磁石の内周側面が接する部分)は高磁気抵抗(蔽磁部)として、それら周方向に交互に均等に配設された状態とすればよい。磁気抵抗の調整は、肉厚調整や非磁性改質等により容易に行うことができる。   More specifically, each orientation blade may be integrated with a cylindrical portion constituting the housing portion. In this case, in order to prevent a magnetic short circuit (magnetic closed circuit) from occurring in the cylindrical portion, the portion where the inner end portion of the orientation wings is continuous has a low magnetic resistance (magnetic permeability portion), and the other portion (inside the circumferential magnet) What is necessary is just to let it be the state arrange | positioned alternately by the circumferential direction as a high magnetic resistance (shielding magnetic part) as the part where the peripheral side surface contact | connects. The magnetic resistance can be easily adjusted by adjusting the thickness or non-magnetic modification.

ちなみに配向翼の内端部の周方向幅は、ロータのスロット幅に応じて適宜調整される。配向磁場をスロット内へ有効に誘導するため、その内端部の周方向幅は、ロータの最外周側にあるスロットの最大内幅以下であると好ましい。なお、本明細書では、適宜、収容部と配向ヨーク、さらには配向用永久磁石を併せて「配向金型」という。   Incidentally, the circumferential width of the inner end of the orientation blade is appropriately adjusted according to the slot width of the rotor. In order to effectively induce the orientation magnetic field into the slot, the circumferential width of the inner end portion is preferably equal to or smaller than the maximum inner width of the slot on the outermost circumferential side of the rotor. In this specification, the housing portion, the orientation yoke, and further the orientation permanent magnet are appropriately referred to as an “orientation die”.

《内包磁石型モータ用ロータの製造方法》
本発明は、上述した製造装置としてのみならず、その製造装置を用いた内包磁石型モータ用ロータの好適な製造方法としても把握できる。すなわち本発明は、前記収容部内に前記ロータコアを緩挿して収容する収容工程と、該収容部に収容された該ロータコアのスロット内に前記配向磁場を印加しつつ前記異方性磁石粒子と前記バインダ樹脂の混合物を加圧充填する充填工程と、該充填工程後のロータコアを該収容部から取り出す取出工程と、を備えることを特徴とする内包磁石型モータ用ロータの製造方法としても把握できる。
<< Method for Manufacturing Rotor for Inner Magnet Type Motor >>
The present invention can be grasped not only as the above-described manufacturing apparatus, but also as a preferable manufacturing method of an internal magnet type motor rotor using the manufacturing apparatus. That is, the present invention includes an accommodating step of loosely inserting and accommodating the rotor core in the accommodating portion, and applying the orientation magnetic field into a slot of the rotor core accommodated in the accommodating portion, and the anisotropic magnet particles and the binder. It can also be grasped as a method of manufacturing a rotor for an encapsulated magnet type motor characterized by comprising a filling step of pressurizing and filling a resin mixture, and a step of taking out the rotor core after the filling step from the housing portion.

《磁石部材の製造装置および製造方法》
本発明は、上述した内包磁石型モータ(IPM)用ロータの配向のみならず、表面磁石型モータ(SPM)用ロータの配向、それらロータの内包磁石または表面磁石の着磁、さらには多極型円筒状磁石の配向または着磁等にまで拡張することができる。
<< Magnetic member manufacturing apparatus and manufacturing method >>
The present invention is not limited to the orientation of the rotor for the internal magnet type motor (IPM) described above, the orientation of the rotor for the surface magnet type motor (SPM), the magnetization of the internal magnet or the surface magnet of the rotor, and the multipolar type. It can be extended to the orientation or magnetization of a cylindrical magnet.

そこで本発明は、円筒状または円柱状の磁石部材を収容する円筒状の収容部と、該磁石部材へ印加する磁場を誘導するヨークと、該磁場の起磁源となる永久磁石と、を備える磁石部材の製造装置であって、前記ヨークは、該収容部の外周側に配設されると共に周方向の均等な複数位置から径方向へ放射状に延在する板状の翼片からなり、前記永久磁石は、該翼片の周方向側面の両側に同じ磁極を対面させた一対の周方向磁石を該翼片毎に備え、該翼片は、該収容部側にある径方向の内端部よりも径方向の外側で軸方向幅が拡大していることを特徴とする磁石部材の製造装置としても把握できる。   Therefore, the present invention includes a cylindrical housing portion that houses a cylindrical or columnar magnet member, a yoke that induces a magnetic field to be applied to the magnet member, and a permanent magnet that serves as a magnetomotive source of the magnetic field. An apparatus for manufacturing a magnet member, wherein the yoke is disposed on the outer peripheral side of the housing portion and includes a plate-shaped blade piece extending radially from a plurality of uniform positions in the circumferential direction, The permanent magnet includes a pair of circumferential magnets having the same magnetic pole facing both sides of the circumferential side surface of the blade piece for each blade piece, and the blade piece is a radially inner end portion on the housing portion side. It can also be grasped as an apparatus for manufacturing a magnet member, characterized in that the axial width is expanded outside in the radial direction.

また本発明は、上記の製造装置としてのみならず、それを用いた製造方法としても把握できる。すなわち本発明は、上記の製造装置を用いた磁石部材の製造方法であって、前記収容部内に前記磁石部材を緩挿して収容する収容工程と、該収容部に収容された該磁石部材に磁場を印加して配向または着磁を行う磁場印加工程と、を備えることを特徴とする磁石部材の製造方法でもよい。   Moreover, this invention can be grasped | ascertained not only as said manufacturing apparatus but as a manufacturing method using it. That is, the present invention is a method of manufacturing a magnet member using the manufacturing apparatus described above, wherein the magnet member is loosely inserted and accommodated in the accommodating portion, and a magnetic field is applied to the magnet member accommodated in the accommodating portion. And a magnetic field applying step of applying orienting or magnetizing the magnetic member.

なお、ここでいう磁石部材は、IPM若しくはSPMのロータまたはロータコア、多極型円筒状磁石またはそのプリフォーム等であり、磁石材そのものからなる場合の他、磁石が配設される前のロータコア等も含まれる。要するに、上述した磁石部材の収容工程後に、配向または着磁された永久磁石を伴うものであればよい。また、ヨーク、翼片または永久磁石の代表例は、それぞれ上述した配向ヨーク、配向翼または配向用永久磁石である。   Here, the magnet member is an IPM or SPM rotor or rotor core, a multipolar cylindrical magnet or a preform thereof, and the like, in addition to the case where it is made of a magnet material itself, a rotor core before the magnet is disposed, etc. Is also included. In short, what is necessary is just to be accompanied by an oriented or magnetized permanent magnet after the above-described magnet member housing step. Further, typical examples of the yoke, the blade piece, or the permanent magnet are the above-described orientation yoke, orientation blade, or orientation permanent magnet, respectively.

例えば、SPM型モータ用ロータを製造する場合、上述した磁石部材の製造方法は、収容部内にロータコアのみを緩挿して収容する収容工程と、該収容されたロータコアと該収容部との隙間(キャビティ)に配向磁場を印加しつつ、異方性磁石粒子とバインダ樹脂の混合物を加圧充填する充填工程と、該充填工程後のロータコアを該収容部から取り出す取出工程と、を備えることを特徴とするSPM型モータ用ロータの製造方法としても把握できる。   For example, in the case of manufacturing a rotor for an SPM type motor, the above-described method for manufacturing a magnet member includes an accommodating step in which only a rotor core is loosely inserted and accommodated in an accommodating portion, and a gap (cavity between the accommodated rotor core and the accommodating portion). And a step of pressurizing and filling the mixture of the anisotropic magnet particles and the binder resin while applying an orientation magnetic field to the step), and a step of taking out the rotor core after the filling step from the accommodating portion. It can also be grasped as a manufacturing method of a rotor for an SPM type motor.

《その他》
(1)本発明に係る各配向翼はそれぞれ、通常、同形状であり、また各周方向磁石もそれぞれ、通常、同形状である。周方向で対面する配向翼と周方向磁石の各軸方向端面は、滑らかに(例えば面一状に)接続されていてもよいし、周方向磁石の軸方向幅が一定でその軸方向端面が平坦であってもよい。後者の場合、周方向磁石(配向用永久磁石)の製作が容易となり好ましい。特に、周方向磁石の軸方向幅が配向翼の軸方向幅以上あると好ましい。このとき、配向翼の軸方向端側の漏洩磁束が抑制され、また、配向翼が外径側で軸方向に突出せず、ロータ製造装置の取扱性が向上する。なお、配向翼と周方向磁石の各外周側面は、滑らかに(例えば面一状に)接続されていても良いし、漏洩磁束の低減または配向磁場の強化等を図れる形状(例えば凹凸状)で接続されていてもよい。
<Others>
(1) Each orientation blade according to the present invention is usually the same shape, and each circumferential magnet is also usually the same shape. Each of the axial end faces of the orientation wing and the circumferential magnet facing each other in the circumferential direction may be smoothly connected (for example, flush), or the axial width of the circumferential magnet is constant and the axial end face is It may be flat. The latter is preferable because it facilitates the production of a circumferential magnet (orienting permanent magnet). In particular, the axial width of the circumferential magnet is preferably equal to or greater than the axial width of the orientation blade. At this time, the leakage magnetic flux on the axial end side of the orientation blade is suppressed, and the orientation blade does not protrude in the axial direction on the outer diameter side, thereby improving the handleability of the rotor manufacturing apparatus. In addition, each outer peripheral side surface of the orientation wing and the circumferential magnet may be smoothly connected (for example, flush), or in a shape (for example, an uneven shape) that can reduce leakage magnetic flux or enhance the orientation magnetic field. It may be connected.

(2)本発明は、配向用永久磁石の磁束を効率的に特定位置に誘導できる配向ヨーク(特に配向翼)の形状に特徴がある。従って、その特徴を有する限り、本発明はIPM用ロータの製造装置(配向装置)としてのみならず、多極異方性円筒状磁石等の製造装置(配向装置)さらには着磁装置等としても把握可能である。 (2) The present invention is characterized by the shape of an orientation yoke (particularly an orientation wing) that can efficiently guide the magnetic flux of the orientation permanent magnet to a specific position. Therefore, as long as it has the characteristics, the present invention is not only used as an IPM rotor manufacturing apparatus (orientation apparatus), but also as a multipolar anisotropic cylindrical magnet manufacturing apparatus (orientation apparatus), or a magnetizing apparatus. It is possible to grasp.

(3)本明細書では、各部材の形状等を表現するために、適宜、円筒座標(r、θ、z)を用いる。具体的にいうと、収容部を構成する円筒軸(回転中心軸)をz軸とし、z方向を単に軸方向という。また、z方向に直交するr方向を単に径方向といい、z軸まわりのθ方向を単に周方向という。なお、半径(r)の小さい側(中心側)を単に「内側」、半径(r)の大きい側を単に「外側」ともいう。また、各部材において、最小半径部分を内端部、最大半径部分を外端部ともいう。 (3) In this specification, cylindrical coordinates (r, θ, z) are used as appropriate in order to express the shape and the like of each member. More specifically, the cylindrical axis (rotation center axis) constituting the housing portion is referred to as the z axis, and the z direction is simply referred to as the axial direction. The r direction orthogonal to the z direction is simply referred to as the radial direction, and the θ direction around the z axis is simply referred to as the circumferential direction. The side with the smaller radius (r) (center side) is also simply referred to as “inside”, and the side with the larger radius (r) is also simply referred to as “outside”. In each member, the minimum radius portion is also referred to as an inner end portion, and the maximum radius portion is also referred to as an outer end portion.

(4)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を、新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (4) Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. Any numerical value included in various numerical values or numerical ranges described in the present specification can be newly established as a range such as “ab” as a new lower limit value or upper limit value.

本発明の一実施例である配向金型を示す4/6カットモデルの斜視図である。It is a perspective view of the 4/6 cut model which shows the orientation metal mold | die which is one Example of this invention. その配向金型に作用する配向磁場を模式的に示す平面図である。It is a top view which shows typically the orientation magnetic field which acts on the orientation metal mold | die. その配向金型に作用する配向磁場を模式的に示す断面図である。It is sectional drawing which shows typically the orientation magnetic field which acts on the orientation metal mold | die. 三次元静磁場解析に用いた実施例に係る4/6カットモデルの斜視図である。It is a perspective view of the 4/6 cut model which concerns on the Example used for the three-dimensional static magnetic field analysis. その解析に用いた比較例に係る4/6カットモデルの斜視図である。It is a perspective view of the 4/6 cut model concerning the comparative example used for the analysis.

本明細書中に記載した事項から任意に選択した一つまたは二つ以上の構成要素を上述した本発明の構成に付加し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。製造方法に関する構成要素は、プロダクトバイプロセスクレームとして理解すれば物に関する構成要素ともなり得る。   One or more components arbitrarily selected from the matters described in the present specification may be added to the configuration of the present invention described above. Which embodiment is the best depends on the target, required performance, and the like. A component related to a manufacturing method can be a component related to an object if understood as a product-by-process claim.

《配向ヨーク》
配向ヨークは、ロータのスロットへ印加する配向磁場を効率的に誘導する部材であり、収容部の外周側の均等な複数位置から拡径方向へ延在する複数の配向翼からなる。これら配向翼は板状であり、製作が容易であると共に周方向磁石に対面して周方向磁石から効率的に磁束が供給され易い。さらに本発明に係る配向翼は、収容部側にある径方向の内端部よりも径方向の外側で軸方向幅が拡大している。内端部による集磁効果により増大した総磁束量を大きな配向磁場としてスロットへ効率的に供給できる。
《Orientation yoke》
The orientation yoke is a member that efficiently induces an orientation magnetic field applied to the slot of the rotor, and is composed of a plurality of orientation blades extending in the diameter-expanding direction from a plurality of uniform positions on the outer peripheral side of the housing portion. These orientation blades are plate-shaped, and are easy to manufacture and face the circumferential magnet so that magnetic flux is easily supplied efficiently from the circumferential magnet. Furthermore, the orientation wing | blade which concerns on this invention has the axial direction width | variety expanded on the outer side of radial direction rather than the radial inner end part which exists in the accommodating part side. The total amount of magnetic flux increased by the magnetism collecting effect by the inner end portion can be efficiently supplied to the slot as a large orientation magnetic field.

ところで各配向翼の軸方向幅(適宜、単に「高さ」という。)が内端部から拡径方向側にかけて増加する形態は種々考えられる。例えば、その高さは、内端部から径方向の所定位置(例えば外端部)まで(滑らかに)単調増加していると好ましい。この場合、配向翼の内端部から外端部に至る途中に、高さの変化率(f’)が0となる部分(高さが一定な部分)があってもよい。配向翼の高さが径方向に単調増加(f’≧0)する場合、その増加パターンは直線状(f’が一定)でも、上に凸状な曲線状(f’が単調減少)でも、下に凸状な曲線状(f’が単調増加)でもよい。   By the way, various modes in which the axial width of each orientation blade (appropriately, simply referred to as “height”) increases from the inner end portion toward the diameter increasing direction are conceivable. For example, it is preferable that the height monotonously increases (smoothly) from the inner end portion to a predetermined position in the radial direction (for example, the outer end portion). In this case, there may be a portion where the rate of change in height (f ′) is zero (a portion having a constant height) on the way from the inner end to the outer end of the orientation blade. When the height of the orientation blade monotonously increases in the radial direction (f ′ ≧ 0), the increase pattern may be linear (f ′ is constant) or curved upward (f ′ is monotonically decreasing) A downward convex curve (f ′ monotonically increasing) may be used.

配向翼は、その高さが内端部から径方向の外端部またはその近傍まで一定割合で増加するテーパ状であると、配向翼や周方向磁石の製作が容易となり好ましい。なお、テーパの傾斜度(軸方向の変化量Δz/径方向の変化量Δr)は適宜調整され得るが、例えば、0.1〜1さらには0.3〜0.8であると好ましい。それが過小では装置(配向金型)が径方向に大型化し、過大では装置が軸方向に大型化する。また、配向翼の高さの変化が急激であると、配向翼の外径側から内径側へ至る集磁効果が低下して、効率的な配向磁場の向上を図れない。そこで配向翼の高さは、内端部から外端部の間で滑らかに変化していると好ましい。   It is preferable that the orientation blades have a taper shape whose height increases from the inner end portion to the outer end portion in the radial direction or the vicinity thereof at a constant rate because the orientation blades and the circumferential magnet can be easily manufactured. In addition, although the taper inclination (change amount Δz in the axial direction / change amount Δr in the radial direction) can be adjusted as appropriate, it is preferably 0.1 to 1, and more preferably 0.3 to 0.8. If it is too small, the device (orientation mold) becomes large in the radial direction, and if it is too large, the device becomes large in the axial direction. In addition, if the height of the orientation blade is rapidly changed, the effect of collecting the magnetic force from the outer diameter side to the inner diameter side of the orientation blade is reduced, so that the effective orientation magnetic field cannot be improved. Therefore, it is preferable that the height of the orientation blade is smoothly changed from the inner end portion to the outer end portion.

このように配向翼の軸方向上下端は径方向に変化するが、配向翼自体は略台形(r−z断面)の板状となっており、通常、その軸方向幅の最小部分が内端部となる。配向翼と収容部が一体的である場合なら、周方向断面が急変する境界部分を配向翼の内端部と考えればよい。内端部の軸方向幅(高さ)は、少なくともロータコアの高さ以上であると好ましい。これによりロータコアのスロットの上下端近傍にも強い配向磁場を安定して供給できる。配向翼の内端部の高さは、ロータコアの高さよりも20%以上高いと好ましい。但し、配向翼の内端部の高さがロータコアの高さの30%を超えると、上記の効果は飽和傾向となる。   Thus, the upper and lower ends in the axial direction of the orientation wing change in the radial direction, but the orientation wing itself has a substantially trapezoidal (rz cross section) plate shape, and usually the minimum portion of its axial width is the inner end. Part. In the case where the orientation wing and the accommodating portion are integrated, the boundary portion where the circumferential cross section suddenly changes may be considered as the inner end portion of the orientation wing. The axial width (height) of the inner end is preferably at least the height of the rotor core. As a result, a strong magnetic field can be stably supplied to the vicinity of the upper and lower ends of the slot of the rotor core. The height of the inner end portion of the orientation blade is preferably 20% or more higher than the height of the rotor core. However, when the height of the inner end portion of the orientation blade exceeds 30% of the height of the rotor core, the above effect tends to be saturated.

配向翼の周方向幅は、軸方向幅とは逆に、内端部から径方向の外側にかけて減少している尖塔状であると好ましい。これにより、装置(金型)の大型化を回避しつつ、各配向翼間に挟持できる周方向磁石の容積増大を図れ、ひいてはスロットへ印加する配向磁場の強化を図れる。   Contrary to the axial width, the circumferential width of the orientation blade is preferably a spire shape that decreases from the inner end to the outer side in the radial direction. As a result, the volume of the circumferential magnet that can be sandwiched between the orientation blades can be increased while avoiding an increase in the size of the apparatus (mold), and the orientation magnetic field applied to the slot can be strengthened.

《配向磁場源》
配向磁場源には、励磁コイルを用いることもできるが、希土類焼結磁石などの永久磁石を用いることにより、ロータ製造装置のコンパクト化や省エネルギー化を図れる。永久磁石を用いる場合、配向磁場を高めるために、配向翼の対向側面に同極を対面させて永久磁石を配置すると好適である。すなわち、配向用永久磁石は、配向翼の周方向側面の両側に同じ磁極を対面させた一対の周方向磁石が配向翼毎に設けられたものであると好ましい。
<< Orientation magnetic field source >>
An exciting coil can be used for the orientation magnetic field source. However, by using a permanent magnet such as a rare earth sintered magnet, the rotor manufacturing apparatus can be made compact and energy-saving. When using a permanent magnet, in order to increase the orientation magnetic field, it is preferable to arrange the permanent magnet with the same pole facing the opposite side surface of the orientation blade. That is, the orientation permanent magnet is preferably provided with a pair of circumferential magnets having the same magnetic poles facing each other on both sides of the circumferential side surface of the orientation wing for each orientation wing.

この際、隣接する配向翼間に配設される周方向磁石は単体でも良いし、複数体(分割した永久磁石を配列したもの)でもよい。周方向磁石が複数体からなる場合、各分割された各永久磁石の磁化方向(N極からS極へ向かう方向)は、配向翼へ誘導される配向磁場が極大となるように調整されると好適である。例えば、隣接する配向翼間に分割された二つの永久磁石を配置する場合、各永久磁石の磁化方向は配向翼の周方向側面に直交すると好ましい。   At this time, the circumferential magnet disposed between the adjacent orientation blades may be a single piece or a plurality of pieces (arrangement of divided permanent magnets). When the circumferential magnet is composed of a plurality of magnets, the magnetization direction (direction from the N pole to the S pole) of each divided permanent magnet is adjusted so that the orientation magnetic field induced to the orientation blade is maximized. Is preferred. For example, when two permanent magnets divided between adjacent orientation blades are arranged, the magnetization direction of each permanent magnet is preferably orthogonal to the circumferential side surface of the orientation blade.

なお、その配向用永久磁石は、周方向両側で対向するのみならず、軸方向(上下方向)の両端面側でも対向していると好ましい。すなわち、配向用永久磁石は、配向翼の周方向側面に対面している磁極と同じ磁極を配向翼の軸方向側面の両側に対面させた一対の軸方向磁石を配向翼毎に備えると好ましい。配向翼の各側面を永久磁石の同極で囲繞することにより、漏洩磁場を低減してロータコアへ誘導する配向磁場を強化できる。さらに、配向磁場の漏洩を防ぐため、配向翼の最外周側は非磁性部材(空気を含む)等であると好ましい。   The permanent magnets for orientation are preferably opposed not only on both sides in the circumferential direction but also on both end surfaces in the axial direction (vertical direction). That is, it is preferable that the orientation permanent magnet includes a pair of axial magnets in which the same magnetic pole as the magnetic pole facing the circumferential side surface of the orientation blade is opposed to both sides of the axial side surface of the orientation blade for each orientation blade. By surrounding each side surface of the orientation blade with the same pole of the permanent magnet, the leakage magnetic field can be reduced and the orientation magnetic field induced to the rotor core can be strengthened. Furthermore, in order to prevent leakage of the alignment magnetic field, the outermost peripheral side of the alignment blade is preferably a non-magnetic member (including air).

《ロータコア》
ロータコアは、軟磁性材からなり、通常、両面を絶縁被覆した電磁鋼板の積層体や絶縁被覆された金属粒子を加圧成形した圧粉磁心等からなる。軟磁性材は、その材質を問わないが、例えば、純鉄、ケイ素鋼、合金鋼等の鉄系材であると好ましい。
<Rotor core>
The rotor core is made of a soft magnetic material, and is usually made of a laminated body of electromagnetic steel sheets with insulation coating on both surfaces, a dust core obtained by press-molding metal particles with insulation coating, or the like. The soft magnetic material may be any material, but is preferably an iron-based material such as pure iron, silicon steel, or alloy steel.

ロータコアの回転中心の周囲に均等に配設されるスロットは、少なくとも2以上あれば、その形状や数は問わない。例えば、中心から半径方向へ直線状に延在する放射型スロットでも良いし、内周側に凸な形状をした凸型スロットでも良い。凸型スロットは、滑らかな曲線形状からなると、スロット全体に高い配向磁場を均一的に作用させることができて好ましい。具体的には、内周側へ緩やかに湾曲した湾曲スロット(U字型スロット、V字型スロット等を含む)が好ましい。また同様な観点から、スロットは均一的な溝幅からなると好ましい。逆にいうと、印加した配向磁場が局所的に集中し易い急激な形状変化や寸法変化がないほど好ましい。さらにスロットは、半径方向に複数ある多層型スロットでもよい。多層型スロットにすると、リラクタンストルクの増大を図れる。多層型スロットの層数は問わないが、2層または3層であると、同期機の特性と生産性の両立を図れて好ましい。   As long as there are at least two slots arranged evenly around the rotation center of the rotor core, the shape and number thereof are not limited. For example, a radial slot extending linearly from the center in the radial direction may be used, or a convex slot having a convex shape on the inner peripheral side may be used. A convex slot having a smooth curved shape is preferable because a high orientation magnetic field can be uniformly applied to the entire slot. Specifically, a curved slot (including a U-shaped slot and a V-shaped slot) that is gently curved toward the inner peripheral side is preferable. From the same viewpoint, it is preferable that the slot has a uniform groove width. In other words, it is preferable that there is no sudden shape change or dimensional change in which the applied orientation magnetic field tends to concentrate locally. Further, the slot may be a multilayer slot having a plurality of slots in the radial direction. When a multilayer slot is used, the reluctance torque can be increased. The number of layers of the multilayer slot is not limited, but it is preferable that the number of layers is two or three because compatibility between the characteristics of the synchronous machine and productivity can be achieved.

《異方性ボンド磁石》
ロータコアのスロットに充填成形される異方性ボンド磁石は、異方性磁石粒子とバインダ樹脂からなる。異方性磁石粒子は、その種類を問わないが、少なくともその一部が高性能な希土類異方性磁石粒子であると好ましい。希土類異方性磁石粒子は、例えば、Nd−Fe−B系磁石粒子、Sm−Fe−N系磁石粒子、Sm−Co系磁石粒子等であると好ましい。異方性磁石粒子は、一種のみならず複数種からなってもよい。複数種の磁石粒子は、成分組成が異なるものに限らず、粒径分布が異なるものでもよい。例えば、本発明に係る異方性磁石粒子は、Nd−Fe−B系磁石の粗粉と微粉の混合粉末からなってもよいし、Nd−Fe−B系磁石の粗粉とSm−Fe−N系磁石の微粉の混合粉末からなってもよい。このような混合粉末を用いることにより、ボンド磁石内における磁石粒子の充填率を向上させることができ、ボンド磁石の高磁束密度化ひいてはロータの高性能化とコンパクト化の両立を図ることが可能となる。なお、本発明に係るボンド磁石は、各種の等方性磁石粒子やフェライト磁石粒子等を混在させたものでもよい。
《Anisotropic bonded magnet》
The anisotropic bonded magnet that is filled in the slot of the rotor core is made of anisotropic magnet particles and a binder resin. The type of anisotropic magnet particles is not limited, but at least a part of them is preferably high-performance rare earth anisotropic magnet particles. The rare earth anisotropic magnet particles are preferably Nd—Fe—B based magnet particles, Sm—Fe—N based magnet particles, Sm—Co based magnet particles, and the like. The anisotropic magnet particles may be composed of not only one type but also a plurality of types. The plural types of magnet particles are not limited to those having different component compositions, but may have different particle size distributions. For example, the anisotropic magnet particles according to the present invention may be composed of a mixed powder of coarse powder and fine powder of Nd-Fe-B magnet, or coarse powder of Nd-Fe-B magnet and Sm-Fe-. It may consist of a mixed powder of fine powder of N-based magnet. By using such a mixed powder, the filling rate of magnet particles in the bonded magnet can be improved, and it is possible to achieve both higher magnetic flux density of the bonded magnet and, consequently, higher performance and compactness of the rotor. Become. The bonded magnet according to the present invention may be a mixture of various isotropic magnet particles, ferrite magnet particles, and the like.

バインダ樹脂には、ゴムを含む公知の材料を用いることができる。例えば、ポリエチレン、ポリプロピレン、ポリスチレン、アクリロニトリル/スチレン樹脂、アクリロニトリル/ブタジエン/スチレン樹脂、メタクリル樹脂、塩化ビニル、ポリアミド、ポリアセタール、ポリエチレンテレフタレート、超高分子量ポリエチレン、ポリブチレンテレフタレート、メチルペンテン、ポリカーボネイト、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、液晶ポリマー、ポリテトラフロロエチレン、ポリエーテルイミド、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリアミドイミド等の熱可塑性樹脂を用いると好ましい。またエポキシ樹脂、不飽和ポリエステル樹脂、アミノ樹脂、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、尿素樹脂、メラミン樹脂、ユリア樹脂、ジリアルフタレート樹脂、ポリウレタン等の熱硬化性樹脂も適宜用いることができる。   As the binder resin, known materials including rubber can be used. For example, polyethylene, polypropylene, polystyrene, acrylonitrile / styrene resin, acrylonitrile / butadiene / styrene resin, methacrylic resin, vinyl chloride, polyamide, polyacetal, polyethylene terephthalate, ultrahigh molecular weight polyethylene, polybutylene terephthalate, methylpentene, polycarbonate, polyphenylene sulfide, It is preferable to use a thermoplastic resin such as polyetheretherketone, liquid crystal polymer, polytetrafluoroethylene, polyetherimide, polyarylate, polysulfone, polyethersulfone, and polyamideimide. Also, thermosetting resins such as epoxy resin, unsaturated polyester resin, amino resin, phenol resin, polyamide resin, polyimide resin, polyamideimide resin, urea resin, melamine resin, urea resin, direal phthalate resin, polyurethane, etc. should be used as appropriate. Can do.

スロット内における異方性ボンド磁石の充填成形は、射出成形やトランスファ成形、圧縮成形によりなされる。射出成形及びトランスファ成形は、例えば、異方性磁石粒子とバインダ樹脂からなる原料ペレット等を加熱溶融させた溶融混合物を、配向磁場を印加したスロットへ充填した後、冷却固化させてなされる。圧縮成形は、例えば、異方性磁石粒子とバインダ樹脂からなる原料プリフォーム等を、スロットで加熱溶融させて磁場中成形した後に冷却固化させてなされる。成形条件は適宜調整されるが、例えば射出成形を行う場合なら、異方性磁石粒子のキュリー点未満である280〜310℃程度に加熱された溶融混合物をスロットへ射出充填した後、140〜160℃程度に冷却固化してスロット内に異方性ボンド磁石が形成される。なお、バインダ樹脂に上述の熱硬化性樹脂を用いた場合は、冷却固化に換えて、もしくは冷却固化後に加熱固化(キュア処理)するとよい。   Filling molding of the anisotropic bonded magnet in the slot is performed by injection molding, transfer molding, or compression molding. The injection molding and transfer molding are performed, for example, by filling a molten mixture obtained by heating and melting raw material pellets made of anisotropic magnet particles and a binder resin into a slot to which an orientation magnetic field is applied, and then cooling and solidifying the mixture. The compression molding is performed, for example, by heating and melting a raw material preform made of anisotropic magnet particles and a binder resin in a slot and molding in a magnetic field, followed by cooling and solidification. The molding conditions are adjusted as appropriate. For example, in the case of performing injection molding, the molten mixture heated to about 280 to 310 ° C., which is less than the Curie point of the anisotropic magnet particles, is injected and filled into the slots, and then 140 to 160 An anisotropic bonded magnet is formed in the slot by solidifying by cooling to about ° C. In addition, when the above-mentioned thermosetting resin is used for binder resin, it is good to carry out heat solidification (curing process) after cooling solidification instead of cooling solidification.

《内包磁石型モータ(IPM)》
本明細書でいうモータには、特に断らない限り、電動機の他に発電機(ジェネレータ)も含まれる。本明細書でいうIPMには、固定子に設けたコイル(電機子巻線)へ供給する交流電流の周波数に同期して回転数が変化する本来的な同期機の他、ホール素子、ロータリエンコーダ、レゾルバ等の検出手段により検出されたロータの位置に基づいて固定子側に回転磁界を生じさせるブラシレス直流(DC)モータ等も含まれる。ちなみに、ブラシレスDCモータは、インバータに供給する直流電圧を変化させて回転数を変化させ得るので、通常の直流モータと同様に制御性に優れる。
<< Internal magnet type motor (IPM) >>
Unless otherwise specified, the motor in this specification includes a generator in addition to an electric motor. In this specification, the IPM includes a Hall element, a rotary encoder, as well as an original synchronous machine in which the number of revolutions changes in synchronization with the frequency of an alternating current supplied to a coil (armature winding) provided in a stator. Also included is a brushless direct current (DC) motor that generates a rotating magnetic field on the stator side based on the position of the rotor detected by a detecting means such as a resolver. Incidentally, since the brushless DC motor can change the rotation speed by changing the DC voltage supplied to the inverter, it is excellent in controllability like a normal DC motor.

本発明に係るIPMの用途は問わないが、例えば、電気自動車、ハイブリッド車若しくは鉄道車両等に用いられる車両駆動用モータ、エアコン、冷蔵庫若しくは洗濯機等に用いられる家電製品用モータなどに好適である。   The use of the IPM according to the present invention is not limited, but it is suitable for, for example, a motor for driving a vehicle used for an electric vehicle, a hybrid vehicle, a railway vehicle, etc., a motor for home appliances used for an air conditioner, a refrigerator, a washing machine or the like .

本発明のロータ製造装置に係る一実施例である配向金型M1の4/6カットモデルの斜視図を図1に示した。配向金型M1は、内包磁石型モータ(IPM)に用いられる円筒状の6極ロータを製造するために用いられる。具体的にいうと、ロータコアRの中央に設けたシャフト穴hの周囲に均等なピッチで配設されたスロットs1〜s6(s5およびs6と、それらに対応する他の部分は適宜、図示を省略する。)に、希土類異方性ボンド磁石を磁場中で射出成形するために用いられる。   FIG. 1 shows a perspective view of a 4/6 cut model of an orientation mold M1, which is an embodiment of the rotor manufacturing apparatus of the present invention. The orientation mold M1 is used to manufacture a cylindrical six-pole rotor used for an internal magnet type motor (IPM). More specifically, the slots s1 to s6 (s5 and s6 and other parts corresponding to them) disposed at an equal pitch around the shaft hole h provided in the center of the rotor core R are appropriately omitted. ) Is used for injection molding a rare earth anisotropic bonded magnet in a magnetic field.

なお、図示していないが、本実施例に係るロータ製造装置は、希土類異方性磁石粉末とバインダ樹脂からなるペレットを加熱溶融した溶融混合物を所定圧で射出する射出装置と、配向金型M1の上方側に配置され各スロットs1〜s6へその溶融混合物を誘導する上金型と、配向金型M1の下方側に配置され配向金型M1を支持すると共に各スロットの下方開口を閉口する下金型と、各金型の拘束(型締め)または解放をする駆動装置等を備える。なお、射出成形後のロータコアRは各金型を通じて冷却される。   Although not shown, the rotor manufacturing apparatus according to the present embodiment includes an injection apparatus that injects a molten mixture obtained by heating and melting pellets made of rare earth anisotropic magnet powder and a binder resin at a predetermined pressure, and an orientation mold M1. And an upper mold that guides the molten mixture to the slots s1 to s6, and a lower mold that is disposed on the lower side of the alignment mold M1 and supports the alignment mold M1 and closes the lower opening of each slot. A die and a driving device for restraining (clamping) or releasing each die are provided. In addition, the rotor core R after injection molding is cooled through each mold.

配向金型M1は、外径方向へ放射状に突出した6つの板状の配向翼11〜16(適宜、まとめて「配向ヨークY」という。)と、配向翼11〜16の内端壁面(内端部11a〜16a)が当接する非磁性材(ステンレス鋼等)からなる薄肉の円筒体10(収容部)と、配向翼11〜16の隣接間に配置される配向磁場源となる周方向磁石m11〜m62(適宜、まとめて「配向用永久磁石M」という。)とを備える。なお、ロータコアRは、円筒体10内に配置される。   The orientation mold M1 includes six plate-like orientation blades 11 to 16 (radially referred to as “orientation yoke Y” as appropriate) projecting radially in the outer diameter direction, and inner end wall surfaces (inside of the orientation blades 11 to 16). A thin cylindrical body 10 (accommodating portion) made of a nonmagnetic material (stainless steel or the like) with which the end portions 11a to 16a abut and a circumferential magnet serving as an orientation magnetic field source disposed adjacent to the orientation blades 11 to 16 m11 to m62 (appropriately collectively referred to as “orienting permanent magnet M”). The rotor core R is disposed in the cylindrical body 10.

周方向磁石m11〜m62は、それぞれ、配向翼11〜16の周方向の対向側面に同極を対面させて配置されている。例えば、配向翼11の周方向の両側面には周方向磁石m11と周方向磁石m12のS極がそれぞれ接しており、配向翼12の周方向の両側面には周方向磁石m21と周方向磁石m22のN極がそれぞれ接している(図2参照)。また、配向翼の隣接間にある永久磁石同士(例えば、周方向磁石m12と周方向磁石m21)は、異極(N極とS極)を接して配置されている。このようにして各配向翼11〜16の間に、各周方向磁石m11〜m62が実質的に隙間無く装填された状態となっている。ちなみに本実施例に係る配向用永久磁石Mは全て希土類焼結磁石である。   The circumferential magnets m11 to m62 are arranged with the same poles facing opposite circumferential sides of the orientation blades 11 to 16, respectively. For example, the S poles of the circumferential magnet m11 and the circumferential magnet m12 are in contact with both circumferential sides of the orientation blade 11, and the circumferential magnet m21 and the circumferential magnet are placed on both circumferential sides of the orientation blade 12. The N poles of m22 are in contact with each other (see FIG. 2). Moreover, the permanent magnets (for example, the circumferential magnet m12 and the circumferential magnet m21) between adjacent orientation blades are arranged in contact with different polarities (N pole and S pole). In this way, the circumferential magnets m11 to m62 are loaded between the orientation blades 11 to 16 with substantially no gap. Incidentally, all the permanent magnets M for orientation according to this embodiment are rare earth sintered magnets.

ところで、配向翼11〜16は、図1の断面図から明らかなように、内端部11a〜16aから拡径方向に沿って、軸方向幅(高さ)が一次的(直線的)に大きくなるテーパ状であると共に、周方向幅が小さくなる尖塔状である。配向翼11〜16の軸方向端面は、外周側から内周側にかけて傾斜した平坦面(テーパ面)となっている。なお、配向翼11〜16の内端部11a〜16aの高さ(Yi)は、円筒体10と同じ高さとなっているが、ロータコアRの軸方向幅(Ri)よりは、25%(100×(Yi−Ri)/Ri)大きくなっている。   By the way, as is clear from the cross-sectional view of FIG. 1, the orientation blades 11 to 16 have an axial width (height) that is primarily (linearly) increased from the inner end portions 11 a to 16 a along the diameter increasing direction. And a steeple shape with a reduced circumferential width. The axial end surfaces of the orientation blades 11 to 16 are flat surfaces (tapered surfaces) inclined from the outer peripheral side to the inner peripheral side. In addition, although the height (Yi) of the inner end parts 11a to 16a of the orientation blades 11 to 16 is the same height as the cylindrical body 10, it is 25% (100%) from the axial width (Ri) of the rotor core R. X (Yi-Ri) / Ri) It is large.

周方向磁石m11〜m62の軸方向両端面も、外周側から内周側にかけて傾斜した平坦面(テーパ面)となっており、配向翼11〜16の軸方向両端面と段差無く滑らかに接続されている。なお、配向翼11〜16および周方向磁石m11〜m62の各軸方向端面は、製作(加工)を容易とするために平坦面としたが、外周側から内周側にかけて傾斜した円錐曲面状等にしてもよい。いずれにしても、周方向磁石m11〜m62から供給された磁束は、配向翼11〜16を介して収集され、内端部11a〜16aで集磁されて、ロータコアRの各スロットs1〜s6へ配向磁場として印加される。この様子を図3に示した。   Both end surfaces in the axial direction of the circumferential magnets m11 to m62 are also flat surfaces (tapered surfaces) inclined from the outer peripheral side to the inner peripheral side, and are smoothly connected to the both end surfaces in the axial direction of the orientation blades 11 to 16 without any step. ing. The axial end surfaces of the orientation blades 11 to 16 and the circumferential magnets m11 to m62 are flat surfaces for ease of manufacturing (processing), but conical curved surfaces inclined from the outer peripheral side to the inner peripheral side, etc. It may be. In any case, the magnetic flux supplied from the circumferential magnets m11 to m62 is collected through the orientation blades 11 to 16, collected by the inner end portions 11a to 16a, and supplied to the slots s1 to s6 of the rotor core R. Applied as an orientation magnetic field. This situation is shown in FIG.

なお、配向翼11〜16の外径側先端部が、周方向磁石m11〜m62の外周面から突出した形状となっているのは、配向ヨークYの組付性の確保(位置決め)のためである。また、本実施例では、配向翼11〜16の軸方向端面上に配向用永久磁石(軸方向磁石)を配置していない場合を示したが、配向翼11〜16の軸方向端面を覆うような軸方向磁石を配置すれば、供給磁束量の増加と漏洩磁束の低減により、配向磁場のさらなる強化も図れる。その際、配向翼11〜16の周方向側面に配置した周方向磁石の磁極を考慮して、配向翼11〜16の各面に配向用永久磁石の同極を対面させるとよい。この点は後述する配向金型M2についても同様である。   In addition, the outer diameter side tips of the alignment blades 11 to 16 protrude from the outer peripheral surface of the circumferential magnets m11 to m62 in order to ensure (positioning) the assembly of the alignment yoke Y. is there. Further, in the present embodiment, the case where the orientation permanent magnets (axial magnets) are not arranged on the axial end faces of the orientation blades 11 to 16 is shown, but the axial end faces of the orientation blades 11 to 16 are covered. If an axial magnet is arranged, the orientation magnetic field can be further strengthened by increasing the amount of supplied magnetic flux and reducing the leakage magnetic flux. At that time, in consideration of the magnetic poles of the circumferential magnets arranged on the circumferential side surfaces of the orientation blades 11 to 16, the same polarity of the orientation permanent magnets may be made to face each surface of the orientation blades 11 to 16. The same applies to the orientation mold M2 described later.

軸方向磁石は、配向翼11〜16の軸方向端面のみを覆う形状(大きさ)でもよいが、周方向磁石m11〜m62の軸方向端面をも覆う形状としてもよい。後者の場合、周方向磁石m11〜m62の磁極と同様に、各配向翼11〜16へ供給される磁束量の増大と漏洩磁束の低減を図る向きとするとよい。なお、周方向磁石m11〜m62は、軸方向に延長して、それらの軸方向端面が配向翼11〜16の軸方向端面を超えるものでもよい。いずれにしても、配向金型M1の軸方向端面が連続した平坦面となるように、配向用永久磁石Mと配向ヨークYの各形状が選択されると、配向金型M1の射出成形装置への取付性等が向上して好ましい。この点も、後述する配向金型M2について同様である。   Although the shape (size) which covers only the axial direction end surface of the orientation blades 11-16 may be sufficient as an axial magnet, it is good also as a shape which also covers the axial direction end surface of the circumferential direction magnets m11-m62. In the case of the latter, it is good to make it the direction which aims at increase of the magnetic flux supplied to each orientation blade | wing 11-16 and reduction of leakage magnetic flux similarly to the magnetic pole of the circumferential magnets m11-m62. The circumferential magnets m11 to m62 may extend in the axial direction and their axial end faces may exceed the axial end faces of the orientation blades 11 to 16. In any case, when the shapes of the permanent magnet for orientation M and the orientation yoke Y are selected so that the axial end face of the orientation die M1 is a continuous flat surface, the injection molding apparatus for the orientation die M1 is selected. This is preferable because of improved mounting properties. This also applies to the orientation mold M2 described later.

《評価》
上述した配向金型M1(第1実施例)の他に、配向用永久磁石(周方向磁石)または配向ヨーク(配向翼)の形状を変更した配向金型M2(第2実施例)と配向金型MC(比較例)を用意した。配向金型M2の4/6カットモデルの斜視図を図4Aに、配向金型MCの4/6カットモデルの斜視図を図4Bにそれぞれ示した。配向金型M2は、配向金型M1の周方向磁石m11〜m62の軸方向幅を径方向内側で延長し径方向で一定とし、配向翼の外側端部が突出しないように、軸方向端面を平坦面としたものである。配向金型MCは、さらに、その配向翼の軸方向幅を径方向内側で延長し径方向で一定(ストレート状の配向翼)とし、配向翼と周方向磁石の軸方向端面が面一となるようにしたものである。
<Evaluation>
In addition to the orientation mold M1 (first embodiment) described above, an orientation mold M2 (second embodiment) and an orientation mold in which the shape of the orientation permanent magnet (circumferential magnet) or the orientation yoke (alignment blade) is changed. A type MC (comparative example) was prepared. A perspective view of the 4/6 cut model of the orientation mold M2 is shown in FIG. 4A, and a perspective view of the 4/6 cut model of the orientation mold MC is shown in FIG. 4B. The orientation mold M2 has an axial end face so that the axial width of the circumferential magnets m11 to m62 of the orientation mold M1 is extended radially inward and constant in the radial direction so that the outer end of the orientation blade does not protrude. It is a flat surface. The alignment mold MC further extends the axial width of the alignment blade radially inward to be constant in the radial direction (straight alignment blade), and the axial end surfaces of the alignment blade and the circumferential magnet are flush with each other. It is what I did.

これら配向金型M1、M2、MCについて三次元静磁場解析(シミュレーション)を行い、ロータコアの各スロットに印加される配向磁場を評価した。一例として、各配向金型の諸元を次のようにした。ロータコアは高さ:48mm、外径:φ57.8mmとした。周方向磁石は外径:φ160mmとした。配向翼の内端部は中心角:43°の円筒側面(断面円弧状の曲面)状とした。円筒体は内径:φ58.0mm、外径:φ59.0mmとした。配向金型M1、M2の内端部の高さ(円筒体の高さ):60mm、配向金型MCの内端部の高さ:100mmとした。いずれの場合も周方向磁石の総磁石体積は1319816mmで統一した。このため配向金型M1の外端部の高さ:125mm、配向金型M2、MCの外端部の高さ:100mmとなった。配向用永久磁石には希土類焼結磁石(NMX33UH:日立金属株式会社製)、配向ヨークには鋼材(SS440:JIS)、ロータコアには無方向性電磁鋼板(35H440:JIS)、円筒体には磁性材(SKD11)を用いることとした。 A three-dimensional static magnetic field analysis (simulation) was performed on these orientation molds M1, M2, and MC, and the orientation magnetic field applied to each slot of the rotor core was evaluated. As an example, the specifications of each orientation mold were as follows. The rotor core had a height of 48 mm and an outer diameter of φ57.8 mm. The circumferential magnet had an outer diameter of φ160 mm. The inner end portion of the orientation blade was formed into a cylindrical side surface (curved surface having a circular arc cross section) with a central angle of 43 °. The cylindrical body had an inner diameter: φ58.0 mm and an outer diameter: φ59.0 mm. The height of the inner end portions of the alignment molds M1 and M2 (the height of the cylindrical body): 60 mm, and the height of the inner end portion of the alignment mold MC: 100 mm. In any case, the total magnet volume of the circumferential magnets was unified at 1319816 mm 3 . For this reason, the height of the outer end portion of the alignment mold M1 was 125 mm, and the height of the outer end portions of the alignment mold M2 and MC was 100 mm. Rare earth sintered magnets (NMX33UH: manufactured by Hitachi Metals) for permanent magnets for orientation, steel materials (SS440: JIS) for orientation yokes, non-oriented electrical steel sheets (35H440: JIS) for rotor cores, and magnetism for cylindrical bodies The material (SKD11) was used.

このような条件下で解析したところ、スロットに印加される配向磁場の平均値は、配向金型M1:1.23T、配向金型M2:1.24T、配向金型MC:1.20Tとなった。このように配向金型M1と配向金型MCの比較から次のことがわかる。配向ヨークを構成する配向翼をテーパ状とすることにより、ヨーク使用量の減少にもかかわらず、ヨーク形状による集磁効果により、同一サイズの配向装置により配向磁場(単位金型占有体積当たりの配向磁場)を引き上げることができた。   When analyzed under such conditions, the average value of the orientation magnetic field applied to the slot is the orientation mold M1: 1.23T, the orientation mold M2: 1.24T, and the orientation mold MC: 1.20T. It was. Thus, the following can be understood from the comparison between the oriented mold M1 and the oriented mold MC. By making the orientation blades that make up the orientation yoke into a tapered shape, the orientation magnetic field (orientation per unit mold occupied volume) is achieved by an orientation device of the same size due to the magnetism collecting effect due to the yoke shape, despite the reduction in the amount of yoke used. (Magnetic field) could be raised.

また、磁石使用体積を一定のまま、配向ヨークを構成する配向翼と周方向磁石を同一のテーパ状とすることにより、同様にヨーク使用量の減少にもかかわらず、ヨーク形状による集磁効果により、単位金型占有体積当たりの配向磁場を引き上げることができた。   In addition, by making the orientation blades and circumferential magnets that make up the orientation yoke the same taper shape while keeping the magnet use volume constant, it is also possible to reduce the amount of yoke use by the magnetism collecting effect due to the yoke shape. The orientation magnetic field per unit mold occupied volume could be increased.

このように配向金型M1、M2と配向金型MCの比較から、配向ヨークを構成する配向翼をテーパ状とすることにより、ロータコアのスロットへ印加できる配向磁場を高め得ることが明らかとなった。また、配向金型M1と配向金型M2の比較から、配向翼をテーパ状とすると共に、周方向磁石を軸方向幅(高さ)の一定な柱状とすることにより、配向金型のコンパクト化と配向磁場の強化を両立させ得ることも明らかとなった。   Thus, from comparison between the alignment dies M1 and M2 and the alignment dies MC, it became clear that the alignment magnetic field that can be applied to the slots of the rotor core can be increased by tapering the alignment blades that constitute the alignment yoke. . From the comparison between the alignment mold M1 and the alignment mold M2, the alignment blade is tapered, and the circumferential magnet is formed into a columnar shape having a constant axial width (height), thereby making the alignment mold compact. It has also been clarified that the orientation magnetic field can be strengthened at the same time.

M1 配向金型(IPMの製造装置)
10 円筒体
11〜16 配向翼
11a〜16a 内端部
R ロータコア
s1〜s6 スロット
m11〜m22 永久磁石(配向用永久磁石)
M1 orientation mold (IPM production equipment)
DESCRIPTION OF SYMBOLS 10 Cylindrical body 11-16 Orientation blade | wing 11a-16a Inner edge part R Rotor core s1-s6 Slot m11-m22 Permanent magnet (Permanent magnet for orientation)

Claims (12)

回転中心軸の周囲に複数均等に配設されたスロットを有するロータコアを収容する円筒状の収容部と、
該スロットへ印加する配向磁場を誘導する配向ヨークと、
該配向磁場の起磁源である配向用永久磁石とを備え、
異方性磁石粒子とバインダ樹脂からなる異方性ボンド磁石が該ロータコアのスロット内に配向磁場中で充填成形されてなる内包磁石型モータ用ロータの製造装置であって、
前記配向ヨークは、該収容部の外周側に配設されると共に周方向の均等な複数位置から径方向へ放射状に延在する板状の配向翼からなり、
前記配向用永久磁石は、該配向翼の周方向側面の両側に同じ磁極を対面させた一対の周方向磁石を該配向翼毎に備え、
該配向翼は、該収容部側にある径方向の内端部よりも径方向の外側で軸方向幅が拡大していることを特徴とする内包磁石型モータ用ロータの製造装置。
A cylindrical accommodating portion that accommodates a rotor core having a plurality of evenly arranged slots around the rotation center axis;
An alignment yoke for inducing an alignment magnetic field applied to the slot;
An orientation permanent magnet that is a magnetomotive source of the orientation magnetic field,
An apparatus for manufacturing a rotor for an encapsulated magnet type motor, in which an anisotropic bonded magnet made of anisotropic magnet particles and a binder resin is filled in an orientation magnetic field in a slot of the rotor core,
The orientation yoke comprises plate-like orientation blades that are disposed on the outer peripheral side of the housing portion and extend radially from a plurality of uniform circumferential positions in the radial direction,
The orientation permanent magnet includes a pair of circumferential magnets that face the same magnetic poles on both sides of the circumferential side surface of the orientation blade for each orientation blade.
An apparatus for manufacturing a rotor for an internal magnet type motor, wherein the orientation blade has an axial width that is larger outside in a radial direction than an inner end portion in a radial direction on the housing portion side.
前記配向翼の軸方向幅は、前記内端部から径方向の所定位置まで単調増加している請求項1に記載の内包磁石型モータ用ロータの製造装置。   2. The apparatus for manufacturing a rotor for an internal magnet type motor according to claim 1, wherein an axial width of the orientation blade monotonously increases from the inner end portion to a predetermined position in a radial direction. 前記配向翼は、前記軸方向幅が前記内端部から径方向の外端部まで一定割合で増加するテーパ状である請求項2に記載の内包磁石型モータ用ロータの製造装置。   The said orientation blade | wing is a manufacturing apparatus of the rotor for internal magnet type motors of Claim 2 with which the said axial width | variety is a taper shape which increases in a fixed ratio from the said inner end part to a radial direction outer end part. 前記配向翼は、周方向幅が内端部から径方向の外側にかけて減少している尖塔状である請求項1〜3のいずれかに記載の内包磁石型モータ用ロータの製造装置。   The apparatus for manufacturing a rotor for an internal magnet motor according to any one of claims 1 to 3, wherein the orientation blade has a spire shape in which a circumferential width decreases from an inner end portion to a radially outer side. 前記周方向磁石は、軸方向幅が一定である請求項1〜4のいずれかに記載の内包磁石型モータ用ロータの製造装置。   The apparatus for manufacturing a rotor for an internal magnet type motor according to claim 1, wherein the circumferential magnet has a constant axial width. 前記周方向磁石の軸方向幅は、前記配向翼の軸方向幅以上である請求項1〜4に記載の内包磁石型モータ用ロータの製造装置。   The apparatus for manufacturing a rotor for an internal magnet type motor according to claim 1, wherein an axial width of the circumferential magnet is equal to or greater than an axial width of the orientation blade. 前記配向翼の周方向側面の両側に配置される周方向磁石から供給される総磁束量は、該配向翼の内端部における飽和磁化以下である請求項1〜6のいずれかに記載の内包磁石型モータ用ロータの製造装置。   The inclusion according to any one of claims 1 to 6, wherein a total amount of magnetic flux supplied from a circumferential magnet disposed on both sides of a circumferential side surface of the orientation blade is equal to or less than a saturation magnetization at an inner end portion of the orientation blade. Magnet type motor rotor manufacturing equipment. 前記配向用永久磁石は、さらに、前記配向翼の周方向側面に対面している磁極と同じ磁極を該配向翼の軸方向側面の両側に対面させた一対の軸方向磁石を該配向翼毎に備える請求項1〜7のいずれかに記載の内包磁石型モータ用ロータの製造装置。   The permanent magnet for orientation further includes a pair of axial magnets each having the same magnetic pole as the magnetic pole facing the circumferential side surface of the orientation blade on both sides of the axial side surface of the orientation blade for each orientation blade. The manufacturing apparatus of the rotor for internal magnet type motors in any one of Claims 1-7 provided. 前記異方性磁石粒子は、希土類異方性磁石粒子を含む請求項1〜8のいずれかに記載の内包磁石型モータ用ロータの製造装置。   The said anisotropic magnet particle is a manufacturing apparatus of the rotor for internal magnet type motors in any one of Claims 1-8 containing rare earth anisotropic magnet particle. 請求項1〜9のいずれかに記載の製造装置を用いた内包磁石型モータ用ロータの製造方法であって、
前記収容部内に前記ロータコアを緩挿して収容する収容工程と、
該収容部に収容された該ロータコアのスロット内に前記配向磁場を印加しつつ前記異方性磁石粒子と前記バインダ樹脂の混合物を加圧充填する充填工程と、
該充填工程後のロータコアを該収容部から取り出す取出工程と、
を備えることを特徴とする内包磁石型モータ用ロータの製造方法。
A method for manufacturing a rotor for an internal magnet type motor using the manufacturing apparatus according to claim 1,
A housing step of loosely inserting and housing the rotor core in the housing portion;
A filling step of pressurizing and filling the mixture of the anisotropic magnet particles and the binder resin while applying the orientation magnetic field into the slot of the rotor core housed in the housing portion;
Taking out the rotor core after the filling step from the accommodating portion;
A method for manufacturing a rotor for an internal magnet type motor, comprising:
円筒状または円柱状の磁石部材を収容する円筒状の収容部と、
該磁石部材へ印加する磁場を誘導するヨークと、
該磁場の起磁源となる永久磁石と、
を備える磁石部材の製造装置であって、
前記ヨークは、該収容部の外周側に配設されると共に周方向の均等な複数位置から径方向へ放射状に延在する板状の翼片からなり、
前記永久磁石は、該翼片の周方向側面の両側に同じ磁極を対面させた一対の周方向磁石を該翼片毎に備え、
該翼片は、該収容部側にある径方向の内端部よりも径方向の外側で軸方向幅が拡大していることを特徴とする磁石部材の製造装置。
A cylindrical accommodating portion for accommodating a cylindrical or columnar magnet member;
A yoke for inducing a magnetic field applied to the magnet member;
A permanent magnet serving as a magnetomotive source of the magnetic field;
An apparatus for manufacturing a magnet member comprising:
The yoke is composed of a plate-shaped wing piece that is disposed on the outer peripheral side of the accommodating portion and extends radially from a plurality of uniform circumferential positions in a radial direction,
The permanent magnet is provided with a pair of circumferential magnets that face the same magnetic poles on both sides of the circumferential side surface of the blade piece for each blade piece,
The apparatus for manufacturing a magnet member, wherein the blade piece has an axial width that is larger on the outer side in the radial direction than the inner end portion in the radial direction on the housing portion side.
請求項11に記載の製造装置を用いた磁石部材の製造方法であって、
前記収容部内に前記磁石部材を緩挿して収容する収容工程と、
該収容部に収容された該磁石部材に磁場を印加して配向または着磁を行う磁場印加工程と、
を備えることを特徴とする磁石部材の製造方法。
A method for manufacturing a magnet member using the manufacturing apparatus according to claim 11,
A housing step of loosely inserting and housing the magnet member in the housing portion;
A magnetic field application step of applying a magnetic field to the magnet member accommodated in the accommodating portion to perform orientation or magnetization;
A method for manufacturing a magnet member, comprising:
JP2015056939A 2015-03-19 2015-03-19 Manufacturing device for magnet member, and manufacturing method thereof Pending JP2016178784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015056939A JP2016178784A (en) 2015-03-19 2015-03-19 Manufacturing device for magnet member, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015056939A JP2016178784A (en) 2015-03-19 2015-03-19 Manufacturing device for magnet member, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2016178784A true JP2016178784A (en) 2016-10-06

Family

ID=57069409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015056939A Pending JP2016178784A (en) 2015-03-19 2015-03-19 Manufacturing device for magnet member, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2016178784A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200105882A (en) * 2017-12-30 2020-09-09 에이비비 슈바이쯔 아게 How to make an electric machine
EP3923305A1 (en) * 2020-06-10 2021-12-15 General Electric Renovables España S.L. Magnetizing permanent magnets

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241319A (en) * 1986-04-12 1987-10-22 Canon Inc Multipolar molding orientation device
JP2013143791A (en) * 2012-01-06 2013-07-22 Aichi Steel Works Ltd Magnet-inclusion type synchronous machine and rotor thereof
JP2014121116A (en) * 2012-12-13 2014-06-30 Jtekt Corp Magnetization device and magnetization method
JP2014207848A (en) * 2013-03-21 2014-10-30 株式会社ジェイテクト Magnet embedded rotor, manufacturing method of the same, and orientation magnetization device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241319A (en) * 1986-04-12 1987-10-22 Canon Inc Multipolar molding orientation device
JP2013143791A (en) * 2012-01-06 2013-07-22 Aichi Steel Works Ltd Magnet-inclusion type synchronous machine and rotor thereof
JP2014121116A (en) * 2012-12-13 2014-06-30 Jtekt Corp Magnetization device and magnetization method
JP2014207848A (en) * 2013-03-21 2014-10-30 株式会社ジェイテクト Magnet embedded rotor, manufacturing method of the same, and orientation magnetization device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200105882A (en) * 2017-12-30 2020-09-09 에이비비 슈바이쯔 아게 How to make an electric machine
JP2021509004A (en) * 2017-12-30 2021-03-11 アーベーベー・シュバイツ・アーゲーABB Schweiz AG How to make an electric machine
JP7034298B2 (en) 2017-12-30 2022-03-11 アーベーベー・シュバイツ・アーゲー How to make an electric machine
KR102634995B1 (en) 2017-12-30 2024-02-13 에이비비 슈바이쯔 아게 How to manufacture electrical machines
EP3923305A1 (en) * 2020-06-10 2021-12-15 General Electric Renovables España S.L. Magnetizing permanent magnets
US11923117B2 (en) 2020-06-10 2024-03-05 General Electric Renovables Espana, S.L. Magnetizing permanent magnets

Similar Documents

Publication Publication Date Title
US11165315B2 (en) Method and apparatus for manufacturing interior permanent magnet-type inner rotor
US9893571B2 (en) Permanent magnet type electric rotating machine having main magnets and auxiliary magnets, and manufacturing method thereof
WO2013103118A1 (en) Internal magnet-type synchronous machine and rotor therefor
EP3732774B1 (en) Method for manufacturing an electrical machine
JP2017121118A (en) Method of manufacturing anisotropic magnet, method of manufacturing anisotropic soft magnetic material and method of manufacturing rotor of dynamo-electric machine
JP4029679B2 (en) Bond magnet for motor and motor
JP4701641B2 (en) Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
JP5708745B2 (en) Apparatus for manufacturing rotor for internal magnet type motor and method for manufacturing the same
JP7275707B2 (en) MAGNET MEMBER MANUFACTURING APPARATUS AND MANUFACTURING METHOD THEREOF
JP2016178784A (en) Manufacturing device for magnet member, and manufacturing method thereof
JP2004023085A (en) Method of orienting anisotropically bonded magnet for motor
JP6107299B2 (en) Method for manufacturing outer rotor of internal magnet type synchronous machine
JP2017070031A (en) Rotor
JP5942178B1 (en) Electric motor and electric device including the same
JP2017212863A (en) Pole-oriented anisotropic injection molding bond magnet and manufacturing method thereof
JP4569139B2 (en) Rotor for IPM motor, method for manufacturing rotor for IPM motor using the same, and IPM motor therefor.
JP2013121274A (en) Rotor structure of rotary electric machine
JP2013123318A (en) Ring magnet, method of manufacturing ring magnet, and motor
CN112688516A (en) Permanent magnet surface-mounted stator permanent magnet type axial magnetic field permanent magnet motor
JP2017034763A (en) Manufacturing device for magnet-inclusion type rotor
JP5975123B2 (en) Internal magnet type synchronous machine and its rotor
JP7394427B1 (en) Internal magnet type synchronous machine and its rotor
JP7471580B1 (en) A rotor, a stator, an embedded magnet type synchronous machine including the rotor and the stator, and a manufacturing method of the rotor core and the stator core
US20240039349A1 (en) Rotary electric machine and manufacturing method therefor
JP6424714B2 (en) Device and method for manufacturing outer rotor for internal magnet type motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190326