JP2016168617A - Arc-welding control method - Google Patents
Arc-welding control method Download PDFInfo
- Publication number
- JP2016168617A JP2016168617A JP2015050822A JP2015050822A JP2016168617A JP 2016168617 A JP2016168617 A JP 2016168617A JP 2015050822 A JP2015050822 A JP 2015050822A JP 2015050822 A JP2015050822 A JP 2015050822A JP 2016168617 A JP2016168617 A JP 2016168617A
- Authority
- JP
- Japan
- Prior art keywords
- short
- period
- welding
- circuit
- feeding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 149
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000002441 reversible effect Effects 0.000 claims description 76
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 230000033001 locomotion Effects 0.000 abstract description 4
- 239000011324 bead Substances 0.000 abstract description 3
- 230000001788 irregular Effects 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 5
- 230000002035 prolonged effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Landscapes
- Arc Welding Control (AREA)
Abstract
Description
本発明は、溶接ワイヤの送給を、溶接対象物の方向に行う正送と、正送とは逆方向に行う逆送とに交互に、所定の周期と所定の振幅で周期的に変化させたワイヤ送給速度で送給し、アーク期間と短絡期間とを繰り返して溶接を行う消耗電極式のアーク溶接制御方法に関する。 According to the present invention, feeding of the welding wire is periodically changed at a predetermined cycle and a predetermined amplitude alternately between a normal feeding performed in the direction of the welding object and a reverse feeding performed in a direction opposite to the normal feeding. The present invention relates to a consumable electrode type arc welding control method in which welding is performed by feeding at a wire feeding speed and repeating an arc period and a short-circuit period.
近年、溶接中に発生するスパッタの低減を目的として、溶接ワイヤの送給が正送と逆送とを繰り返し、アーク期間と短絡期間とを交互に発生させて溶接を行う消耗電極式アーク溶接が実用化されている。 In recent years, for the purpose of reducing spatter generated during welding, consumable electrode type arc welding has been performed in which welding wire feeding is repeated between forward feeding and reverse feeding, and welding is performed by alternately generating an arc period and a short-circuit period. It has been put into practical use.
図5は、正送と逆送とを繰り返し、アーク期間と短絡期間とを交互に発生させて溶接を行う従来技術のアーク溶接制御方法を示す出力波形図である。同図(A)はワイヤ送給速度Wf、同図(B)は溶接電流Aw、同図(C)は溶接電圧Vwの時間変化を示している。 FIG. 5 is an output waveform diagram showing a conventional arc welding control method in which welding is performed by alternately generating an arc period and a short-circuit period by repeating forward feeding and reverse feeding. FIG. 4A shows the wire feed speed Wf, FIG. 4B shows the welding current Aw, and FIG. 4C shows the time variation of the welding voltage Vw.
同図において、時刻t1から時刻t2までの短絡期間では、時刻t1で短絡が発生すると、ワイヤ送給速度Wfは、正送であるワイヤ送給速度Wfaから、逆送であるワイヤ送給速度Wfsに向かって移行する。これにより、溶接ワイヤの送給は、逆送となる。また、短絡期間には、溶接電流Awは、電流制御により時間の経過に伴って増加する。 In the figure, during the short circuit period from time t1 to time t2, when a short circuit occurs at time t1, the wire feed speed Wf is changed from the wire feed speed Wfa which is forward feed to the wire feed speed Wfs which is reverse feed. Transition towards. As a result, the welding wire is fed backward. In addition, during the short circuit period, the welding current Aw increases with time due to current control.
上述したように、短絡期間に溶接ワイヤの送給を逆送にすることで、短絡期間に送給される溶接ワイヤの送給量を減少する。これにより、一定送給で溶接ワイヤを送給する場合と比べ、機械的に短絡を開放できるため、短絡時の電流を低減でき、短絡開放時に発生するスパッタ量を低減できる(例えば、特許文献1参照)。 As described above, the feeding amount of the welding wire fed during the short circuit period is reduced by reversing the feeding of the welding wire during the short circuit period. Thereby, compared with the case where the welding wire is fed at a constant feed, the short circuit can be mechanically opened, so that the current at the time of the short circuit can be reduced, and the amount of spatter generated when the short circuit is opened can be reduced (for example, Patent Document 1). reference).
上述した従来のアーク溶接制御方法における溶接ワイヤの送給制御を行うとスパッタの低減に繋がるが、溶融池の不規則な運動、アーク長の変動等の外乱による短絡周期の乱れを防止することができない。短絡周期の乱れにより短絡状態が長時間続くと、短絡期間中、溶接ワイヤの送給は逆送を続け、その間溶接ワイヤの送給量が低減し、凹凸のある不均一なビードの形成につながる。また、CO2溶接では、特にアーク期間のアーク発生時直後と短絡発生時直前に極めて短時間での短絡(以降、微小短絡と表現する)によるスパッタが発生しやすい。短絡周期が乱れると、溶融池の挙動が大きくなるため微小短絡が発生しやすくなり、微小短絡によるスパッタが増加する課題がある。 Although the welding wire feed control in the conventional arc welding control method described above leads to a reduction in spatter, it is possible to prevent disturbance of the short-circuit cycle due to disturbance such as irregular movement of the molten pool and fluctuation of the arc length. Can not. If the short-circuit condition continues for a long time due to the short-circuit cycle, the welding wire feed continues to reverse during the short-circuit period, during which the welding wire feed rate is reduced, leading to the formation of uneven uneven beads. . Further, in CO2 welding, spatter due to a short-circuit in a very short time (hereinafter referred to as a micro short-circuit) is likely to occur particularly immediately after the occurrence of an arc in the arc period and immediately before the occurrence of a short-circuit. When the short-circuit cycle is disturbed, the behavior of the molten pool becomes large, so that a short-circuit is likely to occur, and there is a problem that spatter due to the short-circuit increases.
溶接ワイヤの送給を、溶接対象物の方向に行う正送と正送とは逆方向に行う逆送とに交互に、所定の周期と所定の振幅で周期的に変化させたワイヤ送給速度で送給し、アーク期間と短絡期間とを繰り返して溶接を行う消耗電極式のアーク溶接制御方法であって、短絡期間が予め定められた所定期間以上継続した場合には、ワイヤ送給速度を、所定期間に到達した時点の逆送のワイヤ送給速度よりも絶対値の大きな値に制御する。また、溶接ワイヤの送給を、溶接対象物の方向に行う正送と正送とは逆方向に行う逆送とに交互に、所定の周期と所定の振幅で周期的に変化させたワイヤ送給速度で送給し、アーク期間と短絡期間とを繰り返して溶接を行う消耗電極式のアーク溶接制御方法であって、直前の短絡期間に比べて、短絡を開始してからの短絡期間が長くなった場合、逆送のワイヤ送給速度を直前の短絡期間終了時の逆送のワイヤ送給速度より絶対値の大きな値に制御する。
また、溶接ワイヤの送給を、溶接対象物の方向に行う正送と正送とは逆方向に行う逆送とに交互に、所定の周期と所定の振幅で周期的に変化させたワイヤ送給速度で送給し、アーク期間と短絡期間とを繰り返して溶接を行う消耗電極式のアーク溶接制御方法であって、
前の一つ以上の短絡期間の平均値に比べて、短絡を開始してからの短絡期間が長くなった場合、逆送のワイヤ送給速度を前の短絡期間終了時の逆送の平均速度より絶対値の大きな値に制御する。
また、予め短絡期間の平均値と短絡期間終了時の逆送のワイヤ送給速度の平均速度を取得し、短絡期間の平均値以上の所定の期間を設定し、短絡を開始してからの短絡期間が所定期間より長くなった場合、逆送のワイヤ送給速度を予め取得した逆送の前記平均速度より絶対値の大きな値に制御する。
また、短絡期間が所定期間以上継続した場合には、溶接電流を、所定期間に到達した時点の溶接電流よりも大きな値に制御する。
また、短絡期間が所定期間以上継続した場合の逆送のワイヤ送給速度の傾きは、短絡期間が所定期間に到達する以前の逆送のワイヤ送給速度の傾きよりも、大きな値に制御する。
また、逆送から正送に向かうワイヤ送給速度の傾きは、前記短絡期間が前記所定期間に到達する時点から短絡開放がされる時点までの時間に応じて異なる値に制御する。
また、溶接ワイヤはアルミ、アルミ合金、銅、または銅合金等の高熱伝導率の材質である。
Wire feeding speed in which welding wire feeding is periodically changed at a predetermined cycle and a predetermined amplitude alternately between forward feeding performed in the direction of the welding object and reverse feeding performed in the opposite direction to the normal feeding. Is a consumable electrode type arc welding control method in which welding is performed by repeating an arc period and a short-circuit period, and when the short-circuit period continues for a predetermined period or longer, the wire feed speed is set to The absolute value is controlled to be larger than the reverse feed wire feed speed at the time when the predetermined period is reached. In addition, the wire feeding is performed by periodically changing the welding wire feeding at a predetermined cycle and a predetermined amplitude alternately between the forward feeding performed in the direction of the welding object and the reverse feeding performed in the reverse direction. It is a consumable electrode type arc welding control method in which welding is performed by feeding at a feed rate and repeating an arc period and a short circuit period, and the short circuit period after starting the short circuit is longer than the immediately preceding short circuit period. In this case, the reverse wire feed speed is controlled to a value having a larger absolute value than the reverse wire feed speed at the end of the immediately preceding short-circuit period.
In addition, the wire feeding is performed by periodically changing the welding wire feeding at a predetermined cycle and a predetermined amplitude alternately between the forward feeding performed in the direction of the welding object and the reverse feeding performed in the reverse direction. It is a consumable electrode type arc welding control method in which welding is performed by feeding at a feeding speed and repeating an arc period and a short-circuit period,
If the short-circuit period after the start of the short circuit becomes longer than the average value of one or more previous short-circuit periods, the reverse feed wire feed speed is set to the average reverse feed speed at the end of the previous short-circuit period. Control to a larger absolute value.
In addition, the average value of the short-circuit period and the average speed of the reverse wire feed speed at the end of the short-circuit period are obtained in advance, a predetermined period equal to or greater than the average value of the short-circuit period is set, and the short-circuit after the short-circuit is started When the period becomes longer than the predetermined period, the reverse wire feed speed is controlled to a value having a larger absolute value than the average speed of reverse feed acquired in advance.
When the short-circuit period continues for a predetermined period or longer, the welding current is controlled to a value larger than the welding current when the predetermined period is reached.
Further, the slope of the reverse wire feed speed when the short-circuit period continues for a predetermined period or more is controlled to a value larger than the slope of the reverse wire feed speed before the short-circuit period reaches the predetermined period. .
Further, the inclination of the wire feed speed from the reverse feed to the normal feed is controlled to a different value depending on the time from the time when the short-circuit period reaches the predetermined period to the time when the short-circuit is opened.
The welding wire is made of a material having high thermal conductivity such as aluminum, aluminum alloy, copper, or copper alloy.
本発明は、短絡期間が所定期間以上継続した場合に、逆送のワイヤ送給速度をより絶対値の大きな値に制御することで、早期に短絡開放へと導くことができる。短絡期間の長期化を防ぎ、短絡周期を安定化することで、凹凸を抑えた均一でフラットなビード外観が得られ、溶接品質が向上する。また微小短絡の発生も抑制でき、スパッタ発生量を低減し、安定した溶接を実現することができる。 In the present invention, when the short-circuit period continues for a predetermined period or longer, the reverse wire feed speed is controlled to a value having a larger absolute value, so that the short-circuit can be opened early. By preventing the lengthening of the short circuit period and stabilizing the short circuit period, a uniform and flat bead appearance with reduced irregularities can be obtained, and the welding quality is improved. Moreover, generation | occurrence | production of a micro short circuit can also be suppressed, the amount of spatter generations can be reduced, and stable welding can be realized.
以下、本発明の実施の形態について、図1から図4を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.
(実施の形態1)
まず、本実施の形態のアーク溶接制御方法を行うアーク溶接装置について、図2を用いて説明する。図2は、アーク溶接装置の概略構成を示す図である。アーク溶接装置20は、消耗電極である溶接ワイヤ22と被溶接物21との間で、アーク状態と短絡状態とを繰り返して溶接を行う。
アーク溶接装置20は、主変圧器2と、一次側整流部3と、スイッチング部4と、DCL(リアクトル)5と、二次側整流部6と、溶接電流検出部7と、溶接電圧検出部8と、短絡検出部9と、出力制御部12と、ワイヤ送給速度制御部16を有している。
(Embodiment 1)
First, an arc welding apparatus that performs the arc welding control method of the present embodiment will be described with reference to FIG. FIG. 2 is a diagram showing a schematic configuration of the arc welding apparatus. The
The
短絡検出部9は短絡時間検出部10と短絡/アーク検出部11を有している。出力制御部12は、短絡制御部13とアーク制御部14を有している。ワイヤ送給速度制御部16は、ワイヤ送給速度検出部17と、演算部18と、正送/逆送切替タイミング制御部19を有している。一次側整流部3は、アーク溶接装置20の外部にある入力電源から入力した入力電圧を整流する。スイッチング部4は、一次側整流部3の出力を溶接に適した出力に制御する。主変圧器2は、スイッチング部4の出力を溶接に適した出力に変換する。二次側整流部6は、主変圧器2の出力を整流する。DCL(リアクトル)5は、二次側整流部6の出力を溶接に適した電流に平滑する。溶接電流検出部7は、溶接電流を検出する。溶接電圧検出部8は、溶接電圧を検出する。短絡時間検出部10は溶接電圧検出部8の出力に基づいて、溶接ワイヤ22と被溶接物21とが短絡している時間を検出する。短絡/アーク検出部11は、溶接電圧検出部8の出力に基づいて、溶接状態が、溶接ワイヤ22と被溶接物21とが短絡している短絡状態であるのか、溶接ワイヤ22と被溶接物21との間でアーク23が発生しているアーク状態であるのか、を判定する。出力制御部12は、スイッチング部4に制御信号を出力して溶接出力を制御する。短絡制御部13は、短絡/アーク検出部11が短絡状態であると判定した場合に、短絡期間の溶接電流である短絡電流の制御を行う。アーク制御部14は、短絡/アーク検出部11がアーク状態であると判定した場合に、アーク期間の溶接電流であるアーク電流の制御を行う。ワイヤ送給速度制御部16は、ワイヤ送給部25を制御して溶接ワイヤ22の送給速度を制御する。ワイヤ送給速度検出部17は、ワイヤ送給速度を検出する。演算部18は、ワイヤ送給速度検出部17からの信号に基づいて、所定時間や溶接ワイヤ22の送給量の積算量を演算する。正送/逆送切替タイミング制御部19は、演算部18からの信号に基づいて、溶接ワイヤ22の送給の、正送から逆送への切り替えタイミングを遅らせる制御信号や、逆送から正送への切り替えタイミングを遅らせる制御信号を出力する。
The short circuit detection unit 9 includes a short circuit
アーク溶接装置20には、溶接条件設定部15と、ワイヤ送給部25が接続されている。溶接条件設定部15は、アーク溶接装置20に溶接条件を設定するために用いられる。ワイヤ送給部25は、ワイヤ送給速度制御部16からの信号に基づいて、溶接ワイヤ22の送給の制御を行う。
A welding
アーク溶接装置20の溶接出力は、溶接チップ24を介して溶接ワイヤ22に供給される。そして、アーク溶接装置20の溶接出力により、溶接ワイヤ22と被溶接物21との間にアーク23を発生させて溶接を行う。
The welding output of the
次に、以上のように構成されたアーク溶接装置20の動作について、図1を用いて説明する。
Next, operation | movement of the
図1は、本実施の形態における消耗電極式のアーク溶接制御方法による出力波形を示す図である。短絡期間とアーク期間とを交互に繰り返すアーク溶接における、ワイヤ送給速度Wfと、溶接電流Awと、溶接電圧Vwの時間変化を示している。 FIG. 1 is a diagram showing an output waveform by the consumable electrode type arc welding control method in the present embodiment. The time change of the wire feed speed Wf, the welding current Aw, and the welding voltage Vw in the arc welding which repeats a short circuit period and an arc period alternately is shown.
図1において、溶接対象物の方向に行う正送と正送とは逆方向に行う逆送とに交互に、所定の周期と所定の振幅で周期的に変化させるワイヤ送給速度Wfは、所定の周波数Fと所定の速度振幅AVで、例えば基本波形である台形波状に、正送と逆送とを周期的に繰り返すように制御される。ただし周波数の逆数である周期Tは、時刻t1から時刻t2までの短絡期間Tsと、時刻t2から時刻t3までのアーク期間Taとの和である。短絡開始から短絡開放までの短絡期間Tsにおけるワイヤ送給速度Wfは、正送の送給速度Wfaから逆送の送給速度Wfsに向けて移行するように制御され、逆送の送給速度Wfsに達すると、この逆送の送給速度Wfsで一定となるように制御される。アーク期間Taにおけるワイヤ送給速度Wfは、逆送の送給速度Wfsから正送の送給速度Wfaに向けて移行するように制御され、正送の送給速度Wfaに達すると、この逆送の送給速度Wfaで一定となるように制御される。 In FIG. 1, the wire feed speed Wf that is periodically changed with a predetermined cycle and a predetermined amplitude alternately between the forward feed performed in the direction of the welding object and the reverse feed performed in the reverse direction is a predetermined feed rate. Is controlled so as to periodically repeat forward feed and reverse feed, for example, in a trapezoidal waveform, which is a basic waveform, at a frequency F and a predetermined velocity amplitude AV. However, the period T, which is the reciprocal of the frequency, is the sum of the short-circuit period Ts from time t1 to time t2 and the arc period Ta from time t2 to time t3. The wire feed speed Wf in the short-circuit period Ts from the start of the short-circuit to the short-circuit release is controlled so as to shift from the forward feed speed Wfa toward the reverse feed speed Wfs, and the reverse feed speed Wfs. Is reached, it is controlled to be constant at the reverse feed speed Wfs. The wire feed speed Wf in the arc period Ta is controlled so as to shift from the reverse feed speed Wfs to the forward feed speed Wfa. When the forward feed speed Wfa is reached, the reverse feed speed Wf is controlled. The feed speed Wfa is controlled to be constant.
なお、ワイヤ送給速度Wfの正送速度と逆送速度、すなわち、周期や振幅や傾き等の送給波形の形状は、アーク溶接装置に設定される設定電流毎に予め決められている。 It should be noted that the forward feed speed and the reverse feed speed of the wire feed speed Wf, that is, the shape of the feed waveform such as the period, the amplitude, and the inclination are determined in advance for each set current set in the arc welding apparatus.
溶接電流Awの制御は、アーク期間Taにおいて、所定のピーク電流値まで溶接電流を増加し、これにより、溶接ワイヤの先端の溶融速度を高めて溶滴を形成する。そして、短絡期間Tsで前記溶滴を溶融プールに移行させる。これを繰り返すことで溶接を行っている。 The control of the welding current Aw increases the welding current to a predetermined peak current value in the arc period Ta, thereby increasing the melting rate of the tip of the welding wire to form droplets. And the said droplet is made to transfer to a fusion pool by the short circuit period Ts. Welding is performed by repeating this.
なお、短絡期間Tsでは、短絡状態を開放させるため、時間の経過に伴って溶接電流を増加するように制御する。そして、この増加形態としては、例えば、図1に示すように、先ず第1の電流増加傾きAWa1で増加し、その後、第1の電流増加傾きAWa1よりも傾きが緩やかな第2の電流増加傾きAWa2で増加させる。そして、第1の電流増加傾きAWa1から第2の電流増加傾きAWa2に切り替わる時の電流値を屈曲点と呼ぶ。 In addition, in short circuit period Ts, in order to open a short circuit state, it controls so that a welding current is increased with progress of time. As an increase mode, for example, as shown in FIG. 1, first, the first current increase slope AWa1 increases, and then the second current increase slope whose slope is gentler than the first current increase slope AWa1. Increase with AWa2. The current value at the time of switching from the first current increase slope AWa1 to the second current increase slope AWa2 is referred to as a bending point.
なお、正送と逆送を繰り返すワイヤ送給速度Wfの波形は、図1に示すような台形波状としても良いし、正弦波状としても良い。
またワイヤ送給速度Wfとして、台形波状では、図1に示すように、逆送の送給速度Wfs、正送の送給速度Wfaに達するとそれぞれ一定となりそれを保持しているが、正弦波状では、送給速度の到達値を必ずしも一定値に保持しなくとも良く、逆送の送給速度Wfs、正送の送給速度Wfaにそれぞれ相当する振幅量となれば良い。
Note that the waveform of the wire feed speed Wf that repeats forward feeding and reverse feeding may be trapezoidal as shown in FIG. 1 or sinusoidal.
Further, as shown in FIG. 1, the wire feed speed Wf becomes constant when the reverse feed speed Wfs and the normal feed speed Wfa are reached, as shown in FIG. Then, the arrival value of the feeding speed does not necessarily need to be held at a constant value, and may be an amplitude amount corresponding to the backward feeding speed Wfs and the forward feeding speed Wfa.
また図1は、ワイヤ送給速度Wfと溶接電流Awの時間変化を示す図であり、短絡周期の乱れや短絡時間が長くなったときのワイヤ送給制御を示す図である。これは特に、アルミやアルミ合金、銅、銅合金、ブレーズなど熱伝導率が高くジュール発熱し難い材質のワイヤを用いた場合、短絡開放がし難く、溶滴移行状態のばらつきが、短絡期間のばらつきとして顕著に表れる。
短絡期間が長くなる要因として、溶融池の不規則な運動やアーク長の変動等の外乱がある。
FIG. 1 is a diagram showing temporal changes in the wire feed speed Wf and the welding current Aw, and is a diagram showing wire feed control when the short-circuit cycle is disturbed or the short-circuit time becomes long. This is especially true when wires made of a material with high thermal conductivity such as aluminum, aluminum alloy, copper, copper alloy, blaze, etc., which are difficult to generate Joule heat, are difficult to open short circuit, and the dispersion of droplet transfer state varies between short circuit periods. It appears as a variation.
Factors that increase the short-circuit period include disturbances such as irregular movement of the weld pool and fluctuations in arc length.
そのため、本実施の形態1では、溶接ワイヤ22が被溶接物21に短絡してから、溶接電圧検出部8に基づいて短絡時間検出部10が、短絡期間Tsが所定期間未満である短絡期間Ts1中は溶接ワイヤを予め定めたワイヤ送給速度の傾きWFs1とし、逆送のワイヤ送給速度Wfsで逆送する。
所定期間を超えても、短絡/アーク検出部11で短絡開放(アーク検出)されない場合、逆送のワイヤ送給速度Wfsよりも絶対値の大きい逆送のワイヤ送給速度Wfs’で逆送することで、溶接ワイヤ22が被溶接物21から短絡開放し、離脱するよう導く。
なお、所定期間とは短絡を開始してから短絡を終了(短絡開放)するまでの平均的な短絡期間であり、かつワイヤ送給速度が逆送の領域(ワイヤの送給が逆送状態)にある期間である。
Therefore, in the first embodiment, after the
If the short circuit /
The predetermined period is an average short-circuit period from the start of the short-circuit to the end of the short-circuit (short-circuit open), and the wire feed speed is in the reverse feed region (wire feed is in the reverse feed state). It is a period.
また、所定期間は、直前の短絡期間としても良いし、前の一つ以上の短絡期間の平均値としても良い。または、所定期間を予め取得した短絡期間の平均値としても良い。 Further, the predetermined period may be the immediately preceding short circuit period or may be an average value of one or more previous short circuit periods. Or it is good also as an average value of the short circuit period which acquired the predetermined period beforehand.
また、所定期間は短絡を開始してから短絡を終了(短絡開放)するまでの予め実験や経験値等により決定される平均的な短絡期間としても良い。 Further, the predetermined period may be an average short-circuit period that is determined in advance by experiments, experience values, or the like from the start of the short-circuit to the end of the short-circuit (short-circuit open).
また、このときの逆送のワイヤ送給速度Wfs’は、直前の逆送のワイヤ送給速度Wfsの絶対値の100〜200%に設定できるものとし、例えば、予め短絡期間の平均値と短絡期間終了時の逆送のワイヤ送給速度の平均速度を取得し、短絡期間の平均値以上の所定の期間を設定し、短絡を開始してからの短絡期間が所定期間より長くなった場合、逆送のワイヤ送給速度を予め取得した逆送の前記平均速度より絶対値の大きな値としても良い。 Further, the wire feed speed Wfs ′ for reverse feed at this time can be set to 100 to 200% of the absolute value of the wire feed speed Wfs for reverse feed immediately before. When the average speed of the wire feed speed of reverse feed at the end of the period is acquired, a predetermined period equal to or greater than the average value of the short circuit period is set, and the short circuit period after starting the short circuit becomes longer than the predetermined period, The reverse wire feeding speed may be a value having a larger absolute value than the average speed of reverse feeding acquired in advance.
上述したように、短絡期間が所定期間よりも長くなると、逆送のワイヤ送給速度をより絶対値の大きい値にすることで早期に短絡開放へと導くことができる。 As described above, when the short-circuit period becomes longer than the predetermined period, the short-circuit opening can be quickly brought about by setting the reverse wire feed speed to a value having a larger absolute value.
また、所定期間を直前の短絡期間とすれば、短絡期間の長期化からの復帰が早くなり、所定期間を前の一つ以上の短絡期間の平均値にすれば、短絡周期の安定化につながる。また、所定期間を予め取得した短絡期間の平均値とすれば、異なる溶接ワイヤやワークに応じて適切な短絡周期の安定化を実現できる。 In addition, if the predetermined period is the immediately preceding short-circuit period, the recovery from the extension of the short-circuit period is accelerated, and if the predetermined period is an average value of one or more previous short-circuit periods, the short-circuit period is stabilized. . Further, if the predetermined period is an average value of the short-circuit periods acquired in advance, it is possible to realize an appropriate short-circuit period stabilization according to different welding wires and workpieces.
(実施の形態2)
本実施の形態2は短絡期間長期化時に、短絡時の溶接電流増加に関する。
(Embodiment 2)
The second embodiment relates to an increase in welding current at the time of a short circuit when the short circuit period is prolonged.
本実施の形態2において、実施の形態1と同様の箇所については、同一の符号を付して詳細な説明を省略する。実施の形態1と異なる主な点は、所定期間を超えて短絡開放(アーク検出)されない場合、図1に示すように第2の電流増加傾きAWa2よりも大きな値となる、第3の電流増加傾きAWa3で、溶接電流を増加させる点である。短絡時の溶接電流を増加させることで、溶接ワイヤ22を溶融しやすくなり短絡開放を促進する効果と、溶滴に電磁的ピンチ力を作用させ、くびれを形成して離脱を促進する。
In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The main difference from the first embodiment is that the third current increase becomes a value larger than the second current increase slope AWa2 as shown in FIG. 1 when the short circuit is not opened (arc detection) beyond a predetermined period. This is the point at which the welding current is increased at the inclination AWa3. By increasing the welding current at the time of a short circuit, the
上述したように、短絡期間が所定期間以上継続した場合に、溶接電流を所定期間に到達した時点の溶接電流よりも大きな値にすることで、さらに短絡開放を促す(早期に短絡開放へと導く)ことができる。 As described above, when the short-circuit period continues for a predetermined period or longer, the welding current is set to a value larger than the welding current at the time when the predetermined period is reached, thereby further promoting short-circuit opening (leading to short-circuit opening at an early stage). )be able to.
(実施の形態3)
本実施の形態3は短絡期間の長期化によるワイヤ送給量の減少の抑制に関する。本実施の形態3において、実施の形態1、2と同様の箇所については、同一の符号を付して詳細な説明を省略する。実施の形態1、2と異なる主な点は、短絡開放させるまでに、逆送のワイヤ送給速度Wfsよりも絶対値の大きい、逆送のワイヤ送給速度Wfs’で逆送した時に、逆送のワイヤ送給速度Wfs’で逆送を継続した期間分、短絡期間が長くなり正送のワイヤ送給量が減少してしまう。これを防ぐため、逆送のワイヤ送給速度Wfsから絶対値の大きなワイヤ送給速度Wfs’に到達する時のワイヤ送給速度の傾きWFs2を、正送のワイヤ送給速度Wfaから逆送のワイヤ送給速度Wfsに到達するワイヤ送給速度の傾きWFs1よりも絶対値の大きい値とする。また、図3に示すように、逆送のワイヤ送給速度Wfs’から正送のワイヤ送給速度Wfaに移行するワイヤ送給速度の加減速度としてのワイヤ送給速度の傾きWFa2を、短絡検出後経過時間であるT1からT3のように短絡が開放した時点に応じて異なる値に制御する。図3(B)に示すように、短絡が開放した時点が短絡検出後経過時間T1の時、逆送のワイヤ送給速度Wfs’から正送のワイヤ送給速度Wfaに移行するワイヤ送給速度の傾きWFa2はWFT1とする。同様に、短絡が開放した時点が短絡検出後経過時間T2の時、逆送のワイヤ送給速度Wfs’から正送のワイヤ送給速度Wfaに移行するワイヤ送給速度の傾きWFa2をWFT2とし、短絡検出後経過時間T3の時、逆送のワイヤ送給速度Wfs’から正送のワイヤ送給速度Wfaに移行するワイヤ送給速度の傾きWFa2をWFT3とする。これにより短絡期間の長期化による次のアーク期間の長期化を防ぎ、短絡周期の乱れを抑制する。また、所定期間を超えて短絡が開放されない場合の逆送のワイヤ送給速度を絶対値の大きな値に制御する方法は、例えば図1のように正送のワイヤ送給速度Wfaから逆送のワイヤ送給速度Wfsに移行するワイヤ送給速度の傾きWFs2で逆送し、一定の逆送のワイヤ送給速度Wfs’に移行後、一定の逆送のワイヤ送給速度Wfs’で短絡開放するまで逆送を継続しても良い。または、例えば図4のように短絡開放するまでワイヤ送給速度の傾きWFs2で逆送し続けても良いものとする。
(Embodiment 3)
The third embodiment relates to the suppression of the decrease in the wire feed amount due to the prolonged short circuit period. In the third embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof is omitted. The main difference from the first and second embodiments is that when the reverse feed is performed at the reverse feed wire feed speed Wfs ′, which is larger in absolute value than the reverse feed wire feed speed Wfs ′ until the short circuit is opened. The short-circuit period becomes longer and the forward wire feed amount decreases for the period in which the reverse feed is continued at the wire feed speed Wfs ′. In order to prevent this, the inclination WFs2 of the wire feed speed when the wire feed speed Wfs ′ having a large absolute value is reached from the reverse feed wire feed speed Wfs is changed from the forward feed wire feed speed Wfa to the reverse feed. The absolute value is larger than the slope WFs1 of the wire feed speed that reaches the wire feed speed Wfs. Further, as shown in FIG. 3, the wire feed speed gradient WFa2 as the acceleration / deceleration of the wire feed speed that shifts from the reverse feed wire feed speed Wfs' to the forward feed wire feed speed Wfa is detected as a short circuit. It is controlled to a different value depending on the time when the short circuit is opened, such as T1 to T3, which are the elapsed time after. As shown in FIG. 3 (B), when the short circuit is opened is the elapsed time T1 after the detection of the short circuit, the wire feed speed at which the reverse feed wire feed speed Wfs ′ shifts to the forward feed wire feed speed Wfa. The slope WFa2 is WFT1. Similarly, when the time when the short circuit is opened is the elapsed time T2 after the detection of the short circuit, the wire feed speed gradient WFa2 for shifting from the reverse feed wire feed speed Wfs ′ to the forward feed wire feed speed Wfa is defined as WFT2. At the elapsed time T3 after the detection of the short circuit, the slope WFa2 of the wire feeding speed at which the wire feeding speed Wfs ′ of reverse feeding shifts to the wire feeding speed Wfa of normal feeding is defined as WFT3. This prevents the next arc period from being lengthened due to the lengthening of the short circuit period, and suppresses the disturbance of the short circuit period. Further, the method of controlling the reverse feed wire feeding speed to a large absolute value when the short-circuit is not opened beyond the predetermined period is, for example, from the forward feed wire feed speed Wfa as shown in FIG. Backward feeding is performed at the wire feeding speed gradient WFs2 that shifts to the wire feeding speed Wfs, and after the transition to the constant feeding wire feeding speed Wfs ′, a short circuit is opened at the constant feeding wire feeding speed Wfs ′. The reverse feed may be continued until Alternatively, for example, as shown in FIG. 4, reverse feeding may be continued with the wire feeding speed gradient WFs2 until the short circuit is opened.
上述したように、短絡期間が所定期間よりも長くなると、逆送のワイヤ送給速度をより絶対値の大きな値にすることで短絡期間の長期化を防ぐ。また、短絡開放後の逆送から正送に向かうワイヤ送給速度の傾きを、前記短絡期間が前記所定期間に到達する時点から短絡開放がされる時点までの時間に応じて、短絡が開放した時点により異なる値に制御することで、次に発生する短絡期間の長期化を防ぎ、短絡周期の乱れを抑制し短絡周期の安定化を助けることができる。 As described above, when the short-circuit period is longer than the predetermined period, the reverse-feed wire feed speed is set to a value having a larger absolute value, thereby preventing the short-circuit period from being prolonged. Further, the inclination of the wire feeding speed from the reverse feed after the short-circuit opening to the normal feed is opened according to the time from the time when the short-circuit period reaches the predetermined period to the time when the short-circuit is opened. By controlling to a different value depending on the time, it is possible to prevent the next short-circuit period from being prolonged, to suppress disturbance of the short-circuit period, and to help stabilize the short-circuit period.
本発明によれば、ワイヤ送給速度として正送と逆送を繰り返すアーク溶接において、短絡周期を安定化することにより、溶接品質の向上、また微小短絡によるスパッタ発生量を低減することができ、消耗電極である溶接ワイヤを連続的に送給しながらアーク溶接を行うアーク溶接制御方法やアーク溶接装置として産業上有用である。 According to the present invention, in arc welding that repeats forward feeding and reverse feeding as the wire feed speed, by stabilizing the short-circuit cycle, it is possible to improve welding quality and reduce the amount of spatter generated due to micro short-circuit, The present invention is industrially useful as an arc welding control method and an arc welding apparatus for performing arc welding while continuously feeding a welding wire as a consumable electrode.
1 入力電源
2 主変圧器(トランス)
3 一次側整流部
4 スイッチング部
5 DCL(リアクトル)
6 二次側整流部
7 溶接電流検出部
8 溶接電圧検出部
9 短絡検出部
10 短絡時間検出部
11 短絡/アーク検出部
12 出力制御部
13 短絡制御部
14 アーク制御部
15 溶接条件設定部
16 ワイヤ送給速度制御部
17 ワイヤ送給速度検出部
18 演算部
19 正送/逆送切替タイミング制御部
20 アーク溶接装置
21 被溶接物
22 溶接ワイヤ
23 アーク
24 溶接チップ
25 ワイヤ送給部
1
3 Primary
6 Secondary side rectification unit 7 Welding
Claims (7)
直前の短絡期間に比べて、短絡を開始してからの短絡期間が長くなった場合、逆送のワイヤ送給速度を直前の短絡期間終了時の逆送のワイヤ送給速度より絶対値の大きな値に制御するアーク溶接制御方法。 Wire feeding speed in which welding wire feeding is periodically changed at a predetermined cycle and a predetermined amplitude alternately between forward feeding performed in the direction of the welding object and reverse feeding performed in the opposite direction to the normal feeding. Is a consumable electrode type arc welding control method in which welding is performed by repeating an arc period and a short-circuit period,
If the short-circuit period after starting the short circuit is longer than the previous short-circuit period, the absolute value of the reverse wire feed speed is greater than the reverse wire feed speed at the end of the previous short-circuit period. Arc welding control method to control to value.
前の一つ以上の短絡期間の平均値に比べて、短絡を開始してからの短絡期間が長くなった場合、逆送のワイヤ送給速度を前の短絡期間終了時の逆送の平均速度より絶対値の大きな値に制御するアーク溶接制御方法。 Wire feeding speed in which welding wire feeding is periodically changed at a predetermined cycle and a predetermined amplitude alternately between forward feeding performed in the direction of the welding object and reverse feeding performed in the opposite direction to the normal feeding. Is a consumable electrode type arc welding control method in which welding is performed by repeating an arc period and a short-circuit period,
If the short-circuit period after the start of the short circuit becomes longer than the average value of one or more previous short-circuit periods, the reverse feed wire feed speed is set to the average reverse feed speed at the end of the previous short-circuit period. An arc welding control method in which the absolute value is controlled to a larger value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015050822A JP6524412B2 (en) | 2015-03-13 | 2015-03-13 | Arc welding control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015050822A JP6524412B2 (en) | 2015-03-13 | 2015-03-13 | Arc welding control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016168617A true JP2016168617A (en) | 2016-09-23 |
JP6524412B2 JP6524412B2 (en) | 2019-06-05 |
Family
ID=56982919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015050822A Active JP6524412B2 (en) | 2015-03-13 | 2015-03-13 | Arc welding control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6524412B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019130588A (en) * | 2018-01-26 | 2019-08-08 | 株式会社ダイヘン | Arc welding control method |
JP2021079427A (en) * | 2019-11-22 | 2021-05-27 | 株式会社ダイヘン | Arc-welding control method |
JP2022018466A (en) * | 2020-07-15 | 2022-01-27 | 株式会社神戸製鋼所 | Manufacturing method of laminated modeled object |
CN115415647A (en) * | 2022-10-14 | 2022-12-02 | 唐山松下产业机器有限公司 | Short arc control method and device for gas metal arc welding |
WO2023223739A1 (en) * | 2022-05-16 | 2023-11-23 | 株式会社神戸製鋼所 | Control method of weld bead form, electric power source control method, additive manufacturing method, control device, electric power source device, welding system, and additive manufacturing system and program |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6178567A (en) * | 1984-09-21 | 1986-04-22 | Osaka Denki Kk | Short-circuiting arc welding method and its device |
JP2005288454A (en) * | 2004-03-31 | 2005-10-20 | Matsushita Electric Ind Co Ltd | Arc starting method, and welding equipment for consumable electrode |
JP2007216268A (en) * | 2006-02-17 | 2007-08-30 | Matsushita Electric Ind Co Ltd | Method for controlling arc welding, and arc welding apparatus |
JP2015016482A (en) * | 2013-07-10 | 2015-01-29 | パナソニック株式会社 | Arc welding control method and arc welding device |
JP2016059957A (en) * | 2014-09-22 | 2016-04-25 | 株式会社ダイヘン | Arc-welding control method |
-
2015
- 2015-03-13 JP JP2015050822A patent/JP6524412B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6178567A (en) * | 1984-09-21 | 1986-04-22 | Osaka Denki Kk | Short-circuiting arc welding method and its device |
JP2005288454A (en) * | 2004-03-31 | 2005-10-20 | Matsushita Electric Ind Co Ltd | Arc starting method, and welding equipment for consumable electrode |
JP2007216268A (en) * | 2006-02-17 | 2007-08-30 | Matsushita Electric Ind Co Ltd | Method for controlling arc welding, and arc welding apparatus |
JP2015016482A (en) * | 2013-07-10 | 2015-01-29 | パナソニック株式会社 | Arc welding control method and arc welding device |
JP2016059957A (en) * | 2014-09-22 | 2016-04-25 | 株式会社ダイヘン | Arc-welding control method |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019130588A (en) * | 2018-01-26 | 2019-08-08 | 株式会社ダイヘン | Arc welding control method |
JP7053121B2 (en) | 2018-01-26 | 2022-04-12 | 株式会社ダイヘン | Arc welding control method |
JP2021079427A (en) * | 2019-11-22 | 2021-05-27 | 株式会社ダイヘン | Arc-welding control method |
JP7396779B2 (en) | 2019-11-22 | 2023-12-12 | 株式会社ダイヘン | Arc welding control method |
JP2022018466A (en) * | 2020-07-15 | 2022-01-27 | 株式会社神戸製鋼所 | Manufacturing method of laminated modeled object |
JP7303162B2 (en) | 2020-07-15 | 2023-07-04 | 株式会社神戸製鋼所 | Laminate-molded article manufacturing method |
WO2023223739A1 (en) * | 2022-05-16 | 2023-11-23 | 株式会社神戸製鋼所 | Control method of weld bead form, electric power source control method, additive manufacturing method, control device, electric power source device, welding system, and additive manufacturing system and program |
CN115415647A (en) * | 2022-10-14 | 2022-12-02 | 唐山松下产业机器有限公司 | Short arc control method and device for gas metal arc welding |
Also Published As
Publication number | Publication date |
---|---|
JP6524412B2 (en) | 2019-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5927433B2 (en) | Arc welding method and arc welding apparatus | |
JP5278634B2 (en) | Arc welding control method and arc welding apparatus | |
JP4877235B2 (en) | Welding output control method and arc welding apparatus | |
JP6778857B2 (en) | Arc welding control method | |
WO2017135080A1 (en) | Pulsed arc welding control method and pulsed arc welding device | |
JP2011073022A (en) | Carbon dioxide pulsed arc welding method | |
JP2016168617A (en) | Arc-welding control method | |
WO2019203162A1 (en) | Arc welding control method | |
JP6152588B2 (en) | Arc welding control method and arc welding apparatus | |
JPH11226730A (en) | Method and equipment for consumable electrode ac gas shield welding | |
JP6778858B2 (en) | Arc welding control method | |
JP6757892B2 (en) | Arc welding control method | |
JP4715813B2 (en) | Pulse arc welding control method and pulse arc welding apparatus | |
JP7289043B2 (en) | Arc welding control method | |
JP6596675B2 (en) | Arc welding control method | |
JP6948528B2 (en) | Arc welding method and arc welding equipment | |
JP6555824B2 (en) | Arc welding method | |
JP6396162B2 (en) | Arc welding control method | |
JP2016026880A (en) | Pulsed arc welding output control method | |
JP2018051624A (en) | Arc-welding control method | |
JP2023122461A (en) | Arc-welding control method | |
JP2010142824A (en) | Ac arc welding method | |
JP2019188434A (en) | Control method of ac arc-welding | |
JP2014226708A (en) | Arc-welding control method, and arc-welding device | |
JP6525671B2 (en) | Welding start method of 2 wire welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190108 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20190116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190319 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190401 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6524412 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |