JP2016159701A - Electric power steering system - Google Patents
Electric power steering system Download PDFInfo
- Publication number
- JP2016159701A JP2016159701A JP2015038418A JP2015038418A JP2016159701A JP 2016159701 A JP2016159701 A JP 2016159701A JP 2015038418 A JP2015038418 A JP 2015038418A JP 2015038418 A JP2015038418 A JP 2015038418A JP 2016159701 A JP2016159701 A JP 2016159701A
- Authority
- JP
- Japan
- Prior art keywords
- steering
- correction coefficient
- vehicle speed
- unit
- torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Steering Control In Accordance With Driving Conditions (AREA)
- Power Steering Mechanism (AREA)
Abstract
Description
本発明は、電動パワーステアリング装置に関する。 The present invention relates to an electric power steering apparatus.
近年、電動モータの動力にてドライバの操舵力をアシストする電動パワーステアリング装置において、操舵トルクを検出する検出手段(トルクセンサ)により操舵トルクを検出することができなくなった場合においても、電動モータによるアシスト力を付与することを可能とする技術が提案されている。
例えば、特許文献1に記載の電動パワーステアリング装置は、異常検出部によりトルクセンサの異常が検出されたとき、レゾルバにより検出されている回転角とアシスト電流特性とに基づいてモータを駆動し、駆動する際、回転角に基づき算出される回転角速度が大きくなるに従いモータを駆動するアシスト電流を小さくするよう制御する。
In recent years, in an electric power steering apparatus that assists a driver's steering force with the power of an electric motor, even when the detection means (torque sensor) that detects the steering torque cannot detect the steering torque, A technique that makes it possible to apply assist force has been proposed.
For example, the electric power steering device described in
トルク検出手段(トルクセンサ)に故障が生じた場合においても、低μ路でのステアリングとられを軽減できるとともに、アスファルト路などの高μ路での十分なアシスト力を確保できることが望ましい。
本発明は、トルク検出手段に故障が生じた場合においても、低μ路でのステアリングとられを軽減できるとともに高μ路での十分なアシスト力を確保できる電動パワーステアリング装置を提供することを目的とする。
Even when a failure occurs in the torque detection means (torque sensor), it is desirable to be able to reduce steering on low μ roads and to secure a sufficient assist force on high μ roads such as asphalt roads.
It is an object of the present invention to provide an electric power steering apparatus that can reduce steering on a low μ road and secure a sufficient assist force on a high μ road even when a failure occurs in the torque detection means. And
かかる目的のもと、本発明は、車両のステアリングホイールの操舵に対して補助力を付与する電動モータと、前記ステアリングホイールの操舵トルクを検出するトルク検出手段と、前記ステアリングホイールの回転角度である操舵角を推定する操舵角推定手段と、前記トルク検出手段の故障を検出する故障検出手段と、前記故障検出手段が故障を検出した場合には、前記操舵角推定手段が推定した操舵角に基づいて前記補助力の基礎となる基礎補助力を決定し、前記操舵角の加速度に応じて前記基礎補助力を補正した前記補助力となるように前記電動モータを制御する制御手段と、を備えることを特徴とする電動パワーステアリング装置である。 For this purpose, the present invention relates to an electric motor for applying an assisting force to steering of a steering wheel of a vehicle, torque detecting means for detecting a steering torque of the steering wheel, and a rotation angle of the steering wheel. A steering angle estimating means for estimating a steering angle; a failure detecting means for detecting a failure of the torque detecting means; and when the failure detecting means detects a failure, based on the steering angle estimated by the steering angle estimating means. Control means for determining a basic auxiliary force that is a basis of the auxiliary force, and controlling the electric motor so as to be the auxiliary force obtained by correcting the basic auxiliary force according to the acceleration of the steering angle. An electric power steering device characterized by the above.
ここで、前記制御手段は、前記操舵角の加速度が予め定められた所定操舵角加速度より大きい場合には前記補助力が小さくなるように前記基礎補助力を補正してもよい。
また、前記制御手段は、前記車両の移動速度である車速が予め定められた所定車速より大きい場合には前記補助力が小さくなるように前記基礎補助力を補正してもよい。
また、前記制御手段は、前記故障検出手段が故障を検出していない場合には前記トルク検出手段が検出した操舵トルクに基づいて前記補助力を決定してもよい。
Here, the control means may correct the basic auxiliary force so that the auxiliary force becomes smaller when the acceleration of the steering angle is larger than a predetermined steering angular acceleration.
Further, the control means may correct the basic auxiliary force so that the auxiliary force becomes smaller when a vehicle speed, which is a moving speed of the vehicle, is higher than a predetermined vehicle speed.
The control means may determine the auxiliary force based on the steering torque detected by the torque detection means when the failure detection means has not detected a failure.
本発明によれば、トルク検出手段に故障が生じた場合においても、低μ路でのステアリングとられを軽減できるとともに高μ路での十分なアシスト力を確保できる。 According to the present invention, even when a failure occurs in the torque detecting means, steering on a low μ road can be reduced and a sufficient assist force on a high μ road can be secured.
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
図1は、実施の形態に係る電動パワーステアリング装置100の概略構成を示す図である。
電動パワーステアリング装置100(以下、単に「ステアリング装置100」と称する場合もある。)は、車両の進行方向を任意に変えるためのかじ取り装置であり、本実施の形態においては車両の一例としての自動車1に適用した構成を例示している。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a diagram illustrating a schematic configuration of an electric
Electric power steering device 100 (hereinafter, also simply referred to as “
ステアリング装置100は、自動車1の進行方向を変えるために運転者が操作する車輪(ホイール)状のステアリングホイール(ハンドル)101と、ステアリングホイール101に一体的に設けられたステアリングシャフト102とを備えている。また、ステアリング装置100は、ステアリングシャフト102と自在継手103aを介して連結された上部連結シャフト103と、この上部連結シャフト103と自在継手103bを介して連結された下部連結シャフト108とを備えている。下部連結シャフト108は、ステアリングホイール101の回転に連動して回転する。
The
また、ステアリング装置100は、転動輪としての左右の前輪150のそれぞれに連結されたタイロッド104と、タイロッド104に連結されたラック軸105とを備えている。また、ステアリング装置100は、ラック軸105に形成されたラック歯105aとともにラック・ピニオン機構を構成するピニオン106aを備えている。ピニオン106aは、ピニオンシャフト106の下端部に形成されている。
また、ステアリング装置100は、ピニオンシャフト106を収納するステアリングギヤボックス107を有している。ピニオンシャフト106は、ステアリングギヤボックス107内にてトーションバー112を介して下部連結シャフト108と連結されている。そして、ステアリングギヤボックス107の内部には、下部連結シャフト108とピニオンシャフト106との相対回転角度に基づいて、言い換えればトーションバー112の捩れ量に基づいて、ステアリングホイール101に加えられた操舵トルクTを検出するトルク検出手段の一例としてのトルクセンサ109が設けられている。
The
また、ステアリング装置100は、ステアリングギヤボックス107に支持された電動モータ110と、電動モータ110の駆動力を減速してピニオンシャフト106に伝達する減速機構111とを有している。減速機構111は、例えば、ピニオンシャフト106に固定されたウォームホイール(不図示)と、電動モータ110の出力軸に固定されたウォームギヤ(不図示)などから構成される。電動モータ110は、ピニオンシャフト106に回転駆動力を加えることにより、ラック軸105に前輪150を転動させる駆動力を加える。本実施の形態に係る電動モータ110は、電動モータ110の回転角度を検出するレゾルバ120を有する3相ブラシレスモータである。
Further, the
また、ステアリング装置100は、電動モータ110の作動を制御する制御装置10を備えている。制御装置10には、上述したトルクセンサ109からの出力信号が入力される。また、制御装置10には、自動車1に搭載される各種の機器を制御するための信号を流す通信を行うネットワーク(CAN)を介して、自動車1の移動速度である車速Vcを検出する車速センサ170などからの出力信号が入力される。
In addition, the
以上のように構成されたステアリング装置100は、トルクセンサ109が検出した検出トルクに基づいて電動モータ110を駆動し、電動モータ110の発生トルクをピニオンシャフト106に伝達する。これにより、電動モータ110の発生トルクが、ステアリングホイール101に加える運転者の操舵力をアシストする。
The
次に、制御装置10について説明する。
図2は、制御装置10の概略構成図である。
制御装置10は、CPU、ROM、RAM、EEPROM(Electrically Erasable & Programmable Read Only Memory)等からなる算術論理演算回路である。
制御装置10には、上述したトルクセンサ109にて検出された操舵トルクTが出力信号に変換されたトルク信号Tdと、車速センサ170にて検出された車速Vcが出力信号に変換された車速信号v、レゾルバ120からの電動モータ110の回転角度θに応じた出力信号である回転角度信号θs、などが入力される。
Next, the
FIG. 2 is a schematic configuration diagram of the
The
The
そして、制御装置10は、トルク信号Td、車速信号vなどに基づいて電動モータ110が供給するのに必要となる目標電流Itを算出(設定)する目標電流算出部20と、目標電流算出部20が算出した目標電流Itに基づいてフィードバック制御などを行う制御部30と、を備えている。また、制御装置10は、電動モータ110のモータ回転角度を算出するモータ回転角度算出部71と、モータ回転角度算出部71にて算出されたモータ回転角度θに基づいて、モータ回転速度Vmを算出するモータ回転速度算出部72と、ステアリングホイール101の回転角度である操舵角を算出する操舵角算出部73と、を備えている。
Then, the
次に、目標電流算出部20について詳述する。
図3は、目標電流算出部20の概略構成図である。
目標電流算出部20は、目標電流Itを設定する上で基準となるベース電流Ibを算出するベース電流算出部21と、電動モータ110の慣性モーメントを打ち消すためのイナーシャ補償電流Isを算出するイナーシャ補償電流算出部22と、電動モータ110の回転を制限するダンパー補償電流Idを算出するダンパー補償電流算出部23とを備えている。また、目標電流算出部20は、ベース電流算出部21、イナーシャ補償電流算出部22、ダンパー補償電流算出部23にて算出された値に基づいて仮の目標電流である仮目標電流Itfを決定する仮目標電流決定部25を備えている。また、目標電流算出部20は、トルクセンサ109にて検出された操舵トルクTの位相を補償する位相補償部26を備えている。
Next, the target
FIG. 3 is a schematic configuration diagram of the target
The target
また、目標電流算出部20は、トルクセンサ109の故障を検出する故障検出手段の一例としてのセンサ故障検出部27と、センサ故障検出部27がトルクセンサ109の故障を検出した場合に電動モータ110に供給する目標電流Itの基となる電流を算出するセンサ故障時電流決定部28と、を備えている。また、目標電流算出部20は、最終的に電動モータ110に供給する目標電流Itを決定する最終目標電流決定部29を備えている。
なお、目標電流算出部20には、トルク信号Td、車速信号v、モータ回転速度信号Vmsなどが入力される。
The target
The target
図4は、操舵トルクTおよび車速Vcとベース電流Ibとの対応を示す制御マップの概略図である。
ベース電流算出部21は、位相補償部26にてトルク信号Tdが位相補償されたトルク信号Tsと、車速センサ170からの車速信号vとに基づいてベース電流Ibを算出する。言い換えれば、ベース電流算出部21は、位相補償部26にて位相補償された操舵トルクTと、車速Vcとに応じたベース電流Ibを算出する。なお、ベース電流算出部21は、例えば、予め経験則に基づいて作成しROMに記憶しておいた、位相補償された操舵トルクT(トルク信号Ts)および車速Vc(車速信号v)とベース電流Ibとの対応を示す図4に例示した制御マップに、操舵トルクTおよび車速Vcを代入することによりベース電流Ibを算出する。
FIG. 4 is a schematic diagram of a control map showing the correspondence between the steering torque T, the vehicle speed Vc, and the base current Ib.
The base
イナーシャ補償電流算出部22は、位相補償部26にてトルク信号Tdが位相補償されたトルク信号Ts、車速信号vに基づいてイナーシャ補償電流Isを算出する。言い換えれば、イナーシャ補償電流算出部22は、位相補償部26にて位相補償された操舵トルクTと、車速Vcとに応じたイナーシャ補償電流Isを算出する。なお、イナーシャ補償電流算出部22は、例えば、予め経験則に基づいて作成しROMに記憶しておいた、位相補償された操舵トルクT(トルク信号Ts)および車速Vc(車速信号v)とイナーシャ補償電流Isとの対応を示す制御マップに、位相補償された操舵トルクTおよび車速Vcを代入することによりイナーシャ補償電流Isを算出する。
The inertia compensation
ダンパー補償電流算出部23は、位相補償部26にてトルク信号Tdが位相補償されたトルク信号Ts、車速信号v、モータ回転速度信号Vmsなどに基づいてダンパー補償電流Idを算出する。言い換えれば、ダンパー補償電流算出部23は、位相補償部26にて位相補償された操舵トルクTと、車速Vcと、モータ回転速度Vmに応じたダンパー補償電流Idを算出する。なお、ダンパー補償電流算出部23は、例えば、予め経験則に基づいて作成しROMに記憶しておいた、位相補償された操舵トルクT(トルク信号Ts)、車速Vc(車速信号v)およびモータ回転速度Vm(モータ回転速度信号Vms)と、ダンパー補償電流Idとの対応を示す制御マップに、位相補償された操舵トルクT、車速Vcおよびモータ回転速度Vmを代入することによりダンパー補償電流Idを算出する。
The damper compensation
仮目標電流決定部25は、ベース電流算出部21にて算出されたベース電流Ib、イナーシャ補償電流算出部22にて算出されたイナーシャ補償電流Isおよびダンパー補償電流算出部23にて算出されたダンパー補償電流Idに基づいて仮目標電流Itfを決定する。仮目標電流決定部25は、例えば、ベース電流Ibに、イナーシャ補償電流Isを加算するとともにダンパー補償電流Idを減算して得た電流を仮目標電流Itfとして決定する。
The temporary target
センサ故障検出部27は、例えば、トルクセンサ109からの出力が零(V)に固定される、あるいは零〜5(V)以外の電圧が出力される等の異常を検出したときにトルクセンサ109が故障したと判定し、故障した旨をセンサ故障時電流決定部28及び最終目標電流決定部29に出力する。
センサ故障時電流決定部28については後で詳述する。
The sensor
The sensor failure
最終目標電流決定部29は、センサ故障検出部27が故障と判定していない場合(故障した旨の信号を取得していない場合)には、仮目標電流決定部25にて決定された仮目標電流Itfを最終的な目標電流Itとして決定する。他方、センサ故障検出部27が故障と判定した場合(故障した旨の信号を取得した場合)には、センサ故障時電流決定部28にて決定されたセンサ故障時電流Ieを最終的な目標電流Itとして決定する。つまり、センサ故障検出部27が故障と判定した場合には、電動モータ110により、センサ故障時電流Ie相当分のアシスト力(補助力)が発生する。
The final target
ここで、トーションバー112の捩れ量が零の状態を中立状態(中立位置)とし、中立状態(中立位置)からのステアリングホイール101の右回転時におけるステアリングホイール101(下部連結シャフト108)とピニオンシャフト106との相対回転角度が変化する方向(相対回転角度が生じる方向)をプラス(操舵トルクTがプラス)とする。他方、中立状態からのステアリングホイール101の左回転時におけるステアリングホイール101(下部連結シャフト108)とピニオンシャフト106との相対回転角度が変化する方向(相対回転角度が生じる方向)をマイナスとする(操舵トルクTがマイナス)。このとき、ステアリングホイール101とピニオンシャフト106との相対回転角度が中立状態より右回転方向に捩れている(トーションバー112が右回転方向に捩れている)ときの、トルクセンサ109からの出力値であるトルク信号Tdの符号をプラス、相対回転角度が中立状態より左回転方向に捩れている(トーションバー112が左回転方向に捩れている)ときの、トルクセンサ109からのトルク信号Tdの符号をマイナスとする。
Here, a state in which the
そして、トルクセンサ109からのトルク信号Tdの符号がプラスであるときに、電動モータ110を一方の回転方向に回転させるようにベース電流算出部21にてベース電流Ibが算出され、そのベース電流Ibが流れる方向をプラスとする。つまり、図4に示すように、トルクセンサ109からのトルク信号Tdの符号がプラスで操舵トルクTがプラスのときにベース電流算出部21はプラスのベース電流Ibを算出し、電動モータ110を一方の回転方向に回転させる方向のトルクを発生させる。他方、トルクセンサ109からのトルク信号Tdの符号がマイナスのときにベース電流算出部21はマイナスのベース電流Ibを算出し、電動モータ110を他方の回転方向に回転させる方向のトルクを発生させる。
When the sign of the torque signal Td from the
次に、制御部30について詳述する。
図5は、制御部30の概略構成図である。
制御部30は、図5に示すように、電動モータ110の作動を制御するモータ駆動制御部31と、電動モータ110を駆動させるモータ駆動部32と、電動モータ110に実際に流れる実電流Imを検出するモータ電流検出部33とを有している。また、制御部30は、モータ電流検出部33が検出した実電流Imとモータ回転角度算出部71で算出されたモータ回転角度θとに基づいてフィードバック電流Ifを算出するフィードバック電流算出部38を有している。
Next, the
FIG. 5 is a schematic configuration diagram of the
As shown in FIG. 5, the
モータ駆動制御部31は、目標電流算出部20にて最終的に決定された目標電流Itと、フィードバック電流算出部38にて算出されたフィードバック電流Ifとの偏差に基づいてフィードバック制御を行うフィードバック(F/B)制御部40と、電動モータ110をPWM駆動するためのPWM(パルス幅変調)信号を生成するPWM信号生成部60とを有している。
The motor
フィードバック制御部40は、目標電流算出部20にて最終的に決定された目標電流Itとフィードバック電流算出部38にて算出されたフィードバック電流Ifとの偏差を求める偏差演算部41と、その偏差が零となるようにフィードバック処理を行うフィードバック(F/B)処理部42とを有している。
The
フィードバック(F/B)処理部42は、目標電流Itとフィードバック電流Ifとが一致するようにフィードバック制御を行うものであり、例えば、偏差演算部41にて算出された偏差に対して、比例要素で比例処理し、積分要素で積分処理し、加算演算部でこれらの値を加算する。
PWM信号生成部60は、フィードバック制御部40からの出力値とモータ回転角度算出部71が算出したモータ回転角度θとに基づいて電動モータ110をPWM(パルス幅変調)駆動するためのPWM信号を生成し、生成したPWM信号を出力する。
The feedback (F /
The PWM
モータ駆動部32は、所謂インバータであり、例えば、スイッチング素子として6個の独立したトランジスタ(FET)を備え、6個の内の3個のトランジスタは電源の正極側ラインと各相の電気コイルとの間に接続され、他の3個のトランジスタは各相の電気コイルと電源の負極側(アース)ラインと接続されている。そして、6個の中から選択した2個のトランジスタのゲートを駆動してこれらのトランジスタをスイッチング動作させることにより、電動モータ110の駆動を制御する。
The
モータ電流検出部33は、モータ駆動部32に接続されたシャント抵抗の両端に生じる電圧から電動モータ110に流れる実電流Imの値を検出する。
フィードバック電流算出部38は、予めROMに記憶しておいた演算式、モータ電流検出部33が検出した実電流Im、およびモータ回転角度算出部71が算出したモータ回転角度θに基づいてフィードバック電流Ifを算出する。
The motor
The feedback
モータ回転角度算出部71(図2参照)は、レゾルバ120の出力信号に基づいてモータ回転角度θを算出する。
モータ回転速度算出部72(図2参照)は、モータ回転角度算出部71が算出したモータ回転角度θに基づいて電動モータ110のモータ回転速度Vmを算出し、算出したモータ回転速度Vmが出力信号に変換されたモータ回転速度信号Vmsを出力する。
操舵角算出部73(図2参照)は、ステアリングホイール101、減速機構111などが機械的に連結されているためにステアリングホイール101の回転角度(操舵角)と電動モータ110のモータ回転角度θとの間に相関関係があることに鑑み、モータ回転角度算出部71にて算出されたモータ回転角度θに基づいて操舵角を算出する。操舵角算出部73は、例えば、モータ回転角度算出部71にて定期的(例えば1ミリ秒毎)に算出されたモータ回転角度θの前回値と今回値との差分の積算値に基づいて操舵角を算出する。
レゾルバ120、モータ回転角度算出部71および操舵角算出部73は、操舵角を推定する操舵角推定手段の一例として機能する。
The motor rotation angle calculation unit 71 (see FIG. 2) calculates the motor rotation angle θ based on the output signal of the
The motor rotation speed calculation unit 72 (see FIG. 2) calculates the motor rotation speed Vm of the
The steering angle calculation unit 73 (see FIG. 2) is configured such that the rotation angle (steering angle) of the
The
ここで、ステアリングホイール101が零度から右回転されたときの操舵角の符号をプラス、左回転されたときの操舵角の符号をマイナスとする。また、ステアリングホイール101と機械的に連結されている電動モータ110の回転方向の符号を、ステアリングホイール101が右回転されたときの電動モータ110の回転方向(上述した一方の回転方向)をプラス、ステアリングホイール101が左回転されたときの電動モータ110の回転方向(上述した他方の回転方向)をマイナスとする。
Here, the sign of the steering angle when the
[センサ故障時電流決定部28]
次に、センサ故障時電流決定部28について詳述する。
図6は、センサ故障時電流決定部28の概略構成図である。
センサ故障時電流決定部28は、操舵角算出部73にて算出された算出操舵角θscに基づいて後述する制御マップに代入するための操舵角である代入用操舵角θseを算出する代入操舵角算出部281と、代入操舵角算出部281が算出した代入用操舵角θseに基づいてセンサ故障時電流Ieのベースとなるセンサ故障時ベース電流Iebを算出するセンサ故障時ベース電流算出部282と、を備えている。センサ故障時ベース電流Ieb相当分の電動モータ110の発生トルクは、センサ故障検出部27が故障と判定した場合の電動モータ110の補助力(アシスト力)の基礎となる基礎補助力(基礎アシスト力)である。言い換えれば、センサ故障時ベース電流算出部282は、センサ故障検出部27が故障と判定した場合の電動モータ110の補助力の基礎となる基礎補助力を決定する。
[Sensor failure current determination unit 28]
Next, the sensor failure
FIG. 6 is a schematic configuration diagram of the sensor failure
The sensor failure
また、センサ故障時電流決定部28は、ステアリングホイール101が切り戻されている場合のセンサ故障時電流Ieが小さくなるように補正するための戻り補正係数Krを設定する戻り補正係数設定部283と、センサ故障時ベース電流算出部282が算出したセンサ故障時ベース電流Iebと戻り補正係数設定部283が設定した戻り補正係数Krとを乗算することにより戻り補正後ベース電流Iebrを算出する戻り補正係数乗算部284と、を備えている。
The sensor failure
また、センサ故障時電流決定部28は、モータ回転速度Vmに応じた回転速度補正係数Kmを設定する回転速度補正係数設定部285と、戻り補正係数乗算部284にて算出された戻り補正後ベース電流Iebrと回転速度補正係数設定部285が設定した回転速度補正係数Kmとを乗算することにより回転速度補正後ベース電流Iebvを算出する回転速度補正係数乗算部286と、を備えている。
In addition, the sensor failure
また、センサ故障時電流決定部28は、操舵角加速度θaに応じた操舵角加速度補正係数Ksを設定する操舵角加速度補正係数設定部287と、回転速度補正係数乗算部286にて算出された回転速度補正後ベース電流Iebvと操舵角加速度補正係数設定部287が設定した操舵角加速度補正係数Ksとを乗算することにより操舵角加速度補正後ベース電流Iebsを算出する操舵角加速度補正係数乗算部288と、を備えている。
In addition, the sensor failure
また、センサ故障時電流決定部28は、操舵角加速度補正係数乗算部288にて算出された操舵角加速度補正後ベース電流Iebsに対してリミット処理を行うリミット処理部289と、リミット処理部289にてリミット処理後の操舵角加速度補正後ベース電流Iebsであるリミット処理後ベース電流Ilに対して符号化処理を行う符号化処理部290と、を備えている。
Further, the sensor failure
また、センサ故障時電流決定部28は、符号化処理部290にて符号化処理が施されたリミット処理後ベース電流Ilを、車速Vcに基づいてフェード処理を施すフェード処理部291を備えている。
In addition, the sensor failure
次に、センサ故障時電流決定部28を構成する要素について詳述する。
<代入操舵角算出部281>
代入操舵角算出部281は、零度から、操舵角算出部73にて定期的(例えば1ミリ秒毎)に算出された算出操舵角θscの前回値と今回値との差分を積算することにより零度からの回転角度を算出し、この算出値を代入用操舵角θseとする。そして、所定のリセット条件が成立したら代入用操舵角θseを零にリセットする。リセット条件としては、ステアリングホイール101の回転角度(操舵角)の差分が零度となったことを把握できる条件であればよく、例えば、目標電流算出部20にて設定された目標電流Itあるいはモータ電流検出部33が検出した実電流Imが零又は零値近傍となったとき、を例示することができる。
Next, elements constituting the sensor failure
<Substituted steering
The substitution steering
<センサ故障時ベース電流算出部282>
図7は、センサ故障時ベース電流算出部282の概略構成図である。
センサ故障時ベース電流算出部282は、代入操舵角算出部281にて算出された代入用操舵角θseの絶対値化を行う絶対値化部282aと、絶対値化部282aにて絶対値化された絶対値化後操舵角|θse|に基づいて仮のセンサ故障時ベース電流Iebである仮センサ故障時ベース電流Iebaを算出する仮ベース電流算出部282bと、を備えている。また、センサ故障時ベース電流算出部282は、車速信号vに基づいて車速補正係数Kvを設定する車速補正係数設定部282cと、仮ベース電流算出部282bにて算出された仮センサ故障時ベース電流Iebaと車速補正係数設定部282cにて設定された車速補正係数Kvとを乗算することによりセンサ故障時ベース電流Iebを算出する車速補正係数乗算部282dと、を備えている。センサ故障時ベース電流算出部282は、定期的(例えば1ミリ秒毎)にセンサ故障時ベース電流Iebを算出する。
<Sensor Failure Base
FIG. 7 is a schematic configuration diagram of the sensor failure base
The sensor failure base
(絶対値化部282a)
絶対値化部282aは、プラス又はマイナスの符号を持つ代入用操舵角θseの絶対値を算出する。絶対値化部282aにて算出された値が絶対値化後操舵角|θse|である。
(
The absolute
(仮ベース電流算出部282b)
図8は、絶対値化後操舵角|θse|と仮センサ故障時ベース電流Iebaとの対応を示す制御マップの概略図である。
仮ベース電流算出部282bは、予め経験則に基づいて作成しROMに記憶しておいた、絶対値化後操舵角|θse|と仮センサ故障時ベース電流Iebaとの対応を示す図8に例示した制御マップに、絶対値化後操舵角|θse|を代入することにより仮センサ故障時ベース電流Iebaを算出する。
(Temporary base
FIG. 8 is a schematic diagram of a control map showing the correspondence between the steering angle | θse | after absolute value conversion and the base current Ieba at the time of temporary sensor failure.
The temporary base
(車速補正係数設定部282c)
図9は、車速補正係数Kvと車速Vcとの対応を示す制御マップの概略図である。
車速補正係数設定部282cは、予め経験則に基づいて作成しROMに記憶しておいた、車速補正係数Kvと車速Vcとの対応を示す図9に例示した制御マップに、車速Vcを代入することにより車速補正係数Kvを算出する。
図9に例示した制御マップにおいては、車速Vcが零(km/h)であるときの車速補正係数Kvを1、車速Vcが略1(km/h)であるときの車速補正係数Kvを略0.5としている。また、車速Vcが略5(km/h)であるときの車速補正係数Kvを略0.3とし、車速Vcが略1から略5(km/h)に変化する間に車速補正係数Kvを徐々に低下させている。また、車速Vcが略40(km/h)であるときの車速補正係数Kvを略0.4とし、車速Vcが略5から略40(km/h)に変化する間に車速補正係数Kvを徐々に上昇させている。そして、車速Vcが略40(km/h)から大きくなるに従って車速補正係数Kvを徐々に低下させている。
(Vehicle speed correction
FIG. 9 is a schematic diagram of a control map showing the correspondence between the vehicle speed correction coefficient Kv and the vehicle speed Vc.
The vehicle speed correction
In the control map illustrated in FIG. 9, the vehicle speed correction coefficient Kv when the vehicle speed Vc is zero (km / h) is 1, and the vehicle speed correction coefficient Kv when the vehicle speed Vc is approximately 1 (km / h). 0.5. Further, the vehicle speed correction coefficient Kv when the vehicle speed Vc is approximately 5 (km / h) is set to approximately 0.3, and the vehicle speed correction coefficient Kv is changed while the vehicle speed Vc changes from approximately 1 to approximately 5 (km / h). It is gradually decreasing. Further, the vehicle speed correction coefficient Kv when the vehicle speed Vc is about 40 (km / h) is set to about 0.4, and the vehicle speed correction coefficient Kv is changed while the vehicle speed Vc changes from about 5 to about 40 (km / h). It is gradually rising. The vehicle speed correction coefficient Kv is gradually decreased as the vehicle speed Vc increases from approximately 40 (km / h).
(車速補正係数乗算部282d)
車速補正係数乗算部282dは、仮ベース電流算出部282bにて算出された仮センサ故障時ベース電流Iebaと車速補正係数設定部282cにて設定された車速補正係数Kvとを乗算することによりセンサ故障時ベース電流Iebを算出し、算出したセンサ故障時ベース電流Iebを戻り補正係数乗算部284に出力する。
(Vehicle speed
The vehicle speed correction
<戻り補正係数設定部283>
図10は、戻り補正係数設定部283の概略構成図である。
戻り補正係数設定部283は、操舵角算出部73にて算出された算出操舵角θscの絶対値化を行う絶対値化部283aと、絶対値化部283aにて絶対値化された絶対値化後操舵角|θsc|に基づいて仮の戻り補正係数Krである仮戻り補正係数Kraを算出する仮戻り補正係数算出部283bと、を備えている。また、戻り補正係数設定部283は、車速Vcに応じて、仮戻り補正係数算出部283bが算出した仮戻り補正係数Kraか予め定められた値かを選択する第1選択部283cを備えている。また、戻り補正係数設定部283は、操舵角算出部73にて算出された算出操舵角θscと代入操舵角算出部281にて算出された代入用操舵角θseとに基づいてステアリングホイール101が切り込まれているのか切り戻されているのかを判定する判定部283dを備えている。また、戻り補正係数設定部283は、判定部283dが判定した操舵状況に応じて、第1選択部283cが選択した値か予め定められた値かを選択する第2選択部283eを備えている。
<Return correction
FIG. 10 is a schematic configuration diagram of the return correction
The return correction
(絶対値化部283a)
絶対値化部283aは、プラス又はマイナスの符号を持つ算出操舵角θscの絶対値を算出する。絶対値化部283aにて算出された値が絶対値化後操舵角|θsc|である。
(
The absolute
(仮戻り補正係数算出部283b)
図11は、絶対値化後操舵角|θsc|と仮戻り補正係数Kraとの対応を示す制御マップの概略図である。
仮戻り補正係数算出部283bは、予め経験則に基づいて作成しROMに記憶しておいた、絶対値化後操舵角|θsc|と仮戻り補正係数Kraとの対応を示す図11に例示した制御マップに、絶対値化後操舵角|θsc|を代入することにより仮戻り補正係数Kraを算出する。
図11に示した制御マップにおいては、絶対値化後操舵角|θsc|が予め定められた下側操舵角θd以下である場合には仮戻り補正係数Kraは零となり、絶対値化後操舵角|θsc|が予め定められた上側操舵角θu以上である場合には仮戻り補正係数Kraは1となる。そして、絶対値化後操舵角|θsc|が下側操舵角θdから上側操舵角θuの間では、仮戻り補正係数Kraは零から1まで徐々に大きくなる。
(Temporary return correction
FIG. 11 is a schematic diagram of a control map showing the correspondence between the steering angle | θsc | after absolute value conversion and the provisional return correction coefficient Kra.
The provisional return correction
In the control map shown in FIG. 11, when the absolute steering angle | θsc | is equal to or smaller than the predetermined lower steering angle θd, the provisional return correction coefficient Kra is zero, and the absolute steering angle is obtained. When | θsc | is equal to or greater than a predetermined upper steering angle θu, the provisional return correction coefficient Kra is 1. When the absolute steering angle | θsc | is between the lower steering angle θd and the upper steering angle θu, the provisional return correction coefficient Kra gradually increases from zero to one.
(第1選択部283c)
第1選択部283cは、車速Vcが予め定められた所定車速Vcd以上である場合には仮戻り補正係数算出部283bが算出した仮戻り補正係数Kraを選択し、所定車速Vcd未満である場合には予め定められた値である1を選択する。なお、所定車速Vcdは、1km/hであることを例示することができる。
(
The
(判定部283d)
判定部283dは、操舵角算出部73にて算出された算出操舵角θscと代入操舵角算出部281にて算出された代入用操舵角θseとを乗算することにより得た乗算値(=θsc×θse)が零以上である場合は切り込まれていると判定し、乗算値が零未満である場合は切り戻されていると判定する。
(
The
(第2選択部283e)
第2選択部283eは、判定部283dが切り込まれていると判定した場合には予め定められた値である1を選択し、判定部283dが切り戻されていると判定した場合には第1選択部283cが選択した仮戻り補正係数Kraを選択する。そして、第2選択部283eは、選択した値を戻り補正係数Krとして出力する。
(
The
以上説明した構成により、戻り補正係数設定部283は、定期的(例えば1ミリ秒毎)に戻り補正係数Krを設定する。そして、戻り補正係数設定部283は、ステアリングホイール101が切り込まれている場合には、補正係数Krを1に設定する。また、戻り補正係数設定部283は、ステアリングホイール101が切り戻されている場合であっても、車速Vcが所定車速Vcd未満である場合には補正係数Krを1に設定する。また、戻り補正係数設定部283は、ステアリングホイール101が切り戻されており、かつ、車速Vcが所定車速Vcd以上である場合に、絶対値化後操舵角|θsc|が上側操舵角θu以上である場合には補正係数Krを1に設定する。他方、戻り補正係数設定部283は、ステアリングホイール101が切り戻されており、かつ、車速Vcが所定車速Vcd以上である場合に、絶対値化後操舵角|θsc|が上側操舵角θu未満である場合には絶対値化後操舵角|θsc|に応じた補正係数Krを設定する。
With the configuration described above, the return correction
<回転速度補正係数設定部285>
回転速度補正係数設定部285は、モータ回転速度Vmに応じた回転速度補正係数Kmを設定する。
図12は、モータ回転速度Vmと回転速度補正係数Kmとの対応を示す制御マップの概略図である。
回転速度補正係数設定部285は、予め経験則に基づいて作成しROMに記憶しておいた、モータ回転速度Vmと回転速度補正係数Kmとの対応を示す図12に例示した制御マップに、モータ回転速度Vmを代入することにより回転速度補正係数Kmを算出する。
図12に示した制御マップにおいては、モータ回転速度Vmが予め定められた回転速度Vm0以下である場合には回転速度補正係数Kmは1であり、モータ回転速度Vmが回転速度Vm0より大きい場合には、回転速度補正係数Kmはモータ回転速度Vmが大きくなるに従って1から零まで徐々に減少する値となる。
<Rotation speed correction
The rotation speed correction
FIG. 12 is a schematic diagram of a control map showing the correspondence between the motor rotation speed Vm and the rotation speed correction coefficient Km.
The rotation speed correction
In the control map shown in FIG. 12, when the motor rotational speed Vm is equal to or lower than the predetermined rotational speed Vm0, the rotational speed correction coefficient Km is 1, and when the motor rotational speed Vm is larger than the rotational speed Vm0. The rotational speed correction coefficient Km is a value that gradually decreases from 1 to zero as the motor rotational speed Vm increases.
図13は、車速Vcと車速補正係数Kcとの対応を示す制御マップの概略図である。
回転速度補正係数設定部285は、図12に示した制御マップに代入するモータ回転速度Vmを、図13に示した制御マップと車速Vcとに基づいて設定した車速補正係数Kcを用いて補正する(図12に示した制御マップに代入するモータ回転速度Vm=モータ回転速度算出部72にて算出されたモータ回転速度Vm×Kc)。
図13に例示した制御マップにおいては、車速Vcが零から第1車速V1であるときの車速補正係数Kcを1、車速Vcが第2車速V2よりも大きい場合には車速補正係数Kcを略0.3としている。また、車速Vcが第1車速V1から第2車速V2まで大きくなる間に車速補正係数Kcが1から0.3まで徐々に小さくなる値に設定している。なお、第1車速V1は略15(km/h)、第2車速V2は略35(km/h)であることを例示することができる。
FIG. 13 is a schematic diagram of a control map showing the correspondence between the vehicle speed Vc and the vehicle speed correction coefficient Kc.
The rotational speed correction
In the control map illustrated in FIG. 13, the vehicle speed correction coefficient Kc when the vehicle speed Vc is from zero to the first vehicle speed V1 is 1, and the vehicle speed correction coefficient Kc is approximately 0 when the vehicle speed Vc is greater than the second vehicle speed V2. .3. Further, the vehicle speed correction coefficient Kc is set to a value that gradually decreases from 1 to 0.3 while the vehicle speed Vc increases from the first vehicle speed V1 to the second vehicle speed V2. It can be illustrated that the first vehicle speed V1 is approximately 15 (km / h) and the second vehicle speed V2 is approximately 35 (km / h).
以上説明した構成により、回転速度補正係数設定部285は、定期的(例えば1ミリ秒毎)に回転速度補正係数Kmを設定する。そして、回転速度補正係数設定部285は、モータ回転速度Vmが大きい場合、言い換えればステアリングホイール101の操舵角速度が大きい場合には、切り込み過ぎを抑制するべく回転速度補正係数Kmを1よりも小さい値に設定する。ただし、車速Vcが大きい場合の危険回避に必要なアシスト力を確保するために、車速Vcが第2車速V2よりも大きい場合には図12に示した制御マップに代入するモータ回転速度Vmが小さくなるように補正する。他方、車速Vcが第1車速V1よりも小さい場合には、ステアリングとられを防止するために、図12に示した制御マップに代入するモータ回転速度Vmを小さくする補正を行わない。
With the configuration described above, the rotation speed correction
<操舵角加速度補正係数設定部287>
図14は、操舵角加速度補正係数設定部287の概略構成図である。
操舵角加速度補正係数設定部287は、操舵角算出部73にて算出された算出操舵角θscに基づいて操舵角加速度θaを算出する操舵角加速度算出部287aと、操舵角加速度算出部287aにて算出された操舵角加速度θaの絶対値化を行う絶対値化部287bと、を備えている。また、操舵角加速度補正係数設定部287は、絶対値化部287bにて絶対値化された絶対値化後操舵角|θa|に基づいて仮の操舵角加速度補正係数Ksである仮操舵角加速度補正係数Ksaを算出する仮操舵角加速度補正係数算出部287cを備えている。また、操舵角加速度補正係数設定部287は、車速信号vに基づいて車速補正係数Kaを設定する車速補正係数設定部287dと、仮操舵角加速度補正係数算出部287cにて算出された仮操舵角加速度補正係数Ksaと車速補正係数設定部287dにて設定された車速補正係数Kaとを乗算することにより操舵角加速度補正係数Ksを算出する車速補正係数乗算部287eと、を備えている。
<Steering angular acceleration correction
FIG. 14 is a schematic configuration diagram of the steering angular acceleration correction
The steering angular acceleration correction
(操舵角加速度算出部287a)
操舵角加速度算出部287aは、先ず、操舵角算出部73にて定期的(例えば1ミリ秒(サンプリング時間)毎)に算出された算出操舵角θscの前回値と今回値との差分をサンプリング時間で除算した今回の操舵角速度θvnと、算出操舵角θscの前々値と前回値との差分をサンプリング時間で除算した前回の操舵角速度θvn−1とを算出する。そして、操舵角加速度算出部287aは、今回の操舵角速度θvnと前回の操舵角速度θvn−1との差分をサンプリング時間で除算することで操舵角加速度θaを算出する。
(Steering angular
The steering angular
(絶対値化部287b)
絶対値化部287bは、プラス又はマイナスの符号を持つ操舵角加速度θaの絶対値を算出する。絶対値化部287bにて算出された値が絶対値化後操舵角加速度|θa|である。
(Absolute
The absolute
(仮操舵角加速度補正係数算出部287c)
図15は、絶対値化後操舵角加速度|θa|と仮操舵角加速度補正係数Ksaとの対応を示す制御マップの概略図である。
仮操舵角加速度補正係数算出部287cは、予め経験則に基づいて作成しROMに記憶しておいた、絶対値化後操舵角加速度|θa|と仮操舵角加速度補正係数Ksaとの対応を示す図15に例示した制御マップに、絶対値化後操舵角加速度|θa|を代入することにより仮操舵角加速度補正係数Ksaを算出する。
図15に示した制御マップにおいては、絶対値化後操舵角加速度|θa|が予め定められた操舵角加速度θa0以下である場合には仮操舵角加速度補正係数Ksaは1であり、絶対値化後操舵角加速度|θa|が操舵角加速度θa0より大きい場合には、仮操舵角加速度補正係数Ksaは絶対値化後操舵角加速度|θa|が大きくなるに従って1から零まで徐々に減少する値となる。
(Temporary steering angular acceleration correction
FIG. 15 is a schematic diagram of a control map showing correspondence between the steering angular acceleration after absolute value conversion | θa | and the provisional steering angular acceleration correction coefficient Ksa.
The provisional steering angular acceleration correction
In the control map shown in FIG. 15, when the steering angular acceleration after the absolute value | θa | is equal to or smaller than the predetermined steering angular acceleration θa0, the provisional steering angular acceleration correction coefficient Ksa is 1, and the absolute value is obtained. When the rear steering angular acceleration | θa | is larger than the steering angular acceleration θa0, the temporary steering angular acceleration correction coefficient Ksa is a value that gradually decreases from 1 to zero as the steering angular acceleration | θa | after the absolute value is increased. Become.
(車速補正係数設定部287d)
図16は、車速補正係数Kaと車速Vcとの対応を示す制御マップの概略図である。
車速補正係数設定部287dは、予め経験則に基づいて作成しROMに記憶しておいた、車速補正係数Kaと車速Vcとの対応を示す図16に例示した制御マップに、車速Vcを代入することにより車速補正係数Kaを算出する。
図16に示した制御マップにおいては、車速Vcが予め定められた車速Vc0以下である場合には車速補正係数Kaは1であり、車速Vcが車速Vc0より大きい場合には、車速補正係数Kaは車速Vcが大きくなるに従って1から零まで徐々に減少する値となる。
(Vehicle speed correction
FIG. 16 is a schematic diagram of a control map showing the correspondence between the vehicle speed correction coefficient Ka and the vehicle speed Vc.
The vehicle speed correction
In the control map shown in FIG. 16, the vehicle speed correction coefficient Ka is 1 when the vehicle speed Vc is equal to or lower than the predetermined vehicle speed Vc0, and the vehicle speed correction coefficient Ka is when the vehicle speed Vc is higher than the vehicle speed Vc0. As the vehicle speed Vc increases, the value gradually decreases from 1 to zero.
(車速補正係数乗算部287e)
車速補正係数乗算部287eは、仮操舵角加速度補正係数算出部287cにて算出された仮操舵角加速度補正係数Ksaと車速補正係数設定部287dにて設定された車速補正係数Kaとを乗算することにより操舵角加速度補正係数Ksを算出し、算出した操舵角加速度補正係数Ksを操舵角加速度補正係数乗算部288に出力する。
(Vehicle speed
The vehicle speed correction
以上説明した構成により、操舵角加速度補正係数設定部287は、定期的(例えば1ミリ秒毎)に操舵角加速度補正係数Ksを設定する。そして、操舵角加速度補正係数設定部287は、操舵角加速度θaの絶対値が大きい場合には、操舵角加速度補正係数Ksを1よりも小さい値に設定する。また、車速Vcが大きい場合には、操舵角加速度補正係数Ksが1よりも小さい値となるように補正する。
With the configuration described above, the steering angular acceleration correction
<リミット処理部289>
リミット処理部289は、操舵角加速度補正係数乗算部288にて算出された操舵角加速度補正後ベース電流Iebsが予め定められた上限値よりも大きい場合には、上限値をリミット処理後ベース電流Ilとして出力し、算出された操舵角加速度補正後ベース電流Iebsが上限値以下の場合には、算出された操舵角加速度補正後ベース電流Iebsをそのままリミット処理後ベース電流Ilとして出力する。
<Limit processing
When the base current Iebs after the steering angular acceleration correction calculated by the steering angular acceleration correction
<符号化処理部290>
符号化処理部290は、代入操舵角算出部281にて算出された代入用操舵角θseの符号がプラスである場合にはリミット処理部289から出力されたリミット処理後ベース電流Ilにプラスの符号を付す。他方、符号化処理部290は、代入操舵角算出部281にて算出された代入用操舵角θseの符号がマイナスである場合にはリミット処理部289から出力されたリミット処理後ベース電流Ilにマイナスの符号を付す。
<
When the sign of the substitution steering angle θse calculated by the substitution steering
なお、上述した戻り補正係数乗算部284、回転速度補正係数乗算部286、操舵角加速度補正係数乗算部288、リミット処理部289および符号化処理部290は、定期的(例えば1ミリ秒毎)に各処理を行う。ゆえに、符号化処理部290は、定期的(例えば1ミリ秒毎)に、符号が付されたリミット処理後ベース電流Ilをフェード処理部291に出力する。
The return correction
<フェード処理部291>
フェード処理部291は、定期的(例えば1ミリ秒毎)に行う処理において、センサ故障検出部27がトルクセンサ109の故障を検出した場合には、車速Vcに基づいて決定した値をセンサ故障時電流Ieと決定し、トルクセンサ109の故障を検出していない場合には、センサ故障時電流Ieを零と決定する。
そして、フェード処理部291は、センサ故障検出部27がトルクセンサ109の故障を検出し、車速Vcに基づいてセンサ故障時電流Ieを決定する際には、車速Vcが、図9に例示した制御マップに示したように車速補正係数Kvが大きく変化する零から略1(km/h)の間以外の大きさ(1(km/h)よりも大きな速度)である場合には、センサ故障時電流Ieを、符号化処理部290にて符号が付された回転速度補正後ベース電流Iebvに決定する。他方、車速Vcが1(km/h)以下の場合には、前回のセンサ故障時電流Ieから今回符号化処理部290にて符号が付された回転速度補正後ベース電流Iebvまで所定期間かけて徐変させる。例えば、車速Vcが1(km/h)から減速している場合には、1秒間で、前回のセンサ故障時電流Ieから今回符号化処理部290にて符号が付された回転速度補正後ベース電流Iebvに変化する値を、定期的(例えば1ミリ秒毎)にセンサ故障時電流Ieとして決定する。一方、車速Vcが零から加速している場合には、0.5秒間で、前回のセンサ故障時電流Ieから今回符号化処理部290にて符号が付された回転速度補正後ベース電流Iebvに変化する値を、定期的(例えば1ミリ秒毎)にセンサ故障時電流Ieとして決定する。
<Fade processing
When the sensor
Then, when the sensor
以上のように構成されたステアリング装置100によれば、トルクセンサ109に故障が生じてトルクセンサ109にて検出した操舵トルクTに基づいて決定した目標電流Itをアシスト電流とする通常のアシスト制御を行うことができない場合にも、レゾルバ120からの出力値に基づいて故障時のアシスト制御を行うことができる。
故障時のアシスト制御を行う際、静摩擦力が大きい停車時には、図9に例示した制御マップに基づいて車速補正係数Kvが1に設定されるので、車速Vcが零よりも大きい場合よりもアシスト力が大きくなる。その結果、故障時のアシスト制御であっても駐停車時の取り回し性は確保される。他方、車速Vcが略1(km/h)よりも大きくなり動摩擦力の領域に移った場合には、図9に例示した制御マップに基づいて車速補正係数Kvが0.5以下に設定され、アシスト力が急激に弱められるのでアシスト過多にならないように調整される。さらに、車両の旋回が行われる、車速Vcが略10(km/h)より大きな領域では、操舵力が増加する傾向にあるが、この速度では車速補正係数Kvが略5(km/h)近辺よりも高められるのでアシスト力が増加する。ただし、車速Vcが略40(km/h)より大きい領域では車速補正係数Kvが小さく設定されるので、アシスト力が弱められる。これにより、高車速時の車両のふらつきが抑制される。
さらに、車速Vcが零から略1(km/h)の間で車速補正係数Kvが大きく変化する構成としても、フェード処理部291によりアシスト力が徐変されるので、アシスト力が急激に変化することに起因して操舵フィーリングが悪化することが抑制される。
According to the
When performing the assist control at the time of failure, the vehicle speed correction coefficient Kv is set to 1 based on the control map illustrated in FIG. 9 when the vehicle has a large static friction force, so the assist force is greater than when the vehicle speed Vc is greater than zero. Becomes larger. As a result, even in the case of assist control at the time of failure, handling characteristics at the time of parking and stopping are ensured. On the other hand, when the vehicle speed Vc is greater than approximately 1 (km / h) and the vehicle moves to the dynamic friction force region, the vehicle speed correction coefficient Kv is set to 0.5 or less based on the control map illustrated in FIG. Since the assist force is suddenly weakened, it is adjusted so that there is no excessive assist. Further, in a region where the vehicle is turning and the vehicle speed Vc is larger than about 10 (km / h), the steering force tends to increase. At this speed, the vehicle speed correction coefficient Kv is about 5 (km / h). The assist power increases because it is higher than that. However, since the vehicle speed correction coefficient Kv is set small in a region where the vehicle speed Vc is greater than approximately 40 (km / h), the assist force is weakened. Thereby, the wobbling of the vehicle at a high vehicle speed is suppressed.
Further, even when the vehicle speed correction coefficient Kv changes greatly between zero and approximately 1 (km / h), the assist force is gradually changed by the
また、故障時のアシスト制御において、回転速度補正係数設定部285が設定する回転速度補正係数Kmにより、ステアリングホイール101の操舵角速度が大きい場合の切り込み過ぎが抑制される。ただし、車速Vcが第2車速V2よりも大きい場合には回転速度補正係数Kmが大きくなるように設定されるので(図12、図13参照)、車速Vcが大きい場合の危険回避に必要なアシスト力が確保される。また、車速Vcが第1車速V1よりも小さい場合には、回転速度補正係数Kmが小さくなるように設定されるので(図12、図13参照)、低μ路低速走行時においてもステアリングとられが抑制される。また、停車時のステアリング引っ掛かりが抑制される。
Further, in the assist control at the time of failure, excessive rotation when the steering angular speed of the
また、故障時のアシスト制御においては、操舵角加速度補正係数設定部287が設定する操舵角加速度補正係数Ksにより、ステアリングホイール101の操舵角加速度が大きい場合にはアシスト力が小さくなるように補正されるので、低μ路を走行しているときにステアリングホイール101がとられたとしてもアシスト力が小さくなる。それゆえ、本実施の形態に係る制御装置10によれば、ステアリングとられ(ハンドルとられ)を抑制することができ、操舵安定性を確保することができる。他方、整地されたアスファルト道路などの高μ路を走行しているときには、ステアリングとられは生じ難い(操舵角加速度は小さい)ことに鑑み、操舵角加速度補正係数設定部287が設定する操舵角加速度補正係数Ksは1に設定されるように構成されている。それゆえ、アシスト力が小さくなるように補正されない。その結果、本実施の形態に係る制御装置10によれば、アスファルト路(高μ路)での十分なアシスト力を確保することができる。
Further, in the assist control at the time of failure, the steering angular acceleration correction coefficient Ks set by the steering angular acceleration correction
このように、本実施の形態に係るステアリング装置100によれば、故障時のアシスト制御時においても、車両の使用状況や路面変化に応じたアシスト力を付与することができる。つまり、危険回避のためのアシスト力の付与を実現することができるとともに、一般走行のためのアシスト力の付与も実現することができる。その結果、トルクセンサ109に故障が生じた後も自宅または最寄りのディーラーまで行くことができ、運転者の安全を確保することができる。
As described above, according to the
なお、上述した実施の形態においては、フェード処理部291において車速Vcに応じてセンサ故障時電流決定部28から出力するセンサ故障時電流Ieをフェードしているが他の部位でもフェードするようにしてもよい。例えば、リミット処理部289の前段でリミット処理部289に入力される操舵角加速度補正後ベース電流Iebsをフェードするようにしてもよい。これにより、アシスト力が急激に変化することに起因して操舵フィーリングが悪化することが抑制される。
In the embodiment described above, the
また、上述した実施の形態においては、レゾルバ120からの出力信号に基づいて操舵角算出部73が算出したステアリングホイール101の回転角度(操舵角)を用いてセンサ故障時電流Ieを決定しているが特にかかる態様に限定されない。例えば、ステアリングホイール101の回転角度を検出する操舵角センサを備え、操舵角センサが検出した操舵角に基づいてセンサ故障時電流Ieを決定してもよい。
In the above-described embodiment, the sensor failure current Ie is determined using the rotation angle (steering angle) of the
10…制御装置、20…目標電流算出部、28…センサ故障時電流決定部、30…制御部、100…電動パワーステアリング装置、109…トルクセンサ、110…電動モータ、120…レゾルバ
DESCRIPTION OF
Claims (4)
前記ステアリングホイールの操舵トルクを検出するトルク検出手段と、
前記ステアリングホイールの回転角度である操舵角を推定する操舵角推定手段と、
前記トルク検出手段の故障を検出する故障検出手段と、
前記故障検出手段が故障を検出した場合には、前記操舵角推定手段が推定した操舵角に基づいて前記補助力の基礎となる基礎補助力を決定し、前記操舵角の加速度に応じて前記基礎補助力を補正した前記補助力となるように前記電動モータを制御する制御手段と、
を備えることを特徴とする電動パワーステアリング装置。 An electric motor for applying an assisting force to the steering wheel of the vehicle;
Torque detecting means for detecting a steering torque of the steering wheel;
Steering angle estimating means for estimating a steering angle which is a rotation angle of the steering wheel;
Failure detection means for detecting a failure of the torque detection means;
When the failure detecting means detects a failure, a basic auxiliary force serving as a basis of the auxiliary force is determined based on the steering angle estimated by the steering angle estimating means, and the basic assistance force is determined according to the acceleration of the steering angle. Control means for controlling the electric motor so that the auxiliary force is corrected to the auxiliary force;
An electric power steering apparatus comprising:
ことを特徴とする請求項1に記載の電動パワーステアリング装置。 The said control means correct | amends the said basic auxiliary force so that the said auxiliary force may become small when the acceleration of the said steering angle is larger than the predetermined predetermined steering angular acceleration. Electric power steering device.
ことを特徴とする請求項1に記載の電動パワーステアリング装置。 The said control means correct | amends the said basic auxiliary force so that the said auxiliary force may become small when the vehicle speed which is the moving speed of the said vehicle is larger than the predetermined predetermined vehicle speed. Electric power steering device.
ことを特徴とする請求項1から3のいずれか1項に記載の電動パワーステアリング装置。 4. The control unit according to claim 1, wherein the control unit determines the auxiliary force based on a steering torque detected by the torque detection unit when the failure detection unit has not detected a failure. The electric power steering apparatus according to Item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015038418A JP2016159701A (en) | 2015-02-27 | 2015-02-27 | Electric power steering system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015038418A JP2016159701A (en) | 2015-02-27 | 2015-02-27 | Electric power steering system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016159701A true JP2016159701A (en) | 2016-09-05 |
Family
ID=56845993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015038418A Pending JP2016159701A (en) | 2015-02-27 | 2015-02-27 | Electric power steering system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016159701A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020001481A (en) * | 2018-06-26 | 2020-01-09 | マツダ株式会社 | Power steering controller |
-
2015
- 2015-02-27 JP JP2015038418A patent/JP2016159701A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020001481A (en) * | 2018-06-26 | 2020-01-09 | マツダ株式会社 | Power steering controller |
JP7144724B2 (en) | 2018-06-26 | 2022-09-30 | マツダ株式会社 | power steering controller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6115368B2 (en) | Steering device | |
US20170029013A1 (en) | Vehicular steering system | |
JP2015151088A (en) | electric power steering device | |
JP2013116685A (en) | Vehicular steering device | |
JP6609465B2 (en) | Electric power steering device | |
JP6291314B2 (en) | Electric power steering device, program | |
US8554412B2 (en) | Electric power steering apparatus, control method thereof and program | |
JP2016159702A (en) | Electric power steering system | |
JP6059063B2 (en) | Electric power steering device | |
JP6401637B2 (en) | Electric power steering device | |
JP2016159701A (en) | Electric power steering system | |
JP2015186955A (en) | Electric power steering device and program | |
JP2016165953A (en) | Electric power steering device | |
JP6357326B2 (en) | Electric power steering device | |
WO2019016967A1 (en) | Steering control device and electric power steering device | |
JP6180959B2 (en) | Electric power steering device, resolver failure detection device, and resolver failure detection method | |
JP2017088141A (en) | Electric power steering device | |
JP6291310B2 (en) | Electric power steering device, program | |
JP2014125036A (en) | Electric power-steering device | |
JP2017043114A (en) | Electric power steering device | |
JP2017154632A (en) | Electric power steering device and program | |
JP5875931B2 (en) | Electric power steering device | |
JP6873362B2 (en) | Electric power steering device | |
JP2017177951A (en) | Electric power steering device and program | |
JP2017177952A (en) | Electric power steering device and program |