Nothing Special   »   [go: up one dir, main page]

JP2016150705A - Steering gear - Google Patents

Steering gear Download PDF

Info

Publication number
JP2016150705A
JP2016150705A JP2015029958A JP2015029958A JP2016150705A JP 2016150705 A JP2016150705 A JP 2016150705A JP 2015029958 A JP2015029958 A JP 2015029958A JP 2015029958 A JP2015029958 A JP 2015029958A JP 2016150705 A JP2016150705 A JP 2016150705A
Authority
JP
Japan
Prior art keywords
rudder
shaft
drive link
hydraulic cylinder
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015029958A
Other languages
Japanese (ja)
Inventor
栗林 定友
Sadatomo Kuribayashi
定友 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K Seven Co Ltd
Original Assignee
K Seven Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K Seven Co Ltd filed Critical K Seven Co Ltd
Priority to JP2015029958A priority Critical patent/JP2016150705A/en
Publication of JP2016150705A publication Critical patent/JP2016150705A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steering gear enabling high turning performance/maneuvering performance or emergency braking.SOLUTION: A ship steering gear 1 includes a steering shaft 40 having a main rudder connected and drooped from a rudder plate upper part to be held by a hull rotatably around a vertical axis, a driving mechanism 601 for rotating the steering shaft around the vertical axis, and a power mechanism for driving the driving mechanism, and is characterized in that the driving mechanism includes an input node having a fulcrum which is a first rotation center 504 bound to the hull, the input node 506 includes an input junction point 521 rotatably linked with a junction rod 520 of the reciprocating power mechanism to receive a turning force around the fulcrum, and a speed increase link mechanism is provided to enable increased-speed rotation of the main rudder around the steering shaft with the steering shaft set as a fulcrum which is a second rotation center 505 and a steering handle 500 connected to the fulcrum and set as an output node.SELECTED DRAWING: Figure 3

Description

本発明は、船舶の操舵装置であって、舵角を従来の舵角限度70°を超えて舵軸を回転可能とするにあたり、従来よりも小型の動力機構により低速時でもスラスター同様の操船能力を提供する操舵装置に関し、水上船舶に好適なものである。   The present invention is a marine vessel steering system, in which the rudder angle exceeds the conventional rudder angle limit of 70 ° and the rudder shaft can be rotated. Is suitable for a surface vessel.

従来、貨物船等の船舶の舵は、通常、操舵機の回転角度を左右35°ずつ、合計70°とし、舵の舵角も同じく70°でった。すなわち、原則、駆動力で回転される操舵機の回転角と舵板に結合される舵軸の回転角の比は1対1である、と表現するよりも、一実施形態では、油圧シリンダ機構は往復動軸の動きを舵柄というリンク部材の一端部に作用させ、他端部のリンク回転機構により舵軸を直接回転駆動するという点で、駆動力で回転される操舵機の回転角と舵板に結合される舵軸の回転角の比は1対1というのである。   Conventionally, the rudder of a ship such as a cargo ship usually has a steering angle of 35 ° left and right, a total of 70 °, and the rudder angle of the rudder is also 70 °. That is, rather than expressing that the ratio of the rotation angle of the steering wheel rotated by the driving force and the rotation angle of the rudder shaft coupled to the rudder is 1: 1, in one embodiment, the hydraulic cylinder mechanism Is that the movement of the reciprocating shaft is applied to one end of a link member called a rudder handle and the rudder shaft is directly rotated by the link rotation mechanism at the other end. The ratio of the rotation angle of the rudder shaft coupled to the rudder plate is 1: 1.

近年、より大きな舵角を必要とする小艇ではその装置で操舵機の角度を70°以上に広げたものもある。小艇と船舶とでは、舵板の回転に要するモーメント力が異なり、その操舵装置の機構は異なる。操舵機の回転角と舵板に結合される舵軸の回転角の比はN対1(N>1)とし、小さな操舵力で大きな舵力を発生させる仕組みが古くから知られ、この場合でも舵角70°以上を実現することは原理的には可能であった。   In recent years, some boats that require a larger rudder angle have expanded the steering angle to 70 ° or more with that device. The small boat and the ship differ in the moment force required to rotate the rudder plate, and the mechanism of the steering device is different. The ratio between the rotation angle of the steering wheel and the rotation angle of the rudder shaft coupled to the rudder plate is N to 1 (N> 1), and a mechanism for generating a large rudder force with a small steering force has been known for a long time. In principle, it was possible to achieve a steering angle of 70 ° or more.

元々、非特許文献1に示されるように、ボート等の小型艇では、操舵機の操舵軸がワイヤ巻き取り機構と同軸とされ、船尾のワイヤー・ドラムまで複数の滑車を介して動力伝達され、これと同軸に配設される舵軸を回転させるもので操舵機の回転角と舵板に結合される舵軸の回転角の比はN対1とし、舵角70°以上を実現することも可能であった。   Originally, as shown in Non-Patent Document 1, in a small boat such as a boat, a steering shaft of a steering machine is coaxial with a wire winding mechanism, and power is transmitted to a stern wire drum via a plurality of pulleys. The ratio of the rotation angle of the steering wheel and the rotation angle of the rudder shaft coupled to the rudder plate is N to 1, and the rudder angle is 70 ° or more. It was possible.

近代船では、舵軸に直接動力伝達する仕組みが考案され、油圧シリンダ機構により発生する直線往復動を舵軸に動径となる舵柄を介して、舵軸を回動させるという機構が広く採用されている。この場合に、広い舵角を実現しようとすると、動径を小とするか、従来と同じ動径をとれば直線往復のスパンを長くせざるを得ない。前者は、油圧の駆動力の増大を必要とするし、後者は油圧シリンダのスパンを長くすると油量も増加するし、操舵装置が巨大になり、船尾の限られたスペースの占有が甚だしく好ましくなく、そもそも回転限界角付近では、舵軸を駆動する実質動径が小さくなり、前者と同様の問題を引き起こす。中には、舵角を70°よりも拡げて140°まで取れる機構を採用される場合もあるが、その場合でも、油圧シリンダ機構は往復動軸の動きを舵柄というリンク部材の一端部に作用させ、他端部のリンク回転機構により舵軸を直接回転駆動するという点で、駆動力で回転される操舵機の回転角と舵板に結合される舵軸の回転角の比は1対1という関係は変わらない。140°の舵角を取る場合には、あえて油圧シリンダのスパンを長くする機構を採用せず、油圧シリンダの駆動力は大きな舵角がもたらす舵板の旋回抵抗に打ち勝つだけのものに至らず、プロペラの回転数は落とさざるを得ない。すなわち、従来技術では、たとえ140°の舵角を取ることができても、十分なスラスター流れ作用を発揮させるだけのプロペラ回転数に上げることはできなかった。十分なスラスター流れ作用を発揮させるだけのプロペラ回転数に上げるようとすれば、アンカーを打ち海底に固定させる処置を事前に施すことを要した。   In modern ships, a mechanism to directly transmit power to the rudder shaft was devised, and a mechanism that rotates the rudder shaft through a rudder handle that becomes a radial diameter using the linear reciprocating motion generated by the hydraulic cylinder mechanism is widely adopted. Has been. In this case, in order to realize a wide rudder angle, if the moving radius is made small or if the same moving radius as the conventional one is taken, the straight reciprocating span has to be lengthened. The former requires an increase in hydraulic driving force, and the latter increases the amount of oil when the span of the hydraulic cylinder is lengthened, and the steering system becomes huge, which occupies a limited space at the stern. In the first place, in the vicinity of the rotation limit angle, the actual moving radius for driving the rudder shaft becomes small, which causes the same problem as the former. In some cases, a mechanism that allows the steering angle to be expanded from 70 ° to 140 ° is adopted, but even in this case, the hydraulic cylinder mechanism moves the movement of the reciprocating shaft to one end of a link member called a steering handle. The ratio of the rotation angle of the steering shaft rotated by the driving force and the rotation angle of the rudder shaft coupled to the rudder plate is one pair in that the rudder shaft is directly rotated by the link rotation mechanism at the other end. The relationship of 1 does not change. When taking a rudder angle of 140 °, a mechanism that lengthens the span of the hydraulic cylinder is not adopted, and the driving force of the hydraulic cylinder does not only overcome the turning resistance of the rudder plate caused by the large rudder angle, The number of revolutions of the propeller must be reduced. That is, in the prior art, even if a rudder angle of 140 ° can be obtained, it has not been possible to increase the rotation speed of the propeller so as to exert a sufficient thruster flow action. In order to increase the rotation speed of the propeller so as to exhibit a sufficient thruster flow action, it was necessary to perform a treatment in advance to fix the anchor to the seabed.

こうして、操舵装置の駆動機構が生成する回転角を増速し、主舵の舵軸の回転角を増速する仕組みが必要であるという課題を発明者は見出した。   Thus, the inventors have found a problem that a mechanism for increasing the rotation angle generated by the drive mechanism of the steering device and increasing the rotation angle of the rudder shaft of the main rudder is necessary.

このような被駆動軸の増速機構には、従来より、歯車による増速機構があり、駆動軸側の歯数と被駆動軸側の歯数の比をN:1(N>1)とすれば、比較的簡易な機構により実現可能とも考えられるが、歯の表面に常に舵力が作用する点、遊びのない性質上、歯表面の耐久性と振動吸収の点で課題が生じていた。リンク機構による増速機構も一般用途として広く知られる(非特許文献2)。駆動軸側のリンク長さと被駆動軸側のリンク長さの比をN:1(N>1)とすれば、これも比較的簡易な機構により実現可能とも考えられるが、非特許文献2の「図3.3リンク機構,(b)増速する」に表されるリンク機構を採用すると船尾部のスペースを広く要し、適当でない。   Such a speed increasing mechanism for the driven shaft has conventionally been a gear speed increasing mechanism, and the ratio of the number of teeth on the driving shaft side to the number of teeth on the driven shaft side is N: 1 (N> 1). It is thought that this can be achieved with a relatively simple mechanism, but there are problems in terms of the durability and vibration absorption of the tooth surface due to the fact that the rudder force always acts on the tooth surface and the nature without play. . A speed increasing mechanism using a link mechanism is also widely known as a general application (Non-Patent Document 2). If the ratio of the link length on the drive shaft side to the link length on the driven shaft side is N: 1 (N> 1), this can also be realized by a relatively simple mechanism. Adopting the link mechanism shown in "Fig. 3.3 Link mechanism, (b) Increase speed" requires a large space at the stern and is not appropriate.

一方、プロペラ後方に2枚の舵板を配し、2舵の共同によりプロペラ後方を遮蔽するように大きな舵角をとり、大きな制動力を提供する1軸推進2舵操船の採用を提案している商用技術も見受けられる(特許文献1、非特許文献3,4)。緊急時の急停止には、舵が船体に対して大きな舵角で回転させることが求められるのである。非特許文献4の提案では、広い舵角を実現する仕組みとして、ロータリーベーン式の油圧駆動機構を提案されているが適当なものは存しない。   On the other hand, we propose the adoption of a single-axle propulsion two-steering boat that provides two rudder plates behind the propeller, takes a large rudder angle so as to shield the rear of the propeller in cooperation with the two rudder, and provides a large braking force Some commercial technologies are also found (Patent Document 1, Non-Patent Documents 3 and 4). For emergency stop in an emergency, the rudder is required to rotate with a large rudder angle with respect to the hull. In the proposal of Non-Patent Document 4, a rotary vane type hydraulic drive mechanism is proposed as a mechanism for realizing a wide steering angle, but there is no appropriate one.

舵板の舵角の増速という観点では、通常の舵とは特殊な構成をとり、通常の舵の後流端に航空機翼のフラップ状の追加の舵板を配するフラップ付舵機構がある。フラップ部分は、航空機のフラップが如く通常の舵部に相当する主舵よりも大きな舵角を取り、90°近くの舵角を取り、スラスター相当の操舵性能を実現するというフラップ付舵というものである。フラップ付舵は35°回転する舵のテールでさらにフラップが仰角を取るという形態をとるが、フラップが曲げられる方面の反対側には、プロペラ回転流がスルーするので、フラップ付舵の操舵によりスラスター流れを作ろうと思っても、前進流れがかなりの程度後方に流されてしまい、このフラップ作動時の前進力は操船上に問題となる。このため、いちいちアンカーを打ち接岸・離岸作業をする必要があるという難点を孕んでいた。   In terms of speeding up the rudder angle of the rudder, there is a rudder mechanism with a flap that takes a special configuration from a normal rudder and places an additional rudder blade in the form of a flap on an aircraft wing at the rear end of a normal rudder . The flap part is a rudder with flaps that takes a larger rudder angle than the main rudder equivalent to a normal rudder part like an aircraft flap, takes a rudder angle close to 90 °, and realizes a steering performance equivalent to a thruster. is there. A rudder with a flap takes the form of a rudder tail that rotates 35 °, and the flap further takes an elevation angle, but on the opposite side of the direction in which the flap is bent, the propeller rotational flow passes through, so the thruster with the flap will steer Even if it is intended to make a flow, the forward flow is caused to flow considerably backwards, and the forward force during the operation of the flap becomes a problem on the maneuvering operation. For this reason, he was fond of the difficulty of hitting anchors one after another to work on and off the shore.

以上に記述のように、油圧シリンダから成る動力機構を備える船舶の操舵装置では、船軸に対する横方向の操船を目的として、スラスター機構という追加の機構を採用し、直接横方向の水流を発生させ、又はフラップ付舵によるスラスター類似の水流を発生させて操船することが多かったが、追加の機構によるコスト増と前進動が残ることから迅速な左右方向の操船に困難があった。また、従来でも140°の舵角を実現する小型船(総トン数499トン以下)も存在するが、大きな舵角を実現するために長シリンダを採用せざるを得ず、大きな舵角を取る領域では、油圧シリンダが与える押力の旋回に対する作用角は鋭角となって、その生成し得る旋回の回転モーメントは舵板が受ける旋回時の舵力を支えるのに足りず、それ故にプロペラ水流速度を落とさざるを得ず、低速のプロペラ回転に抑えるために十分なスラスト流を発生させることができなかった。   As described above, in a ship steering apparatus equipped with a power mechanism composed of a hydraulic cylinder, an additional mechanism called a thruster mechanism is adopted for the purpose of lateral maneuvering with respect to the axle, and a lateral water flow is generated directly. In many cases, a water flow similar to a thruster by a rudder with a flap is generated for maneuvering. However, an increase in cost due to an additional mechanism and a forward movement remain, making it difficult to maneuver quickly in the left-right direction. In addition, there is a small boat (total tonnage of 499 tons or less) that realizes a rudder angle of 140 ° in the past, but in order to realize a large rudder angle, a long cylinder must be adopted, and in a region where a large rudder angle is taken. The angle of action of the pushing force applied by the hydraulic cylinder to the turning is acute, and the turning moment that can be generated is not sufficient to support the turning force received by the rudder, and therefore the propeller water flow velocity is reduced. Inevitably, a sufficient thrust flow could not be generated to suppress the propeller rotation at a low speed.

特開2014−73815JP2014-73815 特開2011−73526JP2011-73526A

http://www.yamaha-motor.co.jp/marine/lineup/pro-fish/tairyo/sekkei/engine/007/ 「操舵装置の変換・その(1)」,ヤマハ設計室だより、ヤマハ発動機株式会社ホームページ,平成27年1月21日http://www.yamaha-motor.co.jp/marine/lineup/pro-fish/tairyo/sekkei/engine/007/ "Conversion of steering system (1)", News from Yamaha Design Office Kikai Co., Ltd. website, January 21, 2015 http://www.cqpub.co.jp/hanbai/books/37/37331/37331_3syo.pdf、「機械を動かすメカニズム」 第3章、CQ出版社 P25、平成27年1月21日http://www.cqpub.co.jp/hanbai/books/37/37331/37331_3syo.pdf, “Mechanism to Move Machines” Chapter 3, CQ Publisher P25, January 21, 2015 新・舵取機械・舵システムの新しい概念―シリングラダ―、ロータリーベーン舵取機、ベクツィン・ラダーシステム(1)日本マリンエンジニアリング学会誌、第45巻 第2号 P93−99New Steering Machine / New Concept of Rudder System-Shilling Ladder, Rotary Vane Steering Machine, Bectin Ladder System (1) Journal of the Japan Marine Engineering Society, Vol. 45, No. 2, P93-99 新・舵取機械・舵システムの新しい概念―シリングラダ―、ロータリーベーン舵取機、ベクツィン・ラダーシステム(2)日本マリンエンジニアリング学会誌、第45巻 第3号 P97−104New Steering Machine / New Concept of Rudder System-Shilling Ladder, Rotary Vane Steering Machine, Bectin Ladder System (2) Journal of the Japan Marine Engineering Society, Vol. 45, No. 3, P97-104

以上に示されるように、操船の柔軟性、強力な制動力の確保を目的として、主舵の舵角を従来の70°以上とする操舵装置で低速時のスラスト流の生成、プロペラ後流の閉塞が求められるが、実用的な機能を提供するものはなかった。本願発明は、従来から信頼性が高く、実績のあるシリンダ油圧機構のような直線往復動を利用し、かつ、その往復スパンは従来の70°舵角の場合と同等のスパンであっても、140°以上の舵角を実現可能とするにあたって油圧シリンダ容量を大型化する必要もなく、油圧ポンプ動力機構も大型化する必要もない船舶用の新しい操舵装置である。   As shown above, for the purpose of ensuring the maneuverability and strong braking force, the main steering rudder has a steering angle of 70 ° or more to generate thrust flow at low speed, Although occlusion was required, none provided a practical function. The present invention uses a linear reciprocating motion like a cylinder hydraulic mechanism that has been highly reliable and proven in the past, and the reciprocating span is equivalent to the conventional 70 ° rudder angle, This is a new steering device for ships that does not require an increase in hydraulic cylinder capacity and a hydraulic pump power mechanism in order to realize a steering angle of 140 ° or more.

ここで開示される新しい操舵装置には、スラスターと同等の舵角を取れる操船の柔軟性を主舵の舵角を大きく取ってフラップ舵を不要とし、簡便な機構により実装して信頼性を上げ、かつ、スラスト流発生時には無用な前進流の発生を抑え、接岸時のアンカー処理を不要とするという利点を併せ持つ。したがって、フラップ付き舵を基準とすれば、無用な前進動を不要とするので無駄な操船燃料コストを要せず、アンカー処理も不要となり、化石燃料消費量並びにCO2発生量の削減を実現し、フラップ舵のない従来の舵に比べれば、大きな舵角により高い旋回性能と緊急時の制動能力確保という安全を提供する新しい操舵装置なのである。 The new steering system disclosed here has the flexibility of maneuvering that can take the same rudder angle as the thruster, making the rudder angle of the main rudder large and eliminating the need for a flap rudder. In addition, it has the advantages of suppressing the generation of unnecessary forward flow when thrust flow is generated and eliminating the need for anchor processing when berthing. Therefore, if a rudder with a flap is used as a standard, unnecessary forward movement is not required, so there is no need for unnecessary ship maneuvering fuel costs, anchoring is not required, and fossil fuel consumption and CO 2 generation are reduced. Compared to a conventional rudder without a flap rudder, this is a new steering device that provides a safety that ensures high turning performance and emergency braking ability with a large rudder angle.

本発明は上記課題に鑑みてなされたもので、従来のフラップ付き舵の如くフラップ駆動機構をメンテナンスに手間のかかる喫水下に設ける必要もなく、港湾接岸時等必要に応じスラスター類似又はフラップ舵類似の小回りのきく旋回を主舵の大きな舵角で、プロペラの水流を旋回のために強く偏向整流させ、かつ、前進力を排してアンカー止を不要とし、高い旋回性能・操船性能を提供し、2枚舵板機構を備える船舶に用いられれば、緊急制動時には、両舵45°を超える広い舵角で後流を遮蔽して緊急制動を可能とする船舶の操舵装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and it is not necessary to provide a flap drive mechanism under a draft that requires troublesome maintenance like a conventional rudder with a flap. Provides a high turning performance and maneuvering performance with a large turning angle of the main rudder, strong deflection and rectification of the water flow of the propeller for turning, and no need for anchoring by eliminating forward force An object of the present invention is to provide a ship steering device that can be used for a ship equipped with a two-steer plate mechanism and that enables emergency braking by shielding the wake with a wide rudder angle exceeding 45 ° in both rudder during emergency braking. And

この課題を解決した本発明は以下のとおりである。
[請求項1記載の発明]
主舵を舵板上部で連結垂下して船体に垂直軸まわりに回転自在に保持される舵軸と、
前記舵軸を垂直軸まわりに回転させる駆動機構と、
前記駆動機構を駆動させる動力機構を備える操舵装置であって、
前記駆動機構は船体に拘束される第一の回転中心である支点を有する入力節を備え、
前記入力節は往復動式の前記動力機構の連接棒と回転自在に連接する入力連接点を備えて前記支点まわりの旋回力を受け、
前記舵軸を第二の回転中心である支点としてこれに連結される舵柄を出力節として前記舵軸中心まわりに前記主舵を増速回転可能とする増速リンク機構を備えることを特徴とする船舶の操舵装置。
The present invention which solved this problem is as follows.
[Invention of Claim 1]
A main rudder connected to the upper part of the rudder plate, and a rudder shaft that is rotatably held around the vertical axis on the hull;
A drive mechanism for rotating the rudder shaft about a vertical axis;
A steering device comprising a power mechanism for driving the drive mechanism,
The drive mechanism includes an input node having a fulcrum that is a first rotation center restrained by the hull,
The input node is provided with an input connecting contact that is rotatably connected to a connecting rod of the reciprocating power mechanism, and receives a turning force around the fulcrum.
A speed increasing link mechanism is provided that enables the main rudder to rotate at a higher speed around the rudder axis center with the rudder axis as a fulcrum that is the second rotation center as an output node. A ship steering device.

[発明の作用効果]
請求項1記載の発明は、一実施形態では、油圧シリンダ等の動力機構が駆動機構を介して舵を舵軸まわりに回転させる。動力機構は、第一段階の作用として、駆動力を発生させる。従来は、この駆動力で生ずる回転の回転中心を舵軸に一致させ、原始駆動力を直接的に舵軸の回転力として利用していた。本発明では、動力機構は、第一の回転中心を駆動支点とし、支点まわりの旋回のための動力提供によって主舵の舵軸を増速リンク機構によって増速し、一実施形態では、2倍に増速すれば、70°の回転限界を2倍の140°まで拡大することを可能とし、すなわち、左右±70°まで回転限界を拡大することを可能とし、同時に大きな舵角を取るときにプロペラ回転数を上げて強いスラスター作用を提供できる。増速機構の採用により、原始駆動力から舵軸に対して旋回モーメントが有効に作用して操舵力の低下を招かないという特徴を持つ。入力節と出力節とは中間リンク部材を介して又は直接連接されてもよい。いずれにしても、駆動リンク長が従動リンク長よりも長い場合に増速機構の構成となる。
[Effects of the invention]
In one embodiment of the present invention, a power mechanism such as a hydraulic cylinder rotates a rudder around a rudder shaft via a drive mechanism. The power mechanism generates a driving force as a first stage action. Conventionally, the rotational center of rotation generated by this driving force is made coincident with the rudder shaft, and the original driving force is directly used as the rotational force of the rudder shaft. In the present invention, the power mechanism uses the first rotation center as a driving fulcrum, and increases the rudder shaft of the main rudder by the speed increasing link mechanism by providing power for turning around the fulcrum. In one embodiment, the power mechanism is doubled. When the speed is increased to 70 °, the rotation limit of 70 ° can be doubled to 140 °, that is, the rotation limit can be expanded to ± 70 ° to the left and right, and at the same time when a large steering angle is taken. Propeller rotation speed can be increased to provide strong thruster action. By adopting the speed increasing mechanism, the turning moment effectively acts on the rudder shaft from the original driving force and the steering force is not reduced. The input node and the output node may be connected via an intermediate link member or directly. In any case, the speed increasing mechanism is configured when the drive link length is longer than the driven link length.

一実施形態としては、船体に回転自在に保持される舵軸を回転させる駆動機構と、これを駆動させる動力機構を有する操舵装置であって、
第一の回転中心まわりの駆動回転力を入力する回転自在の第一の連接点と、
第二の回転中心である舵軸に結合された舵柄と回転自在に連接される第二の連接点と、
前記第一の連接点と前記第二の連接点を結合するリンク機構を有する増速リンク機構であって、
前記第一の連接点の前記第一の回転中心まわりの旋回に連れて、前記第二の連接点も前記第一の回転中心まわりに旋回可能とする前記リンク機構を備えて
前記第一の連接点に前記第一の回転中心まわりの旋回力を提供可能である前記動力機構によって、前記リンク機構を介して前記第二の連接点は前記第二の回転中心まわりに旋回され、舵軸まわりに主舵を増速回転する増速リンク機構を備えることを特徴とする船舶の操舵装置を提供すると、例えば、油圧シリンダ等の往復動動力機構が駆動機構を介して舵を舵軸まわりに回転させ、動力機構は、第一段階の作用として、回転駆動力を発生させる。従来は、この回転駆動力の回転中心を舵軸に一致させ、原始駆動力を直接的に舵軸の回転力として利用していた。本発明では、動力機構は、第一の回転中心を駆動軸とし、駆動軸まわりの回転によって主舵の舵軸を増速リンク機構によって増速し、一実施形態では、2倍に増速すれば、70°の回転限界を2倍の140°まで拡大することを可能とする。追加の一実施形態では、前記第一の連接点と前記第二の連接点を結合するリンク部材は、駆動リンク部材であって、駆動リンク部材と舵柄は、双方を連接する前記第二の連接点で連接されている構成も取ることができるのである。
As one embodiment, a steering device having a drive mechanism that rotates a rudder shaft that is rotatably held in a hull, and a power mechanism that drives the drive mechanism,
A first rotatable contact point for inputting a driving rotational force around the first rotation center;
A second connecting contact rotatably connected to a rudder handle coupled to a rudder shaft which is a second rotation center;
A speed increasing link mechanism having a link mechanism for coupling the first and second connection contacts,
As the first connection contact turns around the first rotation center, the second connection contact includes the link mechanism that can turn around the first rotation center. By means of the power mechanism capable of providing a turning force around the first rotation center to the point, the second connecting contact is turned around the second rotation center via the link mechanism and around the rudder axis. Providing a marine vessel steering apparatus comprising a speed increasing link mechanism for rotating the main rudder at a higher speed, for example, a reciprocating power mechanism such as a hydraulic cylinder rotates the rudder around a rudder axis via a drive mechanism. The power mechanism generates a rotational driving force as a first stage action. Conventionally, the rotational center of this rotational driving force is made to coincide with the rudder shaft, and the primitive driving force is directly used as the rotational force of the rudder shaft. In the present invention, the power mechanism uses the first rotation center as the drive shaft, and the rudder shaft of the main rudder is increased by the speed increasing link mechanism by rotation around the drive shaft. In one embodiment, the power mechanism is increased by a factor of two. For example, the rotation limit of 70 ° can be doubled to 140 °. In an additional embodiment, the link member that couples the first connection contact and the second connection contact is a drive link member, and the drive link member and the steering handle are connected to each other by the second link. The structure connected by the continuous contact can also be taken.

[請求項2記載の発明]
主舵を舵板上部で連結垂下して船体に垂直軸まわりに回転自在に保持される舵軸と、
前記舵軸を垂直軸まわりに回転させる駆動機構と、
前記舵軸を回転中心の支点とし舵軸に連結される舵柄と、
前記駆動機構を駆動させる動力機構を備える操舵装置であって、
前記駆動機構は船体に拘束される第一の回転中心である支点を有する入力節を備え、
前記入力節は往復動式の前記動力機構の連接棒と回転自在に連接する第一の連接点を備え、
前記入力節と前記舵柄は第二の連接点を備えて前記第二の連接点は前記第一の回転中心まわりに旋回可能で、かつ、舵軸まわりにも旋回可能であり、前記第二の連接点は、いずれかの旋回の半径方向にスライド摺動可能かつ回転自在に前記入力節と舵柄を連接するものであって、
前記入力節は前記第一の連接点より前記支点まわりの旋回力を受け、
前記舵柄は出力節として前記第二の連接点を介して舵軸まわりの旋回力を受けて前記舵軸中心まわりに前記主舵を増速回転可能である増速リンク機構を備えることを特徴とする船舶の操舵装置。
[Invention of Claim 2]
A main rudder connected to the upper part of the rudder plate, and a rudder shaft that is rotatably held around the vertical axis on the hull;
A drive mechanism for rotating the rudder shaft about a vertical axis;
A rudder handle connected to the rudder shaft with the rudder shaft as a fulcrum of the rotation center;
A steering device comprising a power mechanism for driving the drive mechanism,
The drive mechanism includes an input node having a fulcrum that is a first rotation center restrained by the hull,
The input node includes a first connecting contact rotatably connected to a connecting rod of the reciprocating power mechanism,
The input node and the rudder handle have a second connecting contact, and the second connecting contact can turn around the first rotation center and can turn around the rudder axis, The continuous contact is to connect the input node and the steering handle so as to be slidable and rotatable in the radial direction of any of the turns,
The input node receives a turning force around the fulcrum from the first connecting contact,
The rudder handle is provided with a speed increasing link mechanism that receives a turning force around the rudder shaft through the second connecting contact as an output node and can rotate the main rudder at a higher speed around the center of the rudder shaft. A ship steering device.

[発明の作用効果]
もっとも単純な構成である、3つの節からなる増速リンク機構を備える船舶の操舵装置を独立項として規定する。入力節は、駆動リンク部材であって駆動力を受けて第一の回転中心まわりに駆動リンク部材を旋回させて、駆動リンク部材上の第二の連接点を介して舵柄を第一の回転中心まわりに旋回させると同時に第二の回転中心である舵軸まわりに舵柄を旋回させ、各々の旋回半径の比により、出力節を増速されてこれに連結されている舵軸を増速し、これに連結垂下されている主舵を増速旋回させる。増速させるのであるから、第一の回転中心の回転半径は、舵軸中心の回転半径より大である。
[Effects of the invention]
A ship steering device having a speed increasing link mechanism composed of three nodes, which is the simplest configuration, is defined as an independent term. The input node is a drive link member that receives a driving force and rotates the drive link member around the first rotation center to rotate the steering handle through the second connection contact on the drive link member for the first rotation. At the same time as turning around the center, the steering handle is turned around the rudder shaft, which is the second center of rotation, and the ratio of each turning radius increases the output node and speeds up the rudder shaft connected to it. Then, the main rudder connected to and suspended from this is rotated at an increased speed. Since the speed is increased, the rotation radius of the first rotation center is larger than the rotation radius of the rudder shaft center.

一実施形態では、前記第一の回転中心から前記第二の連接点との距離R1を半径とする回転半径内に前記舵軸を配置すると、第二の連接点は第一の回転中心まわりに半径R1で旋回し、同時に第二の連接点は、第二の回転中心まわりに舵柄に拘束されて旋回するから、必ず、第二の回転中心まわりの回転半径R2はR1よりも小となるから、回転角は増速されることとなる。   In one embodiment, when the rudder shaft is disposed within a rotation radius having a radius R1 from the first rotation center to the second connection contact, the second connection contact is around the first rotation center. Since it turns with the radius R1, and simultaneously the second connecting contact turns around the second rotation center while being constrained by the steering handle, the rotation radius R2 around the second rotation center is always smaller than R1. Therefore, the rotation angle is increased.

追加の実施形態で、前記第二の連接点を含む連接部は一方の部材に突出部を有し、一方の部材に長軸方向の長孔又は溝を備え、前記突出部は前記長孔又は溝に摺動自在に嵌合され前記舵柄は第二の連接点部材位置で長軸方向にスライド可能であると、舵柄は、第一の回転中心まわりに固定半径R1で旋回する一方で、第二の回転中心まわりにも旋回する。両回転中心は船体に拘束されているから、第一の回転半径まわりの回転角が大きくなるに連れて、第二の回転中心まわりの回転半径は大きくなる。この調整のための手段として、前記舵柄の第二の連接点部材は、軸方向に連接材がスライド伸縮自在である構成が好ましく、一実施形態では、前記第二の連接点部材は連接ピンであって、前記舵柄は長軸方向の長孔又は溝を備え、前記連接ピンは前記長孔又は溝に摺動自在に嵌合されて前記舵柄長軸方向にスライド可能であると好ましい。   In an additional embodiment, the connecting portion including the second connecting contact has a protruding portion in one member, the one member is provided with a long hole or a groove in a long axis direction, and the protruding portion is the long hole or When the rudder handle is slidably fitted in the groove and can slide in the major axis direction at the second contact point member position, the rudder handle turns around the first rotation center with a fixed radius R1. , Also turn around the second center of rotation. Since both the rotation centers are constrained by the hull, the rotation radius around the second rotation center increases as the rotation angle around the first rotation radius increases. As a means for this adjustment, the second connecting contact member of the rudder handle preferably has a configuration in which the connecting material is slidable and expandable in the axial direction. In one embodiment, the second connecting contact member is a connecting pin. The rudder handle is preferably provided with a long hole or groove in the long axis direction, and the connecting pin is slidably fitted in the long hole or groove and is slidable in the rudder handle long axis direction.

その他の実施形態では、前記舵柄は、軸方向に伸縮自在部材を含むものであると、舵柄は、第一の回転中心まわりに固定半径R1で旋回する一方で、第二の回転中心まわりにも旋回する構成も取れる。この場合、回転中心は船体に拘束されているから、第一の回転半径まわりの回転角が大きくなるに連れて、第二の回転中心まわりの回転半径は大きくなる。この調整のための手段として、前記舵柄は、軸方向に伸縮自在である構成が好ましいが、舵柄に伸縮自在の一実施形態では、緩い弾性材であって短軸方向には剛に拘束された部材が含まれたり、摺動部を構成する部材を前記第二の連接点以外の位置に配設し、舵柄の一部構成とすると軸方向に伸縮可能となり好ましい。   In another embodiment, when the rudder handle includes a telescopic member in the axial direction, the rudder handle turns around the first rotation center with a fixed radius R1 and also around the second rotation center. The structure which turns can also be taken. In this case, since the rotation center is constrained by the hull, the rotation radius around the second rotation center increases as the rotation angle around the first rotation radius increases. As a means for this adjustment, the rudder handle is preferably configured to be extendable and contractible in the axial direction. However, in one embodiment that is extendable and retractable to the steerable handle, the rudder handle is a loose elastic material and is rigidly constrained in the minor axis direction. It is preferable that a member including the above-mentioned member or a member constituting the sliding portion is disposed at a position other than the second connecting contact and configured as a part of the rudder handle so that it can expand and contract in the axial direction.

次のような実施形態では、前記第一の連接点と前記第二の連接点は、前記リンク部材に前記第一の回転中心から見て同じ側に配設されていると、前記第一の連接点と前記第二の連接点が前記連接棒部材に前記第一の回転中心を跨いで配設されている場合に比べ、よりコンパクトな構成となり、操舵装置の船軸方向に占めるスペースを小さくできるという利益があるし、幅方向に余裕のある幅広船に特に好ましい。   In the following embodiment, when the first connecting contact and the second connecting contact are disposed on the same side of the link member as viewed from the first rotation center, the first connecting contact Compared with the case where the connecting contact and the second connecting contact are disposed on the connecting rod member across the first rotation center, the structure is more compact and the space occupied in the direction of the axis of the steering device is reduced. This is particularly advantageous for wide ships that have the advantage of being able to do so and have a margin in the width direction.

[請求項3記載の発明]
前記動力機構は、油圧シリンダを含み、
油圧により往復動する油圧シリンダにより往復駆動されるシリンダ軸の往復動式動力機構がタンデム二本構成で互いに並列配設され、前記連接棒部材は、T字部材であって、T字の縦棒部が前記油圧シリンダと並列に配設され、前記T字の横棒部の両端部に各々専属の前記第一の連接点が配設され、油圧により往復動する油圧シリンダは、往復動式動力機構によって連接棒を介して前記第一の連接点が往復駆動される請求項1又は2いずれか1項に記載の操舵装置。
[Invention of Claim 3]
The power mechanism includes a hydraulic cylinder,
A reciprocating power mechanism of a cylinder shaft reciprocally driven by a hydraulic cylinder that reciprocates by hydraulic pressure is arranged in parallel with each other in a tandem configuration, and the connecting rod member is a T-shaped member, and a T-shaped vertical rod Are disposed in parallel with the hydraulic cylinder, the first connecting contacts dedicated to both ends of the T-shaped horizontal bar are respectively disposed, and the hydraulic cylinder that reciprocates by hydraulic pressure is a reciprocating power The steering apparatus according to claim 1, wherein the first connecting contact is reciprocally driven by a mechanism via a connecting rod.

[発明の作用効果]
前記連接棒部材は、T字部材であって、前記T字の横棒の両端部に各々前記第一の連接点が配設されて、二つの往復動力により前記第一の回転中心まわりの旋回力が与えられる。油圧により往復動する油圧シリンダにより往復駆動されるシリンダ軸の往復動式動力機構が各シリンダに専属の前記第一の連接点を独立に往復駆動し、左右のシリンダ軸連接棒を介して連動する構成とすれば、各々が押す機構により油圧シリンダ制御機構が簡単で済むという利点がある。T字の縦軸を船軸方向に配設し往復動力を船軸方向に配設すると、船尾の幅方向のスペースを節約でき、幅狭船に特に好ましい。
[Effects of the invention]
The connecting rod member is a T-shaped member, and the first connecting contacts are disposed at both ends of the T-shaped horizontal bar, respectively, and swiveling around the first rotation center by two reciprocating powers. Power is given. A reciprocating power mechanism of a cylinder shaft reciprocatingly driven by a hydraulic cylinder reciprocatingly driven by hydraulic pressure independently reciprocates the first connecting contact dedicated to each cylinder and interlocks via left and right cylinder shaft connecting rods. The configuration has the advantage that the hydraulic cylinder control mechanism can be simplified by the mechanism that each pushes. Arranging the T-shaped vertical axis in the direction of the axis and reciprocating power in the direction of the axis can save space in the width direction of the stern and is particularly preferable for narrow ships.

[請求項4記載の発明]
前記動力機構は、油圧シリンダを含み、
油圧により往復動する油圧シリンダにより往復駆動される連接棒による往復動式動力機構がタンデム二本構成で互いに水平対向し、
前記駆動機構は、前記第一の連接点を前記動力機構に往復駆動される請求項1又は2いずれか1項に記載の操舵装置。
[Invention of Claim 4]
The power mechanism includes a hydraulic cylinder,
A reciprocating power mechanism with a connecting rod reciprocatingly driven by a hydraulic cylinder that reciprocates by hydraulic pressure is horizontally opposed to each other in a two-tandem configuration,
3. The steering apparatus according to claim 1, wherein the drive mechanism is reciprocally driven by the power mechanism with the first connecting contact. 4.

[発明の作用効果]
本請求項に係る操舵装置によれば、油圧により往復動する油圧シリンダにより往復直線駆動されるシリンダ軸の往復動が連接棒を介して前記第一の連接点に作用する。動力源として船舶に通常装備されている油圧装置を用い、操舵装置動力機構が従来の延長線上で済むという簡便性が得られ、経済性に優れる。第一の連接点には2つの連接棒を連動する構成とすれば、各々が押す機構により油圧シリンダ制御機構が簡単で済むという利点がある。タンデム方向は、主舵の配置に依存し、船軸方向に縦列構成とする場合もあれば、船幅方向に縦列構成とする場合もあって、いずれの構成も取り得るし、ハの字形に配置する縦列配置とすることも好ましい。
[Effects of the invention]
According to the steering apparatus of the present invention, the reciprocating motion of the cylinder shaft that is reciprocally driven linearly by the hydraulic cylinder that reciprocates by the hydraulic pressure acts on the first connecting contact via the connecting rod. As a power source, a hydraulic device that is normally equipped on a ship is used, and the convenience that the steering device power mechanism suffices on a conventional extension line can be obtained, which is excellent in economic efficiency. If the first connecting contact has a structure in which two connecting rods are interlocked, there is an advantage that the hydraulic cylinder control mechanism can be simplified by a mechanism for pressing each connecting rod. The tandem direction depends on the arrangement of the main rudder, and may be configured in a vertical configuration in the direction of the axle or in a vertical configuration in the width direction of the boat. It is also preferable to use a tandem arrangement.

[請求項5記載の発明]
船体に回転自在の軸受に保持される舵軸を回転させる駆動機構と、これを駆動させる動力機構を有する操舵装置であって、
前記動力機構は、油圧シリンダが水平対向して二本配設され、
前記油圧シリンダの中間に増速リンク機構の駆動リンク棒部材が長軸方向を前記油圧シリンダに垂直に配設され、その固定端部は前記駆動リンク棒部材の固定支点として前記船体に水平回転自在に保持され、その自由端部には、対向する面への突出部を有し、
前記油圧シリンダの連接棒先端部は前記駆動リンク棒部材の長軸方向中間部で水平回転自在に連接され、
前記駆動リンク棒部材に対向して配設されて舵軸と一体に前記軸受で水平回転自在に保持され、前記舵軸を支点として水平旋回可能で軸方向に長孔又は上面に溝を有する舵柄レバーを備え、
前記駆動リンク棒部材の対向する面への突出部は、前記長孔又は前記溝に前記突出部を長軸方向に摺動自在に嵌合されるものであって、
前記駆動リンク棒部材の固定支点と前記駆動リンク棒部材の自由端部の前記突出部との距離と前記舵軸と前記駆動リンク棒部材の自由端部の前記突出部との距離と前記駆動リンク棒部材の旋回角可動範囲角度及び舵軸の舵角可能範囲角度は所定の関係に設定されて前記油圧シリンダの往復動によって生ずる前記駆動リンク棒部材の水平回動は、前記舵軸の回動を増速する船舶の操舵装置。
[Invention of Claim 5]
A steering device having a drive mechanism for rotating a rudder shaft held by a rotatable bearing on a hull, and a power mechanism for driving the drive mechanism,
The power mechanism is provided with two hydraulic cylinders horizontally facing each other,
A drive link rod member of the speed increasing link mechanism is disposed perpendicularly to the hydraulic cylinder in the middle of the hydraulic cylinder, and its fixed end is horizontally rotatable on the hull as a fixed fulcrum of the drive link rod member. The free end has a protrusion to the opposite surface,
The connecting rod tip of the hydraulic cylinder is connected in a horizontally rotatable manner at the middle portion in the long axis direction of the drive link rod member,
A rudder disposed opposite to the drive link rod member and held horizontally by the bearing integrally with the rudder shaft so that it can turn horizontally with the rudder shaft as a fulcrum and has a long hole in the axial direction or a groove on the upper surface. With handle lever,
The projecting portion to the opposing surface of the drive link rod member is fitted into the elongated hole or the groove so that the projecting portion can slide in the major axis direction,
The distance between the fixed fulcrum of the drive link bar member and the protrusion at the free end of the drive link bar member, the distance between the rudder shaft and the protrusion at the free end of the drive link bar member, and the drive link The turning angle movable range angle of the rod member and the rudder angle possible range angle of the rudder shaft are set in a predetermined relationship, and the horizontal rotation of the drive link rod member caused by the reciprocating motion of the hydraulic cylinder is the rotation of the rudder shaft. A ship steering device that speeds up the speed.

[発明の作用効果]
本請求項に係る操舵装置によれば、2つのシリンダ軸を連動する構成とすれば、各々が押す機構により油圧シリンダ制御機構が簡単で済むという利点がある。駆動リンクの力点は、その中央部に設定されて、支点を挿んで反対側に位置されるよりも駆動機構のスペースを小さくできるという利点がある。舵柄と駆動リンク部材は、一実施態様では連接ピンからなる突出部で連接されてともに前記駆動リンク棒部材の固定端まわりに旋回されると固定端からの距離半径で旋回するが、同時に前記駆動リンク棒部材に連接された舵柄レバーも舵軸まわりに旋回し、この場合、前者の回転半径が後者の回転半径よりも大であれば、旋回は増速されて旋回移動量は増加する。この場合に、双方の旋回半径と駆動リンク棒部材の旋回角範囲及び舵軸の旋回範囲角は所定の関係に設定されて所望の増速が得られ、所望の左右計70°以上の舵軸の旋回角が得られる。
[Effects of the invention]
The steering device according to the present invention has an advantage that the hydraulic cylinder control mechanism can be simplified by a mechanism that pushes each of the two cylinder shafts. The force point of the drive link is set at the center thereof, and there is an advantage that the space of the drive mechanism can be made smaller than when the fulcrum is inserted and positioned on the opposite side. In one embodiment, the rudder handle and the drive link member are connected by a projecting portion made of a connecting pin, and when both are turned around the fixed end of the drive link bar member, the steering handle and the drive link member turn at a distance radius from the fixed end. The steering lever connected to the drive link rod member also turns around the rudder axis. In this case, if the former turning radius is larger than the latter turning radius, the turning is accelerated and the turning movement amount increases. . In this case, both the turning radii, the turning angle range of the drive link rod member, and the turning range angle of the rudder shaft are set in a predetermined relationship to obtain a desired speed increase, and a desired rudder shaft with a desired left and right total of 70 ° or more. Can be obtained.

[請求項6記載の発明]
船体に回転自在の軸受に保持される舵軸を回転させる駆動機構と、これを駆動させる動力機構を有する操舵装置であって、
前記動力機構は、油圧シリンダが並列して二本配設され、
前記油圧シリンダの中間に増速リンク機構の駆動リンクT字部材が縦棒方向を前記油圧シリンダに並列に配設され、その固定端部は前記駆動T字部材横棒中央位置に固定支点として前記船体に水平回転自在に保持され、その自由端部である駆動リンクT字部材の縦棒自由端部には、舵柄と対向する面上に突出部を有し、
前記二本の油圧シリンダの各連接棒先端部は前記駆動リンクT字部材の他方の自由端部である横棒両端部で水平回転自在に連接され、
前記駆動リンクT字部材縦棒部の下方に配設されて舵軸と一体に前記軸受で水平回転自在に保持され、前記舵軸を支点として水平旋回可能で軸方向に長孔又は前記T字部材に対向する面に溝を有する舵柄レバーを備え、
前記駆動リンクT字部材縦棒部の自由端部の前記突出部は前記長孔又は前記溝に摺動自在に嵌合されるものであって、
前記駆動リンクT字部材の固定支点と前記駆動リンクT字部材縦棒部の自由端部の前記突出部との距離と前記舵軸と前記駆動リンクT字部材縦棒部の自由端部の前記突出部との距離と前記駆動リンクT字部材縦棒部の旋回角可動範囲角度及び舵軸の舵角可能範囲角度は所定の関係に設定されて前記油圧シリンダの往復動によって生ずる前記駆動リンク棒部材の水平回動は、前記舵軸の回動を増速する船舶の操舵装置。
[Invention of Claim 6]
A steering device having a drive mechanism for rotating a rudder shaft held by a rotatable bearing on a hull, and a power mechanism for driving the drive mechanism,
The power mechanism has two hydraulic cylinders arranged in parallel,
The drive link T-shaped member of the speed increasing link mechanism is disposed in parallel with the hydraulic cylinder in the middle of the hydraulic cylinder, and the fixed end of the drive link T-shaped member serves as a fixed fulcrum at the center position of the drive T-shaped member horizontal bar. The vertical end of the vertical link of the drive link T-shaped member, which is held horizontally by the hull, is a free end, and has a protrusion on the surface facing the rudder handle,
The connecting rod tip portions of the two hydraulic cylinders are connected so as to be horizontally rotatable at both ends of the horizontal rod, which is the other free end of the drive link T-shaped member,
The drive link T-shaped member is disposed below the vertical bar portion and is held horizontally by the bearing integrally with the rudder shaft, and can be horizontally swiveled with the rudder shaft as a fulcrum. A steering lever having a groove on the surface facing the member,
The projecting portion of the free end portion of the drive link T-shaped member vertical bar portion is slidably fitted into the elongated hole or the groove,
The distance between the fixed fulcrum of the drive link T-shaped member and the protruding portion of the free end of the drive link T-shaped member vertical bar, the rudder shaft, and the free end of the vertical link of the drive link T-shaped member. The drive link bar generated by the reciprocating motion of the hydraulic cylinder, the distance between the projecting part, the turning angle movable range angle of the vertical part of the drive link T-shaped member and the steering angle possible range angle of the rudder shaft are set in a predetermined relationship The horizontal rotation of the member is a ship steering device that accelerates the rotation of the rudder shaft.

[発明の作用効果]
本請求項に係る操舵装置によれば、2つのシリンダ軸を連動する構成とすれば、各々が押す機構により油圧シリンダ制御機構が簡単で済むという利点がある。駆動リンクの力点は、その中央部に設定されて、支点を挿んで反対側に位置されるよりも駆動機構のスペースを小さくできるという利点がある。舵柄と駆動リンク部材は、突出部で連接されてともに前記駆動リンクT字部材の固定端まわりに旋回されると固定端からの距離半径で旋回するが、同時に前記駆動リンクT字部材に連接された舵柄レバーも舵軸まわりに旋回し、この場合、前者の回転半径が後者の回転半径よりも大であれば、旋回は増速されて旋回移動量は増加する。この場合に、双方の旋回半径と駆動リンクT字部材の旋回角範囲及び舵軸の旋回範囲角は所定の関係に設定されて所望の増速が得られ、所望の広い舵軸の旋回角が得られる。
[Effects of the invention]
The steering device according to the present invention has an advantage that the hydraulic cylinder control mechanism can be simplified by a mechanism that pushes each of the two cylinder shafts. The force point of the drive link is set at the center thereof, and there is an advantage that the space of the drive mechanism can be made smaller than when the fulcrum is inserted and positioned on the opposite side. When the rudder handle and the drive link member are connected by a protruding portion and are both turned around the fixed end of the drive link T-shaped member, the steering handle and the drive link member are rotated by a distance radius from the fixed end, but are simultaneously connected to the drive link T-shaped member. The steered handle lever also turns around the rudder axis. In this case, if the former turning radius is larger than the latter turning radius, the turning is accelerated and the turning movement amount increases. In this case, both the turning radius, the turning angle range of the drive link T-shaped member and the turning range angle of the rudder shaft are set in a predetermined relationship to obtain a desired speed increase, and a desired wide turning angle of the rudder shaft can be obtained. can get.

[請求項7記載の発明]
舵軸は、スクリュー軸上方の両脇に回転自在に2軸配置され、各々の舵軸は、主舵を舵板上部で連結垂下し、
前記動力機構が油圧シリンダを含み、油圧により往復動する油圧シリンダにより往復駆動されるシリンダ軸の往復動式動力機構が船軸方向に縦列タンデム構成で互いに水平対向配設されている請求項1又は2又は4又は5のいずれか一項記載の操舵装置を左右に各々配設し、2つの舵軸の回転により2枚の主舵をプロペラ側方からプロペラ後流側まで旋回可能であることを特徴とする2舵用の船舶の操舵装置。
[Invention of Claim 7]
Two rudder shafts are rotatably arranged on both sides above the screw shaft, and each rudder shaft hangs down the main rudder at the top of the rudder plate,
2. The reciprocating power mechanism of a cylinder shaft that includes a hydraulic cylinder and is reciprocally driven by a hydraulic cylinder that reciprocates by hydraulic pressure, and is disposed horizontally opposite to each other in a tandem configuration in a ship axis direction. The steering device according to any one of 2 or 4 or 5 is provided on each of the left and right sides, and the two main rudders can be turned from the propeller side to the propeller downstream side by rotation of the two rudder shafts. A marine vessel steering device for two rudder as a feature.

[発明の作用効果]
本請求項記載の発明は、舵軸がスクリュー軸上方両脇に回転自在に2軸配置され、舵軸は、主舵を舵板上部で連結垂下し、油圧シリンダの動力機構が駆動機構を介して2枚の舵を2つの舵軸の回転によりプロペラ側方からプロペラ後流側まで旋回させる。巡航直進時には、2枚の舵はプロペラの両脇に船軸と平行に配置され、プロペラ水流を邪魔することはないため、従来技術のプロペラ後流配置のものに比べて、より高い推進性能を提供できる。一実施形態では、舵はプロペラの両脇に2枚配置し、1枚舵構成に比して2枚舵構成のうちの1枚は、より小さな舵で足りるため、より幅の狭い舵とし、より小さな流体粘性抵抗を受けるものとするので、高い推進効率が得られる。巡航直進時にプロペラの両脇に配置された2枚の主舵は、油圧により往復動する専属の油圧シリンダ機構の往復動により、各主舵は専属の駆動機構で、その船軸中心から見た舵角が変えられる。この駆動機構による舵軸の回転により2枚舵のうち、そのひとつは後流側に移動させることで、プロペラの両脇で主舵が舵板上の軸まわりに回転して舵角を得る場合に比べて、より偏向した後流を生成することができ高い旋回性能を提供するという効果が得られる。動力源として船舶に通常装備されている油圧装置を用い、操舵装置機構が従来の延長線上で済むという簡便性が得られ、経済性に優れる。タンデム構成により2つのシリンダが連動して回転させる構成とすれば、第一の連接点には2つのシリンダ軸を連動することとなり、各々が押す機構により油圧シリンダ制御機構が簡単で済むという利点がある。各舵に専属の操舵装置を与え、各自在に回転するよう舵に伝達する構造を採用すると各舵の可動範囲は70°以上の舵角を要することとなり、これを実現するは請求項1又は2又は4又は5のいずれか一項記載の操舵装を用いれば、舵角が増大して片側で70°という大きな舵角を取ることが可能となり好ましい。
[Effects of the invention]
In the invention described in this claim, two rudder shafts are rotatably disposed on both sides above the screw shaft, the rudder shaft is connected to the main rudder at the upper part of the rudder plate, and the power mechanism of the hydraulic cylinder is connected via the drive mechanism. The two rudders are turned from the side of the propeller to the downstream side of the propeller by the rotation of the two rudder shafts. When traveling straight ahead, the two rudders are placed on both sides of the propeller in parallel with the axle and do not interfere with the propeller water flow. Therefore, the propulsion performance is higher than that of the conventional propeller wake arrangement. Can be provided. In one embodiment, two rudders are arranged on both sides of the propeller, and one of the two rudder configurations is smaller than the one rudder configuration, so a smaller rudder is sufficient. High propulsion efficiency can be obtained because it receives a smaller fluid viscous resistance. The two main rudders arranged on both sides of the propeller when traveling straight ahead are reciprocated by a dedicated hydraulic cylinder mechanism that reciprocates by hydraulic pressure, and each main rudder is a dedicated drive mechanism as seen from the center of its axle. The rudder angle can be changed. When one of the two rudder is moved to the wake side by rotation of the rudder shaft by this drive mechanism, the main rudder rotates around the axis on the rudder plate on both sides of the propeller to obtain the rudder angle As compared with the above, it is possible to generate a more deflected wake and to provide a high turning performance. As a power source, it is possible to use a hydraulic device that is normally installed in a ship, and it is possible to obtain the convenience that the steering device mechanism can be on a conventional extension line, which is excellent in economic efficiency. If the two cylinders are rotated in conjunction with each other by the tandem configuration, the two cylinder shafts are interlocked with the first connecting contact, and there is an advantage that the hydraulic cylinder control mechanism can be simplified by the mechanism that each presses. is there. If a dedicated steering device is provided for each rudder and a structure is used for transmitting to the rudder so that it can freely rotate, the movable range of each rudder requires a rudder angle of 70 ° or more. Use of the steering gear according to any one of 2 or 4 or 5 is preferable because the steering angle increases and a large steering angle of 70 ° can be obtained on one side.

一実施形態では、減速急停止時には、両方の主舵を各舵軸の回転によりプロペラ側方からプロペラ上流側へ船軸に線対称に−45°を超えて旋回可能とする。従来、操舵角は、片側35°で左右70°が限度と設計されていた。各舵に専属の操舵装置を与え、各自在に回転するよう舵に直接伝達する本請求項記載の構造を採用すると各舵の可動範囲が増大してプロペラ後流方向にも各−70°まで大きな舵角を取ることが可能となり、主舵をプロペラまわりに旋回回動して大きな舵角を取ることで、舵を船舶の制動に利用できるようにもなり、高い制動性能を確保できるようになる。この操舵装置によれば、緊急停止時に2枚の主舵がプロペラ後流をその真後ろで70°の舵角でほぼ遮蔽する動きをするため、制止力を大とする効果を発揮する。この場合の操舵の目的は、急停止の必要な場面で、プロペラ駆動をリセットした後にプロペラが惰性で回っている時間を短縮し、早くプロペラの逆転を可能とすることである。   In one embodiment, at the time of deceleration sudden stop, both main rudders can turn over -45 ° in line symmetry with the ship axis from the propeller side to the propeller upstream by rotation of each rudder shaft. Conventionally, the steering angle is designed to be limited to 35 ° on one side and 70 ° on the left and right. If each rudder is provided with a dedicated steering device and directly transmits to the rudder so that it can freely rotate, the range of movement of each rudder increases, and the propeller wake direction also reaches -70 °. It becomes possible to take a large rudder angle, and by turning the main rudder around the propeller and taking a large rudder angle, the rudder can also be used for braking the ship, so that high braking performance can be secured Become. According to this steering device, the two main rudders move to substantially shield the wake behind the propeller at the rudder angle of 70 ° immediately behind the propeller during an emergency stop, so that the effect of increasing the stopping force is exhibited. The purpose of steering in this case is to reduce the time that the propeller rotates by inertia after resetting the propeller drive in a scene where a sudden stop is necessary, and to enable the propeller to reverse quickly.

本発明によれば、従来の舵の如くフラップ駆動機構を設ける必要もなく、港湾接岸時等必要に応じサイドスラスター同様に強い横の流れを生成し又はフラップ舵よりも前進流を抑えて強く旋回する主舵の大きな舵角により、プロペラの水流を旋回のために偏向整流させ、高い旋回性能・操船性能を提供し、2枚舵機構を備える船舶に用いられれば、緊急制動時には、片側45°を超える舵角で緊急制動を可能とする操舵装置を提供する。2舵用の操舵装置では、巡航直進時には、舵がプロペラ後流に位置することなく、高い推進性能を与えるという効果を提供し、緊急制動時には、プロペラ後流で船体と70度の舵角による高い制動力を得られ、プロペラの水流を旋回のために自在に偏向整流させ、旋回性能を確保する操舵装置が提供されるという優れた効果を奏する。   According to the present invention, it is not necessary to provide a flap drive mechanism as in the case of a conventional rudder. The large rudder angle of the main rudder deflects and rectifies the water flow of the propeller for turning, providing high turning performance and ship maneuvering performance. If used in a ship with a two-rudder mechanism, 45 ° on one side during emergency braking Provided is a steering device that enables emergency braking at a steering angle exceeding. The steering system for two rudder provides the effect of giving high propulsion performance without the rudder being located in the wake of the propeller when traveling straight, and by the hull and the 70 degree rudder angle in the wake of the propeller during emergency braking. A high braking force can be obtained, and an excellent effect is provided in that a steering device is provided that ensures the turning performance by deflecting and rectifying the water flow of the propeller freely for turning.

本発明の一実施の形態で採用される増速リンク機構の概念図のうち駆動力によって駆動リンクが回転する前の状態を示すものである。The state before a drive link rotates with a drive force among the conceptual diagrams of the speed-increasing link mechanism employ | adopted by one embodiment of this invention is shown. 本発明の一実施の形態で採用される増速リンク機構の概念図のうち駆動力によって駆動リンクが駆動後の状態を示すものである。The conceptual diagram of the speed increasing link mechanism employed in an embodiment of the present invention shows the state after the drive link is driven by the driving force. 従来の設計に係る舵柄に直接操舵力が動力機構から作用する場合を示す概念図である。It is a conceptual diagram which shows the case where a steering force acts directly on the steering handle which concerns on the conventional design from a power mechanism. 増速リンク機構を備えていない操舵装置の一実施の形態に係る参考斜視図である。It is a reference perspective view concerning one embodiment of a steering device which is not provided with a speed increasing link mechanism. 本発明の一実施の形態に係る操舵装置の斜視図である。1 is a perspective view of a steering device according to an embodiment of the present invention. 本発明の一実施の形態に係る操舵装置の組み立て展開斜視図である。It is an assembly development perspective view of a steering device concerning one embodiment of the present invention. 本発明の一実施の形態に係る操舵装置を用いる船舶の船尾正面図である。It is a stern front view of the ship using the steering device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る操舵装置を用いる船舶の船尾側面図である。It is a stern side view of the ship using the steering device which concerns on one embodiment of this invention. 増速リンク機構を備えていない操舵装置の他の実施の形態に係る参考斜視図である。It is a reference perspective view concerning other embodiments of a steering device which is not provided with a speed increasing link mechanism. 本発明の第二の実施の形態に係る操舵装置の斜視図である。It is a perspective view of the steering device which concerns on 2nd embodiment of this invention. 本発明の第二の実施の形態に係る操舵装置の組み立て展開斜視図である。It is an assembly development perspective view of the steering device concerning a 2nd embodiment of the present invention. 本発明の第三の実施の形態に係る操舵装置を用いる船舶の船尾側面図である。It is a stern side view of the ship using the steering apparatus which concerns on 3rd embodiment of this invention. 本発明の第三の実施の形態に係る操舵装置を用いる船舶の船尾正面図である。It is a stern front view of the ship using the steering device which concerns on 3rd embodiment of this invention. 本発明の第三の実施の形態に係る操舵装置を用いる船舶の船尾上面図である。It is a stern top view of the ship using the steering device which concerns on 3rd embodiment of this invention. 本発明の第三の実施の形態に係る操舵装置の斜視図である。It is a perspective view of the steering device which concerns on 3rd embodiment of this invention. 本発明の第三の実施の形態に係る操舵装置の組み立て展開斜視図である。It is an assembly development perspective view of a steering device concerning a 3rd embodiment of the present invention. 本発明の第三の実施の形態に係る操舵装置の操舵を示す主舵部の上面図である。It is a top view of the main steering part which shows steering of the steering apparatus which concerns on 3rd embodiment of this invention. 本発明の第四の実施の形態に係る操舵装置の一つの舵の操舵機構部を取り出してみる斜視図である。It is a perspective view which takes out the steering mechanism part of one rudder of the steering apparatus which concerns on 4th embodiment of this invention.

以下に本発明の実施形態による操舵装置について説明する。図1Aと図1Bは、本発明の一実施の形態で採用される増速リンク機構601の駆動力7によって駆動リンクCが第一の回転中心504のまわりを旋回する前後の概念図を示すものである。図1Cは従来の設計に係る舵柄に直接操舵力が動力機構から作用する場合を示す概念図である。ここで、図1A及び図1B中の符号A,B,Cは各々三角リンク機構の節を表して、Aは三角リンク機構の固定節であり、Bは固定節の対角を鋭角とする短い方の斜辺節であり、Cは三角リンク機構の最長の斜辺節である。本図に図示しない動力機構の図示しない連接棒によって第一の連接点501に駆動力7が作用される。そうすると、駆動リンクCと第二の連接点502で回転自在に連接されている舵柄500は、従動リンクBとして、第二の回転中心505のまわりを旋回し半径Aの円弧上を上方に移動すると第二の回転中心から見た角度βは、第一の回転中心504のまわりの旋回角αよりも大である。図1A及び図1Bの概念図で第二の連接点502と第一の回転中心504との距離を規定する駆動リンクCの長さと、第二の連接点502と第二の回転中心504との距離を規定する従動リンクBの長さと、第一の回転中心504と第二の回転中心505の間の部分Aの長さの関係を、一実施例では、α=35°となるときにβ=70°となるように図に示す所定の関係を規定すると、舵柄は、駆動リンクCの旋回角の2倍で第二の回転中心、すなわち舵軸を回転させることとなり、所望の結果を得る。すなわち、長い斜辺を持つ三角形を駆動リンクと舵柄及第一の回転中心である駆動リンクの固定点と舵軸との距離を底辺とする構成をとると、α<βである。本発明の一実施形態の操舵装置では、油圧シリンダでこの長い斜面の角度を変化させて短い辺の支点である舵軸の舵角を大きくして変化させ、従来の舵角範囲の2倍以上を確保するものである。従来の操舵装置の概念では、図1Cに示すように70°の舵角を取ろうとすれば、駆動力は舵柄にsin20°の成分でモーメント力を作用するため、駆動力7に比して小さな成分の力しか作用させることができない。そうすると大きなモーメント力を支えらないこととなり、舵板に大きな舵力を発生させるわけにいかず、70°という大きな舵角ととるべき場合にプロペラ回転数は抑えざるを得ず、十分なスラスター流を発生させることができないのに対して、図1Bに示されるように、増速により舵柄が70°の舵角を船軸となす場合でも駆動力が働くリンク部材には、35°の舵角、すなわち、sin55°の成分でモーメント力を作用するため、従来の2.4倍のモーメントを舵軸に作用させることができる。とすれば、動力機構を大型化せずとも、従来に比して強力なスラスター流を生成させることを可能とする効果がある。   A steering apparatus according to an embodiment of the present invention will be described below. 1A and 1B show conceptual diagrams before and after the drive link C turns around the first rotation center 504 by the drive force 7 of the speed increasing link mechanism 601 employed in one embodiment of the present invention. It is. FIG. 1C is a conceptual diagram showing a case where a steering force acts directly on a steering handle according to a conventional design from a power mechanism. Here, symbols A, B, and C in FIG. 1A and FIG. 1B represent nodes of the triangular link mechanism, A is a fixed node of the triangular link mechanism, and B is a short with the diagonal of the fixed node being an acute angle. And C is the longest hypotenuse of the triangular link mechanism. A driving force 7 is applied to the first connecting contact 501 by a connecting rod (not shown) of a power mechanism (not shown). Then, the rudder handle 500 that is rotatably connected to the drive link C by the second connecting contact 502 turns around the second rotation center 505 as the driven link B and moves upward on the arc having the radius A. Then, the angle β viewed from the second rotation center is larger than the turning angle α around the first rotation center 504. 1A and 1B, the length of the drive link C that defines the distance between the second connection contact 502 and the first rotation center 504, and the second connection contact 502 and the second rotation center 504. The relationship between the length of the follower link B that defines the distance and the length of the portion A between the first rotation center 504 and the second rotation center 505 is, in one embodiment, β when α = 35 °. If the predetermined relationship shown in the figure is defined so that = 70 °, the steering handle rotates the second rotation center, that is, the rudder shaft at twice the turning angle of the drive link C, and the desired result is obtained. obtain. In other words, α <β is obtained when a triangle having a long hypotenuse is configured with the distance between the drive link and the steering handle and the fixed point of the drive link as the first rotation center and the rudder shaft as the base. In the steering device according to an embodiment of the present invention, the angle of the long slope is changed by a hydraulic cylinder to increase and change the rudder angle of the rudder shaft, which is the fulcrum of the short side, and more than twice the conventional rudder angle range. Is to secure. In the concept of the conventional steering device, as shown in FIG. 1C, if the steering angle is set to 70 °, the driving force acts on the rudder handle with a moment force of sin 20 °. Only small component forces can be applied. If it does so, it will not be able to support a large moment force, it will not be able to generate a large rudder force on the rudder blade, and if the rudder angle of 70 ° should be taken, the propeller rotation speed has to be suppressed, sufficient thruster flow 1B, as shown in FIG. 1B, the link member that works even when the rudder angle of the steering handle is 70 ° due to the speed increase is used for the link member that has a steering force of 35 °. Since the moment force acts on the angle, that is, a sin 55 ° component, a moment that is 2.4 times the conventional force can be applied to the rudder shaft. Then, there is an effect that it is possible to generate a powerful thruster flow as compared with the prior art without increasing the size of the power mechanism.

図2は、増速リンク機構601を備えていない操舵装置1を示す参考斜視図である。対向する油圧シリンダにより左右へ押す駆動力で舵柄500を左右に旋回し、舵軸40を時計廻り反時計まわりに回転させ、図示のように70°の舵板30の舵角を確保する。   FIG. 2 is a reference perspective view showing the steering apparatus 1 that does not include the speed increasing link mechanism 601. The steering handle 500 is turned to the left and right by a driving force that is pushed to the left and right by the opposing hydraulic cylinder, and the rudder shaft 40 is rotated counterclockwise to secure a rudder angle of the rudder plate 30 as shown in the figure.

図3は、本発明の一実施の形態に係る操舵装置1の斜視図である。油圧シリンダ100の連接棒520は、第一の連接点部521を駆動すると、駆動リンク部材506を第一の回転中心504まわりに旋回させる。駆動リンク部材506は第二の連接点部502を介して舵柄500の第二の連接点部522に連接される部位を第一の回転中心504まわりに旋回させるが、舵柄500は、舵軸40と結合されて、舵軸は、船体に回転自在に保持されているので、舵柄500は、舵軸40まわりを旋回する。この場合において、舵軸40は、第一の回転中心504から第二の連接点502との距離R1を半径とする回転半径内に前記舵軸を配置すると、舵柄500の第二の連接点502の舵軸40まわりの旋回半径は、R1よりも小となるから、第一図に示す、長い斜面を持つ三角形の関係が形成されて、駆動リンク部材の旋回角αから舵軸まわりの舵柄500の旋回角βは増速されて、この三角形を構成する部材の位置関係が所定の関係を満たせば、2倍以上に角度が増速されて、左右合わせて70°の舵板30の舵角は左右140°へ拡大可能とされる。この場合に、第二の連接点部502の舵柄500の半径軸上の位置は、半径方向にずれるが、舵柄500には、軸方向にスライド用長孔511が形成されており、第二の連接点部522には、この長孔511と軸方向に摺動自在の突出部が形成されているため、第二の連接点部522はこの長孔511を半径軸方向に沿って、外側に摺動しながら移動する。この関係は、第一の連接点部材501と駆動リンク部材506との関係にも同様であり、図3には、図示しないが、駆動リンク部材506にも同様な長孔が形成されており、第一の連接点部材501には、摺動自在の突起部が備わり、駆動リンク部材506上を軸方向に第一の連接点部材501突起部が摺動する。この長孔は溝でもよいし必ずしも閉じている必要はなく、開放された長孔、溝であってもよく、凡そ、突起部をスライドする案内となるものであれば、どのような形状でもよい。   FIG. 3 is a perspective view of the steering apparatus 1 according to the embodiment of the present invention. The connecting rod 520 of the hydraulic cylinder 100 turns the drive link member 506 around the first rotation center 504 when the first connecting contact portion 521 is driven. The drive link member 506 turns the portion connected to the second connecting contact portion 522 of the rudder handle 500 via the second connecting contact portion 502 around the first rotation center 504. Since the rudder shaft is coupled to the shaft 40 and is rotatably held in the hull, the rudder handle 500 turns around the rudder shaft 40. In this case, when the rudder shaft is arranged within a rotation radius having a radius R1 from the first rotation center 504 to the second connection contact 502, the rudder shaft 40 has a second connection contact of the rudder handle 500. Since the turning radius of 502 around the rudder shaft 40 is smaller than R1, a triangular relationship having a long slope shown in FIG. 1 is formed, and the rudder around the rudder shaft is formed from the turning angle α of the drive link member. If the turning angle β of the handle 500 is increased and the positional relationship of the members constituting this triangle satisfies a predetermined relationship, the angle is increased more than twice, and the left and right of the rudder plate 30 of 70 ° are combined. The rudder angle can be expanded to 140 ° left and right. In this case, the position of the second connecting contact portion 502 on the radial axis of the rudder handle 500 is shifted in the radial direction. However, the rudder handle 500 has a long slot 511 for sliding in the axial direction. Since the second connecting contact portion 522 is formed with a projection that is slidable in the axial direction with the elongated hole 511, the second connecting contact portion 522 extends the elongated hole 511 along the radial axis direction, Move while sliding outward. This relationship is the same as the relationship between the first connecting contact member 501 and the drive link member 506. Although not shown in FIG. 3, the drive link member 506 has a similar long hole, The first connection contact member 501 is provided with a slidable protrusion, and the first connection contact member 501 protrusion slides on the drive link member 506 in the axial direction. The long hole may be a groove or not necessarily closed, and may be an open long hole or groove, and may have any shape as long as it serves as a guide for sliding the protrusion. .

図4は、本発明の一実施の形態に係る操舵装置1の組み立て展開斜視図である。図3では、重なっている部位が図4でこれらを構成する部位の位置関係がよく理解される。第一の連接点501を位置づける第一の連接点部位521は、左右を油圧シリンダ100の連接棒520に拘束されると同時に、船体に固定されて第一の回転中心504に回転自在に保持される駆動リンク部材506に形成されている長孔512に摺動自在に案内されて、第一の連接点501に動力機構701からの駆動力7を作用させると、駆動リンク部材506の先端から下方へ突出する部位と舵柄500に形成されている長孔511は摺動自在に連接されて舵柄500には第二の連接点502を介して第一の回転中心504まわりの旋回力が作用する。舵柄500は、船体10に舵軸40を回転支点として固定されており、第二の回転中心505まわりの旋回力を得て、このまわりを旋回することが可能とされる。   FIG. 4 is an exploded perspective view of the steering device 1 according to the embodiment of the present invention. In FIG. 3, the positional relationship between the overlapping parts constituting the parts in FIG. 4 is well understood. The first connecting contact portion 521 for positioning the first connecting contact 501 is constrained to the connecting rod 520 of the hydraulic cylinder 100 at the left and right, and at the same time, is fixed to the hull and rotatably held at the first rotation center 504. When the driving force 7 from the power mechanism 701 is applied to the first connecting contact 501 by being slidably guided in the long hole 512 formed in the driving link member 506, the driving link member 506 is moved downward from the tip of the driving link member 506. A portion projecting to the left and the elongated hole 511 formed in the steering handle 500 are slidably connected, and the turning force around the first rotation center 504 acts on the steering handle 500 via the second connecting contact 502. To do. The rudder handle 500 is fixed to the hull 10 with the rudder shaft 40 as a rotation fulcrum, and can obtain a turning force around the second rotation center 505 and turn around this.

図5は、本発明の一実施の形態に係る操舵装置を用いる船舶の船尾正面図である。舵板30は、舵軸40にその上部で連結垂下されて、船底を貫通して回転自在に舵軸40を支持する軸受19を介して保持されている。油圧シリンダ100は、船軸に対して垂直に配置されて、油圧シリンダの往復動に連れて、舵軸は駆動リンク部材506と舵柄500による増速リンク機構によって舵角を拡大されて左右に140°の舵角を得る。   FIG. 5 is a stern front view of a ship using a steering apparatus according to an embodiment of the present invention. The rudder plate 30 is connected and suspended from the rudder shaft 40 at an upper portion thereof, and is held via a bearing 19 that supports the rudder shaft 40 rotatably through the ship bottom. The hydraulic cylinder 100 is arranged perpendicularly to the ship axis, and the rudder shaft is expanded left and right by a speed increasing link mechanism by the drive link member 506 and the rudder handle 500 as the hydraulic cylinder reciprocates. A rudder angle of 140 ° is obtained.

図6は、本発明の一実施の形態に係る船舶の船尾側面図である。船体10の船尾管11の後端11aに取り付けられるプロペラ20と、1枚の舵板30と、舵板30を舵軸40を介して駆動する駆動機構は、プロペラの背後上方の船内に配置されて、喫水下にはなく、水流の抵抗を排して、洋上巡航時に高い推進効率を得られる点、フラップ付舵に勝っている。図6のみに一点鎖線で示しているが、油圧シリンダ機構を駆動する動力装置として、油圧ポンプユニット200があり、油圧シリンダ100に近接して船尾に配置されて高圧ホース105で両者は接続されている(他の図では省略して図示していない)。   FIG. 6 is a stern side view of a ship according to an embodiment of the present invention. The propeller 20 attached to the rear end 11a of the stern tube 11 of the hull 10, the single rudder plate 30, and the drive mechanism for driving the rudder plate 30 via the rudder shaft 40 are arranged in the ship above and behind the propeller. It is superior to the rudder with a flap, because it is not under draft, and it eliminates the resistance of the water flow and can obtain high propulsion efficiency during offshore cruising. Although only a one-dot chain line is shown in FIG. 6, there is a hydraulic pump unit 200 as a power device for driving the hydraulic cylinder mechanism, which is disposed on the stern in the vicinity of the hydraulic cylinder 100 and is connected by a high-pressure hose 105. (Not shown in other figures).

図7は、増速リンク機構を備えていない操舵装置の他の実施の形態に係る参考斜視図である。この実施形態では、油圧シリンダは左右に船軸に平行に配置されて、各々が押す力でT字部材530を駆動し、連結されている舵柄を左右に振るが、増速機構を備えていないので、舵角は従来の70°に制限される。図7のみに示すが、油圧シリンダは架台107の上に設置されて、シリンダ軸方向に向い左右に揺動可能と配置され、T字部材の連接部の回転に伴う左右方向の芯ずれを吸収する構成となっている。この構成に相当する機能は、第一の実施形態では図4に示されているように、駆動部材と連接する第一連接点部材521の下方への突起は、駆動部材506の軸方向に設けられている長孔512により、前後に摺動可能となっている構成機能により上述の芯ずれは吸収されている。   FIG. 7 is a reference perspective view according to another embodiment of the steering apparatus that does not include the speed increasing link mechanism. In this embodiment, the hydraulic cylinders are arranged on the left and right in parallel with the axle, and each of them drives the T-shaped member 530 with a pushing force and swings the connected steering handle to the left and right, but includes a speed increasing mechanism. As a result, the rudder angle is limited to the conventional 70 °. Although only shown in FIG. 7, the hydraulic cylinder is installed on the gantry 107 and is arranged so as to be swingable in the left and right directions in the cylinder axial direction, and absorbs the misalignment in the left and right directions accompanying the rotation of the connecting portion of the T-shaped member. It is the composition to do. As shown in FIG. 4 in the first embodiment, the function corresponding to this configuration is such that the downward projection of the first contact member 521 connected to the drive member is provided in the axial direction of the drive member 506. The above-mentioned misalignment is absorbed by the structural function that allows the long hole 512 to slide back and forth.

図8は、本発明の第二の実施の形態に係る操舵装置の斜視図である。前記動力機構は、油圧シリンダ100を含み、油圧により往復動する油圧シリンダ100により往復駆動されるシリンダ軸の連接棒520の往復動式動力機構がタンデム二本構成で互いに並列配設され、請求項記載のリンク部材は、T字部材530であって、T字の縦棒部を前記油圧シリンダと並列に配設され、前記T字の横棒部の両端部に各々専属の前記第一の連接点部521が配設され、油圧により往復動する油圧シリンダ100は、前記T字部材530により往復動されるシリンダ軸連接棒520の往復動式動力機構によって前記第一の連接点501が駆動力7で往復駆動される。舵柄500が第二の連接点502を介して駆動リンク部材506によって第一の回転中心504まわりに旋回されて第二の回転中心505である舵軸40が回転されるのは、第一の実施形態と同様である。   FIG. 8 is a perspective view of the steering apparatus according to the second embodiment of the present invention. The power mechanism includes a hydraulic cylinder 100, and a reciprocating power mechanism of a connecting rod 520 of a cylinder shaft that is reciprocated by a hydraulic cylinder 100 that reciprocates by hydraulic pressure is disposed in parallel with each other in a tandem configuration. The described link member is a T-shaped member 530, wherein a T-shaped vertical bar portion is arranged in parallel with the hydraulic cylinder, and the first connecting members respectively dedicated to both ends of the T-shaped horizontal bar portion. In the hydraulic cylinder 100 in which the point portion 521 is disposed and reciprocates by hydraulic pressure, the first connecting contact 501 is driven by the reciprocating power mechanism of the cylinder shaft connecting rod 520 reciprocated by the T-shaped member 530. 7 is reciprocated. The rudder handle 500 is turned around the first rotation center 504 by the drive link member 506 via the second connecting contact 502 and the rudder shaft 40 as the second rotation center 505 is rotated. This is the same as the embodiment.

図9は、本発明の第二の実施の形態に係る操舵装置の組み立て展開斜視図である。油圧シリンダ100は連接棒520と結合されて第一の連接点部材521に回転自在に連接されている。この連接は、油圧シリンダの往復動によってT字部材の上面に結合されている連接ピンを前後に移動させる際には、図示しない油圧シリンダの台座の左右への揺動機構によってその動きが制約されない自由度を与えられていることに助けられ、回転自在を満たすのみの連接機構となっている。この連接T字部材は、船体に固定されて上方に円筒状の突起を呈する第一の回転中心504を形成する支点部材508に回転自在に支持され、T字部材の縦棒部の先端部には下方への突起が設けられて第二の連接点502を構成する部材として、舵柄500の軸方向に設けられている上下方向に貫通する切欠き部に摺動自在に嵌めこまれ、回転自在、軸方向への摺動自在に舵柄500と連接されている。T字部材は、第一の回転中心504まわりの旋回運動に拘束された運動をし、第二の連接点502を軸方向に伸びる前記切欠き部513とここに設けられている下方突起により、舵柄500の第二の連接点部を第一の回転中心まわりに旋回させると、舵柄は、第二の回転中心505である舵柄まわりの運動に制約されているので、舵柄500を舵軸40まわりに旋回させ、この場合に、第一の回転中心504まわりに第二の連接点部を旋回半径とする領域内に第二の回転中心504が位置されて、大径の駆動リンクにより小径の従動リンクが運動される構造関係が形成されており、舵軸は第一の回転に対して増速する。T字部材503の寸法と支点508の固定位置、舵柄500の寸法、舵軸40の支持位置の関係が、回転限界で図1Bのα=35°でβ=70°となる所定の関係に構成されて、2倍の増速を実現する増速リンク機構が実現される。   FIG. 9 is an exploded perspective view of the assembly of the steering apparatus according to the second embodiment of the present invention. The hydraulic cylinder 100 is coupled to the connecting rod 520 and is rotatably connected to the first connecting contact member 521. In this connection, when the connecting pin coupled to the upper surface of the T-shaped member is moved back and forth by the reciprocating motion of the hydraulic cylinder, the movement is not restricted by the swing mechanism of the hydraulic cylinder pedestal to the left and right. It is an articulated mechanism that can only be rotated and is helped by the freedom. This connecting T-shaped member is rotatably supported by a fulcrum member 508 that is fixed to the hull and forms a first rotation center 504 that has a cylindrical protrusion upward, and is attached to the tip of the vertical bar portion of the T-shaped member. Is a member that constitutes the second connecting contact 502 with a downward projection and is slidably fitted in a notch that penetrates in the vertical direction provided in the axial direction of the rudder handle 500 and rotates. The rudder handle 500 is connected in a freely slidable manner in the axial direction. The T-shaped member has a movement constrained by a turning movement around the first rotation center 504, and the notch 513 extending in the axial direction of the second connecting contact 502 and a lower protrusion provided therein, When the second connecting contact portion of the rudder handle 500 is turned around the first rotation center, the rudder handle is restricted by the movement around the rudder handle which is the second rotation center 505. In this case, the second rotation center 504 is located in a region around the first rotation center 504 with the second connecting contact portion as the turning radius, and a large-diameter drive link is provided. Thus, a structural relationship in which the small-diameter driven link is moved is formed, and the rudder shaft is accelerated with respect to the first rotation. The relationship between the dimension of the T-shaped member 503 and the fixed position of the fulcrum 508, the dimension of the rudder handle 500, and the support position of the rudder axle 40 is a predetermined relationship in which α = 35 ° and β = 70 ° in FIG. Thus, a speed increasing link mechanism that realizes double speed increasing is realized.

図10は、本発明の第三の実施の形態に係る操舵装置を用いる船舶の船尾側面図であり、図11は、その船尾正面図であり、図12は、その船尾上面図である。船体10の船尾管11の後端11aに取り付けられるプロペラ20と、2枚の舵板30と、舵板30を舵軸40を介して駆動する駆動機構601は、プロペラ20の上方に配置されて、船内に配置されて、喫水下にはなく、水流の抵抗を排して、洋上巡航時に高い推進効率を得られる点、フラップ付舵に勝っている。図6とは、舵が2枚となって舵板はプロペラの後方ではなく、側方に位置されている点が大きく異なる。すなわち、舵軸40は、スクリュー軸上方の両脇に回転自在に2軸配置され、各々の舵軸40は、主舵を舵板30の上部で連結垂下し、前記動力機構701が油圧シリンダ100であって、油圧により往復動する油圧シリンダ100により往復駆動される連接棒520の往復動式動力機構が船軸方向に縦列タンデム構成で互いに対向配設されている。増速リンク機構を含む駆動機構601自体は、第一の実施形態と同じであるが、舵軸40が二軸配設されているので、各々を駆動する独立の駆動機構を各々の各軸を専属に駆動するものとして、二つ船内、プロペラ20の上方に設けられている。巡航直進の保針操船の場合には、両舵板30は、プロペラ20の両脇側方に保持され、針路を変える変針操船の場合には、舵板30は、舵軸40の回転によりプロペラ20側方からプロペラ後流側に90°まで旋回可能であり、選択的にもう一方の舵板は、舵軸40の回転によりプロペラ20側方からプロペラ20上流側に45°まで旋回可能と構成されている。上流側へは45°も旋回すれば十分に操舵の目的を達成するし、後流側へと90°旋回し、減速急停止時には、両方の主舵を各舵軸の回転によりプロペラ側方からプロペラ上流側へ船軸に線対称に−45°を超えて旋回すれば、主舵をプロペラまわりに旋回回動して大きな舵角を取ることで、舵を船舶の制動に利用できるようにもなり、高い制動性能を確保できるようになる。この操舵装置1によれば、緊急停止時に2枚の主舵がプロペラ後流をその真後ろで90°の舵角でほぼ遮蔽する動きをするため、制止力を大とする効果を発揮する。この場合の操舵の目的は、急停止の必要な場面で、プロペラ駆動をリセットした後にプロペラが惰性で回っている時間を短縮し、早くプロペラの逆転を可能とすることである。この各々の舵軸40を駆動し、操舵するものとして第一の実施形態で開示する操舵装置1の駆動機構601と動力機構701(油圧ポンプユニット系は図示しない)を左右に各々配設し、2つの舵軸40の回転により2枚の主舵30をプロペラ20の側方からプロペラ20の後流側まで各独立に旋回可能としている。油圧シリンダ100の配列方向は、場合により船幅方向に縦列対向構成とすることも可能であるが、第三の実施態様にように船軸方向に縦列構成とするものとすれば、幅広船でなくともこの構成を取ることができ、船尾の機関スペース占有も支障も最小限に抑えられる点好ましい。   FIG. 10 is a stern side view of a ship using the steering apparatus according to the third embodiment of the present invention, FIG. 11 is a front view of the stern, and FIG. 12 is a top view of the stern. The propeller 20 attached to the rear end 11 a of the stern tube 11 of the hull 10, the two rudder plates 30, and the drive mechanism 601 that drives the rudder plate 30 via the rudder shaft 40 are disposed above the propeller 20. This is superior to the rudder with flaps, because it is placed on the ship, not under the draft, can eliminate the resistance of the water flow, and can obtain high propulsion efficiency when cruising offshore. 6 differs greatly from FIG. 6 in that the rudder has two pieces and the rudder plate is positioned not on the rear side of the propeller but on the side. That is, the rudder shaft 40 is rotatably arranged on both sides above the screw shaft, and each rudder shaft 40 hangs down the main rudder at the upper portion of the rudder plate 30, and the power mechanism 701 is connected to the hydraulic cylinder 100. The reciprocating power mechanism of the connecting rod 520 that is reciprocally driven by the hydraulic cylinder 100 that reciprocates by hydraulic pressure is disposed opposite to each other in a tandem configuration in the ship axis direction. The drive mechanism 601 itself including the speed increasing link mechanism is the same as that of the first embodiment, but since the rudder shaft 40 is arranged in two axes, an independent drive mechanism for driving each is provided for each axis. Two are installed on the ship and above the propeller 20 for exclusive driving. In the case of a cruising straight marine vessel, the rudder plates 30 are held on both sides of the propeller 20. In the case of a variable marine vessel maneuvering that changes the course, the rudder plate 30 is rotated by the rudder shaft 40. It is possible to turn 90 ° from the side of the propeller 20 to the downstream side of the propeller, and the other rudder can be selectively turned from the side of the propeller 20 to the upstream side of the propeller 20 to 45 ° by the rotation of the rudder shaft 40. Has been. If you turn 45 ° upstream, you will achieve the objective of steering sufficiently, turn 90 ° backward, and at the time of sudden deceleration stop, both main rudder will turn from the side of the propeller by rotating each rudder shaft If you turn to the upstream side of the propeller over -45 ° in line symmetry with the ship axis, the main rudder will turn around the propeller and take a large rudder angle so that the rudder can be used for braking the ship. Thus, high braking performance can be secured. According to this steering device 1, since the two main rudders move to substantially shield the wake behind the propeller at the 90 ° rudder angle immediately behind the propeller during an emergency stop, the effect of increasing the stopping force is exhibited. The purpose of steering in this case is to reduce the time that the propeller rotates by inertia after resetting the propeller drive in a scene where a sudden stop is necessary, and to enable the propeller to reverse quickly. A drive mechanism 601 and a power mechanism 701 (hydraulic pump unit system not shown) of the steering apparatus 1 disclosed in the first embodiment are arranged on the left and right respectively to drive and steer each of the rudder shafts 40. The rotation of the two rudder shafts 40 allows the two main rudder 30 to turn independently from the side of the propeller 20 to the rear flow side of the propeller 20. In some cases, the arrangement direction of the hydraulic cylinders 100 may be configured in a column-facing configuration in the ship width direction. However, as in the third embodiment, if the configuration is a column configuration in the axis direction, This configuration can be adopted at least, and it is preferable in that the occupation of the stern engine space and the trouble are minimized.

図13は、本発明の第三の実施の形態に係る操舵装置の一つの舵の操舵機構部を取り出してみる斜視図である。ひとつの舵の操舵機構部は、図3に示す第一の実施の形態のものに比して、油圧シリンダの対向方向が船軸に平行となっている点と、2舵専用のゲート形の舵板30を舵軸40から垂下している点が異なるが、図1A及び1Bに示す概念を具現する増速リンク機構を含む駆動機構部の構造は、原則同じである。ここでいう原則とは、油圧シリンダが対向する中立点で舵板が船軸に平行となる形態関係とするのではなく、中立点で斜めに25°偏角させて舵軸に舵板を垂下させれば、プロペラ側方から上流方向へ舵角範囲の中央位置から舵軸を70°回転させるときには、ゲート形舵板(ラダー)は上流へ45°旋回されて、プロペラ側方からプロペラ後流側方向へ舵角範囲の中央位置から舵軸を70°回転させれば、ゲート形ラダーは後流側へ95°まで旋回可能となる。   FIG. 13: is a perspective view which takes out the steering mechanism part of one rudder of the steering apparatus which concerns on 3rd embodiment of this invention. Compared with the first embodiment shown in FIG. 3, the steering mechanism of one rudder has a point that the opposing direction of the hydraulic cylinder is parallel to the ship axis, and a gate type dedicated to two rudder. Although the point that the rudder plate 30 is suspended from the rudder shaft 40 is different, the structure of the drive mechanism unit including the speed increasing link mechanism that embodies the concept shown in FIGS. 1A and 1B is basically the same. The principle here is not to make the rudder plate parallel to the ship axis at the neutral point where the hydraulic cylinder is opposed, but to tilt the rudder plate to the rudder shaft by declining by 25 ° diagonally at the neutral point. Then, when the rudder axle is rotated 70 ° from the central position of the rudder angle range from the propeller side to the upstream direction, the gate-type rudder plate (ladder) is turned 45 ° upstream and the propeller wakes from the propeller side. If the rudder axle is rotated by 70 ° from the center position of the rudder angle range in the lateral direction, the gate ladder can turn to 95 ° to the wake side.

図14は、本発明の第三の実施の形態に係る操舵装置の組み立て展開斜視図である。油圧シリンダが対向する中立点でゲート形ラダーがプロペラ側方で平行に位置する場合の組み立て展開斜視図である。一つの舵軸を駆動する駆動機構と動力機構を取り出して見ると、図4に示すものとは舵板40がゲート形ラダーとなっている点と、対向する油圧シリンダの向きが巡航時の舵板の向きと平行となっているか、垂直となっている点が異なるが、増速リンク機構を含む駆動機構の仕組みは同じである   FIG. 14 is an exploded exploded perspective view of the steering apparatus according to the third embodiment of the present invention. It is an assembly development perspective view in case a gate type ladder is located in parallel with a propeller side at a neutral point which a hydraulic cylinder counters. When a drive mechanism and a power mechanism for driving one rudder shaft are taken out and viewed, the one shown in FIG. 4 is that the rudder plate 40 is a gate-type ladder, and the direction of the opposing hydraulic cylinder is the rudder during cruising. The mechanism of the drive mechanism including the speed increasing link mechanism is the same, except that it is parallel or perpendicular to the direction of the plate.

第三の実施形態に示されるゲート形ラダーの2舵構成の操舵装置によって船舶を運航すると、2枚の舵板30は、プロペラ20の両脇に配置されて、2枚の舵板の前端はプロペラ回転面の形成する面よりも前方に突出し、この突出長さは船体10と干渉しない範囲で前方に伸長させて、2枚の舵板30は薄く形成されて低い流体抵抗と船尾近傍の渦発生への整流効果を狙う。舵板30は、正面図に示されるように逆さL字板状を呈しており、舵板上部で舵軸40に垂下固定され、舵軸40は船体10の船底部分に回転自在に支持されている。操舵時には、舵軸40の回転に連れて、舵板30はプロペラの周りを図15に示すように旋回する。舵板30が板面上の軸中心で回転するよりも図15に示すようにプロペラまわりを旋回することにより、プロペラ後流の偏向流の偏向角を増すことができ、旋回性能を向上させる効果が得られる。2枚の舵板30は、好ましくは内側にキャンバーを設けてその効果により、船体10を前方に推進する推力を発生する形状とする。舵板30は、前方厚みを後方厚みに対して厚くし、船体中心線に対して10度以内傾けることで、適度な迎角を有した配置とし、プロペラ効率を増しつつ、船体10の船尾近傍の流れに対して抵抗が少ない最適な舵板形状とし、総じて大きな前方推力を得ることができる。
図11に示す駆動機構では、各々の駆動軸を自在に回転させている。図15に示すように船尾11から見る方向から中心に向かい同時に閉じるように旋回させれば、緊急時に緊急制動させることもできる。2軸が各々独立に駆動できれば、舵板40の旋回が自在に可能となるので、巡航直進時には、舵板30がプロペラ後流に位置することなく、プロペラの両脇に位置して高い推進効率を与えるという効果を提供しつつ、緊急制動時には、プロペラ後流で船体10の船軸と90度の舵角を与えて高い制動力を得たり、プロペラ20の水流を船舶の旋回のために自在に偏向整流させ、旋回性能を確保する操舵装置が提供されることとなる。
When the ship is operated by the two-rudder steering device of the gate-type ladder shown in the third embodiment, the two rudder plates 30 are arranged on both sides of the propeller 20, and the front ends of the two rudder plates are Projecting forward from the surface formed by the propeller rotating surface, this projecting length extends forward in a range not interfering with the hull 10, and the two rudder plates 30 are formed thinly to have a low fluid resistance and a vortex near the stern. Aim for rectification effect on generation. The rudder plate 30 has an inverted L-shaped plate shape as shown in the front view, and is suspended and fixed to the rudder shaft 40 at the upper portion of the rudder plate. The rudder shaft 40 is rotatably supported on the bottom portion of the hull 10. Yes. At the time of steering, as the rudder shaft 40 rotates, the rudder plate 30 turns around the propeller as shown in FIG. By turning around the propeller as shown in FIG. 15 rather than rotating around the axis center on the plate surface, the deflection angle of the deflection flow behind the propeller can be increased and the turning performance can be improved. Is obtained. The two rudder plates 30 preferably have a shape that generates a thrust force for propelling the hull 10 forward by providing a camber on the inside thereof. The rudder plate 30 is thicker than the rear thickness and tilted within 10 degrees with respect to the hull center line, so that the steering plate 30 has an appropriate angle of attack and increases the propeller efficiency, while the vicinity of the stern of the hull 10 It is possible to obtain an optimum rudder plate shape with little resistance to the flow of the engine and to obtain a large forward thrust as a whole.
In the drive mechanism shown in FIG. 11, each drive shaft is freely rotated. As shown in FIG. 15, emergency braking can be performed in an emergency by turning the vehicle from the direction seen from the stern 11 toward the center and simultaneously closing. If the two shafts can be driven independently, the rudder plate 40 can turn freely. Therefore, when traveling straight ahead, the rudder plate 30 is not located in the wake of the propeller, but is located on both sides of the propeller and has high propulsion efficiency. In the event of emergency braking, a high braking force can be obtained by giving the axle of the hull 10 and a steering angle of 90 degrees in the wake of the propeller, and the water flow of the propeller 20 can be freely used for turning the ship. Therefore, a steering device that ensures the turning performance is provided.

さらに追加の実施態様では、前記船体に位置拘束されて第三の回転中心である支点で揺動支持されて第二の連接点で前記連接棒部材と回転自在に連接される追加のリンク部材が備えられて、第三の回転中心である支点と第二の連接点との距離よりも大であってレバレッジ効果を与える所定の距離を前記支点から隔たる第三の連接点を備えてこれが前記舵柄と回転自在に連接されて舵柄へ前記第三の連接点から前記船体に保持されている前記舵軸に連結されている舵柄に向けてさらに増速される旋回力を提供し前記舵軸中心に主舵を増速回転可能とするのも好ましい。この場合には、第二の連接点が直接舵柄に作用するのではなく、さらに追加のリンク部材を介して追加の第三の連接点を用いて舵柄を旋回させて、すなわち、追加のリンク部材は、第三の連接点を設けて舵柄を回転自在に連接し、支点と第二の連接点の距離と支点と第三の連接点の距離の逆比でレバレッジされてさらに主舵を増速回転可能とし、70°を超える舵角を実現可能とする。   In an additional embodiment, there is provided an additional link member that is positionally restrained by the hull, is swingably supported by a fulcrum that is a third rotation center, and is rotatably connected to the connecting rod member by a second connecting contact. A third connection point that is larger than the distance between the fulcrum that is the third rotation center and the second connection point and that separates the fulcrum by a predetermined distance that gives a leverage effect. Providing a turning force that is further increased toward the rudder handle connected to the rudder shaft, which is connected to the rudder handle and is rotatably connected to the rudder handle from the third connection point. It is also preferable that the main rudder can be rotated at an increased speed around the rudder axis. In this case, the second connecting contact does not directly act on the steering handle, but the steering handle is turned by using the additional third connecting contact via the additional link member, that is, the additional connecting contact is added. The link member is provided with a third connecting contact to connect the rudder handle rotatably, and is further leveraged by the inverse ratio of the distance between the fulcrum and the second connecting contact and the distance between the fulcrum and the third connecting contact. Can be rotated at an increased speed, and a steering angle exceeding 70 ° can be realized.

図16は、本発明の第四の実施の形態に係る操舵装置の一つの舵の操舵機構部を取り出してみる斜視図である。第一の連接点501と第二の連接点502は、駆動リンク部材506に第一の回転中心504を挟んだ位置に配設されて、図10と同じく請求項7に係る発明の変形実施する場合の実施形態を示している。この実施形態では、入力節である駆動リンク機構がくの字状の形態を呈して、油圧シリンダ機構を舵軸の外側に配設可能としている。このような構成を取ることを可能とすれば、舵軸を二軸構成として両舵軸間に限られたスペースしか残らない小型船の船尾でもタンデム並列の油圧動力機構及び駆動機構を配することを可能とする。図16に示すように二つの油圧シリンダ軸は、ハの字状に緩い交差角を与えてもよい。油圧シリンダ100が連接棒520を介して第一の連接点部521を押すと駆動リンク506は、第一の回転中心504まわりを旋回する。駆動リンク506と舵柄500を連接する第二の連接点の回転中心502で拘束される舵柄500は舵軸中心505まわりを旋回し、舵軸40を回転させ、舵板30を旋回させ、第二の連接点502と第一の回転中心504、舵軸中心505との距離比で舵軸を増速回転させ、所望の効果を得る。   FIG. 16 is a perspective view of a steering mechanism portion of one rudder of a steering apparatus according to the fourth embodiment of the present invention. The first connection contact 501 and the second connection contact 502 are disposed at positions where the first rotation center 504 is sandwiched by the drive link member 506, and the modified embodiment of the invention according to claim 7 is implemented as in FIG. An embodiment of the case is shown. In this embodiment, the drive link mechanism, which is an input node, has a dogleg shape, and the hydraulic cylinder mechanism can be disposed outside the rudder shaft. If it is possible to adopt such a configuration, a tandem parallel hydraulic power mechanism and drive mechanism should be arranged even at the stern of a small ship where the rudder shaft is a two-shaft configuration and only a limited space remains between both rudder shafts. Is possible. As shown in FIG. 16, the two hydraulic cylinder shafts may give a loose crossing angle in a square shape. When the hydraulic cylinder 100 pushes the first connecting contact portion 521 via the connecting rod 520, the drive link 506 turns around the first rotation center 504. The rudder handle 500 constrained by the rotation center 502 of the second connecting contact connecting the drive link 506 and the rudder handle 500 turns around the rudder shaft center 505, rotates the rudder shaft 40, turns the rudder plate 30, The rudder shaft is rotated at an increased speed at a distance ratio between the second connecting contact 502, the first rotation center 504, and the rudder shaft center 505 to obtain a desired effect.

以上、本発明に係る実施の形態を説明したが、本発明は係る実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。本発明が、ここに記載された実施形態に描かれ、実施形態は、かなり詳細に記載されているが、出願人は、この記載によって添付する特許請求の範囲をいかようにも制限、限定する意図はない。追加の利点や修正は、当業者に理解され、一つの実施形態に記載された要素は、他の実施形態にも採用可能である。したがって、発明は、広い面で、特定の詳細事項に限定されず、各々の機器と実施例が示され、記載されている。したがって、出願人の一般的発明概念の精神とスコープから乖離しないで、これらの詳細に記載された事項から離れることもあり得る。   The embodiment according to the present invention has been described above, but the present invention is not limited to the embodiment, and various modifications can be made without departing from the spirit of the present invention. While the invention is illustrated in the embodiments described herein, the embodiments are described in considerable detail, and applicants in any way limit or limit the scope of the appended claims. There is no intention. Additional advantages and modifications will be apparent to those skilled in the art, and elements described in one embodiment may be employed in other embodiments. Accordingly, the invention in its broader aspects is not limited to specific details, and each device and example is shown and described. Accordingly, it is possible to depart from these details without departing from the spirit and scope of the applicant's general inventive concept.

本発明は、水上船舶の主舵の操舵部分に適用可能なものである。   The present invention is applicable to a steering portion of a main rudder of a surface vessel.

1 操舵装置
7 駆動力
8 接線方向成分
10 船体
11 船尾管
18 船軸線
19 軸受
20 プロペラ
30 舵板
40 舵軸
100 油圧シリンダ
105 高圧ホース
107 架台
200 油圧動力ユニット
500 舵柄
501 第一の連接点
502 第二の連接点
504 第一の回転中心
505 第二の回転中心
506 駆動リンク部材
508 第一の回転中心の支点部材
511 スライド用長孔
512 スライド用長孔
513 貫通切欠き部
520 連接棒
521 第一の連接点部
522 第二の連接点部
530 T字部材
601 駆動機構
701 動力機構
R1 第一の回転中心から第二の連接点との距離
A 三角リンク機構の固定節
B 三角リンク機構の最長の斜辺節
C 固定節の対角を鋭角とする短い方の斜辺節
DESCRIPTION OF SYMBOLS 1 Steering device 7 Driving force 8 Tangential direction component 10 Hull 11 Stern tube 18 Axle line 19 Bearing 20 Propeller 30 Rudder plate 40 Rudder shaft 100 Hydraulic cylinder 105 High-pressure hose 107 Base 200 Hydraulic power unit 500 Steering handle 501 First connecting contact 502 Second connecting contact 504 First rotation center 505 Second rotation center 506 Drive link member 508 First rotation center fulcrum member 511 Sliding long hole 512 Sliding long hole 513 Through notch 520 Connecting rod 521 First One connecting contact portion 522 Second connecting contact portion 530 T-shaped member 601 Drive mechanism 701 Power mechanism R1 Distance from first rotation center to second connecting contact A Fixed node of triangular link mechanism B Longest of triangular link mechanism The hypotenuse of C The shorter hypotenuse with the acute angle of the diagonal of the fixed joint

Claims (7)

主舵を舵板上部で連結垂下して船体に垂直軸まわりに回転自在に保持される舵軸と、
前記舵軸を垂直軸まわりに回転させる駆動機構と、
前記駆動機構を駆動させる動力機構を備える操舵装置であって、
前記駆動機構は船体に拘束される第一の回転中心である支点を有する入力節を備え、
前記入力節は往復動式の前記動力機構の連接棒と回転自在に連接する入力連接点を備えて前記支点まわりの旋回力を受け、
前記舵軸を第二の回転中心である支点としてこれに連結される舵柄を出力節として前記舵軸中心まわりに前記主舵を増速回転可能とする増速リンク機構を備えることを特徴とする船舶の操舵装置。
A main rudder connected to the upper part of the rudder plate, and a rudder shaft that is rotatably held around the vertical axis on the hull;
A drive mechanism for rotating the rudder shaft about a vertical axis;
A steering device comprising a power mechanism for driving the drive mechanism,
The drive mechanism includes an input node having a fulcrum that is a first rotation center restrained by the hull,
The input node is provided with an input connecting contact that is rotatably connected to a connecting rod of the reciprocating power mechanism, and receives a turning force around the fulcrum.
A speed increasing link mechanism is provided that enables the main rudder to rotate at a higher speed around the rudder axis center with the rudder axis as a fulcrum that is the second rotation center as an output node. A ship steering device.
主舵を舵板上部で連結垂下して船体に垂直軸まわりに回転自在に保持される舵軸と、
前記舵軸を垂直軸まわりに回転させる駆動機構と、
前記舵軸を回転中心の支点とし舵軸に連結される舵柄と、
前記駆動機構を駆動させる動力機構を備える操舵装置であって、
前記駆動機構は船体に拘束される第一の回転中心である支点を有する入力節を備え、
前記入力節は往復動式の前記動力機構の連接棒と回転自在に連接する第一の連接点を備え、
前記入力節と前記舵柄は第二の連接点を備えて前記第二の連接点は前記第一の回転中心まわりに旋回可能で、かつ、舵軸まわりにも旋回可能であり、前記第二の連接点は、いずれかの旋回の半径方向にスライド摺動可能かつ回転自在に前記入力節と舵柄を連接するものであって、
前記入力節は前記第一の連接点より前記支点まわりの旋回力を受け、
前記舵柄は出力節として前記第二の連接点を介して舵軸まわりの旋回力を受けて前記舵軸中心まわりに前記主舵を増速回転可能である増速リンク機構を備えることを特徴とする船舶の操舵装置。
A main rudder connected to the upper part of the rudder plate, and a rudder shaft that is rotatably held around the vertical axis on the hull;
A drive mechanism for rotating the rudder shaft about a vertical axis;
A rudder handle connected to the rudder shaft with the rudder shaft as a fulcrum of the rotation center;
A steering device comprising a power mechanism for driving the drive mechanism,
The drive mechanism includes an input node having a fulcrum that is a first rotation center restrained by the hull,
The input node includes a first connecting contact rotatably connected to a connecting rod of the reciprocating power mechanism,
The input node and the rudder handle have a second connecting contact, and the second connecting contact can turn around the first rotation center and can turn around the rudder axis, The continuous contact is to connect the input node and the steering handle so as to be slidable and rotatable in the radial direction of any of the turns,
The input node receives a turning force around the fulcrum from the first connecting contact,
The rudder handle is provided with a speed increasing link mechanism that receives a turning force around the rudder shaft through the second connecting contact as an output node and can rotate the main rudder at a higher speed around the center of the rudder shaft. A ship steering device.
前記動力機構は、油圧シリンダを含み、
油圧により往復動する油圧シリンダにより往復駆動されるシリンダ軸の往復動式動力機構がタンデム二本構成で互いに並列配設され、前記連接棒部材は、T字部材であって、T字の縦棒部が前記油圧シリンダと並列に配設され、前記T字の横棒部の両端部に各々専属の前記第一の連接点が配設され、油圧により往復動する油圧シリンダは、往復動式動力機構によって連接棒を介して前記第一の連接点が往復駆動される請求項1又は2いずれか1項に記載の操舵装置。
The power mechanism includes a hydraulic cylinder,
A reciprocating power mechanism of a cylinder shaft reciprocally driven by a hydraulic cylinder that reciprocates by hydraulic pressure is arranged in parallel with each other in a tandem configuration, and the connecting rod member is a T-shaped member, and a T-shaped vertical rod Are disposed in parallel with the hydraulic cylinder, the first connecting contacts dedicated to both ends of the T-shaped horizontal bar are respectively disposed, and the hydraulic cylinder that reciprocates by hydraulic pressure is a reciprocating power The steering apparatus according to claim 1, wherein the first connecting contact is reciprocally driven by a mechanism via a connecting rod.
前記動力機構は、油圧シリンダを含み、
油圧により往復動する油圧シリンダにより往復駆動される連接棒による往復動式動力機構がタンデム二本構成で互いに水平対向し、
前記駆動機構は、前記第一の連接点を前記動力機構に往復駆動される請求項1又は2いずれか1項に記載の操舵装置。
The power mechanism includes a hydraulic cylinder,
A reciprocating power mechanism with a connecting rod reciprocatingly driven by a hydraulic cylinder that reciprocates by hydraulic pressure is horizontally opposed to each other in a two-tandem configuration,
3. The steering apparatus according to claim 1, wherein the drive mechanism is reciprocally driven by the power mechanism with the first connecting contact. 4.
船体に回転自在の軸受に保持される舵軸を回転させる駆動機構と、これを駆動させる動力機構を有する操舵装置であって、
前記動力機構は、油圧シリンダが水平対向して二本配設され、
前記油圧シリンダの中間に増速リンク機構の駆動リンク棒部材が長軸方向を前記油圧シリンダに垂直に配設され、その固定端部は前記駆動リンク棒部材の固定支点として前記船体に水平回転自在に保持され、その自由端部には、対向する面への突出部を有し、
前記油圧シリンダの連接棒先端部は前記駆動リンク棒部材の長軸方向中間部で水平回転自在に連接され、
前記駆動リンク棒部材に対向して配設されて舵軸と一体に前記軸受で水平回転自在に保持され、前記舵軸を支点として水平旋回可能で軸方向に長孔又は上面に溝を有する舵柄レバーを備え、
前記駆動リンク棒部材の対向する面への突出部は、前記長孔又は前記溝に前記突出部を長軸方向に摺動自在に嵌合されるものであって、
前記駆動リンク棒部材の固定支点と前記駆動リンク棒部材の自由端部の前記突出部との距離と前記舵軸と前記駆動リンク棒部材の自由端部の前記突出部との距離と前記駆動リンク棒部材の旋回角可動範囲角度及び舵軸の舵角可能範囲角度は所定の関係に設定されて前記油圧シリンダの往復動によって生ずる前記駆動リンク棒部材の水平回動は、前記舵軸の回動を増速する船舶の操舵装置。
A steering device having a drive mechanism for rotating a rudder shaft held by a rotatable bearing on a hull, and a power mechanism for driving the drive mechanism,
The power mechanism is provided with two hydraulic cylinders horizontally facing each other,
A drive link rod member of the speed increasing link mechanism is disposed perpendicularly to the hydraulic cylinder in the middle of the hydraulic cylinder, and its fixed end is horizontally rotatable on the hull as a fixed fulcrum of the drive link rod member. The free end has a protrusion to the opposite surface,
The connecting rod tip of the hydraulic cylinder is connected in a horizontally rotatable manner at the middle portion in the long axis direction of the drive link rod member,
A rudder disposed opposite to the drive link rod member and held horizontally by the bearing integrally with the rudder shaft so that it can turn horizontally with the rudder shaft as a fulcrum and has a long hole in the axial direction or a groove on the upper surface. With handle lever,
The projecting portion to the opposing surface of the drive link rod member is fitted into the elongated hole or the groove so that the projecting portion can slide in the major axis direction,
The distance between the fixed fulcrum of the drive link bar member and the protrusion at the free end of the drive link bar member, the distance between the rudder shaft and the protrusion at the free end of the drive link bar member, and the drive link The turning angle movable range angle of the rod member and the rudder angle possible range angle of the rudder shaft are set in a predetermined relationship, and the horizontal rotation of the drive link rod member caused by the reciprocating motion of the hydraulic cylinder is the rotation of the rudder shaft. A ship steering device that speeds up the speed.
船体に回転自在の軸受に保持される舵軸を回転させる駆動機構と、これを駆動させる動力機構を有する操舵装置であって、
前記動力機構は、油圧シリンダが並列して二本配設され、
前記油圧シリンダの中間に増速リンク機構の駆動リンクT字部材が縦棒方向を前記油圧シリンダに並列に配設され、その固定端部は前記駆動T字部材横棒中央位置に固定支点として前記船体に水平回転自在に保持され、その自由端部である駆動リンクT字部材の縦棒自由端部には、舵柄と対向する面上に突出部を有し、
前記二本の油圧シリンダの各連接棒先端部は前記駆動リンクT字部材の他方の自由端部である横棒両端部で水平回転自在に連接され、
前記駆動リンクT字部材縦棒部の下方に配設されて舵軸と一体に前記軸受で水平回転自在に保持され、前記舵軸を支点として水平旋回可能で軸方向に長孔又は前記T字部材に対向する面に溝を有する舵柄レバーを備え、
前記駆動リンクT字部材縦棒部の自由端部の前記突出部は前記長孔又は前記溝に摺動自在に嵌合されるものであって、
前記駆動リンクT字部材の固定支点と前記駆動リンクT字部材縦棒部の自由端部の前記突出部との距離と前記舵軸と前記駆動リンクT字部材縦棒部の自由端部の前記突出部との距離と前記駆動リンクT字部材縦棒部の旋回角可動範囲角度及び舵軸の舵角可能範囲角度は所定の関係に設定されて前記油圧シリンダの往復動によって生ずる前記駆動リンク棒部材の水平回動は、前記舵軸の回動を増速する船舶の操舵装置。
A steering device having a drive mechanism for rotating a rudder shaft held by a rotatable bearing on a hull, and a power mechanism for driving the drive mechanism,
The power mechanism has two hydraulic cylinders arranged in parallel,
The drive link T-shaped member of the speed increasing link mechanism is disposed in parallel with the hydraulic cylinder in the middle of the hydraulic cylinder, and the fixed end of the drive link T-shaped member serves as a fixed fulcrum at the center position of the drive T-shaped member horizontal bar. The vertical end of the vertical link of the drive link T-shaped member, which is held horizontally by the hull, is a free end, and has a protrusion on the surface facing the rudder handle,
The connecting rod tip portions of the two hydraulic cylinders are connected so as to be horizontally rotatable at both ends of the horizontal rod, which is the other free end of the drive link T-shaped member,
The drive link T-shaped member is disposed below the vertical bar portion and is held horizontally by the bearing integrally with the rudder shaft, and can be horizontally swiveled with the rudder shaft as a fulcrum. A steering lever having a groove on the surface facing the member,
The projecting portion of the free end portion of the drive link T-shaped member vertical bar portion is slidably fitted into the elongated hole or the groove,
The distance between the fixed fulcrum of the drive link T-shaped member and the protruding portion of the free end of the drive link T-shaped member vertical bar, the rudder shaft, and the free end of the vertical link of the drive link T-shaped member. The drive link bar generated by the reciprocating motion of the hydraulic cylinder, the distance between the projecting part, the turning angle movable range angle of the vertical part of the drive link T-shaped member and the steering angle possible range angle of the rudder shaft are set in a predetermined relationship The horizontal rotation of the member is a ship steering device that accelerates the rotation of the rudder shaft.
舵軸は、スクリュー軸上方の両脇に回転自在に2軸配置され、各々の舵軸は、主舵を舵板上部で連結垂下し、
前記動力機構が油圧シリンダを含み、油圧により往復動する油圧シリンダにより往復駆動されるシリンダ軸の往復動式動力機構が船軸方向に縦列タンデム構成で互いに水平対向配設されている請求項1又は2又は4又は5のいずれか一項記載の操舵装置を左右に各々配設し、2つの舵軸の回転により2枚の主舵をプロペラ側方からプロペラ後流側まで旋回可能であることを特徴とする2舵用の船舶の操舵装置。
Two rudder shafts are rotatably arranged on both sides above the screw shaft, and each rudder shaft hangs down the main rudder at the top of the rudder plate,
2. The reciprocating power mechanism of a cylinder shaft that includes a hydraulic cylinder and is reciprocally driven by a hydraulic cylinder that reciprocates by hydraulic pressure, and is disposed horizontally opposite to each other in a tandem configuration in a ship axis direction. The steering device according to any one of 2 or 4 or 5 is provided on each of the left and right sides, and the two main rudders can be turned from the propeller side to the propeller downstream side by rotation of the two rudder shafts. A marine vessel steering device for two rudder as a feature.
JP2015029958A 2015-02-18 2015-02-18 Steering gear Pending JP2016150705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015029958A JP2016150705A (en) 2015-02-18 2015-02-18 Steering gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015029958A JP2016150705A (en) 2015-02-18 2015-02-18 Steering gear

Publications (1)

Publication Number Publication Date
JP2016150705A true JP2016150705A (en) 2016-08-22

Family

ID=56695950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029958A Pending JP2016150705A (en) 2015-02-18 2015-02-18 Steering gear

Country Status (1)

Country Link
JP (1) JP2016150705A (en)

Similar Documents

Publication Publication Date Title
KR102255356B1 (en) Steering device, and steering method therefor
JP6467152B2 (en) Steering device
US7661379B2 (en) Propulsion and steering arrangement for a ship
CN104245501A (en) Variable-pitch-propeller drive device and pitch-angle control method, and boat having same
JP2016188033A (en) Steering device
AU2018214002A1 (en) Steering mechanism for a boat having a planing hull
JP6515171B1 (en) Steering device and ship
JP2016150705A (en) Steering gear
KR101259079B1 (en) Ship rudder and ship having the same
JP6971797B2 (en) Steering device
WO2017098595A1 (en) Rudder for ships, steering method, and ship
CN201901249U (en) Ship side thruster
JP5395202B2 (en) Flap ladder control method
CN103183122B (en) Frog type ship propulsion device
KR101245764B1 (en) Ship rudder
US3464380A (en) Auxiliary propulsion device for ships
WO2016147940A1 (en) Horizontal shaft rotor
KR101323797B1 (en) A Ship
JP2022141345A (en) steering gear
JP3003037U (en) Becker ladder
JP2015020550A (en) Rudder device for ship
CN118270217A (en) Nacelle type water jet propulsion device operating mechanism
KR101383687B1 (en) Vortex reducing module for rudder of vessel
CN114104247A (en) Gear-driven water jet propulsion device control mechanism
JP2012051426A (en) Horizontal rudder