Nothing Special   »   [go: up one dir, main page]

JP2016027272A - Liquefied gas evaporation device and liquefied gas evaporation system - Google Patents

Liquefied gas evaporation device and liquefied gas evaporation system Download PDF

Info

Publication number
JP2016027272A
JP2016027272A JP2015018182A JP2015018182A JP2016027272A JP 2016027272 A JP2016027272 A JP 2016027272A JP 2015018182 A JP2015018182 A JP 2015018182A JP 2015018182 A JP2015018182 A JP 2015018182A JP 2016027272 A JP2016027272 A JP 2016027272A
Authority
JP
Japan
Prior art keywords
gas
condensed water
liquefied gas
storage tank
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015018182A
Other languages
Japanese (ja)
Other versions
JP6407744B2 (en
Inventor
孝祐 東
Kosuke Azuma
孝祐 東
和久 福谷
Kazuhisa Fukutani
和久 福谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015018182A priority Critical patent/JP6407744B2/en
Priority to PCT/JP2015/068108 priority patent/WO2016002592A1/en
Publication of JP2016027272A publication Critical patent/JP2016027272A/en
Application granted granted Critical
Publication of JP6407744B2 publication Critical patent/JP6407744B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/04Pipe-line systems for gases or vapours for distribution of gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquefied gas evaporation device which uses an intermediate medium and effectively utilizes condensed water occurring on a surface of a heat transfer pipe, in which the intermediate medium flows, to effectively reduce the electric power consumption.SOLUTION: A liquefied gas evaporation device is provided with: an intermediate medium heater 10 which evaporates an intermediate medium LP flowing in a heat transfer pipe 11 by heat exchange with a heating gas; a liquefied gas evaporator 20 which evaporates a liquefied gas LNG by heat exchange with the intermediate medium GP evaporated by the intermediate medium heater 10 to generate a flash gas NG; and a gas pipeline 50 in which the flash gas NG generated by the liquefied gas evaporator 20 flows. Condensed water occurring on a surface of the heat transfer pipe 11 is heated by heat exchange with atmospheric air in a state where the condensed water is stored in a storage tank 60 disposed at a position lower than the heat transfer pipe 11 and then is flowed to the gas pipeline 50 located at a positioned lower than the storage tank 60 to heat the flash gas NG in the gas pipeline 50.SELECTED DRAWING: Figure 1

Description

本発明は、中間媒体との熱交換によって、液化ガスを気化させる液化ガス気化装置および液化ガス気化システムに関する。   The present invention relates to a liquefied gas vaporizer and a liquefied gas vaporization system for vaporizing a liquefied gas by heat exchange with an intermediate medium.

中間媒体との熱交換によって液化ガスを気化させる液化ガス気化装置として、例えば特許文献1に記載されているものがある。この液化ガス気化装置では、中間媒体が中間媒体蒸発部と液化ガス気化部との間を循環しており、中間媒体蒸発部で気化された中間媒体が液化ガス気化部で凝縮することにより、低温の液化ガスを気化させて気化ガスを生成する構成となっている。かかる構成によれば、中間媒体の凝縮潜熱を利用して液化ガスを気化させることになるため、潜熱/顕熱のエンタルピー比に応じて、中間媒体の循環量を低減することができるとされている。   As a liquefied gas vaporizer that vaporizes liquefied gas by heat exchange with an intermediate medium, for example, there is one described in Patent Document 1. In this liquefied gas vaporizer, the intermediate medium is circulated between the intermediate medium evaporation section and the liquefied gas vaporization section, and the intermediate medium vaporized in the intermediate medium evaporation section is condensed in the liquefied gas vaporization section, thereby reducing the temperature. The liquefied gas is vaporized to generate the vaporized gas. According to this configuration, since the liquefied gas is vaporized using the condensation latent heat of the intermediate medium, the amount of circulation of the intermediate medium can be reduced according to the enthalpy ratio of latent heat / sensible heat. Yes.

特開2013−32836号公報JP 2013-32836 A

ところで、上述の液化ガス気化装置では、中間媒体蒸発部の伝熱管の周囲に大気を流通させることで、伝熱管内の中間媒体を気化させているが、この際、大気に含まれる水蒸気が伝熱管の表面で凝縮し、凝縮水が発生する。こうして生じた凝縮水は、特に利用されることなく、廃棄されるのが一般的であり、凝縮水を有効に活用する方法が求められていた。   By the way, in the liquefied gas vaporizer described above, the intermediate medium in the heat transfer tube is vaporized by circulating the atmosphere around the heat transfer tube of the intermediate medium evaporation section. At this time, water vapor contained in the atmosphere is transferred. Condensed water is generated by condensation on the surface of the heat tube. The condensed water generated in this way is generally discarded without being particularly used, and a method for effectively utilizing the condensed water has been demanded.

一方、液化ガス気化部で気化された気化ガスは、加温器により所定の目標温度まで加温されるのが一般的であるが、加温器を作動させるには追加的な電力が必要となる。そこで、できる限り加温器における負荷を減らし、場合によっては、加温器をなくすことによって、液化ガス気化装置における消費電力を低減したいという要求がある。   On the other hand, the vaporized gas vaporized in the liquefied gas vaporization unit is generally heated to a predetermined target temperature by a heater, but additional power is required to operate the heater. Become. Therefore, there is a demand for reducing the power consumption in the liquefied gas vaporizer by reducing the load on the heater as much as possible and eliminating the heater in some cases.

このような現状に鑑みて、本発明は、中間媒体を用いた液化ガス気化装置および液化ガス気化システムにおいて、中間媒体が流れる伝熱管の表面に発生する凝縮水を有効活用し、消費電力を効果的に低減することを目的としたものである。   In view of such a current situation, the present invention effectively uses the condensed water generated on the surface of the heat transfer tube through which the intermediate medium flows in the liquefied gas vaporization apparatus and the liquefied gas vaporization system using the intermediate medium, thereby reducing power consumption. The purpose is to reduce it.

上記目的を達成するため、本発明にかかる液化ガス気化装置は、加温用気体との熱交換によって、伝熱管内を流れる中間媒体を加温する中間媒体加温器と、前記中間媒体加温器で加温された前記中間媒体との熱交換によって、液化ガスを気化させて気化ガスを生成する液化ガス蒸発器と、前記液化ガス蒸発器で生成された前記気化ガスが流れるガス配管と、を備え、前記加温用気体が水蒸気を含み、前記伝熱管の表面温度が前記加温用気体の露点よりも低くなっていることで、前記伝熱管の表面で凝縮水が発生しており、前記凝縮水を、前記伝熱管よりも低い位置に配置された貯留タンクの貯留部に貯留した状態で大気との熱交換によって加温した後、前記貯留タンクよりも低い位置にある前記ガス配管へ流下させることで、前記ガス配管内の前記気化ガスを加温することを特徴とする。   In order to achieve the above object, a liquefied gas vaporizer according to the present invention includes an intermediate medium heater for heating an intermediate medium flowing in a heat transfer tube by heat exchange with a heating gas, and the intermediate medium heating A liquefied gas evaporator that vaporizes a liquefied gas to generate a vaporized gas by heat exchange with the intermediate medium that has been heated in a vessel; a gas pipe through which the vaporized gas generated by the liquefied gas evaporator flows; The heating gas contains water vapor, and the surface temperature of the heat transfer tube is lower than the dew point of the heating gas, so that condensed water is generated on the surface of the heat transfer tube, The condensed water is heated by heat exchange with the atmosphere in a state where it is stored in a storage part of a storage tank disposed at a position lower than the heat transfer pipe, and then to the gas pipe at a position lower than the storage tank. By letting it flow down, inside the gas pipe Characterized by heating the vaporized gas.

本発明では、中間媒体加温器の伝熱管の表面に発生した凝縮水が、貯留タンクの貯留部に貯留された状態で、大気との熱交換によって加温される。そして、加温された凝縮水がガス配管へ流下されることで、ガス配管内の気化ガスが加温される。こうして、凝縮水を利用することで、気化ガスの加温に必要な電力を低減することができる。しかも、伝熱管、貯留タンク、ガス配管は高いほうから低いほうへとこの順番で配置されているので、凝縮水を重力のみで流下させることが可能であり、追加的な電力を要しない。また、凝縮水の加温には、大気の熱を利用しているため、これにも追加的な電力を要しない。つまり、本発明によれば、伝熱管の表面に発生する凝縮水を有効活用し、消費電力を効果的に低減することが可能となる。   In the present invention, the condensed water generated on the surface of the heat transfer tube of the intermediate medium heater is heated by heat exchange with the atmosphere while being stored in the storage portion of the storage tank. And the vaporized gas in gas piping is heated because the heated condensed water flows down to gas piping. Thus, by using the condensed water, the electric power necessary for heating the vaporized gas can be reduced. In addition, since the heat transfer tubes, the storage tanks, and the gas pipes are arranged in this order from the highest to the lowest, the condensed water can flow down only by gravity, and no additional power is required. In addition, since the heat of the atmosphere is used to heat the condensed water, no additional power is required for this. That is, according to the present invention, it is possible to effectively use the condensed water generated on the surface of the heat transfer tube and effectively reduce the power consumption.

液化ガス気化装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of a liquefied gas vaporizer. 貯留タンクを詳細に示す斜視図である。It is a perspective view which shows a storage tank in detail. 貯留タンクにおける凝縮水の流れを示す平面図である。It is a top view which shows the flow of the condensed water in a storage tank. 第1貯留タンクおよび樋部材の配置を示す平面図である。It is a top view which shows arrangement | positioning of a 1st storage tank and a gutter member. 樋部材の一部を詳細に示す斜視図である。It is a perspective view which shows a part of collar member in detail. 樋部材の好適な配置を説明するための断面図である。It is sectional drawing for demonstrating suitable arrangement | positioning of a collar member. 0℃の水を大気と熱交換により加温したときの温度変化を示すグラフである。It is a graph which shows a temperature change when water of 0 degreeC is heated by air | atmosphere by heat exchange. 0℃の水を大気との熱交換により外気温と同じ温度にするために要する滞留時間と平均液膜厚さとの関係を示すグラフである。It is a graph which shows the relationship between the residence time required in order to make 0 degreeC water into the same temperature as external temperature by heat exchange with air | atmosphere, and an average liquid film thickness. 貯留タンクの変形例を示す平面図である。It is a top view which shows the modification of a storage tank. 貯留タンクの変形例を示す平面図である。It is a top view which shows the modification of a storage tank. 貯留タンクの変形例を示す平面図である。It is a top view which shows the modification of a storage tank. 貯留タンクの変形例を示す平面図である。It is a top view which shows the modification of a storage tank. 液化ガス気化システムの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of a liquefied gas vaporization system. 凝縮部の一部を示す斜視図である。It is a perspective view which shows a part of condensation part. 循環配管径と圧力損失との関係を示すグラフである。It is a graph which shows the relationship between a circulating piping diameter and a pressure loss. アンモニア流量と圧力損失またはパス数との関係を示すグラフである。It is a graph which shows the relationship between ammonia flow volume, a pressure loss, or the number of passes. アンモニア流量と圧力損失または交換熱量との関係を示すグラフである。It is a graph which shows the relationship between ammonia flow volume, a pressure loss, or exchange heat quantity. アンモニア流量と圧力損失または交換熱量との関係を示すグラフである。It is a graph which shows the relationship between ammonia flow volume, a pressure loss, or exchange heat quantity.

本発明にかかる液化ガス気化装置の実施形態について、図面を参照しつつ説明する。なお、本実施形態では、中間媒体としてプロパンを使用し、液化天然ガス(LNG:Liquefied Natural Gas)を気化させて天然ガス(NG:Natural Gas)を生成する場合について説明するが、中間媒体や気化対象とする液化ガスはこれに限定されない。例えば、中間媒体として、プロピレン、代替フロン等の、常温で蒸発し、かつ常用の温度(低温)で固化しない媒体(大気の温度よりも沸点の低い媒体)を用いてもよいし、ブライン等の不凍液を用いてもよい。また、気化対象とする液化ガスは、エチレン、液化酸素、液化窒素等の低温液化ガスであってもよい。   An embodiment of a liquefied gas vaporizer according to the present invention will be described with reference to the drawings. In this embodiment, propane is used as an intermediate medium, and liquefied natural gas (LNG) is vaporized to generate natural gas (NG: Natural Gas). The target liquefied gas is not limited to this. For example, a medium that evaporates at room temperature and does not solidify at a normal temperature (low temperature) (a medium having a boiling point lower than the atmospheric temperature), such as propylene and alternative chlorofluorocarbon, may be used as the intermediate medium, Antifreeze may be used. The liquefied gas to be vaporized may be a low-temperature liquefied gas such as ethylene, liquefied oxygen, or liquefied nitrogen.

(液化ガス気化装置の全体構成)
図1に、本実施形態にかかる液化ガス気化装置1の全体構成を示す。液化ガス気化装置1は、液体プロパンLPを気体プロパンGPへと気化させる中間媒体加温器10と、気体プロパンGPが凝縮する際の凝縮熱により、液化天然ガスLNGを気化させて天然ガスNGを生成する液化ガス蒸発器20と、液化ガス蒸発器20よりも下流側に配置され、天然ガスNGを加温する気化ガス加温器30と、を有する。
(Overall configuration of liquefied gas vaporizer)
In FIG. 1, the whole structure of the liquefied gas vaporization apparatus 1 concerning this embodiment is shown. The liquefied gas vaporizer 1 vaporizes the liquefied natural gas LNG by the intermediate medium heater 10 for vaporizing the liquid propane LP into the gaseous propane GP and the condensation heat when the gaseous propane GP condenses to produce the natural gas NG. The liquefied gas evaporator 20 to be generated and the vaporized gas heater 30 that is arranged on the downstream side of the liquefied gas evaporator 20 and warms the natural gas NG are included.

中間媒体加温器10と液化ガス蒸発器20との間には、循環配管40が配設されている。循環配管40に設けられたポンプ41を作動させることで、中間媒体であるプロパンが循環配管40を流通する。また、液化天然ガスLNGの供給源(不図示)から、液化ガス蒸発器20、気化ガス加温器30を経由し、装置外部のガスタンク(不図示)へと至るまで、ガス配管50が配設されている。液化ガス蒸発器20で生成された天然ガスNGは、ガス配管50を流通して最終的にガスタンクへと至る。   A circulation pipe 40 is disposed between the intermediate medium heater 10 and the liquefied gas evaporator 20. By operating a pump 41 provided in the circulation pipe 40, propane as an intermediate medium flows through the circulation pipe 40. In addition, a gas pipe 50 is provided from the supply source (not shown) of the liquefied natural gas LNG to the gas tank (not shown) outside the apparatus via the liquefied gas evaporator 20 and the vaporized gas heater 30. Has been. The natural gas NG produced by the liquefied gas evaporator 20 flows through the gas pipe 50 and finally reaches the gas tank.

以上のような構成により、ガス配管50に供給される低温の液化天然ガスLNGが、液化ガス蒸発器20にて気化して天然ガスNGとなり、その後、気化ガス加温器30によって加温される。さらに、液化ガス気化装置1では、気化ガス加温器30だけではなく、中間媒体加温器10で発生する凝縮水を利用して天然ガスNGを加温することで、気化ガス加温器30における消費電力の低減を図っている。この点については、後で詳細に説明する。なお、以下の説明においては、大気の温度を一例として25℃としている。   With the above configuration, the low-temperature liquefied natural gas LNG supplied to the gas pipe 50 is vaporized by the liquefied gas evaporator 20 to become natural gas NG, and then heated by the vaporized gas heater 30. . Further, in the liquefied gas vaporizer 1, not only the vaporized gas heater 30 but also the natural gas NG is heated by using condensed water generated in the intermediate medium heater 10, whereby the vaporized gas heater 30 is obtained. The power consumption is reduced. This point will be described in detail later. In the following description, the temperature of the atmosphere is 25 ° C. as an example.

(中間媒体加温器)
中間媒体加温器10は、循環配管40の一部を構成する伝熱管11と、伝熱管11の上方に配置されたファン12と、ファン12を回転駆動するモーター13とを有する。伝熱管11に導入される0℃の液体プロパンLPは、ファン12の回転により外部から取り込まれた大気(加温用気体)との熱交換により気化し、0℃の気体プロパンGPとなる。この熱交換により、大気の温度は、25℃から20℃へと低下する。なお、熱交換の効率を高めるため、伝熱管11を蛇行状に配置したり、伝熱管11にフィンを設けたりするのが一般的である(以下の伝熱管22、31も同様)。
(Intermediate medium heater)
The intermediate medium heater 10 includes a heat transfer tube 11 that constitutes a part of the circulation pipe 40, a fan 12 disposed above the heat transfer tube 11, and a motor 13 that rotationally drives the fan 12. The liquid propane LP at 0 ° C. introduced into the heat transfer tube 11 is vaporized by heat exchange with the atmosphere (heating gas) taken in from the outside by the rotation of the fan 12 to become a gas propane GP at 0 ° C. This heat exchange reduces the temperature of the atmosphere from 25 ° C. to 20 ° C. In order to increase the efficiency of heat exchange, the heat transfer tubes 11 are generally arranged in a meandering manner, or fins are provided on the heat transfer tubes 11 (the same applies to the heat transfer tubes 22 and 31 below).

(液化ガス蒸発器)
液化ガス蒸発器20は、循環配管40から気体プロパンGPが供給される熱交換室21と、ガス配管50の一部を構成し、熱交換室21に配置される伝熱管22と、熱交換室21の下方に形成される液貯留部23とを有する。伝熱管22に導入される−160℃の液化天然ガスLNGと、熱交換室21に供給される0℃の気体プロパンGPとの間で熱交換が行われることで、伝熱管22内の液化天然ガスLNGが気化して−5℃の天然ガスNGが生成されるとともに、気体プロパンGPが凝縮して0℃の液体プロパンLPが液貯留部23に貯留される。
(Liquefied gas evaporator)
The liquefied gas evaporator 20 includes a heat exchange chamber 21 to which gas propane GP is supplied from the circulation pipe 40, a part of the gas pipe 50, a heat transfer pipe 22 disposed in the heat exchange chamber 21, and a heat exchange chamber. 21 and a liquid storage portion 23 formed below 21. Heat exchange is performed between the liquefied natural gas LNG of −160 ° C. introduced into the heat transfer tube 22 and the gas propane GP of 0 ° C. supplied to the heat exchange chamber 21, so that the liquefied natural gas in the heat transfer tube 22 is obtained. The gas LNG is vaporized to generate a natural gas NG of −5 ° C., the gas propane GP is condensed, and the liquid propane LP of 0 ° C. is stored in the liquid storage unit 23.

(気化ガス加温器)
気化ガス加温器30は、ガス配管50の一部を構成する伝熱管31と、伝熱管31の上方に配置されたファン32と、ファン32を回転駆動するモーター33とを有する。伝熱管31に導入される−4℃の天然ガスNGは、ファン32の回転により外部から取り込まれた大気との熱交換により、4.5℃まで昇温する。この熱交換により、大気の温度は、25℃から20℃へと低下する。
(Vaporized gas heater)
The vaporized gas warmer 30 includes a heat transfer pipe 31 that constitutes a part of the gas pipe 50, a fan 32 disposed above the heat transfer pipe 31, and a motor 33 that rotationally drives the fan 32. The natural gas NG at −4 ° C. introduced into the heat transfer tube 31 is heated to 4.5 ° C. by heat exchange with the atmosphere taken from the outside by the rotation of the fan 32. This heat exchange reduces the temperature of the atmosphere from 25 ° C. to 20 ° C.

(貯留タンク)
上述のように、中間媒体加温器10の伝熱管11には、0℃の液体プロパンLPまたは気体プロパンGPが流通しているため、伝熱管11の表面温度は0℃に近い温度となる。その結果、伝熱管11の表面温度が大気の露点よりも低くなり、伝熱管11の表面にて大気中の水蒸気が凝縮し、凝縮水が発生する。液化ガス気化装置1においては、この凝縮水を利用してガス配管50内の天然ガスNGを加温するため、3つの貯留タンク60A、60B、60Cが設けられている。なお、図1では、ブロック矢印により、凝縮水の流れを模式的に示している。
(Storage tank)
As described above, since the liquid propane LP or gas propane GP at 0 ° C. is circulating in the heat transfer tube 11 of the intermediate medium heater 10, the surface temperature of the heat transfer tube 11 is close to 0 ° C. As a result, the surface temperature of the heat transfer tube 11 becomes lower than the dew point of the atmosphere, and water vapor in the air is condensed on the surface of the heat transfer tube 11 to generate condensed water. In the liquefied gas vaporizer 1, three storage tanks 60A, 60B, and 60C are provided to heat the natural gas NG in the gas pipe 50 using the condensed water. In addition, in FIG. 1, the flow of condensed water is typically shown by the block arrow.

具体的には、中間媒体加温器10の伝熱管11の下方に第1貯留タンク60Aを配置し、伝熱管11の表面に発生する凝縮水を第1貯留タンク60Aで回収する。そして、第1貯留タンク60Aに貯留されている凝縮水を、大気との熱交換により15℃まで加温し、加温された凝縮水を、第1貯留タンク60Aよりも下方に位置するガス配管50の第1加温部50aに流下させる。こうすることで、第1加温部50aにおいて、天然ガスNGを−5℃から−4.5℃に昇温させることができる。この際、凝縮水の温度は、15℃から10℃に低下する。   Specifically, the first storage tank 60A is disposed below the heat transfer tube 11 of the intermediate medium heater 10, and the condensed water generated on the surface of the heat transfer tube 11 is collected by the first storage tank 60A. Then, the condensed water stored in the first storage tank 60A is heated to 15 ° C. by heat exchange with the atmosphere, and the heated condensed water is located below the first storage tank 60A. It is made to flow down to 50 1st heating parts 50a. By doing so, the natural gas NG can be raised from −5 ° C. to −4.5 ° C. in the first heating unit 50a. At this time, the temperature of the condensed water decreases from 15 ° C. to 10 ° C.

また、第1加温部50aの下方に第2貯留タンク60Bを配置し、第1加温部50aから滴下する凝縮水を第2貯留タンク60Bで再回収する。そして、第2貯留タンク60Bに貯留されている凝縮水を、大気との熱交換により再び15℃まで加温し、加温された凝縮水を、第2貯留タンク60Bよりも下方に位置するガス配管50の第2加温部50bに流下させる。こうすることで、第2加温部50bにおいて、天然ガスNGを−4.5℃から−4℃に昇温させることができる。この際、凝縮水の温度は、15℃から10℃に低下する。   Moreover, the 2nd storage tank 60B is arrange | positioned under the 1st heating part 50a, and the condensed water dripped from the 1st heating part 50a is again collect | recovered by the 2nd storage tank 60B. And the condensed water stored in the 2nd storage tank 60B is again heated to 15 degreeC by heat exchange with air | atmosphere, and the gas which is located below the 2nd storage tank 60B is heated. It flows down to the 2nd heating part 50b of the piping 50. FIG. In this way, the natural gas NG can be raised from −4.5 ° C. to −4 ° C. in the second heating unit 50b. At this time, the temperature of the condensed water decreases from 15 ° C. to 10 ° C.

さらに、第2加温部50bの下方にもう1つの第2貯留タンク60Cを配置し、第2加温部50bから滴下する凝縮水を第2貯留タンク60Cで再回収する。そして、第2貯留タンク60Cに貯留されている凝縮水を、大気との熱交換により再び15℃まで加温し、加温された凝縮水を、第2貯留タンク60Cよりも下方に位置するガス配管50の第3加温部50cに流下させる。こうすることで、第3加温部50cにおいて、天然ガスNGを4.5℃から5℃に昇温させることができる。この際、凝縮水の温度は、15℃から10℃に低下する。   Furthermore, another second storage tank 60C is disposed below the second heating unit 50b, and the condensed water dripped from the second heating unit 50b is recovered again in the second storage tank 60C. Then, the condensed water stored in the second storage tank 60C is heated again to 15 ° C. by heat exchange with the atmosphere, and the heated condensed water is positioned below the second storage tank 60C. It flows down to the 3rd heating part 50c of the piping 50. FIG. Thus, the natural gas NG can be raised from 4.5 ° C. to 5 ° C. in the third heating unit 50c. At this time, the temperature of the condensed water decreases from 15 ° C. to 10 ° C.

以上のように、貯留タンク60A、60B、60Cで凝縮水を回収し、これを大気との熱交換により加温し、ガス配管50に流下させることで、第1加温部50a、第2加温部50b、第3加温部50cのそれぞれで、天然ガスNGを0.5℃ずつ昇温させることができる。したがって、天然ガスNGを目標温度(ここでは5℃)まで上昇させるにあたって、気化ガス加温器30の負荷を1.5℃分低減することができ、その結果、気化ガス加温器30における消費電力を低減することが可能となる。   As described above, the condensed water is collected in the storage tanks 60A, 60B, and 60C, heated by heat exchange with the atmosphere, and allowed to flow down to the gas pipe 50, whereby the first heating unit 50a and the second heating unit are heated. The natural gas NG can be raised by 0.5 ° C. at each of the warming part 50b and the third warming part 50c. Therefore, in raising the natural gas NG to the target temperature (here, 5 ° C.), the load of the vaporized gas heater 30 can be reduced by 1.5 ° C. As a result, the consumption in the vaporized gas heater 30 is reduced. It becomes possible to reduce electric power.

なお、第1貯留タンク60Aは、伝熱管11の表面で発生した凝縮水を、ガス配管50へ流下させる前に回収し、他方、第2貯留タンク60B、60Cは、ガス配管50へ流下させた凝縮水を再び回収するという点で、両者は異なる。しかしながら、凝縮水を回収、貯留、加温するという点においては、両者に特に相違はない。そこで、以下の説明では、第1貯留タンク60Aと、第2貯留タンク60B、60Cとを特に区別しない場合には、単に「貯留タンク60」と称する。   The first storage tank 60 </ b> A collects the condensed water generated on the surface of the heat transfer tube 11 before flowing down to the gas pipe 50, while the second storage tanks 60 </ b> B and 60 </ b> C flow down to the gas pipe 50. They differ in that the condensed water is recovered again. However, there is no particular difference between the two in terms of collecting, storing, and heating the condensed water. Therefore, in the following description, the first storage tank 60A and the second storage tanks 60B and 60C are simply referred to as “storage tank 60” unless otherwise distinguished.

(貯留タンクの具体構成)
続いて、貯留タンク60の具体構成について説明する。図2Aは、貯留タンク60の斜視図であり、図2Bは、貯留タンク60の平面図である。なお、図2Bでは、凝縮水の流れを矢印で示している。
(Specific configuration of storage tank)
Next, a specific configuration of the storage tank 60 will be described. FIG. 2A is a perspective view of the storage tank 60, and FIG. 2B is a plan view of the storage tank 60. In FIG. 2B, the flow of condensed water is indicated by arrows.

貯留タンク60は、凝縮水を貯留する貯留部61と、貯留部61の左右両側に形成され、凝縮水を回収して貯留部61へと流下させる回収部62とを有する。貯留部61は、底面63と、底面63の前端に立設された壁体64と、底面63の後端に立設された壁体65と、底面63の左右両端に立設された一対の壁体66とによって形成される。また、回収部62は、貯留部61に向かって下方に傾斜している斜面67と、壁体64、65とによって形成される。貯留部61、回収部62ともに、上方は大気開放されており、凝縮水と大気との熱交換を促進できる構成となっている。また、貯留タンク60の材料は、銅などの熱伝導率の高いものとすることで、熱交換を促進させることができる。   The storage tank 60 includes a storage unit 61 that stores condensed water, and a recovery unit 62 that is formed on both the left and right sides of the storage unit 61 and collects the condensed water and flows it down to the storage unit 61. The storage unit 61 includes a bottom surface 63, a wall body 64 erected at the front end of the bottom surface 63, a wall body 65 erected at the rear end of the bottom surface 63, and a pair of erections at both left and right ends of the bottom surface 63. The wall body 66 is formed. Further, the collection unit 62 is formed by a slope 67 inclined downward toward the storage unit 61 and wall bodies 64 and 65. Both the storage unit 61 and the recovery unit 62 are open to the atmosphere, and are configured to promote heat exchange between condensed water and the atmosphere. Moreover, heat exchange can be accelerated | stimulated by making the material of the storage tank 60 into a thing with high heat conductivity, such as copper.

壁体64の左右方向における中央部は、壁体64の他の部分や他の壁体65、66よりも高さが低い堰64aとなっている。このため、凝縮水が堰64aの高さまで貯留部61に溜まると、凝縮水は堰64aを乗り越えて、貯留タンク60から流出する。つまり、堰64aを設けることによって、凝縮水が貯留タンク60から流出する位置を容易に規定できるとともに、貯留部61に貯留されている凝縮水の液膜厚さを堰64aの高さによって規定することができる。   A central portion in the left-right direction of the wall body 64 is a weir 64 a having a height lower than that of other portions of the wall body 64 and the other wall bodies 65 and 66. For this reason, if condensed water accumulates in the storage part 61 to the height of the weir 64a, the condensed water passes over the weir 64a and flows out of the storage tank 60. That is, by providing the weir 64a, the position where the condensed water flows out from the storage tank 60 can be easily defined, and the film thickness of the condensed water stored in the storage unit 61 is defined by the height of the weir 64a. be able to.

堰64aの左右両端からは、後方に向かって壁体65の手前まで延びる仕切体68が、貯留部61の底面63に2つ立設されている。このため、図2Bに矢印で示すように、回収部62から貯留部61に流入した凝縮水は、一旦後方側へと迂回してから堰64aへと至ることになる。つまり、仕切体68を設けることによって、凝縮水が貯留部61への流入位置から堰64aに直接流れる場合と比べて、凝縮水が上記流入位置から堰64aに至るまでの流路を長くすることができる。その結果、貯留部61における凝縮水の滞留時間が長くなり、貯留部61内の凝縮水と大気との熱交換量が増大し、凝縮水をより高い温度まで加温することが可能となる。なお、仕切体68の高さは自由に設定することができるが、堰64aよりも高くしておけば、凝縮水が仕切体68を乗り越えて直接堰64aへと向かうことを確実に防止できるので好適である。   Two partition bodies 68 extending from the left and right ends of the weir 64 a to the front of the wall body 65 toward the rear are erected on the bottom surface 63 of the storage portion 61. For this reason, as shown by an arrow in FIG. 2B, the condensed water that has flowed into the storage unit 61 from the recovery unit 62 once detours to the rear side and reaches the weir 64a. That is, by providing the partition body 68, the flow path from the inflow position to the weir 64a can be made longer than the case where the condensed water flows directly from the inflow position to the reservoir 61 to the weir 64a. Can do. As a result, the residence time of the condensed water in the storage unit 61 becomes longer, the amount of heat exchange between the condensed water in the storage unit 61 and the atmosphere increases, and the condensed water can be heated to a higher temperature. In addition, although the height of the partition 68 can be set freely, if it is made higher than the weir 64a, it is possible to reliably prevent the condensed water from going over the partition 68 and going directly to the weir 64a. Is preferred.

(樋部材)
基本的には、図2A、2Bに示したような貯留タンク60を、第1貯留タンク60A、第2貯留タンク60B、60Cとして採用し、堰64aから流出した凝縮水がガス配管50へと流下するように配置すれば、それで足りる。しかしながら、本実施形態では、図3に示すように、中間媒体加温器10が複数設けられていることに対応し、第1貯留タンク60Aも複数設けられている。そこで、複数の第1貯留タンク60Aからの凝縮水を集めてガス配管50へと流下させるため、樋部材70を設けている。以下、この樋部材70について説明する。なお、第2貯留タンク60Bあるいは60Cが複数設けられている場合には、樋部材70と同様の部材を、第2貯留タンク60B、60Cに対して設けてもよい。
(Saddle member)
Basically, the storage tank 60 as shown in FIGS. 2A and 2B is adopted as the first storage tank 60A, the second storage tank 60B and 60C, and the condensed water flowing out from the weir 64a flows down to the gas pipe 50. If it arranges to do, it is enough. However, in the present embodiment, as shown in FIG. 3, a plurality of first storage tanks 60 </ b> A are also provided in correspondence with the plurality of intermediate medium heaters 10. In order to collect the condensed water from the plurality of first storage tanks 60 </ b> A and flow down to the gas pipe 50, a gutter member 70 is provided. Hereinafter, the flange member 70 will be described. In addition, when the 2nd storage tank 60B or 60C is provided with two or more, you may provide the member similar to the eaves member 70 with respect to the 2nd storage tank 60B and 60C.

図3は、第1貯留タンク60Aおよび樋部材70の配置を示す平面図であり、図4は、樋部材70の一部を詳細に示す斜視図である。なお、図3では、凝縮水の流れを矢印で示している。本実施形態では、2つの中間媒体加温器10からなる組が左右に6組並べられて配置されており、各組に対して1つの第1貯留タンク60Aが、中間媒体加温器10の鉛直下方に配置されている。そして、各第1貯留タンク60Aから流出した凝縮水を集め、ガス配管50の第1加温部50aへと案内する樋部材70が設けられる。   FIG. 3 is a plan view showing the arrangement of the first storage tank 60A and the eaves member 70, and FIG. 4 is a perspective view showing a part of the eaves member 70 in detail. In FIG. 3, the flow of condensed water is indicated by arrows. In the present embodiment, six sets of two intermediate medium warmers 10 are arranged side by side, and one first storage tank 60 </ b> A is provided for each set of the intermediate medium warmer 10. It is arranged vertically below. And the dredging member 70 which collects the condensed water which flowed out from each 1st storage tank 60A, and guides it to the 1st heating part 50a of the gas piping 50 is provided.

樋部材70は、各第1貯留タンク60Aから流出した凝縮水を受け止める6つの受止部71と、6つの受止部71が接続される合流部72と、合流部72の左右中央部から前方に延設され、ガス配管50に向かって下方に傾斜している傾斜部73とを有する。各受止部71は、第1貯留タンク60Aの堰64aに接続されており、堰64aを乗り越えた凝縮水を受け止めて、合流部72へと凝縮水を導く。合流部72に集められた凝縮水は、傾斜部73からガス配管50の第1加温部50aへと流下する。   The eaves member 70 includes six receiving portions 71 that receive the condensed water flowing out from each first storage tank 60 </ b> A, a merging portion 72 to which the six receiving portions 71 are connected, and a front side from the left and right central portion of the merging portion 72. And an inclined portion 73 that is inclined downward toward the gas pipe 50. Each receiving part 71 is connected to the weir 64 a of the first storage tank 60 </ b> A, receives the condensed water that has passed over the weir 64 a, and guides the condensed water to the joining part 72. The condensed water collected in the merging portion 72 flows down from the inclined portion 73 to the first heating portion 50a of the gas pipe 50.

図4に示すように、合流部72と傾斜部73との境界には堰74が立設されており、この堰74を乗り越えた凝縮水が傾斜部73を流下する。堰74を設けることで、受止部71および合流部72での凝縮水の滞留時間を長くすることができる。また、ガス配管50の外周面には、つば状の止水部51が2つ設けられる。2つの止水部51は、上面視で傾斜部73の左右両端よりも少しだけ外側の位置に形成されている。このような止水部51を設けることで、傾斜部73からガス配管50に流下した凝縮水が、ガス配管50の軸方向において止水部51の外側に流れてしまうことを防止し、第2貯留タンク60Bによる凝縮水の再回収が容易となる。なお、ガス配管50が軸方向に傾斜配置されている場合には、下側にだけ止水部51を設ければよい。   As shown in FIG. 4, a weir 74 is provided at the boundary between the merging portion 72 and the inclined portion 73, and the condensed water that has passed over the weir 74 flows down the inclined portion 73. By providing the weir 74, the residence time of the condensed water in the receiving part 71 and the confluence | merging part 72 can be lengthened. In addition, two collar-shaped water stop portions 51 are provided on the outer peripheral surface of the gas pipe 50. The two water stop portions 51 are formed at positions slightly outside the left and right ends of the inclined portion 73 in a top view. By providing such a water stop part 51, the condensed water flowing down from the inclined part 73 to the gas pipe 50 is prevented from flowing outside the water stop part 51 in the axial direction of the gas pipe 50. The re-collection of the condensed water by the storage tank 60B becomes easy. In addition, when the gas piping 50 is inclined and arrange | positioned at an axial direction, the water stop part 51 should just be provided only in the lower side.

図5は、樋部材70の好適な配置を説明するための断面図であり、具体的には、ガス配管50の軸方向に直交する断面における、傾斜部73とガス配管50との位置関係を示す図である。傾斜部73の先端から鉛直下方におろした直線とガス配管50との交点Pが、ガス配管50の頂点Qから傾斜部73の基端側(図中左側)へ周方向に45度の範囲R内に位置すると好適である。というのも、こうすることで、傾斜部73を流下してきた凝縮水が、概ねガス配管50の左右両側に均等に流れるため、ガス配管50内の天然ガスNGを均一に加温することができるからである。特に、図5に示すように、傾斜部73の水平面からの傾斜角度を45度とし、交点Pの位置が頂点Qから45度の位置(範囲Rの左端)となるように樋部材70を配置すれば、より確実に凝縮水を左右両側に均等に流れさせることができる。   FIG. 5 is a cross-sectional view for explaining a preferred arrangement of the eaves member 70. Specifically, the positional relationship between the inclined portion 73 and the gas pipe 50 in a cross section orthogonal to the axial direction of the gas pipe 50 is shown. FIG. An intersection point P between the gas pipe 50 and a straight line that extends vertically downward from the tip of the inclined portion 73 is a range R of 45 degrees in the circumferential direction from the apex Q of the gas pipe 50 to the base end side (left side in the drawing). It is preferable to be located within. This is because by doing so, the condensed water flowing down the inclined portion 73 flows evenly on both the left and right sides of the gas pipe 50, so that the natural gas NG in the gas pipe 50 can be uniformly heated. Because. In particular, as shown in FIG. 5, the eaves member 70 is arranged so that the inclination angle of the inclined portion 73 from the horizontal plane is 45 degrees and the position of the intersection P is 45 degrees from the apex Q (the left end of the range R). By doing so, the condensed water can be made to flow evenly to the left and right sides more reliably.

以上説明してきた樋部材70を第1貯留タンク60Aに対して設けることで、複数の第1貯留タンク60Aから流出した凝縮水を集めてガス配管50の第1加温部50aに流下させることができる。しかしながら、このような樋部材70を設けることは必須ではなく、各第1貯留タンク60から個々にガス配管50へと凝縮水を流下させるようにしてもよい。   By providing the eaves member 70 described above with respect to the first storage tank 60A, the condensed water flowing out from the plurality of first storage tanks 60A can be collected and allowed to flow down to the first heating unit 50a of the gas pipe 50. it can. However, it is not essential to provide such a saddle member 70, and the condensed water may flow down from each first storage tank 60 to the gas pipe 50 individually.

(貯留部の必要底面積の導出)
貯留タンク60に貯留されている凝縮水は、貯留部61での滞留時間を十分に確保することで、大気との熱交換だけで外気温とほぼ同じ温度まで昇温させることができる。ただし、貯留部61の底面63の面積(以下、単に「底面積」と称する)が小さすぎると、流入してくる凝縮水が十分に加温されないまま、堰64aから流出してしまう。そこで、凝縮水が貯留部61に滞留している間に、外気温と同じ温度まで昇温させることが可能な貯留部61の底面積を導出する。
(Derivation of necessary bottom area of storage part)
Condensed water stored in the storage tank 60 can be heated to substantially the same temperature as the outside air temperature only by exchanging heat with the atmosphere by ensuring sufficient residence time in the storage unit 61. However, if the area of the bottom surface 63 of the reservoir 61 (hereinafter simply referred to as “bottom area”) is too small, the inflowing condensed water will flow out of the weir 64a without being sufficiently heated. Therefore, the bottom area of the reservoir 61 that can be raised to the same temperature as the outside air temperature while the condensed water stays in the reservoir 61 is derived.

本出願人は、0℃の水を大気との熱交換により加温する実験を、外気温を25℃、20℃、15℃の3条件、平均液膜厚さを0.1m、0.25mの2条件とする、計6通りの条件下で実施した。その結果を図6に示す。図6の結果から明らかなように、0℃の水が外気温と同じ温度になるまでに要する時間は、外気温の影響はほとんど受けないが、液膜の厚さの影響を大きく受けることが分かった。   The present applicant conducted an experiment in which water at 0 ° C. was heated by heat exchange with the atmosphere. This was performed under a total of 6 conditions. The result is shown in FIG. As is apparent from the results of FIG. 6, the time required for the water at 0 ° C. to reach the same temperature as the outside air temperature is hardly affected by the outside air temperature, but can be greatly affected by the thickness of the liquid film. I understood.

そこで、この実験結果をもとに、0℃の水が外気温と同じ温度になるまでに必要な滞留時間を、平均液膜厚さの関数として近似的に表すことを試みた。この際、平均液膜厚さが0.15m、0.2mの場合についても、追加的に実験データを取得した。その結果、図7に示す4データに適合する近似式として図中に示す式が得られた。この近似式の相関係数はR2=1.0であり、近似式が実験データによく適合していることを示している。 Therefore, based on the results of this experiment, an attempt was made to approximately represent the residence time required for water at 0 ° C. to reach the same temperature as the outside air temperature as a function of the average liquid film thickness. At this time, additional experimental data were also obtained when the average liquid film thickness was 0.15 m and 0.2 m. As a result, the formula shown in the figure was obtained as an approximate formula suitable for the four data shown in FIG. The correlation coefficient of this approximate expression is R 2 = 1.0, which indicates that the approximate expression fits well with experimental data.

ここで、貯留部61内の凝縮水の平均液膜厚さをt[m]、単位時間あたりに発生する凝縮水の量をQ[m3/min]、貯留部61の底面積をS[m2]とするとき、必要滞留時間T[min]は、図7に示した近似式より、
T≧2044t−16.2
である。
St/Q[min]だけ時間が経過すると、貯留部61内の凝縮水は新しく発生した凝縮水と入れ替わるため、
St/Q≧2044t−16.2
を満たす必要がある。
この式を変形することで、貯留部61の必要底面積を規定する次式(1)が得られる。
S≧(2044−16.2/t)Q ・・・式(1)
式(1)を満たす底面積を有する貯留部61であれば、貯留部61内の凝縮水を外気温とほぼ同じ温度まで上昇させることができる。なお、貯留タンク60の実際の設計にあたっては、平均液膜厚さtとして堰64aの高さを用いればよい。
Here, the average liquid film thickness of the condensed water in the reservoir 61 is t [m], the amount of condensed water generated per unit time is Q [m 3 / min], and the bottom area of the reservoir 61 is S [ m 2 ], the required residence time T [min] is calculated from the approximate expression shown in FIG.
T ≧ 2044t−16.2
It is.
When the time has elapsed by St / Q [min], the condensed water in the storage unit 61 is replaced with newly generated condensed water.
St / Q ≧ 2044t-16.2
It is necessary to satisfy.
By transforming this equation, the following equation (1) that defines the required bottom area of the storage portion 61 is obtained.
S ≧ (2044-16.2 / t) Q (1)
If it is the storage part 61 which has the bottom area which satisfy | fills Formula (1), the condensed water in the storage part 61 can be raised to the temperature substantially the same as external temperature. In the actual design of the storage tank 60, the height of the weir 64a may be used as the average liquid film thickness t.

(気化ガス加温器のフィードバック制御)
気化ガス加温器30のフィードバック制御について、図1に戻って説明する。液化ガス気化装置1には、気化ガス加温器30よりも下流側のガス配管50内の天然ガスNGの温度を測定する温度計80、および、温度計80による測定値に基づいて気化ガス加温器30の動作を制御する制御手段90がさらに設けられている。
(Feedback control of vaporized gas heater)
The feedback control of the vaporized gas heater 30 will be described with reference back to FIG. The liquefied gas vaporizer 1 includes a thermometer 80 for measuring the temperature of the natural gas NG in the gas pipe 50 on the downstream side of the vaporized gas heater 30, and a vaporized gas heater based on the measured value by the thermometer 80. Control means 90 for controlling the operation of the warmer 30 is further provided.

詳細には、温度計80はガス配管50の第3加温部50cよりもさらに下流側に設けられており、温度計80による測定値は、天然ガスNGの目標温度5℃で一定であることが好ましい。そこで、制御手段90は温度計80による測定値が5℃で一定となるように、気化ガス加温器30のモーター33をフィードバック制御する。こうすることで、天然ガスNGを確実に目標温度の5℃に維持することができる。   Specifically, the thermometer 80 is provided further downstream than the third heating unit 50c of the gas pipe 50, and the measured value by the thermometer 80 is constant at the target temperature of natural gas NG of 5 ° C. Is preferred. Therefore, the control unit 90 feedback-controls the motor 33 of the vaporized gas warmer 30 so that the value measured by the thermometer 80 is constant at 5 ° C. By doing so, the natural gas NG can be reliably maintained at the target temperature of 5 ° C.

特に、本実施形態では、凝縮水による天然ガスNGの加温が行われる第1加温部50a、第2加温部50b、第3加温部50cのうち、最も下流側にある第3加温部50cよりもさらに下流側に温度計80を設けている。つまり、外気温の変動等により、第1加温部50a、第2加温部50b、第3加温部50cにおける天然ガスNGの加温の程度に変動が生じた場合であっても、それをすべて考慮したフィードバック制御が実行されることになる。このため、天然ガスNGの温度を確実に目標温度で一定に維持することができる。ただし、温度計80の位置は、これに限定されるものではない。   In particular, in the present embodiment, among the first warming part 50a, the second warming part 50b, and the third warming part 50c in which the natural gas NG is warmed by the condensed water, the third warming part located on the most downstream side. A thermometer 80 is provided further downstream than the warm part 50c. That is, even if the degree of warming of the natural gas NG in the first warming part 50a, the second warming part 50b, and the third warming part 50c changes due to fluctuations in the outside air temperature, etc. The feedback control considering all of the above is executed. For this reason, the temperature of the natural gas NG can be reliably maintained at the target temperature. However, the position of the thermometer 80 is not limited to this.

(貯留タンクの変形例)
図8A、8B、9A、9Bを参照しつつ、貯留タンク60の変形例について説明する。なお、これらの図では、凝縮水の流れを矢印で示している。
(Modification of storage tank)
A modification of the storage tank 60 will be described with reference to FIGS. 8A, 8B, 9A, and 9B. In these drawings, the flow of condensed water is indicated by arrows.

図8A、8Bに示す貯留タンク60は、貯留部61に設けられる仕切体68の形状を変更したものである。具体的には、仕切体68の形状を、凝縮水の流路を複数回折り返させる形状とすることで、貯留部61内に蛇行状の流路を形成している。このため、凝縮水が貯留部61への流入位置から堰64aに至るまでの流路がより長くなり、凝縮水の滞留時間を増加させることができる。   A storage tank 60 shown in FIGS. 8A and 8B is obtained by changing the shape of the partition 68 provided in the storage unit 61. Specifically, the meandering flow path is formed in the storage portion 61 by making the shape of the partition 68 a shape that folds the flow path of the condensed water multiple times. For this reason, the flow path from the position where the condensed water flows into the storage portion 61 to the weir 64a becomes longer, and the residence time of the condensed water can be increased.

凝縮水の滞留時間を増加させるさらなる工夫として、図9A、9Bに示すように、仕切体68によって形成される凝縮水の流路上に、壁体64、65、66や仕切体68よりも高さが低い中間堰69を設けることが考えられる。なお、図9A、9Bでは、仕切体68と中間堰69との区別を明確にするため、仕切体68を太線で示している。このような中間堰69を設けることで、凝縮水が貯留部61への流入位置から堰64aに至るには、各中間堰69を乗り越えることができる高さまで凝縮水が溜まる必要があり、貯留部61における凝縮水の滞留時間を一層増加させることが可能となる。なお、中間堰69の高さは、基本的に堰64aと同じにすればよいが、堰64aと異なっていてもよい。   As a further device for increasing the residence time of the condensed water, as shown in FIGS. 9A and 9B, the height of the condensed water flow path formed by the partition 68 is higher than the walls 64, 65, 66 and the partition 68. It is conceivable to provide an intermediate weir 69 having a low height. 9A and 9B, the partition body 68 is indicated by a thick line in order to clarify the distinction between the partition body 68 and the intermediate weir 69. By providing such an intermediate weir 69, in order for the condensed water to reach the weir 64a from the position where the condensed water flows into the storage unit 61, it is necessary for the condensed water to accumulate to a height that can overcome each intermediate weir 69. It becomes possible to further increase the residence time of the condensed water in 61. The height of the intermediate weir 69 may be basically the same as that of the weir 64a, but may be different from that of the weir 64a.

(効果)
以上のように、本実施形態の液化ガス気化装置1によれば、中間媒体加温器10の伝熱管11の表面に発生した凝縮水を利用することで、天然ガスNGを加温する気化ガス加温器30の消費電力を低減することができる。さらに言うならば、凝縮水による加温だけで天然ガスNGを目標温度まで昇温させることができるのであれば、気化ガス加温器30をなくすことも可能である。しかも、凝縮水を重力のみでガス配管50に流下させているので、追加的な電力を要しない。また、凝縮水の加温には、大気の熱を利用しているため、これにも追加的な電力を要しない。つまり、液化ガス気化装置1によれば、伝熱管11の表面に発生する凝縮水を有効活用し、消費電力を効果的に低減することが可能となる。なお、このような液化ガス気化装置1は、大気の熱を利用して消費電力の低減を図るものであり、特に温暖な地域での使用に適している。
(effect)
As described above, according to the liquefied gas vaporizer 1 of the present embodiment, the vaporized gas that heats the natural gas NG by using the condensed water generated on the surface of the heat transfer tube 11 of the intermediate medium heater 10. The power consumption of the heater 30 can be reduced. Furthermore, if the natural gas NG can be raised to the target temperature only by heating with condensed water, the vaporized gas heater 30 can be eliminated. In addition, since the condensed water flows down to the gas pipe 50 only by gravity, no additional power is required. In addition, since the heat of the atmosphere is used to heat the condensed water, no additional power is required for this. That is, according to the liquefied gas vaporizer 1, the condensed water generated on the surface of the heat transfer tube 11 can be effectively used, and the power consumption can be effectively reduced. In addition, such a liquefied gas vaporization apparatus 1 aims at reduction of power consumption using the heat of air | atmosphere, and is especially suitable for use in a warm area.

また、本実施形態では、貯留タンク60として、伝熱管11の表面で発生した凝縮水を、ガス配管50へ流下させる前に回収する第1貯留タンク60Aに加えて、ガス配管50へ流下させた凝縮水を再び回収する第2貯留タンク60B、60Cがさらに設けられている。このため、凝縮水を利用した天然ガスNGの加温を複数回行うことができ、消費電力を一層効果的に低減することが可能である。   In the present embodiment, as the storage tank 60, the condensed water generated on the surface of the heat transfer tube 11 is caused to flow down to the gas pipe 50 in addition to the first storage tank 60 </ b> A that is collected before flowing down to the gas pipe 50. Second storage tanks 60B and 60C for recovering condensed water again are further provided. For this reason, the natural gas NG using condensed water can be heated a plurality of times, and the power consumption can be more effectively reduced.

(液化ガス気化システムの全体構成)
次に、上述の液化ガス気化装置1をバイナリー発電装置と組み合わせた液化ガス気化システムの実施形態について説明する。図10は、液化ガス気化システムの全体構成を示す模式図である。この液化ガス気化システム100は、バイナリー発電で利用された作動流体の蒸気を、液化ガス気化装置1の第1貯留タンク60Aに貯留されている凝縮水の冷熱を利用して凝縮させるものである。なお、図10は、概ね液化ガス気化システム100を横から見た図となっているが、便宜上、蒸発部102および凝縮部105に関しては上から見た配管形状を示している。
(Overall configuration of liquefied gas vaporization system)
Next, an embodiment of a liquefied gas vaporization system in which the above-described liquefied gas vaporizer 1 is combined with a binary power generator will be described. FIG. 10 is a schematic diagram showing the overall configuration of the liquefied gas vaporization system. The liquefied gas vaporization system 100 condenses the vapor of the working fluid used in binary power generation using the cold heat of the condensed water stored in the first storage tank 60A of the liquefied gas vaporizer 1. FIG. 10 is a schematic view of the liquefied gas vaporization system 100 as viewed from the side, but for convenience, the vaporization unit 102 and the condensation unit 105 have a piping shape viewed from above.

液化ガス気化システム100は、液化ガス気化装置1に設けられた第1貯留タンク60Aと地中との間にわたって配設された循環配管101を有しており、循環配管101内を作動流体としてのアンモニアが流れている。循環配管101内を循環するアンモニアは、例えば、温度が10℃で圧力が0.8MPaのアンモニアガスと、温度が10℃で圧力が0.1MPaの液化アンモニアとの間で、相変化する。なお、作動流体はアンモニアに限定されず、常温で気相と液相との間で相変化する流体であれば、他のものを用いてもよい。   The liquefied gas vaporization system 100 includes a circulation pipe 101 disposed between the first storage tank 60A provided in the liquefied gas vaporizer 1 and the ground, and the inside of the circulation pipe 101 is used as a working fluid. Ammonia is flowing. The ammonia circulating in the circulation pipe 101 changes in phase between, for example, ammonia gas having a temperature of 10 ° C. and a pressure of 0.8 MPa and liquefied ammonia having a temperature of 10 ° C. and a pressure of 0.1 MPa. The working fluid is not limited to ammonia, and any other fluid may be used as long as it is a fluid that changes phase between a gas phase and a liquid phase at room temperature.

液化ガス気化システム100は、さらに、液化アンモニアを蒸発させてアンモニアガスを生成する蒸発部102、蒸発部102で生成されたアンモニアガスにより回転駆動されるタービン103、タービン103の回転軸に連結された発電機104、タービン103から排出されたアンモニアガスを凝縮させて液化アンモニアを生成する凝縮部105、および液化アンモニアを圧送するためのポンプ106を有している。   The liquefied gas vaporization system 100 is further connected to an evaporator 102 that evaporates liquefied ammonia to generate ammonia gas, a turbine 103 that is rotationally driven by the ammonia gas generated by the evaporator 102, and a rotating shaft of the turbine 103. It has the generator 104, the condensation part 105 which condenses the ammonia gas discharged | emitted from the turbine 103, and produces | generates liquefied ammonia, and the pump 106 for pumping liquefied ammonia.

蒸発部102は、地下20m付近において、循環配管101を複数回折り返すことによって構成されている。地中では、年間を通じて温度が概ね一定に維持されているため、地中に蒸発部102を設けることで、一年中安定した発電量を得ることができる。蒸発部102を設ける範囲は、液化ガス気化システム100の設置面積を抑えるため、複数の第1貯留タンク60Aの設置範囲の直下領域内とすることが好ましい。また、熱交換の効率を高めるために、蒸発部102における循環配管101のパス数を8〜10パス程度とし、各パスの間隔は5m程度以上とするのが好ましい。なお、蒸発部102の設置深さは、地下20m付近に限定されず、地下10〜30m程度の範囲であればよい。   The evaporating unit 102 is configured by folding the circulation pipe 101 a plurality of times around 20 m underground. Since the temperature is maintained substantially constant throughout the year in the ground, a stable power generation amount can be obtained throughout the year by providing the evaporation unit 102 in the ground. In order to suppress the installation area of the liquefied gas vaporization system 100, the range in which the evaporation unit 102 is provided is preferably within a region immediately below the installation range of the plurality of first storage tanks 60A. In order to increase the efficiency of heat exchange, it is preferable that the number of passes of the circulation pipe 101 in the evaporator 102 is about 8 to 10 passes, and the interval between the passes is about 5 m or more. In addition, the installation depth of the evaporation part 102 is not limited to 20 m underground, What is necessary is just the range of about 10-30 m underground.

凝縮部105は、複数設けられた第1貯留タンク60Aのすべてを循環配管101が複数回通過するように、循環配管101を複数回折り返すことによって構成されている。具体的には、凝縮部105における循環配管101は、互いに隣り合う2つの直管部101aの端部が曲管部101bによって接続されることで構成されており、直管部101aが第1貯留タンク60Aの貯留部61内の凝縮水中を通過するようになっている。こうすることで、第1貯留タンク60Aの貯留部61内の凝縮水と、循環配管101内を流れるアンモニアガスとの熱交換を促進することができる。なお、熱交換の観点からは、循環配管101が凝縮水に完全に浸漬していることが好ましいが、循環配管101が凝縮水の水面から一部出ていてもよい。   The condensing unit 105 is configured by bending the circulation pipe 101 a plurality of times so that the circulation pipe 101 passes through the plurality of first storage tanks 60 </ b> A provided a plurality of times. Specifically, the circulation pipe 101 in the condensing unit 105 is configured by connecting ends of two straight pipe parts 101a adjacent to each other by a curved pipe part 101b, and the straight pipe part 101a is a first storage. It passes through the condensed water in the storage part 61 of the tank 60A. By carrying out like this, heat exchange with the condensed water in the storage part 61 of 60 A of 1st storage tanks and the ammonia gas which flows through the circulation piping 101 can be accelerated | stimulated. From the viewpoint of heat exchange, it is preferable that the circulation pipe 101 is completely immersed in the condensed water, but the circulation pipe 101 may partially protrude from the water surface of the condensed water.

図11は、凝縮部105の一部を示す斜視図であり、図10において左下に位置する第1貯留タンク60Aに関わる部分を示している。なお、第1貯留タンク60Aの構成は、基本的に図2Aに示したものと同じであるので、ここでは、主要な点についてのみ説明を行う。   FIG. 11 is a perspective view showing a part of the condensing unit 105, and shows a part related to the first storage tank 60A located in the lower left in FIG. Since the configuration of the first storage tank 60A is basically the same as that shown in FIG. 2A, only the main points will be described here.

循環配管101のうち、第1貯留タンク60Aの貯留部61に貯留されている凝縮水の中を通過する部分では、上述のようにアンモニアガスと凝縮水との間で熱交換が行われる。その結果、アンモニアガスが凝縮して液化アンモニアが生成されるとともに、凝縮水の温度が例えば0℃から5℃に上昇する。   In the circulation pipe 101, heat exchange is performed between the ammonia gas and the condensed water as described above in a portion that passes through the condensed water stored in the storage portion 61 of the first storage tank 60 </ b> A. As a result, the ammonia gas is condensed to produce liquefied ammonia, and the temperature of the condensed water rises from 0 ° C. to 5 ° C., for example.

このように、第1貯留タンク60A内の凝縮水の冷熱でアンモニアガスを凝縮させる場合、凝縮水が大気との熱交換で温度上昇すると凝縮部105の機能が低下する。このため、少なくとも第1貯留タンク60Aの貯留部61に対して断熱施工がされており、より好ましくは、回収部62を含む第1貯留タンク60A全体に対して断熱施工がされている。ここでの断熱施工とは、第1貯留タンク60Aを熱伝導率の比較的低いステンレスや樹脂等で構成することや、第1貯留タンク60Aに断熱材を設けることなどが含まれる。なお、第1貯留タンク60Aの下流側に接続される樋部材70(図3参照)は、凝縮水と大気との熱交換を促進し、凝縮水を昇温させるため、熱伝導率の比較的高いアルミニウムや銅等で構成されることが好ましい。   As described above, when the ammonia gas is condensed by the cold heat of the condensed water in the first storage tank 60A, the function of the condensing unit 105 is lowered when the temperature of the condensed water is increased by heat exchange with the atmosphere. For this reason, at least the storage part 61 of the first storage tank 60 </ b> A is thermally insulated, and more preferably, the entire first storage tank 60 </ b> A including the recovery part 62 is thermally insulated. The heat insulation construction here includes configuring the first storage tank 60A with stainless steel or resin having a relatively low thermal conductivity, or providing the first storage tank 60A with a heat insulating material. In addition, the eaves member 70 (see FIG. 3) connected to the downstream side of the first storage tank 60A promotes heat exchange between the condensed water and the atmosphere and raises the temperature of the condensed water. It is preferably composed of high aluminum, copper or the like.

また、第1貯留タンク60Aにおいては、新しい凝縮水が順次供給されるほど、循環配管101内のアンモニアガスとの熱交換の効率が向上する。したがって、第1貯留タンク60Aの貯留部61における凝縮水の滞留時間を短縮するため、図2Aに示すような仕切体68はなくし、貯留部61の容積を小さくするとよい。   In the first storage tank 60A, the efficiency of heat exchange with the ammonia gas in the circulation pipe 101 improves as new condensed water is sequentially supplied. Therefore, in order to shorten the residence time of the condensed water in the storage part 61 of the first storage tank 60A, the partition 68 as shown in FIG.

一方、循環配管101については、第1貯留タンク60Aの貯留部61外に位置する部分の熱伝導率を、貯留部61内に位置する部分の熱伝導率よりも小さくすればよい。こうすることで、貯留部61に貯留された凝縮水と循環配管101内のアンモニアガスとの熱交換を促進できるとともに、一旦凝縮した液化アンモニアが大気との熱交換により再度気化してしまうことを抑制できる。   On the other hand, for the circulation pipe 101, the thermal conductivity of the part located outside the storage part 61 of the first storage tank 60 </ b> A may be made smaller than the thermal conductivity of the part located inside the storage part 61. By doing so, heat exchange between the condensed water stored in the storage unit 61 and the ammonia gas in the circulation pipe 101 can be promoted, and once condensed liquefied ammonia is vaporized again by heat exchange with the atmosphere. Can be suppressed.

このように構成された液化ガス気化システム100によれば、液化ガス気化装置1で発生する凝縮水の冷熱および地中熱(または地熱)を利用することで、発電を行うことができる。ここで、「地中熱」とは、太陽エネルギーを熱源とする比較的深度の浅い地中部分に蓄熱されているものを指し、それに対して、「地熱」とは、一般的に火山活動に由来する地球内部(一般的に地中熱の対象領域よりも深い部分)に蓄熱されているものを指す。こうして得られた電力を、中間媒体加温器10のファン12や気化ガス加温器30のファン32(図1参照)の駆動電力として利用することで、液化ガス気化装置1における消費電力を一層効果的に低減することができる。   According to the liquefied gas vaporization system 100 configured as described above, it is possible to generate electric power by utilizing the cold heat and the underground heat (or geothermal heat) of the condensed water generated in the liquefied gas vaporizer 1. Here, “geothermal” refers to heat stored in a relatively shallow underground part using solar energy as a heat source, while “geothermal” generally refers to volcanic activity. It refers to what is stored in the interior of the earth (generally deeper than the target area of geothermal heat). The power thus obtained is used as driving power for the fan 12 of the intermediate medium warmer 10 and the fan 32 (see FIG. 1) of the vaporized gas warmer 30, thereby further reducing the power consumption in the liquefied gas vaporizer 1. It can be effectively reduced.

次に、循環配管101の諸元について検討する。図12は、循環配管101の径(以下、「単に配管径」という)と圧力損失との関係を示すグラフである。凝縮水が0℃から5℃まで昇温するのに必要な交換熱量を求めた後、この交換熱量をアンモニア側と凝縮水側でバランスさせると、必要アンモニア流量が800kg/hと求まる。このアンモニア流量に基づいて、上記交換熱量をアンモニア側で捻出するのに必要な伝熱面積を求めた。
ここで、
アンモニアの交換熱量=アンモニア流量×伝熱面積
伝熱面積=配管径×配管長さ
である。
Next, the specification of the circulation piping 101 is examined. FIG. 12 is a graph showing the relationship between the diameter of the circulation pipe 101 (hereinafter simply referred to as “pipe diameter”) and the pressure loss. After obtaining the exchange heat necessary for the temperature of the condensed water to rise from 0 ° C. to 5 ° C., if this exchange heat is balanced between the ammonia side and the condensed water side, the necessary ammonia flow rate is obtained as 800 kg / h. Based on this ammonia flow rate, the heat transfer area required for twisting out the exchange heat amount on the ammonia side was determined.
here,
Exchange amount of ammonia = ammonia flow rate × heat transfer area Heat transfer area = pipe diameter × pipe length.

図12から明らかなように、配管径が大きくなるほど、圧力損失は低下する。一般的に圧力損失は10kPa以下程度に抑えることが望ましいため、配管径は約0.05m以上であることが好ましい。一方、配管径が第1貯留タンク60Aの堰64aの高さよりも大きいと、循環配管101が貯留部61内の凝縮水の水面から出てしまうため、配管径は堰64aの高さ(例えば0.2m)以下であることが好ましい。   As is apparent from FIG. 12, the pressure loss decreases as the pipe diameter increases. Since it is generally desirable to suppress the pressure loss to about 10 kPa or less, the pipe diameter is preferably about 0.05 m or more. On the other hand, if the pipe diameter is larger than the height of the weir 64a of the first storage tank 60A, the circulation pipe 101 comes out of the surface of the condensed water in the storage section 61, so the pipe diameter is the height of the weir 64a (for example, 0). .2m) or less.

図13は、アンモニア流量と圧力損失またはパス数との関係を示すグラフである。凝縮水が0℃から5℃まで昇温するのに必要な交換熱量を求めた後、交換熱量および配管径(0.15m)を一定とした条件下で、アンモニア流量と圧力損失またはパス数との関係を求めた。図13から明らかなように、アンモニア流量が多いほど熱伝達率が大きくなるため、必要な配管長さが短くなり、パス数も減少する。また、アンモニア流量が多くなると圧力損失が大きくなる傾向にあるが、その値は10kPaを大きく下回っているため、影響は小さいと考えられる。   FIG. 13 is a graph showing the relationship between the ammonia flow rate and the pressure loss or the number of passes. After obtaining the exchange heat necessary for the temperature of the condensed water to rise from 0 ° C. to 5 ° C., the flow rate of ammonia and the pressure loss or the number of passes are determined under the condition of constant exchange heat and pipe diameter (0.15 m). Sought the relationship. As is clear from FIG. 13, the heat transfer rate increases as the ammonia flow rate increases, so that the required pipe length is shortened and the number of passes is also reduced. In addition, the pressure loss tends to increase as the ammonia flow rate increases, but the value is significantly lower than 10 kPa, so the effect is considered to be small.

図14は、アンモニア流量と圧力損失または交換熱量との関係を示すグラフである。凝縮水が0℃から5℃まで昇温するのに必要な交換熱量を求めた後、配管径が0.15mで一定かつパス数が9で一定の条件下で、アンモニア流量を変えた場合のアンモニア側の交換熱量を計算した。アンモニア側の交換熱量が、凝縮水の昇温に必要な交換熱量以上にならないと、凝縮水が5℃まで昇温しない。そこで、アンモニア側の交換熱量が凝縮水の昇温に必要な交換熱量以上となるアンモニア流量を求めた。   FIG. 14 is a graph showing the relationship between the ammonia flow rate and the pressure loss or exchange heat quantity. After obtaining the exchange heat necessary for the temperature of the condensed water to rise from 0 ° C. to 5 ° C., when the ammonia flow rate is changed under the condition that the pipe diameter is 0.15 m, the number of passes is constant, and the number of passes is nine. The exchange heat quantity on the ammonia side was calculated. If the exchange heat quantity on the ammonia side does not exceed the exchange heat quantity required for raising the condensed water, the condensed water will not rise to 5 ° C. Therefore, the ammonia flow rate at which the exchange heat amount on the ammonia side is equal to or greater than the exchange heat amount required for increasing the temperature of the condensed water was determined.

図14から明らかなように、アンモニア流量が多くなるほど、圧力損失は増加する傾向にある。また、凝縮水の発生量から凝縮水が熱交換可能な最大熱量を、図中の凝縮水最大交換熱量として求めた。アンモニア側の交換熱量が、凝縮水最大交換熱量未満であると、凝縮水の冷熱が一部無駄になる。このため、アンモニアの交換熱量が凝縮水最大交換熱量以上となるように、アンモニア流量は800kg/h程度以上であることが好ましい。   As apparent from FIG. 14, the pressure loss tends to increase as the ammonia flow rate increases. Further, the maximum amount of heat that the condensed water can exchange heat from the amount of condensed water generated was determined as the maximum amount of condensed water exchanged in the figure. If the ammonia-side exchange heat quantity is less than the condensate maximum exchange heat quantity, some of the cold heat of the condensate is wasted. For this reason, it is preferable that the ammonia flow rate is about 800 kg / h or more so that the exchange heat amount of ammonia is not less than the maximum exchange heat amount of condensed water.

図15は、アンモニア流量と圧力損失または交換熱量との関係を示すグラフである。計算条件は図14の場合とほぼ同じであるが、配管径が0.05mである点が異なる。配管径が0.05mの場合には、圧力損失を10kPa以下に抑えつつ、アンモニア側の交換熱量を凝縮水最大交換熱量以上とすることができないため、パス数を増加させる必要がある。   FIG. 15 is a graph showing the relationship between the ammonia flow rate and the pressure loss or exchange heat quantity. The calculation conditions are almost the same as in FIG. 14 except that the pipe diameter is 0.05 m. When the pipe diameter is 0.05 m, it is necessary to increase the number of passes because the exchange heat quantity on the ammonia side cannot be made equal to or greater than the maximum exchange heat quantity of condensed water while suppressing the pressure loss to 10 kPa or less.

(その他の実施形態)
本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上記実施形態の要素を適宜組み合わせまたは種々の変更を加えることが可能である。
(Other embodiments)
The present invention is not limited to the above embodiment, and the elements of the above embodiment can be appropriately combined or variously modified without departing from the spirit of the present invention.

例えば、上記実施形態では、貯留タンク60として、伝熱管11の表面で発生した凝縮水を、ガス配管50へ流下させる前に回収する第1貯留タンク60Aに加えて、ガス配管50へ流下させた凝縮水を再び回収する第2貯留タンク60B、60Cをさらに設ける構成とした。しかしながら、貯留タンク60として、第1貯留タンクおよび第2貯留タンクのうちいずれか一方のみを設けることとしてもよいし、第2貯留タンクの数は2つに限定されず、1つでも3つ以上であってもよい。なお、第1貯留タンクを設けずに第2貯留タンクのみを設ける形態としては、例えば、中間媒体加温器10の伝熱管11の鉛直下方にガス配管50を配置し、伝熱管11から直接ガス配管50に滴下した凝縮水を第2貯留タンクで回収することが考えられる。   For example, in the above embodiment, as the storage tank 60, the condensed water generated on the surface of the heat transfer tube 11 is caused to flow down to the gas pipe 50 in addition to the first storage tank 60 </ b> A that is collected before flowing down to the gas pipe 50. It was set as the structure which further provided the 2nd storage tanks 60B and 60C which collect | recover condensed water again. However, only one of the first storage tank and the second storage tank may be provided as the storage tank 60, and the number of the second storage tanks is not limited to two, but one or three or more. It may be. As a form in which only the second storage tank is provided without providing the first storage tank, for example, the gas pipe 50 is arranged vertically below the heat transfer pipe 11 of the intermediate medium heater 10, and the gas is directly supplied from the heat transfer pipe 11. It is conceivable that the condensed water dropped on the pipe 50 is collected in the second storage tank.

また、上記実施形態では、ガス配管50内の天然ガスNGを加温する気化ガス加温器30を設けたが、凝縮水による加温のみでガス配管50内の天然ガスNGが目標温度に達するのであれば、気化ガス加温器30を省略してもよい。また、気化ガス加温器30は空温式のものに限定されず、空気以外の熱媒体を用いたものやヒーターを採用することもできる。さらに、気化ガス加温器30の配設位置は、図1に示した位置に限定されず、ガス配管50の適宜の位置とすることが可能である。   Moreover, in the said embodiment, although the vaporized gas warmer 30 which heats the natural gas NG in the gas piping 50 was provided, the natural gas NG in the gas piping 50 reaches target temperature only by the heating by condensed water. In this case, the vaporized gas heater 30 may be omitted. Further, the vaporized gas heater 30 is not limited to the air temperature type, and a heater using a heat medium other than air or a heater may be employed. Furthermore, the arrangement position of the vaporized gas heater 30 is not limited to the position illustrated in FIG. 1, and can be set to an appropriate position of the gas pipe 50.

また、凝縮水を回収し、ガス配管50へ流下させる具体構成は適宜変更が可能である。例えば、貯留タンク60に回収部62を設けず、全体を貯留部61としてもよいし、貯留タンク60に凝縮水を導くための案内部材を別途設けてもよい。また、樋部材70のような別部材により、凝縮水を貯留タンク60からガス配管50へ流下させるのみならず、傾斜部73のような部材を貯留タンク60に一体形成してもよい。さらに、貯留タンク60の堰64aの鉛直下方にガス配管50を配置し、貯留タンク60から流出した凝縮水が滴下することでガス配管50に至る形態も、本発明における「ガス配管へ流下させる」という概念に含まれる。   Moreover, the specific structure which collect | recovers condensed water and makes it flow down to the gas piping 50 can be changed suitably. For example, the collection unit 62 may not be provided in the storage tank 60, and the entire storage unit 61 may be provided, or a guide member for guiding condensed water to the storage tank 60 may be provided separately. Further, not only the condensed water flows down from the storage tank 60 to the gas pipe 50 by another member such as the eaves member 70, but also a member such as the inclined portion 73 may be integrally formed with the storage tank 60. Furthermore, the gas pipe 50 is arranged vertically below the weir 64a of the storage tank 60, and the form reaching the gas pipe 50 by dropping the condensed water flowing out of the storage tank 60 is also "flow down to the gas pipe" in the present invention. It is included in the concept.

また、上記実施形態においては、中間媒体加温器10は液状の中間媒体を気化させるものとしたが、中間媒体加温器10で液状の中間媒体を気化させることは必須ではない。例えば、ブライン等の不凍液を中間媒体として用いた場合には、中間媒体加温器10は液状の中間媒体を相変化させずに、単に昇温させるだけでもよい。   In the above embodiment, the intermediate medium warmer 10 vaporizes the liquid intermediate medium. However, it is not essential to vaporize the liquid intermediate medium by the intermediate medium heater 10. For example, when an antifreeze such as brine is used as an intermediate medium, the intermediate medium heater 10 may simply raise the temperature without changing the phase of the liquid intermediate medium.

また、上記実施形態においては、中間媒体加温器10で発生した凝縮水を利用することについてのみ説明してきたが、気化ガス加温器30で発生した凝縮水を同様に有効活用してもよい。   In the above embodiment, only the use of the condensed water generated in the intermediate medium warmer 10 has been described. However, the condensed water generated in the vaporized gas warmer 30 may be effectively used in the same manner. .

1 液化ガス気化装置
10 中間媒体加温器
11 伝熱管
20 液化ガス蒸発器
30 気化ガス加温器
50 ガス配管
60 貯留タンク
60A 第1貯留タンク
60B 第2貯留タンク
60B 第2貯留タンク
61 貯留部
64 壁体
64a 堰
65 壁体
66 壁体
68 仕切体
69 中間堰
70 樋部材
73 傾斜部
80 温度計
90 制御手段
100 液化ガス気化システム
101 循環配管
102 蒸発部
103 タービン
104 発電機
105 凝縮部
DESCRIPTION OF SYMBOLS 1 Liquefied gas vaporizer 10 Intermediate | middle medium heater 11 Heat exchanger tube 20 Liquefied gas evaporator 30 Vaporized gas heater 50 Gas piping 60 Storage tank 60A 1st storage tank 60B 2nd storage tank 60B 2nd storage tank 61 Storage part 64 Wall body 64a Weir 65 Wall body 66 Wall body 68 Partition body 69 Intermediate weir 70 Anchor member 73 Inclined portion 80 Thermometer 90 Control means 100 Liquefied gas vaporization system 101 Circulation piping 102 Evaporating portion 103 Turbine 104 Generator 105 Condensing portion

Claims (16)

加温用気体との熱交換によって、伝熱管内を流れる中間媒体を加温する中間媒体加温器と、
前記中間媒体加温器で加温された前記中間媒体との熱交換によって、液化ガスを気化させて気化ガスを生成する液化ガス蒸発器と、
前記液化ガス蒸発器で生成された前記気化ガスが流れるガス配管と、
を備え、
前記加温用気体が水蒸気を含み、前記伝熱管の表面温度が前記加温用気体の露点よりも低くなっていることで、前記伝熱管の表面で凝縮水が発生しており、
前記凝縮水を、前記伝熱管よりも低い位置に配置された貯留タンクの貯留部に貯留した状態で、前記凝縮水よりも高温の大気との熱交換によって加温した後、前記貯留タンクよりも低い位置にある前記ガス配管へ自重により流下させることで、前記ガス配管内の前記気化ガスを加温することを特徴とする液化ガス気化装置。
An intermediate medium heater for heating the intermediate medium flowing in the heat transfer tube by heat exchange with the heating gas;
A liquefied gas evaporator that vaporizes a liquefied gas to generate a vaporized gas by heat exchange with the intermediate medium heated by the intermediate medium heater;
A gas pipe through which the vaporized gas generated by the liquefied gas evaporator flows;
With
The heating gas contains water vapor, and the surface temperature of the heat transfer tube is lower than the dew point of the heating gas, so that condensed water is generated on the surface of the heat transfer tube,
In a state where the condensed water is stored in a storage part of a storage tank disposed at a position lower than the heat transfer pipe, after being heated by heat exchange with the air having a temperature higher than that of the condensed water, the condensed water is more than the storage tank. A liquefied gas vaporizer characterized in that the vaporized gas in the gas pipe is heated by flowing down to the gas pipe at a low position by its own weight.
前記貯留タンクとして、前記伝熱管の表面で発生した前記凝縮水を、前記ガス配管へ流下させる前に回収する第1貯留タンクが設けられている請求項1に記載の液化ガス気化装置。   2. The liquefied gas vaporizer according to claim 1, wherein the storage tank is provided with a first storage tank that collects the condensed water generated on the surface of the heat transfer tube before flowing down to the gas pipe. 前記貯留タンクとして、前記ガス配管へ流下させた前記凝縮水を再び回収する第2貯留タンクがさらに少なくとも1つ設けられている請求項2に記載の液化ガス気化装置。   3. The liquefied gas vaporizer according to claim 2, wherein at least one second storage tank is provided as the storage tank for recovering again the condensed water flowing down to the gas pipe. 前記貯留部を形成する壁体の一部は他の部分よりも高さが低い堰となっており、
前記貯留部内の前記凝縮水は、前記堰を乗り越えることで前記ガス配管へ至る請求項1ないし3のいずれか1項に記載の液化ガス気化装置。
A part of the wall forming the storage part is a weir having a lower height than the other part,
The liquefied gas vaporizer according to any one of claims 1 to 3, wherein the condensed water in the reservoir reaches the gas pipe by overcoming the weir.
前記堰を乗り越えた前記凝縮水を前記ガス配管に案内する樋部材をさらに備える請求項4に記載の液化ガス気化装置。   The liquefied gas vaporizer according to claim 4, further comprising a gutter member that guides the condensed water that has passed over the weir to the gas pipe. 前記ガス配管が円管であるとともに、前記樋部材は前記ガス配管へ向けて前記凝縮水を流下させる傾斜部を有しており、
前記ガス配管の軸方向と直交する断面において、前記傾斜部の先端から鉛直下方におろした直線と前記ガス配管との交点が、前記ガス配管の頂点から前記傾斜部の基端側へ周方向に45度の範囲内に位置する請求項5に記載の液化ガス気化装置。
The gas pipe is a circular pipe, and the flange member has an inclined portion for flowing the condensed water toward the gas pipe,
In the cross section orthogonal to the axial direction of the gas pipe, the intersection of the gas pipe and the straight line drawn vertically downward from the tip of the inclined portion extends in the circumferential direction from the apex of the gas pipe to the base end side of the inclined portion. The liquefied gas vaporizer according to claim 5, which is located within a range of 45 degrees.
前記貯留部には、前記凝縮水が前記貯留部への流入位置から前記堰に至る流路に、前記凝縮水が乗り越える必要のある中間堰が設けられている請求項4ないし6のいずれか1項に記載の液化ガス気化装置。   The storage part is provided with an intermediate weir in which the condensed water needs to get over the flow path from the position where the condensed water flows into the storage part to the weir. The liquefied gas vaporizer according to the item. 前記貯留部には、前記凝縮水が前記貯留部への流入位置から前記堰に直接流れる場合と比べて、前記凝縮水が前記流入位置から前記堰に至るまでの流路を長くさせる仕切体が設けられている請求項4ないし7のいずれか1項に記載の液化ガス気化装置。   Compared with the case where the condensed water flows directly from the inflow position to the storage portion to the weir, the reservoir has a partition that lengthens the flow path from the inflow position to the weir. The liquefied gas vaporizer according to any one of claims 4 to 7, which is provided. 前記ガス配管内の前記気化ガスを加温する気化ガス加温器をさらに備えた請求項1ないし8のいずれか1項に記載の液化ガス気化装置。   The liquefied gas vaporizer according to any one of claims 1 to 8, further comprising a vaporized gas heater that heats the vaporized gas in the gas pipe. 前記気化ガス加温器よりも下流側の前記ガス配管内の前記気化ガスの温度を測定する温度計と、
前記温度計による前記気化ガスの測定値が一定となるように、前記気化ガス加温器の動作を制御する制御手段と、
をさらに備えた請求項9に記載の液化ガス気化装置。
A thermometer for measuring the temperature of the vaporized gas in the gas pipe on the downstream side of the vaporized gas heater;
Control means for controlling the operation of the vaporized gas heater so that the measured value of the vaporized gas by the thermometer is constant;
The liquefied gas vaporizer according to claim 9, further comprising:
前記貯留部内の前記凝縮水の平均液膜厚さをt、単位時間あたりに発生する前記凝縮水の量をQ、前記貯留部の底面積をSとするとき、前記貯留タンクは次式(1)を満たす請求項1ないし10のいずれか1項に記載の液化ガス気化装置。
S≧(2044−16.2/t)Q ・・・式(1)
When the average liquid film thickness of the condensed water in the storage part is t, the amount of the condensed water generated per unit time is Q, and the bottom area of the storage part is S, the storage tank has the following formula (1 The liquefied gas vaporizer according to any one of claims 1 to 10, wherein
S ≧ (2044-16.2 / t) Q (1)
請求項2に記載の液化ガス気化装置と、
前記第1貯留タンクと地中との間にわたって配設され、内部を作動媒体が流れる循環配管と、
地熱または地中熱により気化した前記作動媒体の蒸気により稼働する発電機と、
を備えた液化ガス気化システムであって、
前記循環配管は、前記第1貯留タンクに貯留されている前記凝縮水の中を通過する凝縮部を有しており、前記作動媒体の蒸気は前記凝縮部で凝縮されることを特徴とする液化ガス気化システム。
A liquefied gas vaporizer according to claim 2;
A circulation pipe that is disposed between the first storage tank and the ground, and in which the working medium flows;
A generator that operates by steam of the working medium vaporized by geothermal or underground heat;
A liquefied gas vaporization system comprising:
The circulatory pipe has a condensing part that passes through the condensed water stored in the first storage tank, and the vapor of the working medium is condensed in the condensing part. Gas vaporization system.
前記第1貯留タンクのうち少なくとも前記貯留部に対して、断熱施工がなされている請求項12に記載の液化ガス気化システム。   The liquefied gas vaporization system according to claim 12 with which heat insulation construction is made to at least said storage part among said 1st storage tanks. 前記凝縮部のうち前記貯留部外に位置する部分の熱伝導率は、前記凝縮部のうち前記貯留部内に位置する部分の熱伝導率よりも小さい請求項12または13に記載の液化ガス気化システム。   14. The liquefied gas vaporization system according to claim 12, wherein a thermal conductivity of a portion of the condensing unit located outside the storage unit is smaller than a thermal conductivity of a portion of the condensing unit located within the storage unit. . 前記第1貯留タンクが複数設けられており、
前記凝縮部は、前記複数の第1貯留タンクのすべてを複数回通過する請求項12ないし14のいずれか1項に記載の液化ガス気化システム。
A plurality of the first storage tanks are provided;
The liquefied gas vaporization system according to any one of claims 12 to 14, wherein the condensing unit passes all of the plurality of first storage tanks a plurality of times.
前記貯留部を形成する壁体の一部に、他の部分よりも高さが低い堰が設けられているとき、前記凝縮部の配管径は、0.05m以上かつ前記堰の高さ以下である請求項12ないし15のいずれか1項に記載の液化ガス気化システム。   When a weir having a lower height than other parts is provided in a part of the wall forming the storage part, the pipe diameter of the condensing part is not less than 0.05 m and not more than the height of the weir. The liquefied gas vaporization system according to any one of claims 12 to 15.
JP2015018182A 2014-07-02 2015-02-02 Liquefied gas vaporizer and liquefied gas vaporization system Expired - Fee Related JP6407744B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015018182A JP6407744B2 (en) 2014-07-02 2015-02-02 Liquefied gas vaporizer and liquefied gas vaporization system
PCT/JP2015/068108 WO2016002592A1 (en) 2014-07-02 2015-06-23 Liquefied gas vaporization device and liquefied gas vaporization system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014136598 2014-07-02
JP2014136598 2014-07-02
JP2015018182A JP6407744B2 (en) 2014-07-02 2015-02-02 Liquefied gas vaporizer and liquefied gas vaporization system

Publications (2)

Publication Number Publication Date
JP2016027272A true JP2016027272A (en) 2016-02-18
JP6407744B2 JP6407744B2 (en) 2018-10-17

Family

ID=55019135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018182A Expired - Fee Related JP6407744B2 (en) 2014-07-02 2015-02-02 Liquefied gas vaporizer and liquefied gas vaporization system

Country Status (2)

Country Link
JP (1) JP6407744B2 (en)
WO (1) WO2016002592A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139550A (en) * 2019-02-27 2020-09-03 東北電力株式会社 Gas vaporization system
JP2021188638A (en) * 2020-05-27 2021-12-13 株式会社神戸製鋼所 Intermediate medium-type heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117404611B (en) * 2023-12-14 2024-02-13 唐山冀东油田新能源开发有限公司 Liquefied gas detector for pipeline and detection method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380846A (en) * 1976-12-27 1978-07-17 Mitsui Eng & Shipbuild Co Ltd Utilizing device for cooling heat in liquefed gas evaporator
JPS6117799A (en) * 1984-07-02 1986-01-25 Kawasaki Heavy Ind Ltd Method of manufacturing compressed natural gas from liquefied natural gas
JPH0495699A (en) * 1990-08-10 1992-03-27 Tokyo Gas Co Ltd Gasification device for cryogenic liquefied gas
JPH06185696A (en) * 1992-12-21 1994-07-08 Tokyo Gas Co Ltd Evaporating device for low temperature liquefied gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380846A (en) * 1976-12-27 1978-07-17 Mitsui Eng & Shipbuild Co Ltd Utilizing device for cooling heat in liquefed gas evaporator
JPS6117799A (en) * 1984-07-02 1986-01-25 Kawasaki Heavy Ind Ltd Method of manufacturing compressed natural gas from liquefied natural gas
JPH0495699A (en) * 1990-08-10 1992-03-27 Tokyo Gas Co Ltd Gasification device for cryogenic liquefied gas
JPH06185696A (en) * 1992-12-21 1994-07-08 Tokyo Gas Co Ltd Evaporating device for low temperature liquefied gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139550A (en) * 2019-02-27 2020-09-03 東北電力株式会社 Gas vaporization system
JP2021188638A (en) * 2020-05-27 2021-12-13 株式会社神戸製鋼所 Intermediate medium-type heat exchanger

Also Published As

Publication number Publication date
WO2016002592A1 (en) 2016-01-07
JP6407744B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
KR101109536B1 (en) Evaporative Desalination Apparatus of Sea Water Using Phase Changing Fluids
US20070289303A1 (en) Heat transfer for ocean thermal energy conversion
US20140060046A1 (en) Thermal Storage System and Power Generation System Including the Same
JP6268714B2 (en) Geothermal power generation system
US10648678B2 (en) Building-integrated solar energy system
JP6407744B2 (en) Liquefied gas vaporizer and liquefied gas vaporization system
JP2018119511A (en) Natural gas burning combined cycle power generation system and natural gas burning combined cycle power generation method
US8572967B1 (en) High efficiency OTEC system
CN102518935A (en) System and method for evaporating liquefied natural gas by utilizing intermediate medium
PT2856055T (en) Method for exchanging heat between a salt melt and a further medium in a coiled heat-exchanger
JP5580225B2 (en) Vacuum water heater
JP2021021433A (en) Liquefied gas vaporizer
KR101516913B1 (en) Liquefied natural gas vaporizer
KR102522339B1 (en) Liquefied natural gas vaporizer and cold water supply method
JP2017227130A (en) Independence arrangement type geothermal recovery device and geothermal power generation system with the same
CN204963193U (en) Heat pump water heater
JP6666703B2 (en) Heat exchanger
JP7124263B2 (en) Sampling heat pipe and geothermal heat pump using it
JP5653861B2 (en) Water heater
JP5580224B2 (en) Vacuum water heater
IL177522A (en) System and method for power generation by hydrothermal means
Ito et al. Studies of a thermosyphon system with a heat source near the top and heat sink at the bottom
JP3987245B2 (en) Liquefied gas vaporizer with cold heat generation function
KR20140053509A (en) Electricity generation system using ocean thermal energy conversion and heated air from wind power generator
JP2013119942A (en) Vaporization system for liquefied gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180919

R150 Certificate of patent or registration of utility model

Ref document number: 6407744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees