Nothing Special   »   [go: up one dir, main page]

JP2016085837A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2016085837A
JP2016085837A JP2014217149A JP2014217149A JP2016085837A JP 2016085837 A JP2016085837 A JP 2016085837A JP 2014217149 A JP2014217149 A JP 2014217149A JP 2014217149 A JP2014217149 A JP 2014217149A JP 2016085837 A JP2016085837 A JP 2016085837A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014217149A
Other languages
Japanese (ja)
Inventor
研太 小谷
Kenta Kotani
研太 小谷
門田 敦志
Atsushi Kadota
敦志 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2014217149A priority Critical patent/JP2016085837A/en
Publication of JP2016085837A publication Critical patent/JP2016085837A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery having a high initial discharge capacity and a satisfactory discharge rate characteristic even in the case of a positive electrode including, as a positive electrode active material, LiMPO(where 0.8≤x≤1.1; M represents at least one of Co, Ni, Mn, Fe, V and VO).SOLUTION: A lithium ion secondary battery of the present invention comprises: a positive electrode; a negative electrode; a separator; and a nonaqueous electrolytic solution having a nonaqueous solvent and an electrolyte. The positive electrode includes, as a positive electrode active material, LiMPO(where 0.8≤x≤1.1; M represents at least one of Co, Ni, Mn, Fe, V and VO). The nonaqueous electrolytic solution includes, as the electrolyte, 0.05-0.2 mol/L of LiBF, and 0.9-1.5 mol/L of LiPF.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

リチウムイオン二次電池はニッケルカドミウム電池、ニッケル水素電池と比べ、軽量、高容量であるため、携帯電子機器用電源として広く応用されている。また、ハイブリッド自動車や、電気自動車用に搭載される電源としても使用され始めている。近年、携帯電子機器の小型化、高機能化が進んだことや、電気自動車等の走行距離を向上させるためにも、これらの電源となるリチウムイオン二次電池の更なる高容量化が期待されている。   Lithium ion secondary batteries are lighter and have higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus are widely applied as power sources for portable electronic devices. In addition, it has begun to be used as a power source mounted for hybrid vehicles and electric vehicles. In recent years, the miniaturization and high functionality of portable electronic devices have progressed, and in order to improve the mileage of electric vehicles and the like, further increase in capacity of lithium ion secondary batteries serving as these power sources is expected. ing.

同時に、これまで以上に高安全性のリチウムイオン電池も求められるようになってきており、熱的安定性の高いLiMPO(Mは遷移金属など)で表されるリチウム金属複合酸化物が正極活物質として使用されることが多くなっている。代表例はLiFePOであり、さらに高電圧で動作するLiMnPOなども積極的に開発されている。(例えば、特許文献1,2、非特許文献1) At the same time, a lithium ion battery having higher safety than ever has been demanded, and a lithium metal composite oxide represented by LiMPO 4 (M is a transition metal, etc.) having high thermal stability is used as a positive electrode active material. It is increasingly used as a substance. A representative example is LiFePO 4 , and LiMnPO 4 that operates at a higher voltage has been actively developed. (For example, Patent Documents 1 and 2 and Non-Patent Document 1)

そのLiMPOに共通する問題点の一つに、抵抗が高く、本来持つ容量を発揮しにくい、ということが挙げられている。それに対しては、正極活物質表面を炭素材の導電助剤で覆い、導電性を付与することがなされている。(例えば、特許文献3,4)この手法により、多くの場合、初期放電容量が大きくなると確認されている。 One of the problems common to the LiMPO 4 is that the resistance is high and it is difficult to exhibit the inherent capacity. For this, the surface of the positive electrode active material is covered with a carbon material conductive auxiliary agent to impart conductivity. (For example, Patent Documents 3 and 4) In many cases, it has been confirmed that the initial discharge capacity is increased by this method.

特開平9−134725号公報JP-A-9-134725 米国特許第5910382号明細書US Pat. No. 5,910,382 カナダ特許第2270771号明細書Canadian Patent No. 2270771 特表2004−509058号公報Japanese translation of PCT publication No. 2004-509058

A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough,Journal of electrochemical society, vol.144,1188(1997)A. K. Padhi, K .; S. Nanjundaswami, and J.M. B. Goodenough, Journal of electrochemical society, vol. 144, 1188 (1997)

しかしながら、正極活物質表面を導電助剤で覆っても、LiMPOが本来持つ容量に対してはまだ不十分である。さらに、導電助剤で覆われることでリチウムイオンの移動を阻害し、放電時の電流値が大きくなるほど放電容量は小さくなる傾向になってしまっていた。 However, even if the surface of the positive electrode active material is covered with a conductive additive, the capacity of LiMPO 4 is still insufficient. Furthermore, the movement of lithium ions is hindered by being covered with a conductive additive, and the discharge capacity tends to decrease as the current value during discharge increases.

本発明は、前記課題に鑑みてなされたものであり、正極に正極活物質としてLiMPO(ただし、0.8≦x≦1.1であり、MはCo、Ni、Mn、Fe、V、VOのうち少なくとも1種を示す)を含む場合においても、初期放電容量が大きく、放電レート特性が良好なリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of the above problems, and Li x MPO 4 (where 0.8 ≦ x ≦ 1.1, where M is Co, Ni, Mn, Fe, Even in the case of including at least one of V and VO, an object is to provide a lithium ion secondary battery having a large initial discharge capacity and good discharge rate characteristics.

前記課題を解決するために、本発明に係るリチウムイオン二次電池は、正極と、負極と、セパレータと、非水溶媒及び電解質を有する非水電解液とを備え、前記正極には正極活物質としてLiMPO(ただし、0.8≦x≦1.1であり、MはCo、Ni、Mn、Fe、V、VOのうち少なくとも1種を示す)とを含み、前記非水電解液は電解質として含有率が0.05〜0.2mol/LのLiBFと、含有率が0.9〜1.5mol/LのLiPFとを含むことを特徴とする。 In order to solve the above problems, a lithium ion secondary battery according to the present invention includes a positive electrode, a negative electrode, a separator, and a nonaqueous electrolytic solution having a nonaqueous solvent and an electrolyte, and the positive electrode has a positive electrode active material. Li x MPO 4 (where 0.8 ≦ x ≦ 1.1, and M represents at least one of Co, Ni, Mn, Fe, V, and VO), and the non-aqueous electrolyte solution Is characterized by containing LiBF 4 having a content of 0.05 to 0.2 mol / L and LiPF 6 having a content of 0.9 to 1.5 mol / L as an electrolyte.

かかる構成によれば、正極活物質の表面付近にて、LiBFが選択的に働き、リチウムイオンの拡散係数を大幅に増加させる。よって、正極活物質がLiMPO(を含む場合にも初期放電容量を十分に発揮することができるようになると推察している。 According to such a configuration, LiBF 4 works selectively near the surface of the positive electrode active material, and the diffusion coefficient of lithium ions is greatly increased. Therefore, it is speculated that the initial discharge capacity can be sufficiently exhibited even when the positive electrode active material contains Li x MPO 4 (.

LiPFの非水電解液中に含有される濃度が0.9mol/L以上であれば、イオン導電性が高く、正極活物質がLiMPOであっても十分な初期放電容量を得ることができる。一方、LiPFの濃度が1.5mol/L以下であれば、非水電解液の粘度が高くなり過ぎず、良好な放電レート特性を得ることができる。LiBFの非水電解液中に含有される濃度が0.05mol/L以上であれば、非水電解液のリチウムイオンの拡散係数が大きく増加し、正極活物質がLiMPOであっても十分な初期放電容量と放電レート特性を得ることができるようになる。一方で、LiBFの濃度が0.2mol/L以下であれば、非水電解液のイオン導電性が低下することなく、良好な初期放電容量、放電レート特性を得ることができる。 If the concentration of LiPF 6 contained in the non-aqueous electrolyte is 0.9 mol / L or more, the ion conductivity is high, and a sufficient initial discharge capacity can be obtained even if the positive electrode active material is Li x MPO 4. Can do. On the other hand, when the concentration of LiPF 6 is 1.5 mol / L or less, the viscosity of the non-aqueous electrolyte does not become too high, and good discharge rate characteristics can be obtained. When the concentration of LiBF 4 contained in the non-aqueous electrolyte is 0.05 mol / L or more, the diffusion coefficient of lithium ions in the non-aqueous electrolyte greatly increases, and the positive electrode active material is Li x MPO 4. In addition, sufficient initial discharge capacity and discharge rate characteristics can be obtained. On the other hand, when the concentration of LiBF 4 is 0.2 mol / L or less, good initial discharge capacity and discharge rate characteristics can be obtained without a decrease in the ionic conductivity of the non-aqueous electrolyte.

前記正極活物質はLiFePOであることが好ましい。LiFePOのもつ材料特性に加え、非水電解液にLiPFとLiBFをそれぞれ適量含むことで、本来持つ初期放電容量を発揮することができるようになる。 The positive electrode active material is preferably LiFePO 4 . In addition to the material properties of LiFePO 4, the proper initial discharge capacity can be exhibited by including appropriate amounts of LiPF 6 and LiBF 4 in the non-aqueous electrolyte.

前記正極活物質はβ−LiVOPOであることも好ましい。前記β−LiVOPOは他のLiMPOとは結晶構造が異なり、より安定であるため、LiPFとLiBFを適量含む非水電解液を用いる効果はより顕著に現れることになる。 It is also preferable that the positive electrode active material is β-LiVOPO 4 . Since β-LiVOPO 4 has a different crystal structure from other Li x MPO 4 and is more stable, the effect of using a non-aqueous electrolyte containing appropriate amounts of LiPF 6 and LiBF 4 will be more prominent.

リチウムイオン二次電池のセル体積が同じ場合にでも放電容量が大きく得られることから、正極には正極活物質として、さらに層状リチウム化合物を含むことが好ましい。前記LiMPOに加え、LiCoOやLi(Ni,Mn,Co)Oなどの層状リチウム化合物を含む場合、導電率の違いから、層状リチウム化合物から選択的にリチウムイオンが離脱し、LiMPOの初期放電容量が十分に発揮されにくい。しかしながら、非水電解液にLiPFとLiBFをそれぞれ適量含むことで、LiMPOから十分にリチウムイオンが引き出されるようになり、良好な初期放電容量を示すことができるようになる。 Since a large discharge capacity can be obtained even when the cell volume of the lithium ion secondary battery is the same, the positive electrode preferably further contains a layered lithium compound as a positive electrode active material. When a layered lithium compound such as LiCoO 2 or Li (Ni, Mn, Co) O 2 is included in addition to Li x MPO 4 , lithium ions are selectively released from the layered lithium compound due to the difference in conductivity, and Li The initial discharge capacity of x MPO 4 is not sufficiently exhibited. However, by including appropriate amounts of LiPF 6 and LiBF 4 in the non-aqueous electrolyte, lithium ions can be sufficiently extracted from Li x MPO 4 and a good initial discharge capacity can be exhibited.

非水電解液は、さらに式(1)で示される1,3,2−ジオキサチオラン−2,2−ジオキシドを含むことが好ましい。それにより、リチウムイオン二次電池のインピーダンスを下げることができ、より良好な放電レート特性を得ることができるようになる。

Figure 2016085837

The non-aqueous electrolyte preferably further contains 1,3,2-dioxathiolane-2,2-dioxide represented by the formula (1). Thereby, the impedance of the lithium ion secondary battery can be lowered, and better discharge rate characteristics can be obtained.
Figure 2016085837

本発明によれば、正極に正極活物質としてLiMPO(ただし、0.8≦x≦1.1であり、MはCo、Ni、Mn、Fe、V、VOのうち少なくとも1種を示す)を含む場合においても、初期放電容量が大きく、放電レート特性が良好なリチウムイオン二次電池を提供することが可能となる。 According to the present invention, Li x MPO 4 (provided that 0.8 ≦ x ≦ 1.1 and M is at least one of Co, Ni, Mn, Fe, V, and VO) 2), it is possible to provide a lithium ion secondary battery having a large initial discharge capacity and good discharge rate characteristics.

リチウムイオン二次電池の模式断面図である。It is a schematic cross section of a lithium ion secondary battery.

以下、図面を参照しながら本発明の好適な実施形態について説明する。ただし、本発明にかかるリチウムイオン二次電池用非水電解液及びリチウムイオン二次電池は、以下の実施形態に限定されるものではない。なお、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the non-aqueous electrolyte for lithium ion secondary batteries and the lithium ion secondary battery according to the present invention are not limited to the following embodiments. In addition, the dimensional ratio of drawing is not restricted to the ratio of illustration.

(リチウムイオン二次電池)
続いて、本実施形態に係る電極、及びリチウムイオン二次電池について図1を参照して簡単に説明する。
(Lithium ion secondary battery)
Next, the electrode and the lithium ion secondary battery according to this embodiment will be briefly described with reference to FIG.

リチウムイオン二次電池100は、主として、蓄電要素30、蓄電要素30を密閉した状態で収容するケース50、及び蓄電要素30に接続された一対のリード60,62を備えている。   The lithium ion secondary battery 100 mainly includes a power storage element 30, a case 50 that houses the power storage element 30 in a sealed state, and a pair of leads 60 and 62 connected to the power storage element 30.

蓄電要素30は、一対の電極10、20がセパレータ18を挟んで対向配置されたものである。正極10は、正極集電体12上に正極活物質層14が設けられた物である。負極20は、負極集電体22上に負極活物質層24が設けられた物である。正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極活物質層14、負極活物質層24、及び、セパレータ18の内部に電解質溶液が含有されている。正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。   The power storage element 30 is configured such that a pair of electrodes 10 and 20 are disposed to face each other with the separator 18 interposed therebetween. The positive electrode 10 is a product in which a positive electrode active material layer 14 is provided on a positive electrode current collector 12. The negative electrode 20 is a product in which a negative electrode active material layer 24 is provided on a negative electrode current collector 22. The positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18. An electrolyte solution is contained inside the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18. Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.

(負極)
負極20は、負極集電体22の両面に負極活物質層24を備えて構成されている。さらに、負極活物質層24は、負極活物質と、導電助剤と、結着剤とを含む塗料を負極集電体22に塗布することによって形成されている。
(Negative electrode)
The negative electrode 20 includes a negative electrode active material layer 24 on both sides of a negative electrode current collector 22. Furthermore, the negative electrode active material layer 24 is formed by applying a paint containing a negative electrode active material, a conductive additive, and a binder to the negative electrode current collector 22.

負極活物質は、天然黒鉛、人造黒鉛(難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等)、MCF(メソカーボンファイバ)等の炭素材から選ばれる少なくとも1種を含んでいる。中でも、良好な負極容量及びサイクル特性を示すことから人造黒鉛が好ましく、電極密度向上の観点から、人造黒鉛を天然黒鉛と混合して使用することが更に好ましい。
その他、例えば、Al、Si、Sn等のリチウムと化合物を形成することのできる金属、SiO、SnO等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)など公知の負極活物質を炭素材と混合させて使用してもよい。
The negative electrode active material contains at least one selected from carbon materials such as natural graphite, artificial graphite (non-graphitizable carbon, graphitizable carbon, low temperature calcined carbon, etc.), MCF (mesocarbon fiber), and the like. Among these, artificial graphite is preferable because it exhibits a favorable negative electrode capacity and cycle characteristics, and from the viewpoint of improving electrode density, it is more preferable to use artificial graphite mixed with natural graphite.
In addition, for example, a metal capable of forming a compound with lithium such as Al, Si and Sn, an amorphous compound mainly composed of an oxide such as SiO 2 and SnO 2 , lithium titanate (Li 4 Ti 5 O A known negative electrode active material such as 12 ) may be mixed with a carbon material.

導電助剤は特に限定されず、公知の導電助剤を使用できる。例えば、カーボンブラックのような熱分解炭素、コークス類、ガラス状炭素類、有機高分子化合物焼成材料、炭素繊維、あるいは活性炭などの炭素材が挙げられる。また、難黒鉛化炭素、易黒鉛化炭素、黒鉛などの負極活物質材料を、形状を変えて添加してもよい。   The conductive auxiliary agent is not particularly limited, and a known conductive auxiliary agent can be used. Examples thereof include carbon materials such as pyrolytic carbon such as carbon black, cokes, glassy carbons, organic polymer compound fired materials, carbon fibers, and activated carbon. Moreover, you may add negative electrode active material materials, such as non-graphitizable carbon, graphitizable carbon, and graphite, changing a shape.

カーボンブラックとしては、特に、アセチレンブラック、ケッチェンブラック等が好ましく、ケッチェンブラックが特に好ましい。電子伝導性の多孔体を含有させることにより負極活物質材料の粒子と結着剤の界面に空孔を形成でき、その空孔により負極活物質層24への非水電解液の染み込みを容易にするので好ましい。   As carbon black, acetylene black, ketjen black and the like are particularly preferable, and ketjen black is particularly preferable. By including an electron-conductive porous body, pores can be formed at the interface between the particles of the negative electrode active material and the binder, and the penetration of the non-aqueous electrolyte into the negative electrode active material layer 24 is facilitated by the pores. Therefore, it is preferable.

結着剤は、前記の負極活物質の粒子と導電助剤の粒子とを結着可能なものであれば特に限定されない。例えば、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂や、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PAA)等が挙げられる。また、この結着剤は、前記の負極活物質の粒子と導電助剤の粒子との結着のみならず、負極集電体22への結着に対しても寄与している。   The binder is not particularly limited as long as it can bind the negative electrode active material particles and the conductive auxiliary particles. For example, fluororesins such as polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyacrylic acid (PAA), and the like can be given. In addition, the binder contributes not only to the binding of the negative electrode active material particles and the conductive additive particles but also to the negative electrode current collector 22.

負極集電体22は、リチウムイオン二次電池用の集電体に使用されている各種公知の金属箔を用いることができる。具体的には、銅箔を用いることが好ましい。   As the negative electrode current collector 22, various known metal foils used for current collectors for lithium ion secondary batteries can be used. Specifically, it is preferable to use a copper foil.

(正極)
正極10は、正極集電体12の両面に正極活物質層14を備えて構成されている。さらに正極活物質層14は、正極活物質と、導電助剤と、結着剤とを含む塗料を正極集電体12に塗布することによって形成されていることが好ましい。
(Positive electrode)
The positive electrode 10 includes a positive electrode active material layer 14 on both surfaces of a positive electrode current collector 12. Furthermore, the positive electrode active material layer 14 is preferably formed by applying a paint containing a positive electrode active material, a conductive additive, and a binder to the positive electrode current collector 12.

正極活物質は、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンと該リチウムイオンのカウンターアニオン(例えば、ClO )とのドープ及び脱ドープを可逆的に進行させることが可能な、LiMPO(ただし、0.8≦x≦1.1であり、MはCo、Ni、Mn、Fe、V、VOのうち少なくとも1種を示す)を含む。これら正極活物質の表面は炭素材の導電助剤で覆われていることが好ましい。 The positive electrode active material includes insertion and extraction of lithium ions, desorption and insertion of lithium ions (intercalation), or doping and dedoping of lithium ions and a counter anion (for example, ClO 4 ) of the lithium ions. Li x MPO 4 capable of proceeding reversibly (where 0.8 ≦ x ≦ 1.1, and M represents at least one of Co, Ni, Mn, Fe, V, and VO) including. The surface of these positive electrode active materials is preferably covered with a carbon material conductive additive.

正極活物質として、具体的には、LiFePOであることが好ましい。LiFePOは発熱量が小さく、リチウムイオン二次電池の安全性向上に寄与する。 Specifically, the positive electrode active material is preferably LiFePO 4 . LiFePO 4 has a small calorific value and contributes to improving the safety of the lithium ion secondary battery.

正極活物質として、β−LiVOPOであることも好ましい。LiFePOと同様、安全性向上に寄与するとともに、平均電圧3.7Vの高電圧で動作させることが可能となる。 As the positive electrode active material, β-LiVOPO 4 is also preferable. Like LiFePO 4 , it contributes to safety improvement and can be operated at a high voltage of 3.7 V average voltage.

前記正極活物質として、さらに層状リチウム化合物を含むことが好ましい。層状リチウム化合物としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、一般式:LiNiCoMn(x+y+z=1)やLiNiCoAl1−x−y(0.98<a<1.2、0<x,y<1)で表される複合金属酸化物が挙げられる。 It is preferable that the positive electrode active material further contains a layered lithium compound. Examples of the layered lithium compound include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganese spinel (LiMn 2 O 4 ), general formula: LiNi x Co y Mn z O 2 (x + y + z = 1) and Li a composite metal oxide represented by a Ni x Co y Al 1-xy O 2 (0.98 <a <1.2, 0 <x, y <1).

さらに、正極活物質材料以外の各構成要素(導電助剤、結着剤)は、負極20で使用されるものと同様の物質を使用することができる。したがって、正極10に含まれる結着剤も、前記の正極活物質材料の粒子と導電助剤の粒子との結着のみならず、正極集電体12への結着に対しても寄与している。   Furthermore, the same material as that used in the negative electrode 20 can be used as each constituent element (conductive auxiliary agent and binder) other than the positive electrode active material. Therefore, the binder contained in the positive electrode 10 contributes not only to the binding between the particles of the positive electrode active material and the particles of the conductive auxiliary agent, but also to the binding to the positive electrode current collector 12. Yes.

正極集電体12は、リチウムイオン二次電池用の集電体に使用されている各種公知の金属箔を用いることができる。具体的には、アルミニウム箔を用いることが好ましい。   As the positive electrode current collector 12, various known metal foils used in current collectors for lithium ion secondary batteries can be used. Specifically, it is preferable to use an aluminum foil.

(セパレータ)
セパレータ18は絶縁性の多孔体から形成されていれば、材料、製法等は特に限定されず、リチウムイオン二次電池100に用いられている公知のセパレータを使用することができる。例えば、絶縁性の多孔体としては、公知のポリオレフィン樹脂、具体的にはポリエチレン、ポリプロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどを重合した結晶性の単独重合体または共重合体が挙げられる。これらの単独重合体または共重合体は、1種を単独で使用することができるが、2種以上のものを混合して用いてもよい。また、単層であっても複層であってもよい。
(Separator)
As long as the separator 18 is formed of an insulating porous material, the material, the manufacturing method, and the like are not particularly limited, and a known separator used in the lithium ion secondary battery 100 can be used. For example, as the insulating porous material, a known polyolefin resin, specifically, a crystalline homopolymer or copolymer obtained by polymerizing polyethylene, polypropylene, 1-butene, 4-methyl-1-pentene, 1-hexene, or the like. A polymer is mentioned. These homopolymers or copolymers can be used alone or in combination of two or more. Further, it may be a single layer or a multilayer.

(非水電解液)
非水電解液は、非水溶媒及び電解質を有し、前記電解質として0.05〜0.2mol/LのLiBFと、0.9〜1.5mol/LのLiPFとを含む。
(Nonaqueous electrolyte)
The non-aqueous electrolyte has a non-aqueous solvent and an electrolyte, and includes 0.05 to 0.2 mol / L LiBF 4 and 0.9 to 1.5 mol / L LiPF 6 as the electrolyte.

LiBFとLiPFとを同時に含むことによる効果発現のメカニズムははっきりとはしないが、本発明者らは以下のように考えている。 Although the mechanism of the effect expression by including LiBF 4 and LiPF 6 simultaneously is not clear, the present inventors consider as follows.

正極活物質としてLiMPO(ただし、0.8≦x≦1.1であり、MはCo、Ni、Mn、Fe、V、VOのうち少なくとも1種を示す)を含む場合では、LiMPOの周囲を導電助剤で覆っていることにより、電極近傍でのリチウムイオンの拡散が妨げられ、非水電解液のリチウムイオン導電性が低下し、リチウムイオン二次電池の放電容量などの特性を低下させていた。そこで、電解質としてLiBFとLiPFとを同時に含むことにより、正極/負極間でリチウムイオンが泳動しやすい状態を保ちつつ、電極近傍でリチウムイオンが拡散しやすくなる。その結果、非水電解液のリチウムイオン導電性が向上し、リチウムイオン二次電池の放電容量や放電レート特性が向上したものと推測される。 In the case where Li x MPO 4 is included as the positive electrode active material (provided that 0.8 ≦ x ≦ 1.1, and M represents at least one of Co, Ni, Mn, Fe, V, and VO), Li By covering the periphery of x MPO 4 with a conductive auxiliary agent, the diffusion of lithium ions in the vicinity of the electrode is prevented, the lithium ion conductivity of the non-aqueous electrolyte is lowered, and the discharge capacity of the lithium ion secondary battery, etc. The characteristic of was deteriorated. Therefore, by simultaneously including LiBF 4 and LiPF 6 as the electrolyte, lithium ions can be easily diffused in the vicinity of the electrodes while maintaining a state in which lithium ions easily migrate between the positive electrode and the negative electrode. As a result, it is estimated that the lithium ion conductivity of the non-aqueous electrolyte is improved and the discharge capacity and discharge rate characteristics of the lithium ion secondary battery are improved.

LiBFは非水電解液中に0.05〜0.2mol/L含まれる。LiBFの非水電解液中に含有される濃度が0.05mol/L以上であると、正極活物質の表面付近における非水電解液中のリチウムイオンの拡散係数が大きく増加し、正極活物質がLiMPOであっても十分な初期放電容量と放電レート特性を得ることができるようになる。一方で、LiBFの濃度が0.2mol/L以下であれば、正極/負極間でリチウムイオンが泳動しやすい状態にあり、非水電解液のリチウムイオン導電性が高く維持されることから、良好な初期放電容量、放電レート特性を得ることができる。 LiBF 4 is contained in the non-aqueous electrolyte at 0.05 to 0.2 mol / L. When the concentration of LiBF 4 contained in the non-aqueous electrolyte is 0.05 mol / L or more, the diffusion coefficient of lithium ions in the non-aqueous electrolyte near the surface of the positive electrode active material greatly increases, and the positive electrode active material Even if Li x MPO 4 is used, sufficient initial discharge capacity and discharge rate characteristics can be obtained. On the other hand, if the concentration of LiBF 4 is 0.2 mol / L or less, lithium ions are likely to migrate between the positive electrode and the negative electrode, and the lithium ion conductivity of the non-aqueous electrolyte is maintained high. Good initial discharge capacity and discharge rate characteristics can be obtained.

初期放電容量を大きく得られることから、LiBFは非水電解液に0.08〜0.17mol/L含まれることが好ましい。さらに、放電レート特性も大きく向上することから、0.1〜0.15mol/L含まれることがより好ましい。 Since a large initial discharge capacity can be obtained, LiBF 4 is preferably contained in the nonaqueous electrolytic solution in an amount of 0.08 to 0.17 mol / L. Furthermore, since the discharge rate characteristics are also greatly improved, it is more preferable that the content is 0.1 to 0.15 mol / L.

LiPFは非水電解液中に0.9〜1.5mol/L含まれる。LiPFの非水電解液中に含有される濃度が0.9mol/L以上であれば、イオン導電性が高く、正極活物質がLiMPOであっても十分な初期放電容量を得ることができる。一方、LiPFの濃度が1.5mol/L以下であれば、非水電解液の粘度が高くなり過ぎず、リチウムイオンの移動度を充分に確保することができることから、良好な放電レート特性を得ることができる。 LiPF 6 is contained in the non-aqueous electrolyte at 0.9 to 1.5 mol / L. If the concentration of LiPF 6 contained in the non-aqueous electrolyte is 0.9 mol / L or more, the ion conductivity is high, and a sufficient initial discharge capacity can be obtained even if the positive electrode active material is Li x MPO 4. Can do. On the other hand, when the concentration of LiPF 6 is 1.5 mol / L or less, the viscosity of the non-aqueous electrolyte does not become too high, and the mobility of lithium ions can be sufficiently secured. Can be obtained.

初期放電容量を大きく得られることから、LiPFは非水電解液に1.0〜1.3mol/L含まれることが好ましい。さらに、放電レート特性も大きく向上することから、1.0〜1.2mol/L含まれることがより好ましい。 Since a large initial discharge capacity can be obtained, LiPF 6 is preferably contained in the non-aqueous electrolyte at 1.0 to 1.3 mol / L. Furthermore, since the discharge rate characteristics are also greatly improved, it is more preferable that 1.0 to 1.2 mol / L is contained.

その他の電解質としては、LiClO、LiPOF、LiAsF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)等が挙げられるが、これらを適量混合させてもよい。 Other electrolytes include LiClO 4 , LiPOF 2 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2, and the like may be used, but an appropriate amount thereof may be mixed.

非水溶媒は、環状カーボネートと、低粘度溶媒と、を含有していることが好ましい。環状カーボネートは電解質であるリチウム塩の解離を促す様、誘電率が20以上であり、低粘度溶媒はリチウムイオンの移動度を改善する様、粘度が1.0cP以下である有機溶媒のことを指す。   The non-aqueous solvent preferably contains a cyclic carbonate and a low viscosity solvent. The cyclic carbonate refers to an organic solvent having a dielectric constant of 20 or more so as to promote dissociation of the lithium salt that is an electrolyte, and the low viscosity solvent is an organic solvent having a viscosity of 1.0 cP or less so as to improve the mobility of lithium ions. .

環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートなどを用いることができ、中でもエチレンカーボネートを含むことが好ましい。エチレンカーボネートをプロピレンカーボネートやブチレンカーボネートと混合して使用してもよい。   As the cyclic carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, and the like can be used. Among them, ethylene carbonate is preferably included. You may mix and use ethylene carbonate with propylene carbonate and butylene carbonate.

また、低粘度溶媒として、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどを用いることができる。特に、高温保存特性を向上させる点から、ジエチルカーボネートを含むことが好ましい。ジエチルカーボネートを他の低粘度溶媒と混合して使用してもよい。   In addition, as a low viscosity solvent, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc. may be used. it can. In particular, it is preferable to contain diethyl carbonate from the viewpoint of improving high-temperature storage characteristics. Diethyl carbonate may be used by mixing with other low viscosity solvents.

非水溶媒中の環状カーボネートと低粘度溶媒の割合は体積にして1:9〜1:1にすることが好ましい。   The ratio of the cyclic carbonate and the low viscosity solvent in the non-aqueous solvent is preferably 1: 9 to 1: 1 by volume.

非水電解液は、さらに式(1)で表される1,3,2−ジオキサチオラン−2,2−ジオキシドを含むことが好ましい。1,3,2−ジオキサチオラン−2,2−ジオキシドを加えることで、正極と非水電解液との界面抵抗が低下し、特に放電レート特性が向上する。

Figure 2016085837

The non-aqueous electrolyte preferably further contains 1,3,2-dioxathiolane-2,2-dioxide represented by the formula (1). By adding 1,3,2-dioxathiolane-2,2-dioxide, the interface resistance between the positive electrode and the non-aqueous electrolyte is lowered, and in particular, the discharge rate characteristics are improved.
Figure 2016085837

1,3,2−ジオキサチオラン−2,2−ジオキシドは、初期放電容量を低下させることなく放電レート特性を向上させることから、非水電解液中に1〜6重量%含まれることが好ましい。   Since 1,3,2-dioxathiolane-2,2-dioxide improves the discharge rate characteristics without reducing the initial discharge capacity, it is preferably contained in the non-aqueous electrolyte at 1 to 6% by weight.

その他、ビニレンカーボネートなどの不飽和結合を有する炭酸エステル化合物、1,3−プロパンスルトンなどの硫黄含有化合物などをさらに加えてもよい。   In addition, a carbonate compound having an unsaturated bond such as vinylene carbonate and a sulfur-containing compound such as 1,3-propane sultone may be further added.

(外装体)
ケース50は、その内部に発電要素30及び電解質溶液を密封できるものであれば、その材質等は問わない。
(Exterior body)
The case 50 may be made of any material as long as it can seal the power generation element 30 and the electrolyte solution therein.

リード60,62は、アルミやニッケル等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum or nickel.

以下、実施例及び比較例を挙げて本発明について更に詳しく説明するが、本発明はこれらの実施例に何ら限定されない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited to these Examples at all.

以下に示す手順により、実施例1〜59、比較例1〜10のリチウムイオン二次電池用非水電解液及びリチウムイオン二次電池を作製し、評価を行った。   The non-aqueous electrolyte for lithium ion secondary batteries and lithium ion secondary batteries of Examples 1 to 59 and Comparative Examples 1 to 10 were prepared and evaluated by the following procedure.

(実施例1)
先ず、負極を作製した。負極の作製においては、負極活物質として人造黒鉛(90質量%)、導電助剤としてカーボンブラック(2質量%)、結着剤としてポリフッ化ビニリデン(PVDF)(8質量%)を混合し、溶剤のN−メチル−2−ピロリドン中に分散させ、スラリーを得た。得られたスラリーをドクターブレード法により集電体である電解銅箔に塗布し、110℃で乾燥させた。乾燥後に圧延を行い、負極を得た。
Example 1
First, a negative electrode was produced. In the production of the negative electrode, artificial graphite (90% by mass) as a negative electrode active material, carbon black (2% by mass) as a conductive auxiliary agent, and polyvinylidene fluoride (PVDF) (8% by mass) as a binder are mixed. Was dispersed in N-methyl-2-pyrrolidone to obtain a slurry. The obtained slurry was applied to an electrolytic copper foil as a current collector by a doctor blade method and dried at 110 ° C. After drying, rolling was performed to obtain a negative electrode.

次に、正極を作製した。正極の作製においても、正極活物質としてLiFePO(90質量%)、導電助剤としてカーボンブラック(6質量%)、結着剤としてPVDF(4質量%)を混合し、NMP中に分散させ、スラリーを得た。得られたスラリーを集電体であるアルミニウム箔に塗布して乾燥させ、圧延を行い、正極を得た。 Next, a positive electrode was produced. Also in the production of the positive electrode, LiFePO 4 (90% by mass) as the positive electrode active material, carbon black (6% by mass) as the conductive auxiliary, and PVDF (4% by mass) as the binder are mixed and dispersed in NMP. A slurry was obtained. The obtained slurry was applied to an aluminum foil as a current collector, dried, rolled, and a positive electrode was obtained.

次に、非水電解液を調製した。エチレンカーボネート、ジエチルカーボネートを体積比3:7で混合した溶液中に、LiBFを0.05mol/L、LiPFを1.0mol/Lの割合で添加し非水電解液を得た。 Next, a non-aqueous electrolyte was prepared. LiBF 4 was added at a ratio of 0.05 mol / L and LiPF 6 was added at a ratio of 1.0 mol / L to a solution in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 to obtain a nonaqueous electrolytic solution.

得られた負極及び正極の間にポリエチレンからなるセパレータを挟んで積層し積層体(素体)を得た。得られた積層体をアルミラミネートパックに入れ、このアルミラミネートパックに非水電解液を注入した後に真空シールし、リチウムイオン二次電池(縦:60mm、横:85mm、厚さ:3mm)を作製した。   A laminated body (element body) was obtained by laminating a separator made of polyethylene between the obtained negative electrode and positive electrode. The obtained laminate is placed in an aluminum laminate pack, a non-aqueous electrolyte is injected into the aluminum laminate pack, and then vacuum-sealed to produce a lithium ion secondary battery (length: 60 mm, width: 85 mm, thickness: 3 mm). did.

(実施例2〜56及び比較例1〜10)
正極活物質の種類と、非水電解液中の溶媒の組み合わせ、LiBFとLiPF含有量、非水電解液に添加する1,3,2−ジオキサチオラン−2,2−ジオキシドの添加量を表1〜3に示すように変えた以外は、実施例1と同様にして実施例2〜56及び比較例1〜10のリチウムイオン二次電池を作製した。なお、表1〜3中、正極活物質の「LFP」はLiFePOを、「β−LVP」はβ−LiVOPOを、「NCM」はLiNi1/3Co1/3Mn1/3を、「NCA」はLiNi0.8Co0.15Al0.05を表す。正極活物質が「NCM/LFP」などの層状リチウム化合物とLiMPOとの混合の場合、その重量比は1/1にしている。非水溶媒の「EC」はエチレンカーボネートを、「DEC」はジエチルカーボネートを、「EMC」はエチルメチルカーボネートを、「PC」はプロピレンカーボネートを表す。「DTD含有量」は1,3,2−ジオキサチオラン−2,2−ジオキシドの非水電解液中の含有量を表す。
(Examples 2-56 and Comparative Examples 1-10)
Table shows the type of positive electrode active material, the combination of solvents in the non-aqueous electrolyte, LiBF 4 and LiPF 6 contents, and the amount of 1,3,2-dioxathiolane-2,2-dioxide added to the non-aqueous electrolyte Except having changed as shown to 1-3, it carried out similarly to Example 1, and produced the lithium ion secondary battery of Examples 2-56 and Comparative Examples 1-10. In Tables 1 to 3, “LFP” of the positive electrode active material is LiFePO 4 , “β-LVP” is β-LiVOPO 4 , and “NCM” is LiNi 1/3 Co 1/3 Mn 1/3 O 2. “NCA” represents LiNi 0.8 Co 0.15 Al 0.05 O 2 . When the positive electrode active material is a mixture of a layered lithium compound such as “NCM / LFP” and LiMPO 4 , the weight ratio is 1/1. In the nonaqueous solvent, “EC” represents ethylene carbonate, “DEC” represents diethyl carbonate, “EMC” represents ethyl methyl carbonate, and “PC” represents propylene carbonate. “DTD content” represents the content of 1,3,2-dioxathiolane-2,2-dioxide in the non-aqueous electrolyte.

(初期放電容量評価試験)
リチウムイオン二次電池作製後、恒温槽にて25℃に設定された環境下で初回の充電を行い、その直後に初回放電を行った。なお、充電は30mAで4.2Vまで定電流定電圧充電を行い、放電は30mAで2.5Vまで定電流放電を行った。初回放電における放電容量(mAh)の測定値は表1〜3中、「初期放電容量(mAh)」として示す。
(Initial discharge capacity evaluation test)
After the production of the lithium ion secondary battery, the first charge was performed in an environment set at 25 ° C. in a thermostatic bath, and the first discharge was performed immediately after that. The charging was performed at a constant current and constant voltage up to 4.2 V at 30 mA, and the discharging was performed at a constant current of 2.5 mA at 30 mA. The measured value of the discharge capacity (mAh) in the first discharge is shown as “initial discharge capacity (mAh)” in Tables 1 to 3.

(放電レート評価試験)
放電容量評価試験後、恒温槽にて25℃に設定された環境下において、30mAで4.2Vまで定電流定電圧充電を行った。満充電にし、10分間放置した後、300mAで2.5Vまで定電流放電を行った。ここで測定された放電容量を前記初期放電容量で除し、100倍にした値を表1〜3中、「2C放電容量(%)」として示す。
(Discharge rate evaluation test)
After the discharge capacity evaluation test, constant current and constant voltage charging was performed up to 4.2 V at 30 mA in an environment set to 25 ° C. in a thermostatic bath. The battery was fully charged and allowed to stand for 10 minutes, and then a constant current discharge was performed up to 2.5 V at 300 mA. A value obtained by dividing the discharge capacity measured here by the initial discharge capacity and multiplying by 100 is shown as “2C discharge capacity (%)” in Tables 1 to 3.

(実施例1〜7及び比較例1,2)
まず、LiPFの非水電解液中に含有される濃度を1.0mol/Lに固定し、LiBFの非水電解液中に含有される濃度を変えた場合の評価結果を表1に示す。なお、正極活物質はLiFePO、負極活物質は人造黒鉛とし、LiBFの含有量以外は、表1に示すような構成で固定し、比較した。
(Examples 1 to 7 and Comparative Examples 1 and 2)
First, Table 1 shows the evaluation results when the concentration contained in the nonaqueous electrolyte solution of LiPF 6 is fixed at 1.0 mol / L and the concentration contained in the nonaqueous electrolyte solution of LiBF 4 is changed. . The positive electrode active material was LiFePO 4 , the negative electrode active material was artificial graphite, and the components other than the content of LiBF 4 were fixed and compared in the configuration shown in Table 1.

初期放電容量において、比較例は140mAh未満であるのに対し、LiBFの含有量が0.05〜0.2mol/Lである実施例のリチウムイオン二次電池は140mAh以上となり、いずれも十分な初期放電容量を持つことが確認できた。特に、LiBFの含有量が0.08〜0.17mol/Lである場合、初期放電容量が150mAh以上となり、良好な値を示した。 In the initial discharge capacity, the comparative example is less than 140 mAh, whereas the lithium ion secondary battery of the example in which the content of LiBF 4 is 0.05 to 0.2 mol / L is 140 mAh or more. It was confirmed that it had an initial discharge capacity. In particular, when the content of LiBF 4 was 0.08 to 0.17 mol / L, the initial discharge capacity was 150 mAh or more, indicating a good value.

2C放電容量においては、比較例は75%未満であるのに対し、LiBFの含有量が0.05〜0.2mol/Lである実施例のリチウムイオン二次電池は75%以上となり、いずれも十分な2C放電容量を持つことが確認できた。特に、LiBFの含有量が0.1〜0.15mol/Lである場合、2C放電容量が85%以上となり、良好な値を示した。 In the 2C discharge capacity, the comparative example is less than 75%, whereas the lithium ion secondary battery of the example in which the content of LiBF 4 is 0.05 to 0.2 mol / L is 75% or more. Was confirmed to have a sufficient 2C discharge capacity. In particular, when the content of LiBF 4 was 0.1 to 0.15 mol / L, the 2C discharge capacity was 85% or more, indicating a good value.

Figure 2016085837
Figure 2016085837

(実施例8〜13及び比較例3,4)
次に、LiBFの非水電解液中に含有される濃度を0.1mol/Lに固定し、LiPFの非水電解液中に含有される濃度を変えた場合の評価結果を表2に示す。なお、正極活物質はLiFePO、負極活物質は人造黒鉛とし、LiPFの含有量以外は、表2に示すような構成で固定し、比較した。
(Examples 8 to 13 and Comparative Examples 3 and 4)
Next, Table 2 shows the evaluation results when the concentration contained in the nonaqueous electrolyte solution of LiBF 4 was fixed at 0.1 mol / L and the concentration contained in the nonaqueous electrolyte solution of LiPF 6 was changed. Show. The positive electrode active material was LiFePO 4 , the negative electrode active material was artificial graphite, and the components other than the LiPF 6 content were fixed and compared in the configuration shown in Table 2.

初期放電容量において、比較例は140mAh未満であるのに対し、LiPFの含有量が0.9〜1.5mol/Lである実施例のリチウムイオン二次電池は140mAh以上となり、いずれも十分な初期放電容量を持つことが確認できた。特に、LiPFの含有量が1.0〜1.3mol/Lである場合、初期放電容量が150mAh以上となり、良好な値を示した。 In the initial discharge capacity, the comparative example is less than 140 mAh, whereas the lithium ion secondary battery of the example in which the content of LiPF 6 is 0.9 to 1.5 mol / L is 140 mAh or more, both of which are sufficient. It was confirmed that it had an initial discharge capacity. In particular, when the content of LiPF 6 was 1.0 to 1.3 mol / L, the initial discharge capacity was 150 mAh or more, indicating a good value.

2C放電容量においては、比較例は75%未満であるのに対し、LiPFの含有量が0.9〜1.5mol/Lである実施例のリチウムイオン二次電池は75%以上となり、いずれも十分な2C放電容量を持つことが確認できた。特に、LiPFの含有量が1.0〜1.2mol/Lである場合、2C放電容量が85%以上となり、良好な値を示した。 In the 2C discharge capacity, the comparative example is less than 75%, whereas the lithium ion secondary battery of the example in which the content of LiPF 6 is 0.9 to 1.5 mol / L is 75% or more. Was confirmed to have a sufficient 2C discharge capacity. In particular, when the content of LiPF 6 was 1.0 to 1.2 mol / L, the 2C discharge capacity was 85% or more, indicating a good value.

Figure 2016085837
Figure 2016085837

(実施例14〜56及び比較例5〜10)
正極活物質の種類と、非水溶媒の組み合わせ、1,3,2−ジオキサチオラン−2,2−ジオキシドの含有量、LiBFとLiPFの含有量を表3のようにした上で、各測定を行った。
(Examples 14 to 56 and Comparative Examples 5 to 10)
Table 3 shows the types of positive electrode active materials, combinations of nonaqueous solvents, 1,3,2-dioxathiolane-2,2-dioxide content, and LiBF 4 and LiPF 6 contents. Went.

初期放電容量において、比較例は140mAh未満であるのに対し、LiBFの含有量が0.05〜0.2mol/Lで、かつ、LiPFの含有量が0.9〜1.5mol/Lである実施例のリチウムイオン二次電池は140mAh以上となり、いずれも十分な初期放電容量を持つことが確認できた。特に、LiBFの含有量が0.08〜0.17mol/Lで、かつ、LiPFの含有量が1.0〜1.3mol/Lである場合、初期放電容量が150mAh以上となり、良好な値を示した。 In the initial discharge capacity, the comparative example is less than 140 mAh, whereas the content of LiBF 4 is 0.05 to 0.2 mol / L and the content of LiPF 6 is 0.9 to 1.5 mol / L. The lithium ion secondary batteries of the examples were 140 mAh or more, and it was confirmed that all had sufficient initial discharge capacity. In particular, when the content of LiBF 4 is 0.08 to 0.17 mol / L and the content of LiPF 6 is 1.0 to 1.3 mol / L, the initial discharge capacity is 150 mAh or more, which is favorable. The value is shown.

特に、正極活物質がβ−LiVOPOの場合には、LiFePOと比較して、より大きな初期放電容量を示し、正極活物質がLiNi1/3Co1/3Mn1/3やLiNi0.8Co0.15Al0.05の層状リチウム化合物と、LiFePOやβ−LiVOPOとの混合物の場合、さらに大きな初期放電容量を示した。 In particular, when the positive electrode active material is β-LiVOPO 4 , it shows a larger initial discharge capacity than LiFePO 4, and the positive electrode active material is LiNi 1/3 Co 1/3 Mn 1/3 O 2 or LiNi. In the case of a mixture of a layered lithium compound of 0.8 Co 0.15 Al 0.05 O 2 and LiFePO 4 or β-LiVOPO 4 , a larger initial discharge capacity was exhibited.

2C放電容量においては、比較例は75%未満であるのに対し、LiBFの含有量が0.05〜0.2mol/Lで、かつ、LiPFの含有量が0.9〜1.5mol/Lである実施例のリチウムイオン二次電池は75%以上となり、いずれも十分な2C放電容量を持つことが確認できた。特に、LiBFの含有量が0.1〜0.15mol/Lで、かつ、LiPFの含有量が1.0〜1.2mol/Lである場合、2C放電容量が85%以上となり、良好な値を示した。 In the 2C discharge capacity, the comparative example is less than 75%, whereas the content of LiBF 4 is 0.05 to 0.2 mol / L and the content of LiPF 6 is 0.9 to 1.5 mol. The lithium ion secondary battery of the example of / L was 75% or more, and it was confirmed that all had sufficient 2C discharge capacity. In particular, when the content of LiBF 4 is 0.1 to 0.15 mol / L and the content of LiPF 6 is 1.0 to 1.2 mol / L, the 2C discharge capacity is 85% or more, which is good Showed a good value.

特に、1,3,2−ジオキサチオラン−2,2−ジオキシドを含む場合、2C放電容量が大きくなる傾向が確認された。   In particular, when 1,3,2-dioxathiolane-2,2-dioxide was included, a tendency for the 2C discharge capacity to increase was confirmed.

Figure 2016085837
Figure 2016085837

(実施例57〜59)
次に、負極に酸化シリコンを含む場合の特性を確認するため、当該負極を作製した。その負極活物質として酸化シリコン(18重量%)と人造黒鉛(65質量%)、導電助剤としてカーボンブラック(5質量%)、結着剤としてポリイミド(12質量%)を混合し、溶剤のN−メチル−2−ピロリドン中に分散させ、スラリーを得た。得られたスラリーをドクターブレード法により集電体である電解銅箔に塗布し、110℃で乾燥させた。さらにポリイミドを硬化させるため真空中にて約320℃まで加熱し、冷却後圧延を行い、負極を得た。
(Examples 57 to 59)
Next, in order to confirm the characteristics when silicon oxide was included in the negative electrode, the negative electrode was produced. Silicon oxide (18% by weight) and artificial graphite (65% by weight) as the negative electrode active material, carbon black (5% by weight) as the conductive additive, and polyimide (12% by weight) as the binder are mixed, and the solvent N -Disperse in methyl-2-pyrrolidone to obtain a slurry. The obtained slurry was applied to an electrolytic copper foil as a current collector by a doctor blade method and dried at 110 ° C. Furthermore, in order to harden a polyimide, it heated to about 320 degreeC in the vacuum, rolled after cooling, and obtained the negative electrode.

このようにして得た負極と、LiFePO正極とを用いた積層体に、表4に示すような溶媒の組み合わせとLiBFとLiPF含有量の非水電解液を加え、実施例57〜59のリチウムイオン二次電池を作製し、各測定を行った。 A combination of the solvent as shown in Table 4 and a nonaqueous electrolyte solution containing LiBF 4 and LiPF 6 were added to the laminate using the negative electrode thus obtained and the LiFePO 4 positive electrode. Examples 57 to 59 A lithium ion secondary battery was prepared and each measurement was performed.

実施例57〜59の初期放電容量は140mAh以上、2C放電容量は75%以上となり、いずれも十分な初期放電容量、2C放電容量を持つことが確認できた。つまり、負極に酸化シリコンを含む場合においても、黒鉛のみ含む場合と同様の傾向が得られた。   In Examples 57 to 59, the initial discharge capacity was 140 mAh or more, and the 2C discharge capacity was 75% or more, and it was confirmed that all had sufficient initial discharge capacity and 2C discharge capacity. That is, even when silicon oxide was included in the negative electrode, the same tendency as when only graphite was included was obtained.

Figure 2016085837
Figure 2016085837

10・・・正極、20・・・負極、12・・・正極集電体、14・・・正極活物質層、18・・・セパレータ、22・・・負極集電体、24・・・負極活物質層、30・・・蓄電要素、50・・・ケース、60,62・・・リード、100・・・リチウムイオン二次電池   DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 20 ... Negative electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 22 ... Negative electrode collector, 24 ... Negative electrode Active material layer, 30 ... electricity storage element, 50 ... case, 60, 62 ... lead, 100 ... lithium ion secondary battery

Claims (5)

正極と、負極と、セパレータと、非水溶媒及び電解質を有する非水電解液とを備え、
前記正極には正極活物質としてLiMPO(ただし、0.8≦x≦1.1であり、MはCo、Ni、Mn、Fe、V、VOのうち少なくとも1種を示す)を含み、
前記非水電解液は電解質として含有率が0.05〜0.2mol/LのLiBFと、含有率が0.9〜1.5mol/LのLiPFとを含むことを特徴とするリチウムイオン二次電池。
A positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte solution having a nonaqueous solvent and an electrolyte,
The positive electrode contains Li x MPO 4 (provided that 0.8 ≦ x ≦ 1.1, and M represents at least one of Co, Ni, Mn, Fe, V, and VO) as a positive electrode active material. ,
The non-aqueous electrolyte contains LiBF 4 having a content of 0.05 to 0.2 mol / L and LiPF 6 having a content of 0.9 to 1.5 mol / L as electrolytes. Secondary battery.
前記正極活物質はLiFePOであることを特徴とする請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the positive electrode active material is LiFePO 4 . 前記正極活物質はβ−LiVOPOであることを特徴とする請求項1に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the positive electrode active material is β-LiVOPO 4 . 前記正極には正極活物質として、さらに層状リチウム化合物を含むことを特徴とする請求項1〜3のいずれか一項に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 1 to 3, wherein the positive electrode further contains a layered lithium compound as a positive electrode active material. 前記非水電解液として、さらに式(1)で表される1,3,2−ジオキサチオラン−2,2−ジオキシドを含むことを特徴とする請求項1〜4のいずれか一項に記載のリチウムイオン二次電池。
Figure 2016085837
The lithium according to claim 1, further comprising 1,3,2-dioxathiolane-2,2-dioxide represented by the formula (1) as the non-aqueous electrolyte. Ion secondary battery.
Figure 2016085837
JP2014217149A 2014-10-24 2014-10-24 Lithium ion secondary battery Pending JP2016085837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014217149A JP2016085837A (en) 2014-10-24 2014-10-24 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014217149A JP2016085837A (en) 2014-10-24 2014-10-24 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2016085837A true JP2016085837A (en) 2016-05-19

Family

ID=55973182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014217149A Pending JP2016085837A (en) 2014-10-24 2014-10-24 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2016085837A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065287A1 (en) * 2017-09-26 2019-04-04 Tdk株式会社 Lithium ion secondary battery
JPWO2019065288A1 (en) * 2017-09-26 2019-12-19 Tdk株式会社 Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
WO2023276863A1 (en) * 2021-06-29 2023-01-05 株式会社Gsユアサ Non-aqueous electrolyte power storage element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185931A (en) * 2002-12-02 2004-07-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2010123265A (en) * 2008-11-17 2010-06-03 Sony Corp Secondary battery
JP2010218822A (en) * 2009-03-16 2010-09-30 Tdk Corp Method for manufacturing active material, active material, electrode, and lithium-ion secondary battery
JP2011134547A (en) * 2009-12-24 2011-07-07 Fuji Heavy Ind Ltd Lithium ion secondary battery
JP2013101919A (en) * 2011-10-14 2013-05-23 National Institute Of Advanced Industrial & Technology Collector material for power storage device and production method therefor, electrode for power storage device, and power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185931A (en) * 2002-12-02 2004-07-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2010123265A (en) * 2008-11-17 2010-06-03 Sony Corp Secondary battery
JP2010218822A (en) * 2009-03-16 2010-09-30 Tdk Corp Method for manufacturing active material, active material, electrode, and lithium-ion secondary battery
JP2011134547A (en) * 2009-12-24 2011-07-07 Fuji Heavy Ind Ltd Lithium ion secondary battery
JP2013101919A (en) * 2011-10-14 2013-05-23 National Institute Of Advanced Industrial & Technology Collector material for power storage device and production method therefor, electrode for power storage device, and power storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065287A1 (en) * 2017-09-26 2019-04-04 Tdk株式会社 Lithium ion secondary battery
JPWO2019065288A1 (en) * 2017-09-26 2019-12-19 Tdk株式会社 Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
US11335955B2 (en) 2017-09-26 2022-05-17 Tdk Corporation Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using same
WO2023276863A1 (en) * 2021-06-29 2023-01-05 株式会社Gsユアサ Non-aqueous electrolyte power storage element

Similar Documents

Publication Publication Date Title
JP5664685B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP6484995B2 (en) Lithium ion secondary battery
KR20170031141A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
JP2014049294A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
EP3404763B1 (en) Electricity storage element
JP2016085836A (en) Nonaqueous liquid electrolyte for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2019077919A1 (en) Manufacturing method of non-aqueous electrolyte storage element and non-aqueous electrolyte storage element
JP5708597B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP2016085837A (en) Lithium ion secondary battery
JP5556554B2 (en) Nonaqueous electrolyte secondary battery
JP5708598B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5614433B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP7137757B2 (en) Non-aqueous electrolyte storage element
JP6031965B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP5655828B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5846031B2 (en) Lithium ion secondary battery and non-aqueous electrolyte
JP7528418B2 (en) Nonaqueous electrolyte storage element and method for producing the same
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
KR101502657B1 (en) Cathode active material for high power secondary battery
JP2015125949A (en) Lithium ion secondary battery
JP2018133335A (en) Nonaqueous electrolyte battery
JP5614432B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181206