Nothing Special   »   [go: up one dir, main page]

JP2016078060A - Weld joint of duplex stainless steel and method for production thereof - Google Patents

Weld joint of duplex stainless steel and method for production thereof Download PDF

Info

Publication number
JP2016078060A
JP2016078060A JP2014210306A JP2014210306A JP2016078060A JP 2016078060 A JP2016078060 A JP 2016078060A JP 2014210306 A JP2014210306 A JP 2014210306A JP 2014210306 A JP2014210306 A JP 2014210306A JP 2016078060 A JP2016078060 A JP 2016078060A
Authority
JP
Japan
Prior art keywords
stainless steel
welding
ferrite
duplex stainless
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014210306A
Other languages
Japanese (ja)
Other versions
JP6038093B2 (en
Inventor
井上 裕滋
Hiroshige Inoue
裕滋 井上
雄介 及川
Yusuke Oikawa
雄介 及川
一幸 才田
Kazuyuki Saida
一幸 才田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2014210306A priority Critical patent/JP6038093B2/en
Publication of JP2016078060A publication Critical patent/JP2016078060A/en
Application granted granted Critical
Publication of JP6038093B2 publication Critical patent/JP6038093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a weld joint recovering the corrosion resistance of the area heated at high temperature of approx. 1,100°C or higher as the highest arrival temperature in the weld heat affected zone formed by welding a duplex stainless steel, and having excellent corrosion resistance in a corrosive environment.SOLUTION: A weld joint comprises the duplex stainless steel material which contains 20 mass% or more of Cr and 0.1 mass% or more of N in a chemical composition, comprises two phases of ferrite and austenite, and satisfies the expression: 0.0092×Q/h≤L≤0.029×Q/h-1, when defining the board thickness of the duplex stainless steel material as h (mm), and defining the distance between the melting boundaries of re-welded metal and initial weld joint after re-welding the welded metal with the heat input amount Q (J/mm) as L (mm).SELECTED DRAWING: Figure 3

Description

本発明は、船舶、海洋構造物、橋梁、海水ポンプ、海水淡水化装置などの耐海水性、耐海塩粒子性が要求される環境下で使用される溶接構造物、及び化学プラント、食品製造プラントなどの耐塩化物性が要求される環境下で使用される溶接構造物の組立に用いられる二相ステンレス鋼において、溶接熱影響部が腐食環境下で鋼材と同等以上の耐食性を有する二相ステンレス鋼の溶接継手、およびその製造方法に関するものである。   The present invention relates to a welded structure used in an environment where seawater resistance and sea salt particle resistance are required, such as a ship, an offshore structure, a bridge, a seawater pump, and a seawater desalination device, and a chemical plant, food production. Duplex stainless steel used for assembling welded structures used in environments where chloride resistance is required, such as in plants, where the heat affected zone has corrosion resistance equivalent to or better than steel in a corrosive environment The present invention relates to a welded joint of steel and a method for manufacturing the same.

二相ステンレス鋼は、Cr、Ni、Mo、Nを主要元素とし、フェライトとオーステナイトの二相組織とした、高強度・高耐食ステンレス鋼である。また、二相ステンレス鋼は、近年のNi、Moの高騰により、Ni量、Mo量を極力低減した廉価型二相ステンレス鋼(例えば、特許文献1)が開発されており、ステンレス鋼の主流であるオーステナイト系ステンレス鋼と同等の特性を有しつつ、合金コストが低く、かつ価格変動が少ないステンレス鋼として注目を浴びている。   The duplex stainless steel is a high-strength and highly corrosion-resistant stainless steel having Cr, Ni, Mo, and N as main elements and a two-phase structure of ferrite and austenite. In addition, as for duplex stainless steel, low-cost duplex stainless steel (for example, Patent Document 1) in which the amount of Ni and the amount of Mo is reduced as much as possible has been developed due to the recent rise in Ni and Mo. It has attracted attention as a stainless steel that has the same characteristics as a certain austenitic stainless steel, has a low alloy cost, and has little price fluctuation.

一方、近年、船舶、海洋構造物、橋梁、海水ポンプ、海水淡水化装置などの耐海水性、耐海塩粒子性、及び種々の化学プラント、食品製造プラントなどの耐塩化物性が要求される苛酷な腐食環境に耐えられる耐食材料として、二相ステンレス鋼の需要が増加しつつある。   On the other hand, in recent years, seawater resistance, sea salt particle resistance, such as ships, offshore structures, bridges, seawater pumps, seawater desalination equipment, and various chemical plants, food manufacturing plants, etc., which are demanded of chloride resistance As a corrosion resistant material that can withstand a corrosive environment, the demand for duplex stainless steel is increasing.

ところで、二相ステンレス鋼を溶接施工して鋼構造物を建造する場合、その多くが、耐食性維持の観点から溶接後の後熱処理は施さず、溶接のままで使用される。特に、溶接金属は凝固のままになるため、同組成の鋼材に比べてフェライト量が多くなり、耐食性が低下することが知られている。これを回避するために、二相ステンレス鋼の溶接では、Ni量を増加させた溶接材料が一般的に使用され、さらに、溶接金属の結晶粒を微細化させて靭性・延性、耐食性を向上させる溶接材料も開発されている(特許文献2)。ここで、フェライト量とは、特に断りのない限り本明細書においてフェライト相の相分率を示す。   By the way, when constructing a steel structure by welding the duplex stainless steel, many of them are used as they are without being subjected to post heat treatment after welding from the viewpoint of maintaining corrosion resistance. In particular, since the weld metal remains solidified, it is known that the amount of ferrite increases compared to a steel material having the same composition, and the corrosion resistance decreases. In order to avoid this, welding of duplex stainless steel generally uses a welding material with an increased amount of Ni, and further refines the crystal grain of the weld metal to improve toughness, ductility and corrosion resistance. Welding materials have also been developed (Patent Document 2). Here, the amount of ferrite indicates the phase fraction of the ferrite phase in the present specification unless otherwise specified.

溶接熱影響部については、鋼材と同組成のままであるが、溶接熱履歴によって組織が変化し、耐食性が低下する。溶接時に、最高到達温度が約1100℃以下の領域の組織は、熱影響を受けていない鋼材部分(母材部)の組織とほとんど変化はないが、フェライト粒界にフィルム状のクロム窒化物が析出して耐食性が低下する場合がある。この温度領域に加熱される溶接熱影響部の耐食性の改善には、Ni、Nなどの合金元素量を調整して窒化物析出温度を低下させることが有効である(特許文献3)。   The weld heat affected zone remains the same composition as the steel material, but the structure changes due to the welding heat history, and the corrosion resistance decreases. At the time of welding, the structure of the region where the maximum reached temperature is about 1100 ° C. or less is almost the same as the structure of the steel part (base material part) that is not affected by heat, but film-like chromium nitride is present at the ferrite grain boundaries. It may precipitate and corrosion resistance may fall. In order to improve the corrosion resistance of the weld heat affected zone heated to this temperature region, it is effective to adjust the amount of alloy elements such as Ni and N to lower the nitride precipitation temperature (Patent Document 3).

一方、溶接時の最高到達温度が約1100℃以上の高温になった領域(以下、本明細書において「高温熱影響部」と呼ぶ。)は、一旦フェライト単相となった後に、冷却されるため、冷却過程でフェライト粒界に針状のオーステナイトが析出して、フェライトとオーステナイトの二相組織となる。しかし、溶接時の冷却速度が比較的大きいため、オーステナイトの析出が抑制される。したがって、高温熱影響部の組織は、母材部の組織とは大きく異なり、フェライト粒が粗大化するとともに、フェライト量が極めて多くなる。   On the other hand, the region where the maximum temperature reached during welding is a high temperature of about 1100 ° C. or higher (hereinafter referred to as “high temperature heat affected zone” in this specification) is cooled after it once becomes a ferrite single phase. For this reason, acicular austenite precipitates at the ferrite grain boundary during the cooling process, resulting in a two-phase structure of ferrite and austenite. However, since the cooling rate during welding is relatively large, precipitation of austenite is suppressed. Therefore, the structure of the high-temperature heat-affected zone is greatly different from that of the base material, and the ferrite grains become coarse and the amount of ferrite becomes extremely large.

また、炭素や窒素はオーステナイト中での固溶度は大きいが、フェライト中での固溶度は極めて小さいため、高温熱影響部では、フェライト量が多く、固溶しきれなくなった炭素や窒素がクロム炭窒化物として、フェライト粒内に微細析出する。このように微細析出したクロム炭窒化物の周囲ではクロム欠乏層が形成され、耐食性が低下する。これを改善する方法としては、溶接後に加熱設備において溶体化熱処理を施すことが開示されている(特許文献4、5)。しかしながら、これらの方法は、大型溶接構造物の場合、溶接施工効率が悪く、コスト面からも有効な方法とは言えない。   Carbon and nitrogen have a high solid solubility in austenite, but since the solid solubility in ferrite is very small, the high temperature heat-affected zone has a large amount of ferrite, and carbon and nitrogen that cannot be completely dissolved are present. As chromium carbonitride, it precipitates finely in ferrite grains. Thus, a chromium-deficient layer is formed around the finely precipitated chromium carbonitride, and the corrosion resistance is lowered. As a method for improving this, it is disclosed that solution heat treatment is performed in a heating facility after welding (Patent Documents 4 and 5). However, in the case of a large-sized welded structure, these methods have poor welding construction efficiency and cannot be said to be effective methods from the viewpoint of cost.

このような加熱設備を用いることなく、溶接熱影響部に熱処理を施す方法として、テンパービード法が知られている(特許文献6、7)。テンパービード法は、炭素鋼を補修溶接した際に形成される硬化部の靭性を回復する方法であり、対象物表面に所定の溶接ワイヤを用いて初層を溶接した後、その初層上に残層を重ねて溶接し、この残層溶接の溶接熱によって焼き戻すことで、鋼材中に発生した硬化による靭性劣化を回復するものである。   A temper bead method is known as a method for performing a heat treatment on a welding heat-affected zone without using such heating equipment (Patent Documents 6 and 7). The temper bead method is a method for recovering the toughness of the hardened part formed when repair welding carbon steel.After welding the first layer to the surface of the object using a predetermined welding wire, The remaining layers are stacked and welded, and tempered by the welding heat of this remaining layer welding to recover toughness deterioration due to hardening generated in the steel material.

国際公開第2002/027056号International Publication No. 2002/027056 特許第4531118号公報Japanese Patent No. 4531118 特開2012−197509号公報JP 2012-197509 A 特開昭59−229414号公報JP 59-229414 A 特開昭60−2384323号公報JP 60-2384323 A 特開2000−271742号公報JP 2000-271742 A 特開2012−115886号公報JP 2012-115886 A

前述したように、二相ステンレス鋼を溶接した場合、耐食性劣化が懸念される部位は2つある。溶接金属部分と熱影響部のうち最高到達温度が1100℃以上の高温に加熱された領域(高温熱影響部)である。
溶接金属部分は、Niを多く添加した溶接材料を用いることにより、溶接金属そのものの耐食性を向上させることができる。一方、高温熱影響部の耐食性を向上させるためには、その組織を制御する必要があり、その有効な手段はない。従来のテンパービード法は、初層溶接で母材が焼入れ硬化した部分を、残層溶接の溶接熱で焼き戻しするものであり、組織を制御するような観点に立っていない。そのため、本発明は、二相ステンレス鋼の溶接において、高温熱影響部の組織を制御して耐食性を改善することを課題とする。そして、この課題を解決することにより腐食環境下で優れた耐食性を有する二相ステンレス鋼溶接継手、及び、それを得るための二相ステンレス鋼の溶接方法を提供することを目的とする。
As described above, when duplex stainless steel is welded, there are two sites where corrosion resistance is a concern. It is the area | region (high temperature heat affected zone) heated to high temperature whose highest reached temperature is 1100 degreeC or more among a weld metal part and a heat affected zone.
The weld metal portion can improve the corrosion resistance of the weld metal itself by using a welding material to which a large amount of Ni is added. On the other hand, in order to improve the corrosion resistance of the high temperature heat affected zone, it is necessary to control the structure, and there is no effective means. The conventional temper bead method involves tempering a portion of the base material that has been quenched and hardened by the first layer welding with the welding heat of the remaining layer welding, and does not stand from the viewpoint of controlling the structure. Therefore, an object of the present invention is to improve the corrosion resistance by controlling the structure of the high-temperature heat-affected zone in welding of duplex stainless steel. And it aims at providing the welding method of the duplex stainless steel for obtaining the duplex stainless steel welded joint which has the outstanding corrosion resistance in a corrosive environment by solving this subject, and obtaining it.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、以下の知見を得た。
(a)通常の二相ステンレス鋼の溶接では、溶接熱影響部のうち最高到達温度が約1100℃以上の高温に加熱された領域(高温熱影響部)は、溶融境界線(溶接金属とステンレス鋼の境界線)から1mm程度の範囲に含まれることを見出した。なお、溶融境界線から1mmの範囲とは、ステンレス鋼内であって、溶接継手の溶接線に垂直な断面において、溶融境界線に対し垂直に1mm以内の範囲のことをいう。
As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge.
(A) In ordinary duplex stainless steel welding, a region heated to a high temperature of about 1100 ° C. or higher among the heat affected zone (high temperature heat affected zone) is a fusion boundary line (welded metal and stainless steel). It was found to be included in a range of about 1 mm from the boundary line of the steel. In addition, the range of 1 mm from the melting boundary line means a range within 1 mm perpendicular to the melting boundary line in the cross section perpendicular to the welding line of the weld joint in the stainless steel.

(b)二相ステンレス鋼の成分において、Cr:20%以上、N:0.1%以上(いずれも質量%)であれば、高温熱影響部を700℃〜1000℃で熱処理することにより、フェライト量を抑えることができ、結果として耐食性が向上することを見出した。 (B) In the component of duplex stainless steel, if Cr: 20% or more, N: 0.1% or more (both mass%), by heat-treating the high-temperature heat-affected zone at 700 ° C to 1000 ° C, It has been found that the amount of ferrite can be suppressed, and as a result, the corrosion resistance is improved.

(c)高温熱影響部を700℃〜1000℃で熱処理するため、溶接金属部を再溶接し、その溶接入熱と再溶接位置を限定することにより、実現できることを見出した。 (C) In order to heat-treat the high-temperature heat-affected zone at 700 ° C. to 1000 ° C., it was found that this can be realized by re-welding the weld metal portion and limiting the welding heat input and re-welding position.

本発明は、上記知見を基に成されたものであり、その要旨とするところは以下の通りである。
(1) 少なくとも一方が、質量%で、Cr:20%以上、N:0.1%以上を含有し、組織がフェライトとオーステナイトからなる二相ステンレス鋼である溶接継手であって、当該継手を構成する溶接金属上に少なくとも1回再溶接がなされ、前記ステンレス鋼内であって、前記継手を構成する溶接金属とスレンテス鋼の境界である溶融境界線から1mm以内の高温熱影響部におけるフェライト相の相分率が体積%で70%未満であることを特徴とする二相ステンレス鋼溶接継手。
(2)前記溶接継手が、質量%で、Cr:20%以上、N:0.1%以上を含有し、組織がフェライトとオーステナイトからなる二相ステンレス鋼同士を溶接したものであることを特徴とする(1)に記載の二相ステンレス鋼溶接継手。
(3) 前記溶接継手において、前記高温熱影響部の限界孔食発生温度が、溶接前の前記ステンレス鋼の限界孔食発生温度以上であることを特徴とする(1)または(2)に記載の二相ステンレス鋼溶接継手。
(4)少なくとも一方が、質量%で、Cr:20%以上、N:0.1%以上を含有し、組織がフェライトとオーステナイトからなる二相ステンレス鋼である溶接継手の製造方法であって、当該継手を構成する溶接金属上に少なくとも1回再溶接し、再溶接の入熱量をQ(J/mm)、前記継手を構成する溶接金属と再溶接による溶接金属との境界線と前記継手を構成する溶接金属と前記スレンテス鋼の境界である溶融境界線との最も短い距離をL(mm)、前記ステンレス鋼の板厚をh(mm)としたとき、
0.0092×Q/h≦L≦0.029×Q/h−1となることを特徴とする二相ステンレス鋼溶接継手の製造方法。
(5)前記溶接継手が、質量%で、Cr:20%以上、N:0.1%以上を含有し、組織がフェライトとオーステナイトからなる二相ステンレス鋼同士を溶接したものであることを特徴とする(4)に記載の二相ステンレス鋼溶接継手の製造方法。
(6)前記溶接継手において、前記高温熱影響部の限界孔食発生温度が、溶接前の前記ステンレス鋼の限界孔食発生温度以上であることを特徴とする(4)または(5)に記載の二相ステンレス鋼溶接継手の製造方法。
The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
(1) A welded joint in which at least one is mass%, contains Cr: 20% or more, N: 0.1% or more, and is a duplex stainless steel composed of ferrite and austenite. The weld phase is re-welded at least once on the weld metal constituting the ferrite phase in the high-temperature heat-affected zone within the stainless steel and within 1 mm from the melting boundary line that is the boundary between the weld metal constituting the joint and the Slentes steel. A duplex stainless steel welded joint characterized in that the phase fraction of is less than 70% by volume.
(2) The welded joint is characterized by comprising, in mass%, Cr: 20% or more, N: 0.1% or more, and welding two-phase stainless steels whose structure is composed of ferrite and austenite. The duplex stainless steel welded joint according to (1).
(3) In the welded joint, the critical pitting corrosion occurrence temperature of the high temperature heat affected zone is not less than the critical pitting corrosion occurrence temperature of the stainless steel before welding. (1) or (2) Duplex stainless steel welded joint.
(4) At least one of the mass%, Cr: 20% or more, N: 0.1% or more, the structure is a welded joint manufacturing method that is a duplex stainless steel composed of ferrite and austenite, Reweld at least once on the weld metal constituting the joint, Q (J / mm) of the heat input of the reweld, the boundary line between the weld metal constituting the joint and the weld metal by re-welding, and the joint When the shortest distance between the weld metal to be configured and the melting boundary line that is the boundary of the Slentes steel is L (mm), and the thickness of the stainless steel is h (mm),
0.0092 * Q / h <= L <= 0.029 * Q / h-1, It is a manufacturing method of the duplex stainless steel welded joint characterized by the above-mentioned.
(5) The welded joint is characterized in that, in mass%, Cr: 20% or more, N: 0.1% or more is contained, and duplex stainless steels whose structures are composed of ferrite and austenite are welded together. The method for producing a duplex stainless steel welded joint according to (4).
(6) In the weld joint, the critical pitting corrosion temperature of the high temperature heat affected zone is equal to or higher than the critical pitting corrosion temperature of the stainless steel before welding. (4) or (5) Method for producing a duplex stainless steel welded joint.

本発明によれば、二相ステンレス鋼を溶接して形成された溶接熱影響部の中でも、特に、最高到達温度が約1100℃以上の領域の耐食性を向上させ、腐食環境下で溶接部の耐食性を大幅に改善させることができる。   According to the present invention, the corrosion resistance of the welded heat affected zone formed by welding the duplex stainless steel is improved particularly in the region where the highest temperature is about 1100 ° C. or higher, and the corrosion resistance of the welded portion in a corrosive environment. Can be greatly improved.

従来の実施形態の一例を示す突合わせ溶接による溶接継手の断面図を示す図である。It is a figure which shows sectional drawing of the welded joint by the butt welding which shows an example of conventional embodiment. 本発明における高温熱影響部のフェライト量に及ぼす熱処理温度の影響を示す図である。It is a figure which shows the influence of the heat processing temperature which acts on the ferrite content of the high temperature heat affected zone in this invention. 本発明の実施形態の一例を示す突合わせ溶接による溶接継手の断面図を示す図である。It is a figure which shows sectional drawing of the welded joint by the butt welding which shows an example of embodiment of this invention.

本発明者らは、二相ステンレス鋼を溶接して形成された溶接熱影響部の組織、耐食性を詳細に調査、検討した。
その結果、各種二相ステンレス鋼溶接継手において、溶融境界線より一定の距離離れた溶接金属上を再溶接することで、溶融境界線近傍の溶接熱影響部の組織が変化し、耐食性が改善できることを見出した。
以下、本発明について詳細に説明する。なお、本明細書において成分に関する「%」とは、特に明記しない限り「質量%」を意味し、組織に関する各相の相分率で使用する「体積%」と区別される。
The present inventors investigated and examined in detail the structure and corrosion resistance of the weld heat affected zone formed by welding the duplex stainless steel.
As a result, in various duplex stainless steel welded joints, by re-welding the weld metal at a certain distance from the melting boundary line, the structure of the weld heat-affected zone near the melting boundary line changes, and the corrosion resistance can be improved. I found.
Hereinafter, the present invention will be described in detail. In this specification, “%” relating to a component means “mass%” unless otherwise specified, and is distinguished from “volume%” used in the phase fraction of each phase relating to a structure.

まず、本発明が規定する二相ステンレス鋼は、組織と化学組成で限定される。組織は、フェライトとオーステナイトからなる二相ステンレス鋼である。特に、ステンレス鋼の場合、1100℃以上の温度域ではフェライト単相であるが、室温においてはフェライト+オーステナイトの二相組織となる。具体的には、室温でのフェライト量(フェライト相の相分率)が35体積%〜70体積%であって残部はオーステナイト相である。   First, the duplex stainless steel defined by the present invention is limited by the structure and chemical composition. The structure is a duplex stainless steel made of ferrite and austenite. In particular, in the case of stainless steel, a ferrite single phase is formed in a temperature range of 1100 ° C. or higher, but a two-phase structure of ferrite and austenite is formed at room temperature. Specifically, the ferrite content (phase fraction of the ferrite phase) at room temperature is 35% to 70% by volume, and the balance is the austenite phase.

成分は質量%で、Crを20%以上、Nを0.1%以上含有するステンレス鋼である。上記組織を満足すれば、CrおよびN以外の合金元素は特に限定しない。   The component is stainless steel containing 20% or more of Cr and 0.1% or more of N by mass%. If the above structure is satisfied, alloy elements other than Cr and N are not particularly limited.

Crはフェライト生成元素であり、二相ステンレス鋼の主要元素として耐食性の向上に寄与する。しかし、Crの含有量が20%未満では十分な耐食性が得られないため、20%以上に限定した。   Cr is a ferrite-forming element and contributes to the improvement of corrosion resistance as a main element of duplex stainless steel. However, if the Cr content is less than 20%, sufficient corrosion resistance cannot be obtained, so the content is limited to 20% or more.

Nは耐食性向上に有効であると同時に、強力なオーステナイト生成元素である。特に拡散速度が大きく、再分配を起こしやすいため、Nはオーステナイトの析出を促進する。Nの含有量が0.1%未満では十分な耐食性およびオーステナイト析出促進効果が得られないため、0.1%以上に限定した。   N is a powerful austenite-generating element as well as effective in improving corrosion resistance. In particular, N promotes the precipitation of austenite because of its high diffusion rate and easy redistribution. If the N content is less than 0.1%, sufficient corrosion resistance and austenite precipitation promoting effect cannot be obtained, so the content is limited to 0.1% or more.

次に、図1、3を用いて、本発明の実施形態の一例を示す突合わせ溶接による溶接継手を例に、本発明を説明する。なお、本発明では、特に溶接方法を限定するものではなく、TIG溶接、MIG溶接、MAG溶接、プラズマ溶接、サブマージ溶接、レーザー溶接などを適用することができる。また、継手の形状も特に限定するものではない。   Next, the present invention will be described with reference to FIGS. 1 and 3 by taking a welded joint by butt welding as an example of an embodiment of the present invention as an example. In the present invention, the welding method is not particularly limited, and TIG welding, MIG welding, MAG welding, plasma welding, submerged welding, laser welding, and the like can be applied. Further, the shape of the joint is not particularly limited.

二相ステンレス鋼で図1に示すような突合せ溶接継手を作製した場合、溶融境界線3の近傍の溶接熱影響部、特に、最高到達温度が約1100℃以上の領域(高温熱影響部(図1のハッチング領域4))では、粗大なフェライト粒が形成され、そのフェライト粒界からオーステナイトが析出する。しかし、析出するオーステナイト量は少なく、フェライト量が約70体積%以上になる。かつ、フェライト粒内には、微細な析出物が多数観察される。すなわち、溶接熱影響を受けない部位の鋼(母材部)とは全く異なった組織となる。これは、この領域が、溶接時に約1100℃以上に加熱されて、一旦フェライト単相となった後に冷却される際に冷却速度が比較的大きいため、フェライト粒界からのオーステナイトの析出が抑制されたためである。さらに、フェライト量が多くなるために、固溶しきれなくなった炭素や窒素がクロム炭窒化物として、フェライト粒内に微細析出したためである。なお、このように溶接継手の溶接熱影響部において、最高到達温度が1100℃以上になったためフェライト量が約70体積%以上と多く、フェライト粒内に微細なクロム炭窒化物が析出して耐食性が低下する。このような高温熱影響部4は、溶接入熱量によっても変化するが、一般的な溶接では、溶融境界線3より母材側に約1mm以内の領域となる。なお、溶融境界線3とは、溶接継手を構成する溶接金属2とスレンテス鋼の境界である。また、溶融境界線から1mmの範囲とは、ステンレス鋼内であって、溶接継手の溶接線に垂直な断面において、溶融境界線に対し垂直に1mm以内の範囲のことをいう。   When a butt-welded joint as shown in FIG. 1 is made of duplex stainless steel, a weld heat affected zone near the fusion boundary 3, particularly a region where the maximum temperature reached about 1100 ° C. or more (high temperature heat affected zone (see FIG. In the hatching region 1) 1), coarse ferrite grains are formed, and austenite precipitates from the ferrite grain boundaries. However, the amount of precipitated austenite is small, and the amount of ferrite is about 70% by volume or more. Many fine precipitates are observed in the ferrite grains. That is, the structure is completely different from that of the steel (base metal part) at a portion not affected by the welding heat. This is because when this region is heated to about 1100 ° C. or higher during welding and once cooled to a ferrite single phase, the cooling rate is relatively high, so that precipitation of austenite from the ferrite grain boundaries is suppressed. This is because. Furthermore, because the amount of ferrite increases, carbon and nitrogen that cannot be completely dissolved are finely precipitated in the ferrite grains as chromium carbonitride. In this way, in the weld heat-affected zone of the welded joint, since the maximum temperature reached 1100 ° C. or higher, the amount of ferrite is as high as about 70% by volume or more, and fine chromium carbonitride precipitates in the ferrite grains, resulting in corrosion resistance. Decreases. Such a high-temperature heat-affected zone 4 varies depending on the welding heat input, but in general welding, the high-temperature heat-affected zone 4 is a region within about 1 mm from the melting boundary 3 to the base material side. In addition, the fusion boundary line 3 is a boundary between the weld metal 2 and the Slentes steel constituting the weld joint. Moreover, the range of 1 mm from the melting boundary line means a range within 1 mm perpendicular to the melting boundary line in the cross section perpendicular to the welding line of the weld joint in the stainless steel.

すなわち、高温熱影響部4における溶接のままの段階でのフェライトとオーステナイトの相分配は、比較的大きい冷却速度ゆえに、熱力学的に非平衡状態となっている。ところが、この熱力学的に非平衡状態の組織を700℃〜1000℃程度の温度で熱処理した場合、フェライトとオーステナイトの相分率は、平衡状態に近づき、オーステナイトが再析出して、フェライト量が少なくなる(図2)。さらに、Nを0.1%以上含有した二相ステンレス鋼では、Nの拡散速度が大きいために、Nの再分配が起こりやすく、よりオーステナイトが析出し、フェライト量が鋼材(母材部)と同等の35体積%〜70体積%となる。一方、N含有量が0.1%未満の場合は、700℃〜1000℃で熱処理を行ってもフェライト量は約70体積%程度と多いままである。このように、Nの含有量によってフェライト量の減少の程度が異なるため、上述したようにオーステナイトの析出促進効果を十分に発揮させるため、Nの含有量を0.1%以上に限定した。   That is, the phase distribution of ferrite and austenite at the high temperature heat-affected zone 4 as it is welded is thermodynamically non-equilibrium due to the relatively high cooling rate. However, when this thermodynamically non-equilibrium structure is heat-treated at a temperature of about 700 ° C. to 1000 ° C., the phase fraction of ferrite and austenite approaches the equilibrium state, and austenite reprecipitates, and the amount of ferrite increases. Less (Figure 2). Furthermore, in the duplex stainless steel containing 0.1% or more of N, since the diffusion rate of N is large, redistribution of N easily occurs, austenite precipitates more, and the amount of ferrite is steel (base material part). It becomes 35 volume%-70 volume% equivalent. On the other hand, when the N content is less than 0.1%, the amount of ferrite remains as high as about 70% by volume even when heat treatment is performed at 700 ° C. to 1000 ° C. As described above, since the degree of decrease in the ferrite amount varies depending on the N content, as described above, the N content is limited to 0.1% or more in order to sufficiently exhibit the austenite precipitation promoting effect.

しかしながら、Nの含有量が0.1%以上でも、700℃より低温の熱処理および1000℃より高温の熱処理の場合は、フェライト量の変化は少なく、約70体積%以上のままである。これは、700℃より低温の場合は、オーステナイトの析出が困難となり、また、1000℃より高温の場合は、再度フェライト単相域まで加熱されて冷却されるためである。また、700℃〜1000℃程度の熱処理の場合は、オーステナイトが再析出するため、オーステナイト中に炭素や窒素が固溶して、フェライト粒内での炭素および窒素量が減少し、フェライト粒内でのクロム炭窒化物の析出が抑制される。   However, even when the N content is 0.1% or more, in the case of the heat treatment at a temperature lower than 700 ° C. and the heat treatment at a temperature higher than 1000 ° C., the change in the ferrite amount is small and remains about 70% by volume or more. This is because when a temperature is lower than 700 ° C., precipitation of austenite becomes difficult, and when the temperature is higher than 1000 ° C., the ferrite single-phase region is heated again to be cooled. Further, in the case of heat treatment at about 700 ° C. to 1000 ° C., since austenite is reprecipitated, carbon and nitrogen are dissolved in austenite, and the amount of carbon and nitrogen in the ferrite grains is reduced. Precipitation of chromium carbonitride is suppressed.

すなわち、二相ステンレス鋼材1で溶接継手を作製した場合、溶融境界線より約1mm以内の高温熱影響部4の表面、すなわち、最高到達温度が1100℃以上の領域であって、フェライト量が70体積%以上になった溶接熱影響部を、700℃〜1000℃程度に再度加熱することで、フェライト量は鋼材と同程度まで減少し、かつ、フェライト粒内のクロム炭窒化物の析出が抑制されて、耐食性が改善する。   That is, when a welded joint is made of the duplex stainless steel material 1, the surface of the high temperature heat affected zone 4 within about 1 mm from the melting boundary line, that is, the region where the maximum temperature reached 1100 ° C. or more and the ferrite content is 70 By heating the weld heat affected zone that has reached volume% or more to about 700 ° C to 1000 ° C, the amount of ferrite is reduced to the same level as steel, and the precipitation of chromium carbonitride in the ferrite grains is suppressed. As a result, the corrosion resistance is improved.

以上の知見より、本発明では、その700℃〜1000℃程度に再加熱する熱源として、溶接熱を適用することとした。   Based on the above findings, in the present invention, welding heat is applied as the heat source for reheating to about 700 ° C. to 1000 ° C.

一方、このように溶接熱影響部の組織の改質に対し溶接熱を利用する方法としては、溶接熱影響部の硬化域の靭性を回復させることを目的としたテンパービード法がある(特許文献6、7)。しかしながら、このテンパービード法で効果のある対象部位(溶接熱影響部の硬化域)と加熱温度域は、本発明が目的とする溶融境界線より1mm以内の領域を700℃〜1000℃程度に加熱するという条件範囲とは異なる。すなわち、特許文献6、7に記載のテンパービード法を本発明が解決しようとする課題に適用することは困難である。   On the other hand, there is a temper bead method for recovering the toughness of the hardened zone of the weld heat affected zone as a method of using the welding heat for the modification of the structure of the weld heat affected zone (Patent Document). 6, 7). However, the target part effective in this temper bead method (hardening zone of the heat affected zone) and the heating temperature zone are heated to about 700 ° C. to 1000 ° C. within a range of 1 mm from the melting boundary line intended by the present invention. It is different from the condition range of That is, it is difficult to apply the temper bead method described in Patent Documents 6 and 7 to the problem to be solved by the present invention.

すなわち、従来のテンパービード法は、初層溶接で母材が焼入れ硬化した部分を、残層溶接の溶接熱で焼き戻しするものであり、組織を制御するような観点に立っていない。そのため、二相ステンレス鋼の溶接において、高温熱影響部の組織を制御して耐食性を改善するために、テンパービード法は直ぐには適用できない。   That is, the conventional temper bead method involves tempering a portion where the base material has been quenched and hardened by the first layer welding with the welding heat of the remaining layer welding, and is not based on the viewpoint of controlling the structure. Therefore, in the welding of duplex stainless steel, the temper bead method cannot be immediately applied to improve the corrosion resistance by controlling the structure of the high temperature heat affected zone.

また、溶接部を再溶接する方法としては、疲労強度を向上させるために溶接止端部をTIG法でなめ付け溶接または化粧盛り溶接などが広く知られている。しかし、これらの方法は、溶接部形状を改善することを目的としたものであり、二相ステンレス鋼の溶接熱影響部の耐食性を改善することは困難である。すなわち、二相ステンレス鋼の溶接部をこのなめ付け溶接や化粧盛り溶接で再溶接することで、新たな溶接熱影響部が形成され、その部位(なめ付け溶接や化粧盛り溶接の溶融境界線より1mm以内の領域)の耐食性が低下するためである。   Further, as a method of re-welding the welded portion, tanning welding or face-to-face welding of the weld toe portion by the TIG method is widely known in order to improve fatigue strength. However, these methods are intended to improve the welded portion shape, and it is difficult to improve the corrosion resistance of the weld heat affected zone of the duplex stainless steel. In other words, by re-welding the welded part of duplex stainless steel by this tanning welding or face welding, a new weld heat affected zone is formed, and the part (from the melting boundary line of tanning welding or face welding) This is because the corrosion resistance of the region within 1 mm is lowered.

そこで本発明では、図3に示すように、溶接金属6上に再度溶接を行い(以下、再溶接と呼ぶ。)、初期の溶接継手(以下、最初の溶接継手をこのように呼ぶ。)の溶接熱影響部の表面の組織および耐食性を調査した。再溶接金属(再溶接により生成した溶接金属)8の溶接位置について、初期の溶接継手の溶融境界線9と再溶接金属8の溶融境界線10(継手を構成する初期の溶接金属と再溶接金属との境界線。)との最短距離Lをパラメータとして種々検討を行った。その結果、Lが小さい場合は、初期の溶接継手において耐食性が低下した高温熱影響部7が再溶接によって再度1100℃以上のフェライト単相域まで加熱されてしまい、フェライト量が多いままとなる。逆に、Lが大きい場合は、高温熱影響部が、再溶接からの溶接熱によっても所定の700℃〜1000℃まで加熱されず、それ以下の温度域にしか加熱されないため、フェライト量に変化は見られず、いずれも耐食性の改善は見られない。すなわち、初期の溶接継手の溶接熱影響部において溶融境界線より1mm以内の領域、すなわち高温熱影響部7の表面を700℃〜1000℃に再加熱して、耐食性を改善するには、再溶接の溶接位置に適正範囲が存在することが明らかとなった。一方、再溶接における熱履歴もその溶接入熱量と板厚によって変化するため、それらが再溶接の溶接位置の適正範囲に影響を与える。   Therefore, in the present invention, as shown in FIG. 3, welding is performed again on the weld metal 6 (hereinafter referred to as re-welding), and the initial welded joint (hereinafter referred to as the first welded joint in this manner). The surface structure and corrosion resistance of the weld heat affected zone were investigated. Regarding the welding position of the re-welded metal (welded metal generated by re-welding), the molten boundary line 9 of the initial welded joint and the molten boundary line 10 of the re-welded metal 8 (the initial weld metal and the re-welded metal constituting the joint) Various studies were conducted using the shortest distance L to the parameter as a parameter. As a result, when L is small, the high-temperature heat-affected zone 7 whose corrosion resistance has deteriorated in the initial welded joint is heated again to the ferrite single phase region of 1100 ° C. or higher by re-welding, and the amount of ferrite remains large. Conversely, when L is large, the high-temperature heat-affected zone is not heated to a predetermined 700 ° C. to 1000 ° C. even by welding heat from re-welding, and is only heated to a temperature range below that, so the amount of ferrite changes. No improvement was observed in corrosion resistance. That is, in order to improve the corrosion resistance by reheating the region within 1 mm from the melting boundary line in the weld heat affected zone of the initial welded joint, that is, the surface of the high temperature heat affected zone 7 to 700 ° C. to 1000 ° C. It was revealed that there is an appropriate range for the welding position. On the other hand, since the heat history in re-welding also changes depending on the welding heat input and the plate thickness, they affect the appropriate range of the welding position for re-welding.

そこで、初期の溶接継手の溶融境界線9と再溶接金属の溶融境界線10との距離Lの適性範囲を、再溶接の溶接入熱量Qと板厚hとして、耐食性を改善するために高温熱影響部の表面が700℃〜1000℃になるように熱伝導解析を行い検討した。その結果、初期の溶接継手の溶融境界線と再溶接金属の溶融境界線との距離Lが0.0092×Q/h(mm)より小さい場合は、高温熱影響部が、再度1100℃以上のフェライト単相域まで加熱されるため、フェライト量は多いままであり、耐食性は改善されないことを見出した。同様に熱伝導解析の結果、初期の溶接継手の溶融境界線と再溶接金属の溶融境界線との距離Lが0.029×Q/h−1(mm)より大きい場合は、高温熱影響部が700℃まで加熱されないため、フェライト量は多いままであり、耐食性の改善は見られないことも見出した。したがって、
0.0092×Q/h ≦ L ≦ 0.029×Q/h−1 ・・・・・(式1)
を満たすことが、高温熱影響部7の表面の耐食性を改善するための再溶接金属8の適正な溶接位置の要件であることを見出した。
ここで、初期の溶接継手の溶融境界線と再溶接金属の溶融境界線との距離Lの単位はmm、板厚hの単位はmm、溶接入熱量Qの単位はJ/mmであり、溶接入熱量Qは以下の(式2)で規定されるものである。
溶接入熱量Q(J/mm)=溶接電流I(A)×溶接電圧V(V)/溶接速度v(mm/秒)・・(式2)
Therefore, the appropriate range of the distance L between the molten boundary line 9 of the initial welded joint and the molten boundary line 10 of the re-welded metal is set as the welding heat input Q and the plate thickness h of the re-welding to improve the corrosion resistance. A heat conduction analysis was conducted so that the surface of the affected part was 700 ° C to 1000 ° C. As a result, when the distance L between the melting boundary line of the initial welded joint and the melting boundary line of the re-welded metal is smaller than 0.0092 × Q / h (mm), the high temperature heat affected zone is 1100 ° C. or higher again. It was found that the amount of ferrite remains large and the corrosion resistance is not improved because it is heated to the ferrite single phase region. Similarly, if the distance L between the melting boundary line of the initial welded joint and the melting boundary line of the re-welded metal is larger than 0.029 × Q / h-1 (mm) as a result of the heat conduction analysis, the high temperature heat affected zone However, since it was not heated to 700 ° C., the amount of ferrite remained large, and it was also found that no improvement in corrosion resistance was observed. Therefore,
0.0092 × Q / h ≦ L ≦ 0.029 × Q / h−1 (Formula 1)
It has been found that satisfying this is a requirement for an appropriate welding position of the re-welded metal 8 in order to improve the corrosion resistance of the surface of the high-temperature heat-affected zone 7.
Here, the unit of the distance L between the melting boundary line of the initial welded joint and the melting boundary line of the re-welded metal is mm, the unit of the plate thickness h is mm, and the unit of the welding heat input Q is J / mm. The amount of heat input Q is defined by the following (Formula 2).
Weld heat input Q (J / mm) = Welding current I (A) × Welding voltage V (V) / Welding speed v (mm / sec) (2)

なお、図3は初期の溶接継手の右側の溶接熱影響部の耐食性を改善する場合を示しており、初期の溶接継手の左側の溶接熱影響部の耐食性を改善する場合は、初期の溶接継手の左側の溶融境界線を基準として、再溶接金属の位置を設定することとなる。   FIG. 3 shows a case where the corrosion resistance of the weld heat affected zone on the right side of the initial welded joint is improved. When the corrosion resistance of the weld heat affected zone on the left side of the initial welded joint is improved, the initial welded joint is shown in FIG. The position of the re-welded metal is set with reference to the left melting boundary line.

本発明に係る再溶接方法は特に限定されず、TIG溶接、MIG溶接、MAG溶接、プラズマ溶接、サブマージ溶接、レーザー溶接などを適用することができる。使用する溶接材料も特に限定する必要はないが、継手製造する際の溶接材料と同じにすることが好ましい。同じ溶接材料にすることにより、溶接金属部の耐食性を維持できるからである。また、TIG溶接やレーザー溶接では、溶接材料を用いずに溶接しても構わない。さらに、初期の溶接継手の形状も突合せ継手の他にすみ肉継手など、特に限定するものではない。上述の(式1)(式2)で規定する溶接位置に再溶接することにより、初期の溶接継手における溶接熱影響部の組織を改善し、耐食性に優れた二相ステンレス鋼の溶接継手が得られる。   The re-welding method according to the present invention is not particularly limited, and TIG welding, MIG welding, MAG welding, plasma welding, submerged welding, laser welding, and the like can be applied. The welding material to be used is not particularly limited, but is preferably the same as the welding material used for manufacturing the joint. This is because the corrosion resistance of the weld metal part can be maintained by using the same welding material. In TIG welding or laser welding, welding may be performed without using a welding material. Further, the shape of the initial welded joint is not particularly limited, such as a fillet joint in addition to the butt joint. By re-welding to the welding position specified by (Equation 1) and (Equation 2) above, the structure of the weld heat affected zone in the initial welded joint is improved, and a welded joint of duplex stainless steel with excellent corrosion resistance is obtained. It is done.

以下、実施例にて本発明を説明する。
表1に母材として用いた各種二相ステンレス鋼材の化学組成、フェライト量およびASTM G48 Method E規定に準拠し、塩化第二鉄浸漬試験により測定した限界孔食発生温度(CPT)を示す。また、表2には、二相ステンレス鋼用溶接材料の化学組成を示す。表1の二相ステンレス鋼材の突合せ端部に、開先角度:60゜のV開先を設け、表2に示す溶接材料を用い、表3に示す溶接方法、溶接条件にて図1に示す溶接継手を作製した。その組み合わせを表4の「初期の溶接継手」の欄に示す。また、表4の「初期の溶接継手」の欄には、各溶接継手の溶接熱影響部において、鋼材の組織と異なり、粗大なフェライト粒が形成されて、最高到達温度が1100℃以上と推定される領域の幅およびその領域のフェライト量を併せて示す。なお、これら熱影響部の組織の情報は、溶接継手の断面を鏡面研磨し、水酸化ナトリウム溶液中で電解エッチングを行った後、光学顕微鏡観察および画像解析を行うことにより評価した。次に、このように作製した各溶接継手について、その溶接金属上に図3に示すように、再溶接を行った。再溶接の溶接方法、溶接条件および溶接位置(初期の溶接継手の溶融境界線と再溶接金属の溶融境界線との距離L(図3に示すLと同じ。))を表4の「再溶接」の欄に示す。なお、再溶接における溶接材料は、初期の溶接継手の溶接材料と同じとした。
Hereinafter, the present invention will be described with reference to examples.
Table 1 shows the critical pitting corrosion temperature (CPT) measured by a ferric chloride immersion test in accordance with the chemical composition, ferrite content, and ASTM G48 Method E regulations of various duplex stainless steel materials used as a base material. Table 2 shows the chemical composition of the welding material for duplex stainless steel. FIG. 1 shows the welding method and welding conditions shown in Table 3 using a V groove having a groove angle of 60 ° at the butt end of the duplex stainless steel material shown in Table 1 and using the welding material shown in Table 2. A welded joint was produced. The combinations are shown in the column of “Initial Welded Joint” in Table 4. Also, in the column of “Initial weld joint” in Table 4, in the weld heat affected zone of each weld joint, unlike the steel structure, coarse ferrite grains are formed, and the maximum ultimate temperature is estimated to be 1100 ° C. or higher. The width of the region to be processed and the amount of ferrite in the region are also shown. The information on the structure of the heat-affected zone was evaluated by mirror-polishing the cross section of the welded joint, performing electrolytic etching in a sodium hydroxide solution, and then performing optical microscope observation and image analysis. Next, as shown in FIG. 3, re-welding was performed on each welded joint thus produced on the weld metal. Reweld welding method, welding conditions, and welding position (distance L between the melting boundary line of the initial welded joint and the melting boundary line of the rewelded metal (same as L shown in FIG. 3)) are shown in “Rewelding”. ”Column. In addition, the welding material in re-welding was the same as the welding material of the initial welded joint.

このようにして得られた溶接部において、初期の溶接継手の熱影響部で最高到達温度が1100℃以上と推定される領域(高温熱影響部)のフェライト量および耐食性を評価した。その結果を表4に併せて示す。なお、フェライト量は、溶接部断面を鏡面研磨し、水酸化ナトリウム溶液中で電解エッチングを行った後、表層近傍の光学顕微鏡観察により画像解析を行うことによって測定した。高温熱影響部の幅、即ち溶融境界線からの幅は、光学顕微鏡観察によりフェライト量が70体積%より多い部分を高温熱影響部と判断して測定した。また、耐食性の評価は、溶接部の表層から採取した試験片の表面を#600エメリー紙で湿式研磨し、ASTM G48 Method E規定に準拠し、塩化第二鉄浸漬試験により限界孔食発生温度(CPT)を測定した。   In the welded portion thus obtained, the ferrite content and corrosion resistance of the region (high temperature heat affected zone) in which the highest reached temperature is estimated to be 1100 ° C. or higher in the heat affected zone of the initial welded joint were evaluated. The results are also shown in Table 4. The ferrite content was measured by mirror-polishing the weld cross section, performing electrolytic etching in a sodium hydroxide solution, and then analyzing the image by observation with an optical microscope near the surface layer. The width of the high-temperature heat-affected zone, that is, the width from the melting boundary line was measured by observing a portion where the amount of ferrite is more than 70% by volume as the high-temperature heat-affected zone by optical microscope observation. In addition, the corrosion resistance was evaluated by wet-polishing the surface of the test piece taken from the surface layer of the welded portion with # 600 emery paper, in compliance with ASTM G48 Method E regulations, and by the ferric chloride immersion test (the critical pitting corrosion temperature ( CPT) was measured.

例えば、本発明例である表4の記号No.1では、板厚12mmの表1の鋼材Aを表2のaの溶接材料を用いて、表3アの溶接条件のMAG溶接で溶接継手を作製した場合、高温熱影響部は、溶融境界線より0.4mmの幅となり、その領域のフェライト量は79体積%であった。次に、この溶接金属上をTIG法で再溶接する場合、その溶接入熱量と板厚および式(1)から、再溶接の溶接位置の適正範囲は、初期の溶接継手の溶融境界線と再溶接金属の溶融境界線との距離で0.96〜2.02mmとなり、その範囲内の初期の溶接継手の溶融境界線と再溶接金属の溶融境界線との距離(L)が1.5mmの溶接位置で溶接を行った。その結果、初期の溶接継手の溶接熱影響部で溶融境界線より0.4mm以内の領域(即ち、高温熱影響部)のフェライト量は79体積%から59体積%まで低減し、その部位の限界孔食発生温度(CPT)は、表1に示した鋼材Aの限界孔食発生温度(CPT)と同等の15℃となった。   For example, the symbol No. in Table 4 which is an example of the present invention. 1, when a welded joint was produced by MAG welding under the welding conditions in Table 3a using the welding material in Table 2a using the steel material A in Table 1 having a plate thickness of 12 mm, The width was 0.4 mm, and the ferrite content in the region was 79% by volume. Next, when this weld metal is re-welded by the TIG method, the appropriate range of the welding position for re-welding is determined based on the welding boundary of the initial welded joint and the re-welding from the welding heat input, plate thickness, and equation (1). The distance from the molten boundary line of the weld metal is 0.96 to 2.02 mm, and the distance (L) between the molten boundary line of the initial welded joint and the molten boundary line of the re-welded metal is 1.5 mm. Welding was performed at the welding position. As a result, the ferrite content in the region within 0.4 mm from the melting boundary line (that is, the high temperature heat affected zone) in the weld heat affected zone of the initial welded joint is reduced from 79% by volume to 59% by volume, and the limit of the part The pitting corrosion occurrence temperature (CPT) was 15 ° C. equivalent to the critical pitting corrosion occurrence temperature (CPT) of the steel material A shown in Table 1.

このように表4から明らかなように、本発明範囲の再溶接の位置Lが0.0092×Q/h から0.029×Q/h−1の範囲内で再溶接したNo.1〜No.7の本発明例は、高温熱影響部のフェライト量が再溶接する前から大きく減少し、また、限界孔食発生温度(CPT)は、表1に示した各鋼材の限界孔食発生温度(CPT)と同等であり、本発明によって、溶接熱影響部の耐食性が回復したことがわかる。   Thus, as is apparent from Table 4, the re-welding position L in the range of the present invention was within the range of 0.0092 × Q / h to 0.029 × Q / h−1. 1-No. In the present invention example 7, the amount of ferrite in the high-temperature heat-affected zone is greatly reduced before re-welding, and the critical pitting corrosion temperature (CPT) is the critical pitting corrosion temperature of each steel material shown in Table 1 (CPT). It can be seen that the corrosion resistance of the weld heat affected zone has been recovered by the present invention.

一方、No.9、10および13の比較例は、再溶接の位置Lが0.0092×Q/hより小さいため、初期の溶接継手の熱影響部で最高到達温度が1100℃以上と推定される領域が再度1100℃以上のフェライト単相域まで加熱されることによって、その領域のフェライト量は、再溶接する前のフェライト量とほとんど変化なく、70体積%以上と多く、さらに、限界孔食発生温度(CPT)も、表1に示した各鋼材の限界孔食発生温度(CPT)より低く、溶接熱影響部の耐食性の回復が認められない。   On the other hand, no. In the comparative examples of 9, 10 and 13, since the re-welding position L is smaller than 0.0092 × Q / h, the region where the highest temperature reached is estimated to be 1100 ° C. or higher in the heat affected zone of the initial welded joint is again By heating to a ferrite single phase region of 1100 ° C. or higher, the amount of ferrite in that region is almost the same as the amount of ferrite before re-welding and is as high as 70% by volume or more, and the critical pitting corrosion temperature (CPT) ) Is lower than the critical pitting corrosion temperature (CPT) of each steel shown in Table 1, and no recovery of the corrosion resistance of the weld heat affected zone is observed.

また、No.8、11、12および14の比較例は、再溶接の位置Lが0.029×Q/h−1より大きいため、高温熱影響部を700℃〜1000℃の温度域まで再加熱することができず、その領域のフェライト量は、再溶接する前のフェライト量とほとんど変化なく、70体積%以上と多く、さらに、限界孔食発生温度(CPT)も、表1に示した各鋼材の限界孔食発生温度(CPT)より低く、溶接熱影響部の耐食性の回復が認められない。   No. In the comparative examples of 8, 11, 12, and 14, since the re-welding position L is larger than 0.029 × Q / h−1, the high temperature heat affected zone can be reheated to a temperature range of 700 ° C. to 1000 ° C. The amount of ferrite in that region is almost the same as the amount of ferrite before re-welding and is as high as 70% by volume or more. Further, the critical pitting corrosion temperature (CPT) is also the limit of each steel material shown in Table 1. It is lower than the pitting corrosion temperature (CPT), and no recovery of the corrosion resistance of the weld heat affected zone is observed.

No.15の比較例は、再溶接の位置Lが本発明範囲の0.0092×Q/h から0.029×Q/h−1の範囲内であるため、高温熱影響部のフェライト量が再溶接する前から大きく減少しているが、鋼材のCr量が20%未満のため、限界孔食発生温度(CPT)は、表1に示した鋼材の限界孔食発生温度(CPT)より低くなっている。   No. In Comparative Example 15, the re-welding position L is within the range of 0.0092 × Q / h to 0.029 × Q / h−1 of the present invention range, so the amount of ferrite in the high temperature heat affected zone is re-welded. However, since the Cr content of the steel material is less than 20%, the critical pitting corrosion temperature (CPT) is lower than the critical pitting corrosion temperature (CPT) of the steel materials shown in Table 1. Yes.

また、No.16の比較例は、再溶接の位置Lが本発明範囲の0.0092×Q/h から0.029×Q/h−1の範囲内であるが、鋼材のN量が0.1%未満のため、再加熱によるオーステナイトの析出が少なく、したがって、高温熱影響部のフェライト量は、再溶接を行っても70体積%程度と多く、限界孔食発生温度(CPT)も、表1に示した鋼材の限界孔食発生温度(CPT)より低くなっている。   No. In the comparative example of 16, the re-welding position L is in the range of 0.0092 × Q / h to 0.029 × Q / h−1 of the present invention range, but the N amount of the steel is less than 0.1%. Therefore, the precipitation of austenite due to reheating is small. Therefore, the ferrite content in the high temperature heat-affected zone is as high as about 70% by volume even after re-welding, and the critical pitting corrosion temperature (CPT) is also shown in Table 1. It is lower than the critical pitting corrosion temperature (CPT) of steel.

以上から、本発明の二相ステンレス鋼の溶接方法を適用することにより、最高到達温度が約1100℃以上の高温に加熱された溶接熱影響部の耐食性を回復し、腐食環境下で鋼材同等の優れた耐食性を有する溶接継手が得られることが判明した。   From the above, by applying the duplex stainless steel welding method of the present invention, the corrosion resistance of the weld heat-affected zone heated to a high temperature of about 1100 ° C. or higher is recovered, and is equivalent to steel in a corrosive environment. It has been found that a welded joint with excellent corrosion resistance can be obtained.

本発明によれば、二相ステンレス鋼を溶接して形成された溶接熱影響部の中でも、特に、最高到達温度が約1100℃以上の高温に加熱された領域の耐食性を回復し、腐食環境下で溶接部の耐食性を大幅に改善させるものである。その結果、従来から課題であった二相ステンレス鋼の溶接熱影響部の耐食性の低下が改善され、船舶、海洋構造物、橋梁、海水ポンプ、海水淡水化装置などの耐海水性、耐海塩粒子性、及び種々の化学プラント、食品製造プラントなどの耐塩化物性が要求される分野などで利用することができる。   According to the present invention, among the weld heat affected zone formed by welding duplex stainless steel, the corrosion resistance of the region heated to a high temperature of about 1100 ° C. or higher is recovered, particularly in a corrosive environment. This greatly improves the corrosion resistance of the weld. As a result, the deterioration of the corrosion resistance of the weld heat-affected zone of duplex stainless steel, which has been a problem in the past, has been improved, and the seawater resistance and seawater resistance of ships, marine structures, bridges, seawater pumps, seawater desalination equipment, etc. It can be used in fields where particle properties and chloride resistance such as various chemical plants and food production plants are required.

1 二相ステンレス鋼材
2 溶接金属
3 溶融境界線
4 最高到達温度が1100℃以上の溶接熱影響部(高温熱影響部)
5 二相ステンレス鋼材
6 初期の溶接継手の溶接金属
7 最高到達温度が1100℃以上の溶接熱影響部(高温熱影響部)
8 再溶接の溶接金属
9 初期の溶接継手の溶融境界線
10 再溶接金属の溶融境界線
DESCRIPTION OF SYMBOLS 1 Duplex stainless steel material 2 Weld metal 3 Melting boundary line 4 Weld heat affected zone (high temperature heat affected zone) where the highest temperature reaches 1100 ° C or more
5 Duplex stainless steel material 6 Weld metal of initial welded joint 7 Weld heat affected zone (high temperature heat affected zone) with maximum temperature of 1100 ° C or higher
8 Weld metal of re-weld 9 Melting boundary of early welded joint 10 Melting boundary of re-welded metal

Claims (6)

少なくとも一方が、質量%で、Cr:20%以上、N:0.1%以上を含有し、組織がフェライトとオーステナイトからなる二相ステンレス鋼である溶接継手であって、当該継手を構成する溶接金属上に少なくとも1回再溶接がなされ、前記ステンレス鋼内であって、前記継手を構成する溶接金属とスレンテス鋼の境界である溶融境界線から1mm以内の高温熱影響部におけるフェライト相の相分率が体積%で70%未満であることを特徴とする二相ステンレス鋼溶接継手。   At least one is a welded joint which is a duplex stainless steel containing at least one mass%, Cr: 20% or more, N: 0.1% or more, and whose structure is composed of ferrite and austenite, and constituting the joint Re-weld at least once on the metal, and the phase content of the ferrite phase in the high-temperature heat-affected zone within the stainless steel and within 1 mm from the melting boundary line that is the boundary between the weld metal and the Slentes steel constituting the joint A duplex stainless steel welded joint characterized in that the rate is less than 70% by volume. 前記溶接継手が、質量%で、Cr:20%以上、N:0.1%以上を含有し、組織がフェライトとオーステナイトからなる二相ステンレス鋼同士を溶接したものであることを特徴とする請求項1に記載の二相ステンレス鋼溶接継手。   The weld joint is characterized by comprising, in mass%, Cr: 20% or more, N: 0.1% or more, and welded two-phase stainless steels whose structure is composed of ferrite and austenite. Item 2. The duplex stainless steel welded joint according to item 1. 前記溶接継手において、前記高温熱影響部の限界孔食発生温度が、溶接前の前記ステンレス鋼の限界孔食発生温度以上であることを特徴とする請求項1または2に記載の二相ステンレス鋼溶接継手。   3. The duplex stainless steel according to claim 1, wherein, in the welded joint, a critical pitting corrosion temperature of the high temperature heat affected zone is equal to or higher than a critical pitting corrosion temperature of the stainless steel before welding. Welded joints. 少なくとも一方が、質量%で、Cr:20%以上、N:0.1%以上を含有し、組織がフェライトとオーステナイトからなる二相ステンレス鋼である溶接継手の製造方法であって、当該継手を構成する溶接金属上に少なくとも1回再溶接し、再溶接の入熱量をQ(J/mm)、前記継手を構成する溶接金属と再溶接による溶接金属との境界線と前記継手を構成する溶接金属と前記スレンテス鋼の境界である溶融境界線との最も短い距離をL(mm)、前記ステンレス鋼の板厚をh(mm)としたとき、
0.0092×Q/h≦L≦0.029×Q/h−1となることを特徴とする二相ステンレス鋼溶接継手の製造方法。
A method for producing a welded joint, wherein at least one of them is by mass%, Cr: 20% or more, N: 0.1% or more, and the structure is a duplex stainless steel composed of ferrite and austenite, Reweld at least once on the weld metal to be constructed, Q (J / mm) as the heat input of the re-weld, the boundary line between the weld metal constituting the joint and the weld metal by re-welding, and the weld constituting the joint When the shortest distance between the metal and the melting boundary line that is the boundary between the Slentes steel is L (mm), and the thickness of the stainless steel is h (mm),
0.0092 * Q / h <= L <= 0.029 * Q / h-1, It is a manufacturing method of the duplex stainless steel welded joint characterized by the above-mentioned.
前記溶接継手が、質量%で、Cr:20%以上、N:0.1%以上を含有、組織がフェライトとオーステナイトからなる二相ステンレス鋼同士を溶接したものであることを特徴とする請求項4に記載の二相ステンレス鋼溶接継手の製造方法。   2. The weld joint according to claim 1, wherein the welded joint contains, in mass%, Cr: 20% or more, N: 0.1% or more, and a duplex stainless steel composed of ferrite and austenite. 4. A method for producing a duplex stainless steel welded joint according to 4. 前記溶接継手において、前記高温熱影響部の限界孔食発生温度が、溶接前の前記ステンレス鋼の限界孔食発生温度以上であることを特徴とする請求項4または5に記載の二相ステンレス鋼溶接継手の製造方法。   6. The duplex stainless steel according to claim 4, wherein in the welded joint, a critical pitting corrosion temperature of the high temperature heat affected zone is equal to or higher than a critical pitting corrosion temperature of the stainless steel before welding. A method for manufacturing a welded joint.
JP2014210306A 2014-10-14 2014-10-14 Duplex stainless steel welded joint and manufacturing method thereof Active JP6038093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014210306A JP6038093B2 (en) 2014-10-14 2014-10-14 Duplex stainless steel welded joint and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014210306A JP6038093B2 (en) 2014-10-14 2014-10-14 Duplex stainless steel welded joint and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016078060A true JP2016078060A (en) 2016-05-16
JP6038093B2 JP6038093B2 (en) 2016-12-07

Family

ID=55955573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014210306A Active JP6038093B2 (en) 2014-10-14 2014-10-14 Duplex stainless steel welded joint and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6038093B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052005A (en) * 2015-09-10 2017-03-16 新日鐵住金株式会社 Lap joint coupler and method for manufacturing same
JP2017221972A (en) * 2016-06-09 2017-12-21 新日鐵住金株式会社 Lap bonded joint and manufacturing method therefor
JP2018168461A (en) * 2017-03-30 2018-11-01 新日鐵住金ステンレス株式会社 Duplex stainless steel weld structure for oxidizable fluid environment, and duplex stainless steel for duplex stainless steel weld structure for oxidizable fluid environment
JP2019218613A (en) * 2018-06-21 2019-12-26 日鉄ステンレス株式会社 Ferrite austenite two-phase stainless steel sheet and weldment structure, and manufacturing method therefor
JP2020100859A (en) * 2018-12-20 2020-07-02 日本製鉄株式会社 Two-phase stainless welded channel steel, and method of producing the same
CN113227409A (en) * 2018-12-28 2021-08-06 日铁不锈钢株式会社 Welded structure and method for manufacturing same
WO2022085262A1 (en) * 2020-10-23 2022-04-28 日本製鉄株式会社 Two-phase stainless steel welded joint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165194A (en) * 1981-03-02 1982-10-12 Siemens Ag Method of mounting metallic diaphragm and its mounting ring
JPH07197130A (en) * 1993-12-29 1995-08-01 Nkk Corp Production of two-phase stainless steel welded pipe excellent in pitting corrosion resistance and low temperature toughness of welded part
JP2009195948A (en) * 2008-02-21 2009-09-03 Aisin Seiki Co Ltd Laser welding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165194A (en) * 1981-03-02 1982-10-12 Siemens Ag Method of mounting metallic diaphragm and its mounting ring
JPH07197130A (en) * 1993-12-29 1995-08-01 Nkk Corp Production of two-phase stainless steel welded pipe excellent in pitting corrosion resistance and low temperature toughness of welded part
JP2009195948A (en) * 2008-02-21 2009-09-03 Aisin Seiki Co Ltd Laser welding method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052005A (en) * 2015-09-10 2017-03-16 新日鐵住金株式会社 Lap joint coupler and method for manufacturing same
JP2017221972A (en) * 2016-06-09 2017-12-21 新日鐵住金株式会社 Lap bonded joint and manufacturing method therefor
JP2018168461A (en) * 2017-03-30 2018-11-01 新日鐵住金ステンレス株式会社 Duplex stainless steel weld structure for oxidizable fluid environment, and duplex stainless steel for duplex stainless steel weld structure for oxidizable fluid environment
JP2019218613A (en) * 2018-06-21 2019-12-26 日鉄ステンレス株式会社 Ferrite austenite two-phase stainless steel sheet and weldment structure, and manufacturing method therefor
JP2020100859A (en) * 2018-12-20 2020-07-02 日本製鉄株式会社 Two-phase stainless welded channel steel, and method of producing the same
JP7192483B2 (en) 2018-12-20 2022-12-20 日本製鉄株式会社 Duplex stainless welded channel steel and its manufacturing method
CN113227409A (en) * 2018-12-28 2021-08-06 日铁不锈钢株式会社 Welded structure and method for manufacturing same
CN113227409B (en) * 2018-12-28 2023-07-25 日铁不锈钢株式会社 Welded structure and method for manufacturing same
WO2022085262A1 (en) * 2020-10-23 2022-04-28 日本製鉄株式会社 Two-phase stainless steel welded joint
JP7469707B2 (en) 2020-10-23 2024-04-17 日本製鉄株式会社 Duplex stainless steel welded joints

Also Published As

Publication number Publication date
JP6038093B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6038093B2 (en) Duplex stainless steel welded joint and manufacturing method thereof
JP6168131B2 (en) Stainless clad steel plate
JP6437062B2 (en) Duplex stainless steel and clad steel for clad steel
JP6140836B2 (en) High-strength austenitic steel material with excellent toughness of weld heat-affected zone and method for producing the same
KR102349888B1 (en) Two-phase stainless steel and its manufacturing method
JP6149102B2 (en) Clad steel sheet using duplex stainless steel with good linear heatability and method for producing the same
CN110225989B (en) Duplex stainless steel clad steel and method for producing same
JP2014114466A (en) Cladding material of duplex stainless clad steel having excellent pitting-corrosion resistance, duplex stainless clad steel using the same, and method for producing the same
JP7511480B2 (en) Welded structure and manufacturing method thereof
JP6265830B2 (en) Method for improving corrosion resistance of duplex stainless steel welds
Aguilar et al. Microstructural transformations of dissimilar austenite-ferrite stainless steels welded joints
JP5454723B2 (en) Laminated stainless steel clad sheet excellent in seawater corrosion resistance, stainless clad steel sheet using the same, and method for producing the same
JP6513495B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP2011105973A (en) Duplex stainless steel having excellent alkali resistance
JP6390567B2 (en) Manufacturing method of stainless clad steel plate
JP2013255936A (en) Method for manufacturing austenitic stainless-clad steel excellent in marine corrosion resistance and low-temperature toughness
WO2015190574A1 (en) Buildup welded body
Merchant Samir A review of effect of welding and post weld heat treatment on microstructure and mechanical properties of grade 91 steel
JP2009256791A (en) Two-phase series stainless steel excellent in corrosion resistance, and its producing method
JP6398576B2 (en) Steel sheet with excellent toughness and method for producing the same
Paranthaman et al. Analysis of structure property relationship of super duplex stainless steel AISI 2507 weldments for severe corrosive environments
JP6181947B2 (en) Weld metal
JP2018135601A (en) Two-phase stainless steel and two-phase stainless steel pipe prepared therewith
JP2016047953A (en) Stainless clad steel sheet having weld zone excellent in sea water corrosion resistance
Crook Development of a new Ni-Cr-Mo alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161101

R150 Certificate of patent or registration of utility model

Ref document number: 6038093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250