JP2016066461A - Lithium ion secondary battery - Google Patents
Lithium ion secondary battery Download PDFInfo
- Publication number
- JP2016066461A JP2016066461A JP2014193849A JP2014193849A JP2016066461A JP 2016066461 A JP2016066461 A JP 2016066461A JP 2014193849 A JP2014193849 A JP 2014193849A JP 2014193849 A JP2014193849 A JP 2014193849A JP 2016066461 A JP2016066461 A JP 2016066461A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- mixture layer
- electrode mixture
- positive electrode
- hollow silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明はリチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.
特開平7−211343号公報(特許文献1)には、非晶質シリカ粒子を電解液保持剤として正極板と負極板との間隙に充填し、これに電解液を保持させた密閉形鉛蓄電池が開示されている。 Japanese Patent Application Laid-Open No. 7-212343 (Patent Document 1) discloses a sealed lead-acid battery in which amorphous silica particles are filled in a gap between a positive electrode plate and a negative electrode plate as an electrolyte solution holding agent and the electrolyte solution is held in the gap. Is disclosed.
リチウムイオン二次電池は、用途あるいはユーザーの趣向等によって多種多様な条件で使用され、使用条件によっては劣化の進行が早まる場合もある。本発明者の研究では、ハイレート充放電、すなわち充電をハイレート(大電流)で行い、放電をローレート(小電流)で行う使用パターン、もしくは充電をローレートで行い、放電をハイレートで行う使用パターンにおいて、電池の抵抗上昇が大きいことが見出されている。 Lithium ion secondary batteries are used under a wide variety of conditions depending on the application or user preferences, and the progress of deterioration may be accelerated depending on the use conditions. In the research of the present inventors, in a high-rate charge / discharge, that is, in a usage pattern in which charging is performed at a high rate (large current) and discharging is performed at a low rate (small current), or charging is performed at a low rate and discharging is performed at a high rate, It has been found that the resistance increase of the battery is large.
それゆえ本発明の目的は、ハイレート充放電に伴う抵抗上昇を抑制することである。 Therefore, an object of the present invention is to suppress an increase in resistance accompanying high-rate charge / discharge.
〔1〕本発明のリチウムイオン二次電池は、負極合材層と、セパレータを挟んで該負極合材層と対向する正極合材層と、電解液とを備える。負極合材層は、中空シリカ粒子を3質量%以上7質量%以下含む。中空シリカ粒子の平均粒子径は、50nm以上110nm以下である。負極合材層の平均細孔径は、正極合材層の平均細孔径の1.0倍以上1.83倍以下である。 [1] A lithium ion secondary battery of the present invention includes a negative electrode mixture layer, a positive electrode mixture layer facing the negative electrode mixture layer with a separator interposed therebetween, and an electrolytic solution. The negative electrode mixture layer contains 3% by mass or more and 7% by mass or less of hollow silica particles. The average particle diameter of the hollow silica particles is 50 nm or more and 110 nm or less. The average pore diameter of the negative electrode mixture layer is 1.0 to 1.83 times the average pore diameter of the positive electrode mixture layer.
本発明者の研究によれば、ハイレート充放電に伴う抵抗上昇は、次のようにして進行するものと考えられる。以下、図を用いて説明する。 According to the inventor's research, it is considered that the resistance increase accompanying high-rate charge / discharge proceeds as follows. This will be described below with reference to the drawings.
図4に示される電池100は、外装体50の内部に、電極体80と、余剰電解液SEとを備えている。電極体80は、図5に示されるように、セパレータ40を挟んで正極10と負極20とが巻回されてなる。電極体80では、各電極内の細孔および電極間の空隙に電解液が保持されている。電解液は、支持塩(Li塩)を所定の濃度で含んでおり、電極間のイオン伝導を担っている。
The
かかる構成の電池100において、ハイレートの充電あるいは放電を行うと、電池要素が発熱し、これにより電解液が温められて膨張する。膨張した電解液は当初保持されていた空間(細孔等)から溢れ出ることになり、溢れ出た電解液は、たとえば図4中の矢印A1に示すような経路で、電極体80外に流出する。電極体80から流出した電解液は、一旦、余剰電解液SEと一体となり、電解液の温度が低くなってその体積が縮小した際等に、たとえば矢印A2に示すような経路で電極体80内に戻ることになる。この一連の電解液の流出と再流入とが繰り返されると、当初均一であった電解液中の塩濃度(Li塩の濃度)にバラツキが生じるようになり、その結果、電極体80において、局所的な抵抗上昇が生じることになる。
In the
本発明者の研究によれば、上記の一連の過程の中で、正極10および負極20における電解液の流出量および再流入量がそれぞれ異なっており、これが正負極間での塩濃度のバラツキを助長している。このように、正極10と負極20とで電解液の流出量および再流入量が異なるのは、図1に示すように正極合材層12と負極合材層22とで細孔pの大きさが異なっており、電解液の浸透速度に差が生じているからであると考えられる。
According to the inventor's research, the outflow amount and reinflow amount of the electrolyte solution in the
そこで上記〔1〕では、図1に示されるように、負極合材層22の細孔pに、細孔pよりも小さい中空シリカ粒子4を充填することにより、負極合材層22の平均細孔径を正極合材層12の平均細孔径に近づけている。具体的には中空シリカ粒子4を負極合材に混合することにより、負極合材層22の平均細孔径が、正極合材層12の平均細孔径の1.0倍以上1.83倍以下となるように制御している。これにより正極合材層12での電解液の浸透速度と、負極合材層22での電解液の浸透速度との差を小さくすることができる。またこのとき、中空シリカ粒子4が内部に空洞を有し、その内部に電解液を保持することから、負極合材層22の保液性も確保することができる。よって塩濃度のバラツキが生じ難くなり、ハイレート充放電に伴う抵抗上昇が抑制される。
Therefore, in the above [1], as shown in FIG. 1, by filling the pores p of the negative
ここで上記〔1〕では、中空シリカ粒子の平均粒子径を50nm以上110nm以下としている。中空シリカ粒子の平均粒子径が50nm未満になると、負極合材層22内の細孔容積が減少して、負極合材層22の保液性が低下する場合があり、110nmを超えると負極合材層22内の細孔分布がブロードになり、負極合材層22における電解液の浸透速度が調整し難くなるからである。
Here, in the above [1], the average particle diameter of the hollow silica particles is set to 50 nm to 110 nm. When the average particle diameter of the hollow silica particles is less than 50 nm, the pore volume in the negative
また上記〔1〕において、負極合材層に含まれる中空シリカ粒子の含有量は、3質量%以上7質量%以下である。中空シリカ粒子が3質量%未満となると、負極合材層の平均細孔径を十分小さくできない場合があり、7質量%を超えると細孔径が過度に小さくなって容量低下あるいは抵抗増加を来す場合があるからである。 Moreover, in said [1], content of the hollow silica particle contained in a negative electrode compound-material layer is 3 mass% or more and 7 mass% or less. When the hollow silica particles are less than 3% by mass, the average pore diameter of the negative electrode mixture layer may not be sufficiently small, and when it exceeds 7% by mass, the pore diameter becomes excessively small, resulting in a decrease in capacity or an increase in resistance. Because there is.
〔2〕上記〔1〕において、正極合材層の平均細孔径は0.30μmであり、負極合材層の平均細孔径は0.30μm以上0.55μm以下であることが望ましい。ハイレート充放電に伴う抵抗上昇をより確実に抑制するためである。 [2] In the above [1], the average pore diameter of the positive electrode mixture layer is preferably 0.30 μm, and the average pore diameter of the negative electrode mixture layer is preferably from 0.30 μm to 0.55 μm. This is to more reliably suppress an increase in resistance associated with high rate charge / discharge.
図2は、中空シリカ粒子の平均粒子径を横軸、負極合材層に含まれる中空シリカ粒子の含有量を縦軸とするグラフである。図2中の直線L1は、中空シリカ粒子の平均粒子径と含有量とを変化させたとき、負極合材層の平均細孔径が0.30μmとなる点の集合を示している。また直線L2は、同様に中空シリカ粒子の平均粒子径と含有量とを変化させたとき、負極合材層22の平均細孔径が0.55μmとなる点の集合を示している。よって直線L1と直線L2とに挟まれた領域R2では、負極合材層22の平均細孔径が0.30μm以上0.55μm以下となる。
FIG. 2 is a graph in which the average particle diameter of the hollow silica particles is the horizontal axis, and the content of the hollow silica particles contained in the negative electrode mixture layer is the vertical axis. A straight line L1 in FIG. 2 indicates a set of points where the average pore diameter of the negative electrode mixture layer becomes 0.30 μm when the average particle diameter and content of the hollow silica particles are changed. Similarly, the straight line L2 indicates a set of points at which the average pore diameter of the negative
本発明者の研究によれば、正極合材層12の平均細孔径が0.30μmであり、かつ中空シリカ粒子の平均粒子径と含有量とが領域R2に含まれるときに、ハイレート充放電に伴う抵抗上昇が顕著に低減される。
According to the study of the present inventor, when the average pore diameter of the positive
なお図2中の領域R1は、中空シリカ粒子の平均粒子径が110nmを超える領域であり、前述のように、この領域では負極合材層22の細孔分布がブロードになってしまう。また領域R3は、中空シリカ粒子の平均粒子径が50nmを下回る領域であり、この領域では負極合材層22の平均細孔径が0.30〜0.55μmであったとしても、保液性に問題が生じる場合がある。
2 is a region where the average particle diameter of the hollow silica particles exceeds 110 nm. As described above, the pore distribution of the negative
ここで中空シリカ粒子の「平均粒子径」は、レーザ回折/散乱法によって得られた粒度分布における積算値50%での粒径(いわゆるD50)を示している。平均粒子径は、たとえば日機装社製の粒子径分布測定装置「マイクロトラックMT3000II」等によって測定することができる。 Here, the “average particle size” of the hollow silica particles indicates the particle size (so-called D50) at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method. The average particle size can be measured, for example, by a particle size distribution measuring device “Microtrack MT3000II” manufactured by Nikkiso Co., Ltd.
また負極合材層および正極合材層の「平均細孔径」は、水銀圧入法によって得られた細孔分布における積算値50%での細孔径を示している。平均細孔径は、たとえば島津製作所製の細孔分布測定装置「オートポアIV9500」等によって測定することができる。 The “average pore diameter” of the negative electrode mixture layer and the positive electrode mixture layer indicates the pore diameter at an integrated value of 50% in the pore distribution obtained by the mercury intrusion method. The average pore diameter can be measured by, for example, a pore distribution measuring device “Autopore IV9500” manufactured by Shimadzu Corporation.
上記によれば、ハイレート充放電に伴う抵抗上昇を抑制することができる。 According to the above, it is possible to suppress an increase in resistance associated with high rate charge / discharge.
以下、本発明の一実施形態(以下「本実施形態」と記す)について詳細に説明するが、本実施形態はこれらに限定されるものではない。 Hereinafter, an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present embodiment is not limited thereto.
〔リチウムイオン二次電池〕
図3は、本実施形態に係るリチウムイオン二次電池の構成の一例を示す概略図である。図3に示されるように、電池100は密閉型電池であり、角形の外装体50を備えている。外装体50は、有底角形の筐体52と蓋体54とから構成される。外装体50の素材は、たとえばAl合金である。筐体52と蓋体54とは、たとえばレーザ溶接によって接合されている。蓋体54には正極端子70および負極端子72が設けられている。安全弁55は、電池100内の内圧が所定の圧力を超えると開放されるようになっている。
[Lithium ion secondary battery]
FIG. 3 is a schematic diagram illustrating an example of the configuration of the lithium ion secondary battery according to the present embodiment. As shown in FIG. 3, the
〔電極体〕
図4は、図3のIV−IV線における概略断面図である。図4に示されるように電池100は、電極体80と余剰電解液SEとを内蔵している。電極体80は、正極集電体11および負極集電体21が露出した露出部EPを有しており、露出部EPは、正極集電板74および負極集電板76を経由して、正極端子70および負極端子72と電気的に接続されている。
(Electrode body)
FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG. As shown in FIG. 4, the
図5は、電極体80の構成の一例を示す概略図である。図5に示されるように、電極体80は巻回型の電極体である。電極体80を構成する正極10、負極20およびセパレータ40はいずれも長尺帯状のシート部材である。電極体80は、セパレータ40を挟んで正極10と負極20とが対向配置され、各部材の長手方向に沿って巻回されてなる。
FIG. 5 is a schematic diagram illustrating an example of the configuration of the
図1は、図5のI−I線における概略断面図である。図1に示されるように、電池100は、負極合材層22と、セパレータ40を挟んで負極合材層22と対向する正極合材層12と、を備えている。負極合材層22は、負極活物質2、中空シリカ粒子4および結着材(図示せず)等を含み、正極合材層12は、正極活物質1、導電材および結着材(図示せず)等を含んでいる。
FIG. 1 is a schematic cross-sectional view taken along the line II of FIG. As shown in FIG. 1, the
負極合材層22および正極合材層12の内部には、それぞれ細孔pが多数形成されている。このとき通常は、負極合材層22の細孔径が、正極合材層12の細孔径よりも大きくなりやすい。しかし本実施形態に係る負極合材層22では、細孔pに中空シリカ粒子4が充填されており、負極合材層22の平均細孔径が、正極合材層12の平均細孔径の1.0倍以上1.83倍以下となるように調整されている。そのため電極体80では、塩濃度のバラツキが生じ難く、ハイレート充放電に伴う抵抗上昇が抑制される。
A large number of pores p are formed in each of the negative
以下、電池100を構成する各部材について説明する。
〔負極〕
図6は、負極20の構成の一例を示す概略図である。図6に示されるように負極20は、長尺帯状の負極集電体21(たとえばCu箔)と、その両主面上に形成された負極合材層22とを含んでいる。負極20は従来公知の方法によって作製することができる。たとえば負極合材および中空シリカ粒子を所定の溶媒に分散してなる負極ペーストを、負極集電体21の両主面上に塗工し、これを乾燥することにより負極20を作製することができる。ペーストの溶媒には、たとえば水等を使用することができる。乾燥後、負極合材層22を圧縮して、その厚さおよび合材密度を調整してもよい。
Hereinafter, each member constituting the
[Negative electrode]
FIG. 6 is a schematic diagram illustrating an example of the configuration of the
負極合材層22は、負極活物質、中空シリカ粒子、増粘材および結着材を含む。本実施形態では、負極合材のうち中空シリカ粒子の占める割合は、3質量%以上7質量%以下である。中空シリカ粒子の平均粒子径は、50nm以上110nm以下であることを要する。中空シリカ粒子は内部に気孔(空洞)を有することから、高い絶縁性を示し、負極合材層22の細孔を狭めつつ、保液性を高める作用を示す。中空シリカ粒子の気孔率は、たとえば30〜90%程度である。
The negative
負極活物質は特に制限されるものではなく、リチウムイオン二次電池の負極活物質として機能し得るものであればよい。たとえば黒鉛、コークス等の炭素系負極活物質、あるいはSi、Sn等の合金系負極活物質等を使用することができる。中空シリカ粒子を除く負極合材の残部のうち、負極活物質が占める割合は、たとえば90〜99質量%程度である。 The negative electrode active material is not particularly limited as long as it can function as the negative electrode active material of the lithium ion secondary battery. For example, carbon-based negative electrode active materials such as graphite and coke, or alloy-based negative electrode active materials such as Si and Sn can be used. The proportion of the negative electrode active material in the remainder of the negative electrode mixture excluding the hollow silica particles is, for example, about 90 to 99% by mass.
増粘材および結着材も特に制限されるものではない。増粘材には、たとえばカルボキシメチルセルロース(CMC)等を使用することができる。また結着材には、たとえばスチレンブタジエンゴム(SBR)等を使用することができる。中空シリカ粒子を除く負極合材の残部のうち、増粘材および結着材が占める割合は、たとえば1〜10質量%程度である。 The thickener and the binder are not particularly limited. For example, carboxymethyl cellulose (CMC) can be used as the thickening material. As the binder, for example, styrene butadiene rubber (SBR) or the like can be used. The proportion of the thickener and the binder in the remainder of the negative electrode mixture excluding the hollow silica particles is, for example, about 1 to 10% by mass.
〔正極〕
図7は、正極10の構成の一例を示す概略図である。図7に示されるように正極10は、長尺帯状の正極集電体11(たとえばAl箔)と、その両主面上に形成された正極合材層12とを含んでいる。正極10は従来公知の方法によって作製することができる。たとえば正極合材を所定の溶媒に分散してなる正極ペーストを、正極集電体11の両主面上に塗工し、これを乾燥することにより正極10を作製することができる。ペーストの溶媒には、たとえばN−メチル−2−ピロリドン(NMP)等を使用することができる。乾燥後、正極合材層12を圧縮して、その厚さおよび合材密度を調整してもよい。
[Positive electrode]
FIG. 7 is a schematic diagram illustrating an example of the configuration of the
正極合材層12は、正極活物質と導電材と結着材とを含む。正極活物質には、たとえばLiCoO2、LiNiO2、LiMnO2、LiMn2O4、LiNiaCobMncO2(a+b+c=1、0<a<1、0<b<1、0<c<1)、LiFePO4等を使用することができる。正極合材のうち正極活物質が占める割合は、たとえば80〜98質量%程度である。また導電材には、たとえばアセチレンブラック(AB)等を、結着材には、たとえばポリフッ化ビニリデン(PVDF)等を使用することができる。
The positive
〔セパレータ〕
セパレータ40はLiイオンを透過させつつ、正極10と負極20との電気的な接触を防止する。セパレータ40は、機械的な強度と化学的な安定性の観点からポリオレフィン系材料からなる微多孔膜が好ましい。たとえばポリエチレン(PE)、ポリプロピレン(PP)等の微多孔膜が好適である。
[Separator]
The
またセパレータ40は、複数の微多孔膜が積層されたものであってもよいし、その表面に無機フィラー(たとえばアルミナ粒子等)を含む耐熱層が形成されたものであってもよい。セパレータ40の厚さは、たとえば5〜40μm程度である。セパレータ40の孔径および空孔率は、透気度が所望の値となるように適宜調整すればよい。
Moreover, the
〔電解液〕
電解液は、非プロトン性溶媒にLi塩が溶解されてなる。非プロトン性溶媒には、たとえばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、γ−ブチロラクトン(γBL)およびビニレンカーボネート(VC)等の環状カーボネート類、ならびにジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)およびジエチルカーボネート(DEC)等の鎖状カーボネート類等を使用することができる。これらの非プロトン性溶媒は電気伝導率および電気化学的な安定性の観点から2種以上を併用することが望ましい。特に環状カーボネートと鎖状カーボネートとを混合して使用することが望ましく、その際、環状カーボネートと鎖状カーボネートの体積比は1:9〜5:5程度が好ましい。
[Electrolyte]
The electrolytic solution is obtained by dissolving a Li salt in an aprotic solvent. Examples of the aprotic solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (γBL) and vinylene carbonate (VC), and dimethyl carbonate (DMC). Further, chain carbonates such as ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) can be used. These aprotic solvents are desirably used in combination of two or more from the viewpoint of electrical conductivity and electrochemical stability. In particular, it is desirable to use a mixture of a cyclic carbonate and a chain carbonate. In this case, the volume ratio of the cyclic carbonate to the chain carbonate is preferably about 1: 9 to 5: 5.
Li塩には、たとえば、LiPF6、LiBF4、LiClO4、LiAsF6、Li(CF3SO2)2N、LiCF3SO3等を使用することができる。これらのLi塩についても2種以上を併用してもよい。電解液中におけるLi塩の濃度は特に限定されないが、0.5〜2.0mol/L程度が好ましい。 For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiCF 3 SO 3 and the like can be used as the Li salt. Two or more of these Li salts may be used in combination. Although the density | concentration of Li salt in electrolyte solution is not specifically limited, About 0.5-2.0 mol / L is preferable.
以上、角形電池を例にとって本実施形態を説明したが、本実施形態はこれに限定されず、円筒形電池、ラミネート式電池等に適用することも可能である。また電極体は巻回型に限られず、積層型(「スタック型」ともいう)としてもよい。 As described above, the present embodiment has been described taking a square battery as an example. However, the present embodiment is not limited to this, and can be applied to a cylindrical battery, a laminated battery, and the like. The electrode body is not limited to a wound type, and may be a stacked type (also referred to as a “stacked type”).
以下、実施例を用いて本実施形態をさらに詳細に説明するが、本実施形態はこれらに限定されるものではない。 Hereinafter, although this embodiment is described further in detail using an example, this embodiment is not limited to these.
〔試料の作製〕
共通部材として、正極合材層12を含む正極10を準備した(図7を参照)。次に表1に示すように、中空シリカ粒子の平均粒子径、ならびに負極合材層22に含まれる中空シリカ粒子の含有量を変化させてNo.1〜No.8に係る負極20を作製した(図6を参照)。各負極において負極合材層22の圧縮後の厚さは同じとした。
[Sample preparation]
A
島津製作所製の細孔分布測定装置「オートポアIV9500」を用いて、正極ならびに各負極の平均細孔径を測定した。さらに負極合材層の平均細孔径を「Pa」、正極合材層の平均細孔径を「Pc」として、「Pa」を「Pc」で除することにより「Pa/Pc」を算出した。結果を表1に示す。 The average pore diameter of the positive electrode and each negative electrode was measured using a pore distribution measuring apparatus “Autopore IV9500” manufactured by Shimadzu Corporation. Furthermore, “Pa / Pc” was calculated by dividing “Pa” by “Pc”, where “Pa” was the average pore diameter of the negative electrode mixture layer and “Pc” was the average pore diameter of the positive electrode mixture layer. The results are shown in Table 1.
〔評価〕
上記の正極ならびに各負極を使用して、No.1〜No.8に係るリチウムイオン二次電池を作製した。次いでハイレート充放電試験により各電池の抵抗上昇を評価した。具体的には、下記の条件の充電および放電を1サイクルとする充放電サイクルを2500回実施し、試験後の電池抵抗を試験前の電池抵抗で除することにより、抵抗上昇率[%]を算出した。結果を表1に示す。ここで充放電条件における電流値の単位[C]は、電池の定格容量を1時間で放電しきる電流値を示すものとする
充電:30C×10秒間
放電:30C×10秒間。
[Evaluation]
Using the above positive electrode and each negative electrode, no. 1-No. The lithium ion secondary battery which concerns on 8 was produced. Subsequently, the resistance increase of each battery was evaluated by a high rate charge / discharge test. Specifically, the charge increase / decrease cycle [1] is obtained by dividing the battery resistance after the test by the battery resistance before the test by performing 2500 charge / discharge cycles with one cycle of charging and discharging under the following conditions. Calculated. The results are shown in Table 1. Here, the unit [C] of the current value in the charge / discharge condition indicates the current value at which the rated capacity of the battery can be discharged in one hour. Charging: 30 C × 10 seconds Discharging: 30 C × 10 seconds.
〔結果と考察〕
表1より明らかなように、負極合材層が中空シリカ粒子を3質量%以上7質量%以下含み、中空シリカ粒子の平均粒子径が50nm以上110nm以下であり、負極合材層の平均細孔径が正極合材層の平均細孔径の1.0倍以上1.83倍以下である、実施例に係るリチウムイオン二次電池(No.5〜No.8)は、かかる条件を満たさない比較例のリチウムイオン二次電池(No.1〜No.4)に比し、抵抗上昇率が低く良好である。
〔Results and discussion〕
As is clear from Table 1, the negative electrode mixture layer contains 3% by mass or more and 7% by mass or less of hollow silica particles, the average particle size of the hollow silica particles is 50 nm or more and 110 nm or less, and the average pore size of the negative electrode mixture layer Are 1.0 to 1.83 times the average pore diameter of the positive electrode composite material layer, the lithium ion secondary batteries (No. 5 to No. 8) according to the examples are comparative examples that do not satisfy such conditions. Compared to lithium ion secondary batteries (No. 1 to No. 4), the resistance increase rate is low and good.
以上、本発明の一実施形態および実施例について説明したが、今回開示された実施形態および実施例はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Although one embodiment and example of the present invention have been described above, the embodiment and example disclosed this time are illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 正極活物質、2 負極活物質、4 中空シリカ粒子、10 正極、11 正極集電体、12 正極合材層、20 負極、21 負極集電体、22 負極合材層、40 セパレータ、50 外装体、52 筐体、54 蓋体、55 安全弁、70 正極端子、72 負極端子、74 正極集電板、76 負極集電板、80 電極体、A1,A2 矢印、EP 露出部、p 細孔、SE 余剰電解液、R1,R2,R3 領域、L1,L2 直線。
DESCRIPTION OF
Claims (1)
セパレータを挟んで前記負極合材層と対向する正極合材層と、
電解液と、を備え、
前記負極合材層は、中空シリカ粒子を3質量%以上7質量%以下含み、
前記中空シリカ粒子の平均粒子径は、50nm以上110nm以下であり、
前記負極合材層の平均細孔径は、前記正極合材層の平均細孔径の1.0倍以上1.83倍以下である、リチウムイオン二次電池。 A negative electrode mixture layer;
A positive electrode mixture layer facing the negative electrode mixture layer with a separator interposed therebetween;
An electrolyte solution,
The negative electrode mixture layer contains 3% by mass or more and 7% by mass or less of hollow silica particles,
The hollow silica particles have an average particle size of 50 nm to 110 nm,
The average pore diameter of the negative electrode mixture layer is a lithium ion secondary battery that is 1.0 to 1.83 times the average pore diameter of the positive electrode mixture layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014193849A JP2016066461A (en) | 2014-09-24 | 2014-09-24 | Lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014193849A JP2016066461A (en) | 2014-09-24 | 2014-09-24 | Lithium ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016066461A true JP2016066461A (en) | 2016-04-28 |
Family
ID=55804174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014193849A Pending JP2016066461A (en) | 2014-09-24 | 2014-09-24 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016066461A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018079585A1 (en) * | 2016-10-28 | 2018-05-03 | 日本電気株式会社 | Electrode for lithium ion secondary batteries, and lithium ion secondary battery using same |
JP2021099939A (en) * | 2019-12-23 | 2021-07-01 | パナソニック株式会社 | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JPWO2022168233A1 (en) * | 2021-02-04 | 2022-08-11 | ||
CN116845246A (en) * | 2023-05-16 | 2023-10-03 | 深圳市固易能科技有限责任公司 | Electrode and lithium ion battery |
-
2014
- 2014-09-24 JP JP2014193849A patent/JP2016066461A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018079585A1 (en) * | 2016-10-28 | 2018-05-03 | 日本電気株式会社 | Electrode for lithium ion secondary batteries, and lithium ion secondary battery using same |
JPWO2018079585A1 (en) * | 2016-10-28 | 2019-09-19 | 日本電気株式会社 | Lithium ion secondary battery electrode and lithium ion secondary battery using the same |
US10944111B2 (en) | 2016-10-28 | 2021-03-09 | Nec Corporation | Electrode for lithium ion secondary battery and lithium ion secondary battery using the same |
JP7006614B2 (en) | 2016-10-28 | 2022-01-24 | 日本電気株式会社 | Electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries using them |
JP2021099939A (en) * | 2019-12-23 | 2021-07-01 | パナソニック株式会社 | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP7358228B2 (en) | 2019-12-23 | 2023-10-10 | パナソニックホールディングス株式会社 | Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries |
JPWO2022168233A1 (en) * | 2021-02-04 | 2022-08-11 | ||
WO2022168233A1 (en) * | 2021-02-04 | 2022-08-11 | 株式会社 東芝 | Non-aqueous electrolyte battery and battery pack |
JP7443579B2 (en) | 2021-02-04 | 2024-03-05 | 株式会社東芝 | Nonaqueous electrolyte batteries and battery packs |
CN116845246A (en) * | 2023-05-16 | 2023-10-03 | 深圳市固易能科技有限责任公司 | Electrode and lithium ion battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI587562B (en) | Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active materiallayer for lithium ion battery | |
JP5754358B2 (en) | Nonaqueous electrolyte secondary battery and manufacturing method thereof | |
JP5924541B2 (en) | Secondary battery | |
CN105811021A (en) | Method of manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
CN107210408A (en) | Composite material diaphragm, lithium ion battery pack comprising composite material diaphragm and preparation method of composite material diaphragm | |
JP2016076358A (en) | Lithium ion secondary battery and battery system | |
CN107004842A (en) | Composite anode and Li-ion batteries piles and the preparation method of composite anode including composite anode | |
JP5920639B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
KR101846767B1 (en) | Nonaqueous electrolyte secondary battery | |
JP6264320B2 (en) | Nonaqueous electrolyte secondary battery and manufacturing method thereof | |
KR20180036715A (en) | Lithium secondary battery | |
JP6056955B2 (en) | Lithium secondary battery | |
JPWO2018025469A1 (en) | Lithium ion secondary battery and method of manufacturing the same | |
JP2016066461A (en) | Lithium ion secondary battery | |
JP5999433B2 (en) | Nonaqueous electrolyte secondary battery and manufacturing method thereof | |
JP2014035963A (en) | Positive electrode material, lithium ion power storage device, and method of manufacturing the same | |
JP2014026932A (en) | Nonaqueous electrolyte secondary battery and manufacturing method therefor | |
JP7093733B2 (en) | Plates for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries | |
JP2016048652A (en) | Nonaqueous electrolyte secondary battery | |
CN110476288B (en) | Nonaqueous electrolyte storage element and method for manufacturing same | |
JP6848363B2 (en) | Negative electrode and non-aqueous electrolyte power storage element | |
JP2019169349A (en) | Nonaqueous electrolyte secondary battery | |
JP2019110087A (en) | Positive electrode for lithium ion secondary battery | |
JP4736380B2 (en) | Secondary battery and secondary battery aging treatment method | |
WO2024167004A1 (en) | Battery electrolyte and lithium ion battery |