Nothing Special   »   [go: up one dir, main page]

JP2016061510A - Multitubular heat exchanger - Google Patents

Multitubular heat exchanger Download PDF

Info

Publication number
JP2016061510A
JP2016061510A JP2014190724A JP2014190724A JP2016061510A JP 2016061510 A JP2016061510 A JP 2016061510A JP 2014190724 A JP2014190724 A JP 2014190724A JP 2014190724 A JP2014190724 A JP 2014190724A JP 2016061510 A JP2016061510 A JP 2016061510A
Authority
JP
Japan
Prior art keywords
tube
peripheral side
container
side fluid
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014190724A
Other languages
Japanese (ja)
Other versions
JP6379916B2 (en
Inventor
昌幸 水野
Masayuki Mizuno
昌幸 水野
繁幸 戸田
Shigeyuki Toda
繁幸 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2014190724A priority Critical patent/JP6379916B2/en
Publication of JP2016061510A publication Critical patent/JP2016061510A/en
Application granted granted Critical
Publication of JP6379916B2 publication Critical patent/JP6379916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the pressure loss of a body-side fluid.SOLUTION: A multitubular heat exchanger comprises a tube group 8 of heat transfer tubes 9 provided in an annular tube-group installation region 7 except for a central portion within a body 6 of a container 1. In the tube-group installation region 7, three sections 7a, 7b, and 7c divided by baffles 14a, 14b, and 14c are formed in a circumferential direction. A flow route of a body-side fluid 13 is formed by connecting inner-circumferential opening portions 16a and 16b near the other end of each of the sections 7a and 7b in a container axial direction to each other by an inner-circumferential connection flow passage 17 and by connecting outer-circumferential opening portions 15b and 15c near one end of each of the sections 7b and 7c in the container axial direction to each other by an outer-circumferential connection flow passage 18. When the body-side fluid 13 is made to flow along the flow route, pressure loss is reduced by causing the body-side fluid 13 to flow within the sections 7a, 7b and 7c in the container axial direction along tube axis of the heat transfer tubes 9.SELECTED DRAWING: Figure 1

Description

本発明は、複数の伝熱管内を流通させる流体と、各伝熱管の外側を流通させる別の流体との熱交換を行わせるために用いる多管式熱交換器に関するものである。   The present invention relates to a multi-tube heat exchanger used for heat exchange between a fluid flowing through a plurality of heat transfer tubes and another fluid flowing outside the heat transfer tubes.

熱交換器の一つである多管式熱交換器は、容器(シェル)の胴内に、平行に配置された複数の伝熱管による管群が設けられている。   A multi-tube heat exchanger, which is one of the heat exchangers, is provided with a tube group including a plurality of heat transfer tubes arranged in parallel in the body of a container (shell).

該管群の長手方向複数個所には、バッフル(邪魔板、そらせ板とも称する)が備えられている。この種のバッフルとしては、セグメント形式のバッフルが広く用いられているが、ディスク状(円板状)のバッフルとドーナツ状(リング状)のバッフルとを交互に配置したディスクアンドドーナツ形式と云われるものも用いられている(たとえば、特許文献1参照)。   Baffles (also referred to as baffle plates or baffle plates) are provided at a plurality of locations in the longitudinal direction of the tube group. As this kind of baffle, a segment type baffle is widely used, but it is called a disk and donut type in which a disk-shaped (disk-shaped) baffle and a donut-shaped (ring-shaped) baffle are alternately arranged. The thing is also used (for example, refer patent document 1).

これらのバッフルを備えた従来の多管式熱交換器は、管群の各伝熱管内を流通させる管側流体と、シェルの胴内で前記各伝熱管の外面に接する胴側流体との熱交換を行わせるときに、胴側流体の流れが、各バッフルで順次折り返されて、常に各伝熱管の長手方向に直交する方向の流れ、すなわち、管群直交流となって各伝熱管に当たるようにしてある。   Conventional multi-tube heat exchangers equipped with these baffles are the heats of the tube-side fluid that circulates through the heat transfer tubes of the tube group and the cylinder-side fluid that is in contact with the outer surface of each heat transfer tube in the shell of the shell. When exchange is performed, the flow of the trunk side fluid is sequentially folded by each baffle so that it always flows in a direction perpendicular to the longitudinal direction of each heat transfer tube, that is, a tube group cross flow and strikes each heat transfer tube. It is.

特表2006−510471号公報JP 2006-510471 A

ところが、前記セグメント形式やディスクアンドドーナツ形式のバッフルを備えた従来の多管式熱交換器は、胴側流体の流れに、各バッフルで順次折り返される管群直交流を繰り返して発生させるようにしてあるため、胴側流体の圧力損失が大きくなりやすい。   However, the conventional multi-tube heat exchanger equipped with the segment type or disk and donut type baffle repeatedly generates a cross flow of the tube group that is sequentially folded by each baffle in the flow of the trunk side fluid. Therefore, the pressure loss of the trunk side fluid tends to increase.

そこで、本発明は、胴側流体の圧力損失の低減化を図ることができる多管式熱交換器を提供しようとするものである。   Accordingly, the present invention is intended to provide a multi-tube heat exchanger that can reduce the pressure loss of the trunk side fluid.

本発明は、上記課題を解決するために、伝熱管内を流通させる第1の流体と伝熱管の外側を流通させる第2の流体とを熱交換させる多管式熱交換器において、容器と、前記容器内の軸心方向の一方の端部に管板により仕切って形成した第1の流体の分配ヘッダと、前記容器内の軸心方向の他方の端部に別の管板により仕切って形成した前記第1の流体の集合ヘッダと、前記容器における前記各管板の間に位置する胴の内側の空間部に環状に設定した管群設置領域と、前記管群設置領域に配置した前記容器の軸心方向に平行な複数の伝熱管による管群と、前記管群設置領域に、周方向の複数個所を前記容器の軸心方向に平行で且つ半径方向に沿うバッフルで仕切って周方向に形成した複数の区画と、前記各区画の外周側と内周側の容器軸心方向にずれた位置に備えた外周側開口部及び内周側開口部と、を有し、周方向に隣接する2つの区画の外周側開口部同士を胴の外面に沿う位置で接続する外周側接続流路、又は周方向に隣接する2つの区画の内周側開口部同士を管群設置領域の内側の空間を通して接続する内周側接続流路のいずれか一方又は双方を備え、少なくとも2つの区画が接続された第2の流体の流通経路を備えた構成を有する多管式熱交換器とする。   In order to solve the above-mentioned problems, the present invention provides a multi-tube heat exchanger for exchanging heat between a first fluid that circulates in the heat transfer tube and a second fluid that circulates outside the heat transfer tube. A first fluid distribution header formed by partitioning with a tube plate at one end in the axial direction in the container, and formed by partitioning with another tube plate at the other end in the axial direction in the container. The first fluid collective header, a tube group installation region set in an annular shape in the space inside the cylinder located between the tube plates in the container, and the axis of the container disposed in the tube group installation region A tube group formed of a plurality of heat transfer tubes parallel to the center direction and a plurality of circumferential locations in the tube group installation region are partitioned in the circumferential direction by partitioning with baffles parallel to the axial direction of the container and along the radial direction. A plurality of compartments, and the container axis direction on the outer peripheral side and inner peripheral side of each compartment An outer peripheral side connection flow having an outer peripheral side opening and an inner peripheral side opening provided at a shifted position, and connecting the outer peripheral side openings of two sections adjacent in the circumferential direction at positions along the outer surface of the trunk One or both of the inner peripheral side connection flow paths that connect the inner peripheral side openings of the two adjacent sections in the road or the circumferential direction through the space inside the tube group installation region, and at least two sections A multitubular heat exchanger having a configuration including a connected second fluid flow path is provided.

又、上記構成において、各区画は、容器軸心方向の一端側と他端側に、外周側開口部と内周側開口部を備えたものとした構成とすることが好ましい。   Moreover, in the said structure, it is preferable that each division shall be the structure provided with the outer peripheral side opening part and the inner peripheral side opening part in the one end side and other end side of a container axial direction.

同様に、上記構成において、各区画は、容器軸心方向の中間部に、外周側開口部を備え、且つ容器軸心方向の両端側に、内周側開口部を備えるものとした構成とすることが好ましい。   Similarly, in the above configuration, each section includes an outer peripheral side opening in the middle portion in the container axial direction, and an inner peripheral side opening in both ends in the container axial direction. It is preferable.

更に、上記各構成において、各伝熱管には、触媒が充填されている構成としてもよい。   Furthermore, in each said structure, it is good also as a structure with which each heat exchanger tube is filled with the catalyst.

多管式熱交換器によれば、胴側流体の圧力損失の低減化を図ることができる。   According to the multi-tube heat exchanger, the pressure loss of the trunk side fluid can be reduced.

多管式熱交換器の第1実施形態を示すもので、(a)は容器軸心位置での概略断面図、(b)は(a)のA−A方向矢視断面図、(c)は(a)のB−B方向矢視断面図である。1 shows a first embodiment of a multi-tubular heat exchanger, (a) is a schematic cross-sectional view at a container axial center position, (b) is a cross-sectional view taken along line AA in (a), (c). [FIG. 2] is a sectional view taken along the line B-B in (a). 図1の多管式熱交換器の管群設置領域に形成した区画を展開して示す概要図である。FIG. 2 is a schematic diagram showing a section formed in a tube group installation region of the multi-tube heat exchanger of FIG. 1 in an expanded manner. 第1実施形態の応用例を示すもので、(a)(b)(c)は図1(a)(b)(c)に対応する図である。The application example of 1st Embodiment is shown, (a) (b) (c) is a figure corresponding to Fig.1 (a) (b) (c). 多管式熱交換器の第2実施形態を示すもので、(a)は容器軸心位置での概略断面図、(b)は(a)のC−C方向矢視断面図、(c)は(a)のD−D方向矢視断面図である。The 2nd Embodiment of a multi-tubular heat exchanger is shown, (a) is a schematic sectional drawing in a container axial center position, (b) is CC sectional view taken on the arrow direction of (a), (c). [FIG. 2] is a cross-sectional view taken along line DD in (a). 図4の多管式熱交換器の管群設置領域に形成した区画を展開して示す概要図である。It is a schematic diagram which expands and shows the division formed in the tube group installation area | region of the multitubular heat exchanger of FIG. 多管式熱交換器の第3実施形態を示すもので、(a)は容器軸心位置での概略断面図、(b)は(a)のE−E方向矢視断面図、(c)は(a)のF−F方向矢視断面図である。A 3rd embodiment of a multitubular heat exchanger is shown, (a) is a schematic sectional view in a container axis position, (b) is an EE direction arrow sectional view of (a), (c). [FIG. 2] is a sectional view taken along the line FF in FIG. 図6の多管式熱交換器の管群設置領域に形成した区画を展開して示す概要図である。It is the schematic which expand | deploys and shows the division formed in the tube group installation area | region of the multitubular heat exchanger of FIG. 多管式熱交換器の第4実施形態を示すもので、(a)(b)は図1(b)(c)に対応する図である。The 4th Embodiment of a multitubular heat exchanger is shown, (a) (b) is a figure corresponding to FIG.1 (b) (c). 第4実施形態の第1変形例を示すもので、(a)(b)は図8(a)(b)に対応する図である。The 1st modification of 4th Embodiment is shown, (a) (b) is a figure corresponding to Fig.8 (a) (b). 第4実施形態の第2変形例を示すもので、(a)(b)は図8(a)(b)に対応する図である。The 2nd modification of 4th Embodiment is shown, (a) (b) is a figure corresponding to Fig.8 (a) (b). 多管式熱交換器の第5実施形態を示すもので、(a)(b)は図4(b)(c)に対応する図である。The 5th Embodiment of a multi-tube heat exchanger is shown, (a) (b) is a figure corresponding to FIG.4 (b) (c). 第5実施形態の変形例を示すもので、(a)(b)は図11(a)(b)に対応する図である。The modification of 5th Embodiment is shown, (a) (b) is a figure corresponding to FIG. 11 (a) (b). 多管式熱交換器の第6実施形態を示すもので、(a)(b)は図11(a)(b)に対応する図である。The 6th Embodiment of a multi-tube heat exchanger is shown, (a) (b) is a figure corresponding to Fig.11 (a) (b). 第6実施形態の第1変形例を示すもので、(a)(b)は図13(a)(b)に対応する図である。The 1st modification of 6th Embodiment is shown, (a) (b) is a figure corresponding to Fig.13 (a) (b). 第6実施形態の第2変形例を示すもので、(a)(b)は図13(a)(b)に対応する図である。The 2nd modification of 6th Embodiment is shown, (a) (b) is a figure corresponding to Fig.13 (a) (b). 多管式熱交換器の第7実施形態を示すもので、(a)は容器軸心位置での概略断面図、(b)は(a)のG−G方向矢視断面図、(c)は(a)のH−H方向矢視断面図である。7 shows a seventh embodiment of the multi-tube heat exchanger, (a) is a schematic cross-sectional view at the container axial center position, (b) is a cross-sectional view taken along the GG direction of (a), (c). [FIG. 2] is a cross-sectional view taken along line HH in (a). 図16の多管式熱交換器の管群設置領域に形成した区画を展開して示す概要図である。It is the schematic which expand | deploys and shows the division formed in the tube group installation area | region of the multitubular heat exchanger of FIG. 多管式熱交換器の第8実施形態を示すもので、(a)(b)(c)は図1(a)(b)(c)に対応する図である。The 8th Embodiment of a multi-tube heat exchanger is shown, (a) (b) (c) is a figure corresponding to FIG. 1 (a) (b) (c).

本発明の多管式熱交換器について、図面を参照して説明する。   The multi-tube heat exchanger of the present invention will be described with reference to the drawings.

[第1実施形態]
図1は、多管式熱交換器の第1実施形態を示すものであり、図1(a)は容器軸心位置での概略断面図、図1(b)は図1(a)のA−A方向矢視断面図、図1(c)は図1(a)のB−B方向矢視断面図である。
[First Embodiment]
FIG. 1 shows a first embodiment of a multi-tube heat exchanger, FIG. 1 (a) is a schematic cross-sectional view at a container axial center position, and FIG. 1 (b) is A in FIG. 1 (a). -A direction arrow sectional drawing, FIG.1 (c) is a BB direction arrow sectional drawing of Fig.1 (a).

本実施形態の多管式熱交換器は、図1(a)(b)(c)に示すように、円筒状の容器1を備える。   The multitubular heat exchanger of the present embodiment includes a cylindrical container 1 as shown in FIGS.

容器1内の軸心方向一端寄り個所(図1(a)では上端寄り個所)には、管板2により仕切られた第1の流体としての管側流体12の分配ヘッダ3が設けられている。容器1内の軸心方向他端寄り個所(図1(a)では下端寄り個所)には、別の管板4により仕切られた管側流体12の集合ヘッダ5が設けられている。なお、容器1の軸心に沿う方向は、単に、容器軸心方向と云うものとする。   A distribution header 3 for the tube-side fluid 12 as the first fluid partitioned by the tube plate 2 is provided at a position near one end in the axial direction in the container 1 (the position near the upper end in FIG. 1A). . An assembly header 5 of the tube-side fluid 12 partitioned by another tube plate 4 is provided at a location near the other end in the axial direction in the container 1 (location near the lower end in FIG. 1A). The direction along the axis of the container 1 is simply referred to as the container axis direction.

容器1における各管板2と4の間に位置する円筒状の部分は胴6である。胴6の内側の空間部は、中心部を除く領域が、環状の管群設置領域7とされる。   A cylindrical portion located between the tube sheets 2 and 4 in the container 1 is a barrel 6. In the space part inside the trunk 6, an area excluding the central part is an annular tube group installation area 7.

管群設置領域7には、容器軸心方向に平行に配置された複数の伝熱管9による管群8が設けられている。   The tube group installation region 7 is provided with a tube group 8 including a plurality of heat transfer tubes 9 arranged in parallel to the container axial direction.

なお、図1(a)(b)(c)に示した伝熱管9の数や、伝熱管9同士の間隔は、図示するための便宜上のものであり、実際の伝熱管9の数や伝熱管9同士の間隔を反映したものではない。又、図示する便宜上、図1(a)と、図1(b)(c)では、伝熱管9の数や伝熱管9の配置は異なっている(後述する各実施形態の図においても同様)。   The number of heat transfer tubes 9 and the interval between the heat transfer tubes 9 shown in FIGS. 1A, 1B, and 1C are for convenience of illustration, and the actual number of heat transfer tubes 9 and It does not reflect the interval between the heat tubes 9. For convenience of illustration, the number of heat transfer tubes 9 and the arrangement of the heat transfer tubes 9 are different in FIGS. 1A and 1B and 1C (the same applies to the drawings of the embodiments described later). .

各伝熱管9の一端部は、管板2を介して分配ヘッダ3に連通接続されている。各伝熱管9の他端部は、管板4を介して集合ヘッダ5に連通接続されている。   One end of each heat transfer tube 9 is connected to the distribution header 3 through the tube plate 2. The other end of each heat transfer tube 9 is connected to the collective header 5 through the tube plate 4.

容器1の軸心方向の一端部には、分配ヘッダ3に連通する管側流体入口10が設けられている。一方、容器1の軸心方向の他端部には、集合ヘッダ5に連通する管側流体出口11が設けられている。これにより、管側流体入口10の上流側に接続された図示しない管側流体供給部より供給される管側流体12は、管側流体入口10を通して分配ヘッダ3に流入し、この分配ヘッダ3内で分散されてから、管群8を形成している各伝熱管9に対し供給される。各伝熱管9に対して供給された管側流体12は、各伝熱管9を通過する間に、各伝熱管9の外面に接する後述の第2の流体としての胴側流体13と、各伝熱管9の管壁を介して間接的に熱交換される。各伝熱管9を通過した後の管側流体12は、集合ヘッダ5で集合させられた後、管側流体出口11を通して容器1の外部へ取り出される。この容器1の外部へ取り出された管側流体12は、管側流体出口11の下流側に接続された図示しない管側流体12の需要先や回収部に送られるようにすればよい。   A tube-side fluid inlet 10 that communicates with the distribution header 3 is provided at one end of the container 1 in the axial direction. On the other hand, a tube-side fluid outlet 11 communicating with the collective header 5 is provided at the other end in the axial direction of the container 1. As a result, the pipe-side fluid 12 supplied from a pipe-side fluid supply unit (not shown) connected to the upstream side of the pipe-side fluid inlet 10 flows into the distribution header 3 through the pipe-side fluid inlet 10. And then supplied to the heat transfer tubes 9 forming the tube group 8. The tube-side fluid 12 supplied to each heat transfer tube 9 passes through each heat transfer tube 9, and a trunk-side fluid 13 as a second fluid described later that contacts the outer surface of each heat transfer tube 9, and each heat transfer tube 9. Heat is indirectly exchanged through the tube wall of the heat tube 9. After passing through each heat transfer tube 9, the tube side fluid 12 is collected by the assembly header 5 and then taken out of the container 1 through the tube side fluid outlet 11. The pipe-side fluid 12 taken out of the container 1 may be sent to a demand destination or a collection unit of the pipe-side fluid 12 (not shown) connected to the downstream side of the pipe-side fluid outlet 11.

管群設置領域7は、周方向に等間隔の複数個所、たとえば、図1(b)(c)に示す如き周方向120度間隔の3個所に、バッフル(邪魔板)14a,14b,14cが設けられている。これらのバッフル14a,14b,14cは、容器軸心方向に平行な面内で管群設置領域7の内周側端部から容器1の胴6の内面に接する位置まで容器1の半径方向に沿って延びる矩形板状とされている。これにより、管群設置領域7には、各バッフル14a,14b,14cによって仕切られた3つの区画7aと7bと7cが、周方向に配列して形成される。   The tube group installation region 7 has baffles (baffle plates) 14a, 14b, 14c at a plurality of locations at equal intervals in the circumferential direction, for example, at three intervals of 120 ° in the circumferential direction as shown in FIGS. Is provided. These baffles 14a, 14b, and 14c extend along the radial direction of the container 1 from the inner peripheral side end of the tube group installation region 7 to a position in contact with the inner surface of the barrel 6 of the container 1 in a plane parallel to the container axial direction. It is a rectangular plate that extends. Thereby, in the tube group installation region 7, three sections 7a, 7b, and 7c partitioned by the baffles 14a, 14b, and 14c are arranged in the circumferential direction.

各バッフル14a,14b,14cは、図示してないが、容器軸心方向の両端側に位置する端部が、各管板2と4にそれぞれ取り付けられている。又、図1(b)(c)に示すように、各バッフル14a,14b,14cの容器1の外周寄りに位置する端部は、胴6の内面に取り付けられている。   Although not shown, each baffle 14a, 14b, 14c is attached to each tube plate 2 and 4 at the end located on both ends in the container axial direction. As shown in FIGS. 1B and 1C, the end portions of the baffles 14 a, 14 b, 14 c located near the outer periphery of the container 1 are attached to the inner surface of the barrel 6.

各バッフル14a,14b,14cは、管群8の各伝熱管9と干渉しないように配置されている。   Each baffle 14a, 14b, 14c is arranged so as not to interfere with each heat transfer tube 9 of the tube group 8.

たとえば、管群8における伝熱管9の配列が、図1(b)(c)に示すような正三角形を単位とする三角配列(千鳥配列)となっている場合は、管群8には、各伝熱管9同士の隙間が容器1の半径方向に連続して延びる個所が、周方向60度間隔の6個所に形成される。この容器1の半径方向に連続する隙間が存在する各個所では、その他の個所に比べて、管群設置領域7に供給される胴側流体13が、容器1の半径方向に沿って通り抜けやすくなる。   For example, when the arrangement of the heat transfer tubes 9 in the tube group 8 is a triangular arrangement (staggered arrangement) having equilateral triangles as a unit as shown in FIGS. The locations where the gaps between the heat transfer tubes 9 continuously extend in the radial direction of the container 1 are formed at six locations at intervals of 60 degrees in the circumferential direction. At each location where there is a continuous gap in the radial direction of the container 1, the barrel-side fluid 13 supplied to the tube group installation region 7 is more likely to pass along the radial direction of the vessel 1 than at other locations. .

この点に鑑みて、各バッフル14a,14b,14cは、各伝熱管9同士の隙間が容器1の半径方向に連続して延びる6個所のうちの3個所に配置することが望ましい。これは、各伝熱管9同士の隙間が容器1の半径方向に連続して延びる個所にバッフル14a,14b,14cを配置することにより、該個所での胴側流体13の容器の半径方向に沿う流れが抑制されるようにするためである。したがって、このような各バッフル14a,14b,14cの配置によれば、管群設置領域7で、胴側流体13が局所的に容器1の半径方向に沿う方向へ通り抜ける現象を抑制することができる。   In view of this point, it is desirable that the baffles 14 a, 14 b, 14 c be arranged at three of the six locations where the gaps between the heat transfer tubes 9 continuously extend in the radial direction of the container 1. This is because the baffles 14a, 14b, and 14c are arranged at locations where the gaps between the heat transfer tubes 9 continuously extend in the radial direction of the vessel 1, thereby along the radial direction of the vessel of the trunk side fluid 13 at the location. This is to suppress the flow. Therefore, according to such arrangement of the baffles 14a, 14b, and 14c, it is possible to suppress a phenomenon in which the trunk-side fluid 13 locally passes in the direction along the radial direction of the container 1 in the tube group installation region 7. .

次に、前記のように管群設置領域7に形成された各区画7a,7b,7cを通る胴側流体13の流通経路について説明する。   Next, the flow path of the trunk side fluid 13 passing through the sections 7a, 7b, 7c formed in the tube group installation region 7 as described above will be described.

図2は、胴側流体13の流通経路の概要を説明するための図で、容器1の胴6内の管群設置領域7に形成された3つの区画7a,7b,7cを、周方向に分離し、展開させて示してある。なお、図2では、各区画7a,7b,7cを、内周部が手前側に、外周部が奥側に配置された状態として斜視図で示してある。図2において、図1(a)(b)(c)に示したものと同一のものには同一符号が付してある。又、図2では、各区画7a,7b,7cを図示する便宜上、各バッフル14a,14b,14c、容器1の胴6以外の部分、管板2、及び、伝熱管9の記載は省略してある。   FIG. 2 is a diagram for explaining the outline of the flow path of the trunk side fluid 13, and shows three sections 7 a, 7 b, 7 c formed in the tube group installation region 7 in the trunk 6 of the container 1 in the circumferential direction. Shown separated and unfolded. In addition, in FIG. 2, each division 7a, 7b, 7c is shown with the perspective view as a state by which the inner peripheral part is arrange | positioned at this side, and an outer peripheral part is located in the back | inner side. In FIG. 2, the same components as those shown in FIGS. 1A, 1B, and 1C are denoted by the same reference numerals. In FIG. 2, for convenience of illustration of the sections 7a, 7b, and 7c, the baffles 14a, 14b, and 14c, portions other than the body 6 of the container 1, the tube plate 2, and the heat transfer tube 9 are omitted. is there.

各区画7a,7b,7cは、外周部と内周部の容器軸心方向にずれた位置、たとえば、図2にハッチングを付して示すように、外周部における容器軸心方向一端寄りの端部(図2では上端寄りの端部)と、内周部における容器軸心方向他端寄りの端部(図2では下端寄りの端部)に、外周側開口部15a,15b,15cと、内周側開口部16a,16b,16cをそれぞれ備えている。この外周側と内周側の各開口部15a,15b,15cと16a,16b,16cの具体的な構成については後述する。   Each of the compartments 7a, 7b, and 7c is located at a position shifted in the container axial direction between the outer peripheral part and the inner peripheral part, for example, as shown by hatching in FIG. Outer peripheral side openings 15a, 15b, and 15c at the end portion (the end portion near the upper end in FIG. 2) and the end portion near the other end in the container axial direction in the inner peripheral portion (the end portion near the lower end in FIG. 2), Inner peripheral openings 16a, 16b, and 16c are provided. Specific configurations of the outer peripheral side and inner peripheral side openings 15a, 15b, 15c and 16a, 16b, 16c will be described later.

周方向に配列された3つの区画7a,7b,7cのうち、隣接する区画7aと7bは、互いの内周側開口部16aと16b同士が、区画7aと7bの内側に設けた内周側接続流路17を介して接続されている。更に、隣接する区画7bと7cは、互いの外周側開口部15bと15c同士が、容器1の胴6の外側に設けた外周側接続流路18を介して接続されている。この内周側接続流路17及び外周側接続流路18の具体的な構成は後述する。   Among the three sections 7a, 7b, 7c arranged in the circumferential direction, adjacent sections 7a and 7b are the inner peripheral side where the inner peripheral side openings 16a and 16b are provided inside the sections 7a and 7b. They are connected via a connection channel 17. Further, the adjacent sections 7 b and 7 c are connected to each other through the outer peripheral side connection flow path 18 provided on the outer side of the body 6 of the container 1. Specific configurations of the inner peripheral connection channel 17 and the outer peripheral connection channel 18 will be described later.

以上により、管群設置領域7には、外周側開口部15aから、区画7aの内部空間、内周側開口部16a、内周側接続流路17、内周側開口部16b、区画7bの内部空間、外周側開口部15b、外周側接続流路18、外周側開口部15c、及び、区画7cの内部空間を順に経て、内周側開口部16cまで一連に繋がる胴側流体13の流通経路が形成される。   As described above, in the tube group installation region 7, the inner space of the partition 7a, the inner peripheral opening 16a, the inner peripheral connection channel 17, the inner peripheral opening 16b, and the inner part of the partition 7b from the outer peripheral opening 15a. The flow path of the trunk side fluid 13 connected in series through the space, the outer periphery side opening 15b, the outer periphery side connection flow path 18, the outer periphery side opening 15c, and the inner space of the section 7c to the inner periphery side opening 16c. It is formed.

これにより、区画7aと7cでは、図2に示すように、容器軸心方向一端寄りの端部に設けられた外周側開口部15a,15cより流入する胴側流体13が、容器軸心方向他端寄りの端部に設けられた内周側開口部16a,16cに向けて流れるようになる。   Thereby, in the compartments 7a and 7c, as shown in FIG. 2, the trunk side fluid 13 flowing in from the outer peripheral side openings 15a and 15c provided at the end near the one end in the container axial direction, It flows toward the inner peripheral side openings 16a and 16c provided at the end near the end.

又、区画7bでは、容器軸心方向他端寄りの端部に設けられた内周側開口部16bより流入する胴側流体13が、容器軸心方向一端寄りの端部に設けられた外周側開口部15bに向けて流れるようになる。   Further, in the section 7b, the trunk side fluid 13 flowing from the inner peripheral side opening 16b provided at the end near the other end in the container axial direction is the outer peripheral side provided at the end near the one end in the container axial direction. It flows toward the opening 15b.

したがって、各区画7a,7b,7cでは、前記のように流通する胴側流体13が、複数の伝熱管9(図1(a)(b)(c)参照)の外面に接して、各伝熱管9内を流通する管側流体12との熱交換に供される。   Therefore, in each of the sections 7a, 7b, and 7c, the trunk-side fluid 13 that circulates as described above is in contact with the outer surface of the plurality of heat transfer tubes 9 (see FIGS. 1A, 1B, and 1C), and each transfer It is used for heat exchange with the tube-side fluid 12 that circulates in the heat tube 9.

この際、胴側流体13は、各伝熱管9の管軸に平行な容器軸心方向の流れとなるときに生じる抵抗が、各伝熱管9に対して直交する方向の流れ(管群直交流)となるときに生じる抵抗に比して小さくなる。   At this time, the trunk side fluid 13 flows in a direction perpendicular to each heat transfer tube 9 (the tube group cross flow) when the resistance generated when the barrel side fluid 13 flows in the container axial direction parallel to the tube axis of each heat transfer tube 9. ) Becomes smaller than the resistance generated when

そのため、図2に各区画7a,7b,7cにおける胴側流体13の流れ方向の概要を示すように、各区画7a,7b,7c内での胴側流体13の流れは、外周側開口部15a,15b,15cと内周側開口部16a,16b,16cが設けられている容器軸心方向両端寄りの領域で、管群直交流の流れ成分を含むようになるとしても、各区画7a,7b,7c内における容器軸心方向の中間部の領域では、主として容器軸心方向に沿った流れとなる。   Therefore, as shown in FIG. 2, an outline of the flow direction of the trunk side fluid 13 in each section 7 a, 7 b, 7 c, the flow of the trunk side fluid 13 in each section 7 a, 7 b, 7 c , 15b, 15c and the inner circumferential side openings 16a, 16b, 16c are provided in the regions near the both ends in the axial direction of the container. , 7c, the flow is mainly along the container axis direction in the region of the middle part in the container axis direction.

次に、外周側開口部15a,15b,15c、及び、内周側開口部16a,16b,16cと、内周側接続流路17、及び、外周側接続流路18の具体的な構成について説明する。   Next, specific configurations of the outer peripheral side openings 15a, 15b, 15c, the inner peripheral side openings 16a, 16b, 16c, the inner peripheral side connection flow path 17, and the outer peripheral side connection flow path 18 will be described. To do.

外周側開口部15a,15b,15cは、図1(a)(b)及び図2に示すように、容器1の胴6における容器軸心方向一端寄りの端部に、各区画7a,7b,7cの周方向角度範囲に対応して周方向に延びるように設けられている。なお、外周側接続流路18を介して接続される隣接する2つの外周側開口部15bと15cは、図1(b)に示すように、容器1の胴6に、周方向に連続した開口として形成させるようにしてもよい。   As shown in FIGS. 1 (a), 1 (b) and 2, the outer peripheral side openings 15a, 15b, 15c are provided at the ends of the barrel 6 of the container 1 near one end in the container axial direction. It is provided to extend in the circumferential direction corresponding to the circumferential angle range of 7c. In addition, two adjacent outer peripheral side openings 15b and 15c connected via the outer peripheral side connection flow path 18 are continuous openings in the circumferential direction in the body 6 of the container 1, as shown in FIG. You may make it form as.

一方、図1(a)(b)に示すように、管群設置領域7の内側(胴6の中心部)には、管板2に接する位置から、胴6における容器軸心方向の他端寄り個所まで延びる円柱形状の閉止部材19が設けられている。これにより、内周側開口部16a,16b,16cは、閉止部材19の容器軸心方向他端寄りの端部と、管板4との間の隙間として形成されている。   On the other hand, as shown in FIGS. 1 (a) and 1 (b), the other end of the barrel 6 in the axial direction of the container is located on the inner side of the tube group installation region 7 (center portion of the barrel 6) from the position contacting the tube plate 2. A columnar closing member 19 is provided that extends to the close position. Thereby, the inner peripheral side openings 16 a, 16 b and 16 c are formed as gaps between the end of the closing member 19 near the other end in the container axial direction and the tube plate 4.

閉止部材19の容器軸心方向一端寄りの端部は、管板2に取り付けられている。又、閉止部材19の外周面には、各バッフル14a,14b,14cの容器1の中心寄りに位置する端部が取り付けられている。なお、閉止部材19は、胴側流体13を通さないものであれば、中空構造又は中実構造のいずれであってもよい。   An end of the closing member 19 near one end in the container axial direction is attached to the tube plate 2. Moreover, the edge part located near the center of the container 1 of each baffle 14a, 14b, 14c is attached to the outer peripheral surface of the closing member 19. As shown in FIG. The closing member 19 may have a hollow structure or a solid structure as long as it does not pass the trunk side fluid 13.

図1(a)に示すように、管板4には、管群設置領域7よりも内側となる中央部に、開口20が設けられている。開口20には、容器1の軸心方向に沿って集合ヘッダ5の内側に突出する管状部材21が取り付けられている。管状部材21の突出端部は閉塞されているものとする。更に、管状部材21には、接続管30の一端側が接続されている。接続管30の他端側は、集合ヘッダ5に対応する容器壁を貫通させて外部に突出されている。外部に突出した接続管30の他端側は、胴側流体13の出口30aとされている。なお、容器壁における接続管30が貫通配置された部分は、シールされているものとする。   As shown in FIG. 1A, the tube plate 4 is provided with an opening 20 in a central portion that is inside the tube group installation region 7. A tubular member 21 that protrudes inside the collective header 5 along the axial direction of the container 1 is attached to the opening 20. It is assumed that the protruding end portion of the tubular member 21 is closed. Furthermore, one end side of the connection pipe 30 is connected to the tubular member 21. The other end side of the connection pipe 30 protrudes outside through the container wall corresponding to the collective header 5. The other end side of the connecting pipe 30 protruding to the outside is an outlet 30 a for the trunk side fluid 13. In addition, the part by which the connection pipe 30 penetrates and arranges in the container wall shall be sealed.

更に、図1(a)(c)に示すように、管群設置領域7よりも内側で、且つ閉止部材19の容器軸心方向他端寄りの端面から管板4の開口20までの間の空間には、該空間を、内周側開口部16aと16bの双方に連通する領域と、内周側開口部16cのみに連通する領域とに仕切るための内周部仕切部材22が設けられている。   Further, as shown in FIGS. 1A and 1C, the space between the end surface near the other end in the container axial direction of the closing member 19 and the opening 20 of the tube plate 4 is inside the tube group installation region 7. The space is provided with an inner peripheral partition member 22 for partitioning the space into a region communicating with both the inner peripheral openings 16a and 16b and a region communicating only with the inner peripheral opening 16c. Yes.

内周部仕切部材22は、容器1の軸心位置からバッフル14aと14cの内周側端部に向けて容器1の半径方向に沿って延びる2つの平板を容器1の軸心位置で繋いだ形状とされ、その両側端部がバッフル14aと14cの内周側端部に取り付けられている。内周部仕切部材22の容器軸心方向一端寄りの端部は、閉止部材19の容器軸心方向他端寄りの端面に取り付けられている。   The inner peripheral partition member 22 connects two flat plates extending along the radial direction of the container 1 from the axial position of the container 1 toward the inner peripheral side ends of the baffles 14 a and 14 c at the axial position of the container 1. It has a shape, and both end portions thereof are attached to the inner peripheral end portions of the baffles 14a and 14c. An end of the inner peripheral partition member 22 near one end in the container axial direction is attached to an end surface of the closing member 19 near the other end in the container axial direction.

更に、管板4の開口20の中には、管群設置領域7よりも内側で、且つ内周部仕切部材22によって内周側開口部16aと16bの双方に連通するように仕切られた領域の容器軸心方向他端側を閉塞させて、管状部材21との連通を阻止するための閉塞部材23(図1(a)参照)が設けられている。   Further, in the opening 20 of the tube plate 4, an area that is partitioned from the tube group installation area 7 so as to communicate with both the inner peripheral side openings 16 a and 16 b by the inner peripheral partition member 22. A closing member 23 (see FIG. 1A) is provided for closing the other end side of the container in the axial direction of the container and preventing communication with the tubular member 21.

これにより、閉止部材19の容器軸心方向他端寄りの端面と、閉塞部材23との間で、内周部仕切部材22によって内周側開口部16aと16bの双方に連通するように仕切られた領域が、前述した内周側接続流路17となる。   Thus, the inner member is partitioned by the inner peripheral partition member 22 so as to communicate with both the inner peripheral openings 16a and 16b between the end surface of the closing member 19 near the other end in the container axial direction and the closing member 23. This region becomes the inner peripheral side connection flow path 17 described above.

一方、閉止部材19の容器軸心方向他端寄りの端面と、管板4の開口20との間で、内周部仕切部材22によって内周側開口部16cのみに連通するように仕切られた領域は、前述した胴側流体13の流通経路で下流側端部(末端)に位置する内周側開口部16cより流出する胴側流体13を集合させて、管状部材21に送るための出口側のヘッダ24となる。   On the other hand, between the end surface of the closing member 19 near the other end in the axial direction of the container and the opening 20 of the tube plate 4, the inner peripheral part partitioning member 22 was partitioned so as to communicate only with the inner peripheral side opening 16c. The region is an outlet side for collecting the cylinder side fluid 13 flowing out from the inner peripheral side opening 16c located at the downstream end (terminal) in the distribution path of the cylinder side fluid 13 and sending it to the tubular member 21. Header 24.

図1(a)(b)に示すように、胴6の外面における外周側開口部15bと15cの周縁部には、胴6の外面に沿って周方向に延びる樋状の流路形成部材25が、各外周側開口部15bと15cを一緒に覆うように配置された状態で取り付けられている。流路形成部材25の内部空間は、外周側開口部15bと15cとを接続する外周側接続流路18となる。   As shown in FIGS. 1 (a) and 1 (b), a flange-shaped flow path forming member 25 extending in the circumferential direction along the outer surface of the body 6 is provided at the peripheral edge portions of the outer peripheral side openings 15 b and 15 c on the outer surface of the body 6. However, it is attached in the state arrange | positioned so that each outer peripheral side opening part 15b and 15c may be covered together. The internal space of the flow path forming member 25 becomes the outer peripheral side connection flow path 18 that connects the outer peripheral side openings 15b and 15c.

前述した胴側流体13の流通経路で上流側端部(起端)に位置するのは、外周側開口部15aである。そこで、胴6の外面における外周側開口部15aの周縁部には、胴6の外面に沿って周方向に延びる樋状のヘッダ部材26が、外周側開口部15aを覆うように配置された状態で取り付けられている。このヘッダ部材26には、胴側流体13の入口27が設けられている。   It is the outer peripheral side opening 15a that is positioned at the upstream end (starting end) in the flow path of the trunk side fluid 13 described above. Therefore, a state in which a flange-like header member 26 extending in the circumferential direction along the outer surface of the trunk 6 is arranged at the peripheral edge portion of the outer circumferential side opening 15a on the outer surface of the trunk 6 so as to cover the outer circumferential side opening 15a. It is attached with. The header member 26 is provided with an inlet 27 for the trunk side fluid 13.

更に、図1(a)(b)に示すように、各外周側開口部15a,15b,15cには、分散板28を備えることが望ましい。この分散板28は、胴側流体13が通過する際に或る程度の圧力損失を生じさせることで、各外周側開口部15a,15b,15cを通る胴側流体13の周方向への分散を促進させるためのものである。分散板28は、前記の胴側流体13の分散促進機能を備えていれば、多孔板、パンチングメタル、スリットを設けた板、メッシュを用いる構成等、任意の構成のものを採用してよい。又、分散板28は、胴6の周壁に孔やスリットを設けた構成としてもよい。なお、図1(b)では、分散板28を、周方向に均一な構造を有するものとして示したが、外周側開口部15aの外側のヘッダ部材26内における胴側流体13の流通方向や、外周側開口部15bと15cを接続する外周側接続流路18における胴側流体13の流通方向等を考慮して、分散板28は、胴側流体13の通過時に生じる圧力損失が、均一に分布していないものであってもよいことは勿論である。又、各分散板28は、同一構成のものでもよいし、同一構成のものでなくてもよい。   Further, as shown in FIGS. 1A and 1B, it is desirable that each of the outer peripheral side openings 15a, 15b, and 15c includes a dispersion plate 28. The dispersion plate 28 causes a certain amount of pressure loss when the trunk-side fluid 13 passes, thereby dispersing the trunk-side fluid 13 in the circumferential direction through the outer circumferential openings 15a, 15b, and 15c. It is for promoting. As long as the dispersion plate 28 has the function of promoting dispersion of the body-side fluid 13, the dispersion plate 28 may have any configuration such as a perforated plate, a punching metal, a plate provided with a slit, or a configuration using a mesh. Further, the dispersion plate 28 may have a configuration in which holes and slits are provided in the peripheral wall of the body 6. In addition, in FIG.1 (b), although the dispersion | distribution board 28 was shown as what has a uniform structure in the circumferential direction, the distribution | circulation direction of the trunk | drum fluid 13 in the header member 26 outside the outer peripheral side opening part 15a, In consideration of the flow direction of the trunk side fluid 13 in the outer circumference side connection flow path 18 connecting the outer circumference side openings 15b and 15c, the dispersion plate 28 is uniformly distributed with pressure loss generated when the trunk side fluid 13 passes. Of course, it may not be. Further, each dispersion plate 28 may have the same configuration or may not have the same configuration.

又、各内周側開口部16a,16b,16cにも、胴側流体13の流れを周方向に平均化させることを目的として、管群設置領域7の内周側端部位置に沿って円弧状に配置された分散板29を備えることが望ましい。なお、流路断面積の差を考慮して、内周側の分散板29は、外周側の分散板28に比して、胴側流体13の通過時に発生する圧力損失が小さいものを用いるようにすればよい。   Further, each of the inner peripheral side openings 16a, 16b, 16c also has a circular shape along the inner peripheral side end position of the tube group installation region 7 for the purpose of averaging the flow of the trunk side fluid 13 in the circumferential direction. It is desirable to provide a dispersion plate 29 arranged in an arc. In consideration of the difference in the cross-sectional area of the flow path, the inner peripheral dispersion plate 29 should have a smaller pressure loss generated when the trunk side fluid 13 passes than the outer peripheral dispersion plate 28. You can do it.

以上の構成としてある第1実施形態の多管式熱交換器を使用する場合は、管側流体入口10に、図示しない管側流体供給部を接続し、管側流体出口11に、図示しない管側流体12の需要先又は回収部を接続する。   When the multi-tube heat exchanger according to the first embodiment having the above configuration is used, a pipe-side fluid supply unit (not shown) is connected to the pipe-side fluid inlet 10 and a pipe (not shown) is connected to the pipe-side fluid outlet 11. The demand destination or collection | recovery part of the side fluid 12 is connected.

一方、ヘッダ部材26の入口27には、図示しない胴側流体供給部を接続し、接続管30の出口30aには、胴側流体13の回収部あるいは需要先を接続する。なお、胴側流体13が熱媒である場合は、出口30aより回収される胴側流体13を、胴側流体供給部に戻し、温度調整しながら循環させて使用すればよい。   On the other hand, a trunk side fluid supply section (not shown) is connected to the inlet 27 of the header member 26, and a recovery section or a demand destination for the trunk side fluid 13 is connected to the outlet 30 a of the connection pipe 30. When the trunk side fluid 13 is a heat medium, the trunk side fluid 13 recovered from the outlet 30a may be returned to the trunk side fluid supply unit and circulated while adjusting the temperature.

この状態で、管側流体供給部より供給される管側流体12は、前述したように管側流体入口10、分配ヘッダ3を経て各伝熱管9に連続的に供給される。   In this state, the tube-side fluid 12 supplied from the tube-side fluid supply unit is continuously supplied to each heat transfer tube 9 via the tube-side fluid inlet 10 and the distribution header 3 as described above.

一方、胴側流体供給部より供給される胴側流体13は、入口27よりヘッダ部材26内へ供給されると、ヘッダ部材26内で周方向に分散された後、外周側開口部15aより区画7aに流入する。その後、前述した胴側流体13の流通経路にしたがって、区画7aを通過した胴側流体13は、内周側接続流路17を経て区画7bに供給され、区画7bを通過した胴側流体13は、外周側接続流路18を経て区画7cに供給される。   On the other hand, when the cylinder-side fluid 13 supplied from the cylinder-side fluid supply unit is supplied into the header member 26 from the inlet 27, the cylinder-side fluid 13 is dispersed in the header member 26 in the circumferential direction and then partitioned from the outer opening 15a. Flows into 7a. After that, according to the flow path of the trunk side fluid 13 described above, the trunk side fluid 13 that has passed through the section 7a is supplied to the section 7b via the inner peripheral connection flow path 17, and the trunk side fluid 13 that has passed through the section 7b is Then, it is supplied to the section 7 c through the outer peripheral side connection flow path 18.

これにより、各区画7a,7b,7c内では、それぞれの区画7a,7b,7cに配置された各伝熱管9内を流通する管側流体12と、各伝熱管9の外側を流通する胴側流体13との間で、伝熱管9の管壁を介した熱交換が行われる。   Thereby, in each division 7a, 7b, 7c, the pipe | tube side fluid 12 which distribute | circulates the inside of each heat exchanger tube 9 arrange | positioned at each division 7a, 7b, 7c, and the trunk | drum side which distribute | circulates the outer side of each heat exchanger tube 9 Heat exchange is performed with the fluid 13 via the tube wall of the heat transfer tube 9.

前記熱交換の処理が行われた後の管側流体12は、各伝熱管9を通過後に、集合ヘッダ5で集合させられてから、管側流体出口11より取り出される。   The tube-side fluid 12 after the heat exchange process is passed through the heat transfer tubes 9, is collected by the assembly header 5, and then is taken out from the tube-side fluid outlet 11.

一方、前記熱交換の処理が行われた後の胴側流体13は、内周側開口部16cを通して、その内周側に設けられているヘッダ24へ導かれ、その後、管板4の開口20から、管状部材21と接続管30を通して出口30aまで導かれて取り出される。   On the other hand, the trunk side fluid 13 after the heat exchange process is guided to the header 24 provided on the inner peripheral side through the inner peripheral side opening 16c, and then the opening 20 of the tube plate 4 is provided. Then, it is guided to the outlet 30a through the tubular member 21 and the connecting pipe 30 and taken out.

しかる後、本実施形態の多管式熱交換器より取り出された管側流体12と、胴側流体13は、それぞれの需要先や回収部へ送って、予め設定されている後処理を行うようにすればよい。   Thereafter, the pipe-side fluid 12 and the trunk-side fluid 13 taken out from the multi-tube heat exchanger according to the present embodiment are sent to the respective demand destinations and recovery units to perform preset post-processing. You can do it.

ところで、管群設置領域7の各区画7aと7bと7cは、胴側流体13の流通経路上で上下流方向に並んでいるため、区画7aでの熱交換処理に供された後の胴側流体13が区画7bに供給され、更に、区画7bでの熱交換処理に供された後の胴側流体13が区画7cに供給されるようになる。このため、区画7aと7bと7cでは、供給される胴側流体13の温度に相違が生じ、それに起因して、伝熱管9の管外側の熱伝達率に差が生じることが考えられる。   By the way, since each section 7a, 7b, and 7c of the tube group installation area 7 is arranged in the upstream and downstream direction on the flow path of the trunk side fluid 13, the trunk side after being subjected to the heat exchange process in the section 7a. The fluid 13 is supplied to the section 7b, and further, the trunk side fluid 13 after being subjected to the heat exchange process in the section 7b is supplied to the section 7c. For this reason, in the compartments 7a, 7b and 7c, a difference occurs in the temperature of the trunk-side fluid 13 to be supplied, which may cause a difference in the heat transfer coefficient outside the heat transfer tube 9.

しかし、一般に、熱交換器の熱交換性能は、管側流体12の供給時と取出時の温度差や、胴側流体13の供給時と取出時の温度差に基づいて決定されるものであるため、個々の伝熱管9で管外側の熱伝達率に差が生じていても、多管式熱交換器としての熱交換性能に何ら問題が生じることはない。   However, in general, the heat exchange performance of the heat exchanger is determined based on the temperature difference between the supply and extraction of the tube-side fluid 12 and the temperature difference between the supply and extraction of the trunk-side fluid 13. For this reason, even if there is a difference in the heat transfer coefficient outside the tubes in the individual heat transfer tubes 9, no problem occurs in the heat exchange performance as a multi-tube heat exchanger.

このように、本実施形態の多管式熱交換器によれば、管側流体12と胴側流体13との熱交換を実施させることができる。   Thus, according to the multi-tube heat exchanger of the present embodiment, heat exchange between the tube-side fluid 12 and the trunk-side fluid 13 can be performed.

又、容器1の胴6内では、管群設置領域7をバッフル14a,14b,14cにより3つの区画7a,7b,7cに分けて、胴側流体13の流路断面積を制限するようにしてあるため、各伝熱管9の外側を流通する胴側流体13の流速が高められる。よって、本実施形態の多管式熱交換器は、熱交換性能を高いものとすることができる。   Further, in the barrel 6 of the container 1, the tube group installation region 7 is divided into three sections 7a, 7b, and 7c by baffles 14a, 14b, and 14c, so that the flow path cross-sectional area of the barrel side fluid 13 is limited. Therefore, the flow velocity of the trunk side fluid 13 that flows outside the heat transfer tubes 9 is increased. Therefore, the multitubular heat exchanger of the present embodiment can have high heat exchange performance.

更に、本実施形態の多管式熱交換器では、各区画7a,7b,7c内での胴側流体13の流れを、容器軸心方向の流れ成分を含んだものとし、特に、各区画7a,7b,7cの容器軸心方向中間部付近の領域では、胴側流体13を、主として容器軸心方向に沿う流れとさせることができる。   Furthermore, in the multi-tube heat exchanger of the present embodiment, the flow of the trunk side fluid 13 in each of the compartments 7a, 7b, 7c includes a flow component in the container axial direction. , 7b, 7c, the cylinder side fluid 13 can be made to flow mainly along the container axis direction in the vicinity of the middle part in the container axis direction.

このため、本実施形態の多管式熱交換器では、従来の多管式熱交換器のように、管群直交流を繰り返しているものではないので、胴側流体13の圧力損失の低減化を図ることができる。   For this reason, in the multi-tube heat exchanger of the present embodiment, unlike the conventional multi-tube heat exchanger, the cross flow of the tube group is not repeated, so that the pressure loss of the trunk side fluid 13 is reduced. Can be achieved.

これにより、本実施形態の多管式熱交換器は、胴側流体供給部より胴側流体13を供給するために必要とされるポンプ動力の低減化を図る場合に有利な構成とすることができる。   Thereby, the multi-tubular heat exchanger of the present embodiment may be configured to be advantageous when reducing pump power required for supplying the trunk side fluid 13 from the trunk side fluid supply unit. it can.

従来の多管式熱交換器の場合は、特許文献1に記載されているように、バッフルに多数の伝熱管挿通孔を設けて、各伝熱管挿通孔に伝熱管を挿通(貫通)させるようにした構成とされている。   In the case of a conventional multi-tube heat exchanger, as described in Patent Document 1, a large number of heat transfer tube insertion holes are provided in the baffle so that the heat transfer tubes are inserted (penetrated) into the heat transfer tube insertion holes. It is set as the structure made into.

これに対し、本実施形態の多管式熱交換器では、各バッフル14a,14b,14cは、各伝熱管9の管軸方向に平行に配置してあるため、伝熱管挿通孔を設ける必要がない。よって、バッフル14a,14b,14cに対する孔開け作業自体が不要である。   On the other hand, in the multi-tube heat exchanger of the present embodiment, each baffle 14a, 14b, 14c is arranged in parallel to the tube axis direction of each heat transfer tube 9, so it is necessary to provide a heat transfer tube insertion hole. Absent. Therefore, the drilling operation itself for the baffles 14a, 14b, 14c is unnecessary.

更に、管群設置領域7の各区画7a,7b,7cに胴側流体13を流通させるときに、バッフル14a,14b,14cに伝熱管挿通孔が形成されていないことから、胴側流体13の伝熱管挿通孔からのリークという問題は生じない。このため、本実施形態の多管式熱交換器では、管群設置領域7の各区画7a,7b,7cにおける胴側流体13の流れが単純なものとなる。したがって、本実施形態の多管式熱交換器は、胴側流体13の温度コントロールを行いやすいものとすることができる。   Furthermore, when the trunk side fluid 13 is circulated through the sections 7a, 7b, 7c of the tube group installation region 7, no heat transfer pipe insertion holes are formed in the baffles 14a, 14b, 14c. There is no problem of leakage from the heat transfer tube insertion hole. For this reason, in the multi-tube heat exchanger of the present embodiment, the flow of the trunk side fluid 13 in each section 7a, 7b, 7c of the tube group installation region 7 becomes simple. Therefore, the multi-tube heat exchanger according to the present embodiment can easily control the temperature of the trunk side fluid 13.

[第1実施形態の応用例]
図3は第1実施形態の応用例を示すものであり、図3(a)(b)(c)は図1(a)(b)(c)と対応する図である。
[Application Example of First Embodiment]
FIG. 3 shows an application example of the first embodiment, and FIGS. 3A, 3B and 3C correspond to FIGS. 1A, 1B and 1C.

なお、図3(a)(b)(c)において、図1(a)(b)(c)と同一のものには同一符号を付してその説明を省略する。   In FIGS. 3A, 3B, and 3C, the same components as those in FIGS. 1A, 1B, and 1C are denoted by the same reference numerals, and description thereof is omitted.

図3(a)(b)(c)に示す多管式熱交換器は、胴側流体13の流通方向を第1実施形態の多管式熱交換器とは逆にしたものである。   The multitubular heat exchanger shown in FIGS. 3A, 3B and 3C is obtained by reversing the flow direction of the trunk side fluid 13 from that of the multitubular heat exchanger of the first embodiment.

本応用例では、接続管30の容器外側の端部を、胴側流体13の入口30bとし、ヘッダ部材26に、胴側流体13の出口27aを設けるようにすればよい。このように用いる場合は、各区画7a,7b,7cにおける胴側流体13の流れは、図2に示したものとは逆方向となる。したがって、胴側流体13は、容器軸心方向両端寄りの領域で、管群直交流の流れ成分を含むようになるとしても、各区画7a,7b,7c内における容器軸心方向の中間部の領域では、主として容器軸心方向に沿った流れとなる。   In this application example, the outer end of the connecting pipe 30 may be used as the inlet 30b of the trunk side fluid 13, and the outlet 27a of the trunk side fluid 13 may be provided in the header member 26. When used in this way, the flow of the trunk side fluid 13 in each of the compartments 7a, 7b, 7c is in the opposite direction to that shown in FIG. Therefore, even if the trunk-side fluid 13 includes a flow component of the tube group cross-flow in the region near both ends in the container axial direction, the cylinder-side fluid 13 is in the middle portion in the container axial direction in each partition 7a, 7b, 7c. In the region, the flow is mainly along the container axial direction.

よって、前記第1実施形態と同様の効果を得ることができる。   Therefore, the same effect as the first embodiment can be obtained.

[第2実施形態]
図4は、多管式熱交換器の第2実施形態を示すものであり、図4(a)は容器軸心位置での概略断面図、図4(b)は図4(a)のC−C方向矢視断面図、図4(c)は図4(a)のD−D方向矢視断面図である。
[Second Embodiment]
FIG. 4 shows a second embodiment of the multi-tube heat exchanger, FIG. 4 (a) is a schematic cross-sectional view at the container axial position, and FIG. 4 (b) is a diagram of C in FIG. 4 (a). -C direction arrow sectional drawing, FIG.4 (c) is DD direction arrow sectional drawing of Fig.4 (a).

なお、図4(a)(b)(c)において、図1(a)(b)(c)と同一のものには同一符号を付してその説明を省略する。   4A, 4B, and 4C, the same components as those in FIGS. 1A, 1B, and 1C are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態の多管式熱交換器は、図4(a)(b)(c)に示すように、前記第1実施形態と同様の構成において、管群設置領域7における周方向120度間隔の3個所に、バッフル14a,14b,14cを設けた構成に代えて、管群設置領域7の周方向180度間隔の2個所に、前記バッフル14a,14b,14cと同様のバッフル141a,141bを設けた構成としてある。   As shown in FIGS. 4A, 4B, and 4C, the multi-tube heat exchanger of the present embodiment has a configuration similar to that of the first embodiment, and is spaced 120 degrees in the circumferential direction in the tube group installation region 7. The baffles 141a, 141b similar to the baffles 14a, 14b, 14c are provided at two locations 180 degrees apart in the circumferential direction of the tube group installation area 7 instead of the configuration in which the baffles 14a, 14b, 14c are provided at the three locations. The configuration is provided.

これにより、本実施形態では、管群設置領域7に、各バッフル141aと141bによって仕切られた2つの区画71aと71bが周方向に配列されて形成されている。   Thereby, in this embodiment, the two divisions 71a and 71b divided by each baffle 141a and 141b are formed in the tube group installation area 7 in the circumferential direction.

なお、各バッフル141a,141bは、第1実施形態における各バッフル14a,14b,14cの配置と同様に、三角配列とされた管群8の各伝熱管9同士の隙間が容器1の半径方向に連続して延びる6個所のうちの2個所に配置することが望ましい。このような各バッフル141a,141bの配置によれば、管群設置領域7で、胴側流体13が局所的に容器1の半径方向に沿う方向へ通り抜ける現象を抑制することができる。   In addition, each baffle 141a, 141b has the clearance gap between each heat exchanger tube 9 of the tube group 8 made into the triangular arrangement in the radial direction of the container 1 similarly to arrangement | positioning of each baffle 14a, 14b, 14c in 1st Embodiment. It is desirable to arrange in two of the six locations that extend continuously. According to such arrangement of the baffles 141a and 141b, it is possible to suppress the phenomenon that the trunk side fluid 13 passes through in the direction along the radial direction of the container 1 in the tube group installation region 7.

次に、前記のように管群設置領域7に形成された各区画71a,71bを通る胴側流体13の流通経路について説明する。   Next, the flow path of the trunk side fluid 13 passing through the sections 71a and 71b formed in the tube group installation region 7 as described above will be described.

図5は、本実施形態における胴側流体13の流通経路の概要を説明するための図で、管群設置領域7に形成された2つの区画71a,71bを、周方向に分離し、展開させて示してある。なお、図5では、各区画71a,71bを、内周部が手前側に配置された状態として斜視図で示してある。図5において、図4(a)(b)(c)に示したものと同一のものには、同一符号が付してある。又、図5では、各区画71a,71bを図示する便宜上、各バッフル141a,141b、容器1の胴6以外の部分、管板2、及び、伝熱管9の記載は省略してある。   FIG. 5 is a diagram for explaining the outline of the flow path of the trunk side fluid 13 in the present embodiment. The two sections 71a and 71b formed in the tube group installation region 7 are separated in the circumferential direction and expanded. It is shown. In addition, in FIG. 5, each division 71a, 71b is shown with the perspective view as a state by which the inner peripheral part is arrange | positioned at this side. In FIG. 5, the same components as those shown in FIGS. 4A, 4B, and 4C are denoted by the same reference numerals. Further, in FIG. 5, for convenience of illustrating the sections 71 a and 71 b, the baffles 141 a and 141 b, portions other than the body 6 of the container 1, the tube plate 2, and the heat transfer tube 9 are omitted.

各区画71a,71bは、図5にハッチングを付して示すように、外周部における容器軸心方向一端寄りの端部(図5では上端寄りの端部)と、内周部における容器軸心方向他端寄りの端部(図5では下端寄りの端部)に、外周側開口部151a,151bと、内周側開口部161a,161bをそれぞれ備えている。   As shown in FIG. 5 with hatching, each of the sections 71a and 71b has an end portion near one end in the container axial direction in the outer peripheral portion (an end portion near the upper end in FIG. 5) and a container axial center in the inner peripheral portion. Outer ends 151a and 151b and inner peripheral openings 161a and 161b are provided at ends near the other end in the direction (ends near the lower end in FIG. 5), respectively.

区画71aと71bは、互いの内周側開口部161aと161b同士が、内周側接続流路17を介して接続されている。   The compartments 71a and 71b are connected to each other through the inner peripheral connection channel 17 between the inner peripheral openings 161a and 161b.

以上により、管群設置領域7には、外周側開口部151aから、区画71aの内部空間、内周側開口部161a、内周側接続流路17、内周側開口部161b、区画71bの内部空間を順に経て、外周側開口部151bまで一連に繋がる胴側流体13の流通経路が形成される。   As described above, in the tube group installation region 7, the inner space of the partition 71 a, the inner peripheral opening 161 a, the inner peripheral connection channel 17, the inner peripheral opening 161 b, and the inner part of the partition 71 b are arranged from the outer peripheral opening 151 a. A flow path of the trunk side fluid 13 is formed which is connected in series through the space to the outer peripheral side opening 151b.

これにより、区画71aでは、容器軸心方向一端寄りの端部に設けられた外周側開口部151aより流入する胴側流体13が、容器軸心方向他端寄りの端部に設けられた内周側開口部161aに向けて流れるようになる。   Thereby, in the partition 71a, the trunk side fluid 13 flowing in from the outer peripheral side opening 151a provided at the end near one end in the container axial direction is the inner circumference provided at the end near the other end in the container axial direction. It flows toward the side opening 161a.

又、区画71bでは、容器軸心方向他端寄りの端部に設けられた内周側開口部161bより流入する胴側流体13が、容器軸心方向一端寄りの端部に設けられた外周側開口部151bに向けて流れるようになる。   Further, in the partition 71b, the trunk side fluid 13 flowing in from the inner peripheral side opening 161b provided at the end near the other end in the container axial direction is the outer peripheral side provided at the end near the one end in the container axial direction. It flows toward the opening 151b.

したがって、本実施形態においても、図5に各区画71a,71bにおける胴側流体13の流れ方向の概要を示すように、各区画71a,71b内での胴側流体13の流れは、外周側開口部151a,151bと内周側開口部161a,161bが設けられている容器軸心方向両端寄りの領域で、管群直交流の流れ成分を含むようになるが、各区画71a,71b内における容器軸心方向の中間部の領域では、主として容器軸心方向に沿った流れとなる。   Therefore, also in this embodiment, as shown in FIG. 5 in which the outline of the flow direction of the trunk side fluid 13 in each section 71a, 71b is shown, the flow of the trunk side fluid 13 in each section 71a, 71b In the region near both ends in the axial direction of the container in which the portions 151a and 151b and the inner peripheral side openings 161a and 161b are provided, the flow components of the tube group cross flow are included, but the containers in the respective sections 71a and 71b In the middle region in the axial direction, the flow is mainly along the axial direction of the container.

本実施形態では、胴側流体13の流通経路は、偶数である2つの区画71aと71bを接続したものとなっている。このため、前記したように、外周側開口部151aを上流側端部(起端)とする胴側流体13の流通経路の下流側端部(末端)は、外周側開口部151bとなる。   In the present embodiment, the flow path of the trunk side fluid 13 is one in which two even-numbered sections 71a and 71b are connected. For this reason, as described above, the downstream end (terminal) of the flow path of the trunk side fluid 13 having the outer peripheral opening 151a as the upstream end (starting end) becomes the outer peripheral opening 151b.

そこで、図4(a)(b)に示すように、胴6の外面における外周側開口部151bの周縁部には、胴6の外面に沿って周方向に延びる樋状のヘッダ部材31が、外周側開口部151bを覆うように配置された状態で取り付けられている。このヘッダ部材31には、胴側流体13の出口32が設けられている。   Therefore, as shown in FIGS. 4A and 4B, a flange-like header member 31 extending in the circumferential direction along the outer surface of the trunk 6 is provided at the peripheral edge of the outer peripheral opening 151 b on the outer surface of the trunk 6. It is attached in a state of being arranged so as to cover the outer peripheral side opening 151b. The header member 31 is provided with an outlet 32 for the trunk side fluid 13.

更に、本実施形態では、管群設置領域7の内側に配置されるのは、内周側開口部161aと161bとを接続するための内周側接続流路17のみである。   Furthermore, in the present embodiment, only the inner peripheral side connection flow path 17 for connecting the inner peripheral side openings 161a and 161b is arranged inside the tube group installation region 7.

よって、図4(a)(c)に示すように、本実施形態では、管板4は、中央部に開口のないものとしてあり、閉止部材19の容器軸心方向他端寄りの端面と管板4との隙間全体が、内周側接続流路17とされる。   Therefore, as shown in FIGS. 4A and 4C, in this embodiment, the tube plate 4 has no opening in the center, and the end surface of the closing member 19 near the other end in the container axial direction and the tube The entire gap with the plate 4 serves as the inner peripheral connection flow path 17.

以上の構成としてある本実施形態の多管式熱交換器を使用する場合は、管側流体入口10と管側流体出口11には、第1実施形態と同様に、図示しない管側流体供給部と管側流体12の需要先又は回収部をそれぞれ接続する。本実施形態において、管側流体12の流通は、第1実施形態と同様であるため、説明は省略する。   When the multi-tube heat exchanger of the present embodiment having the above-described configuration is used, the tube-side fluid inlet 10 and the tube-side fluid outlet 11 are provided with a tube-side fluid supply unit (not shown) as in the first embodiment. And the demand side or the recovery unit of the pipe-side fluid 12 are connected to each other. In the present embodiment, the flow of the pipe-side fluid 12 is the same as that in the first embodiment, and thus the description thereof is omitted.

一方、ヘッダ部材26の入口27には、図示しない胴側流体供給部を接続し、ヘッダ部材31の出口32には、胴側流体13の回収部あるいは需要先を接続する。なお、胴側流体13が熱媒である場合は、出口32より回収される胴側流体13を、胴側流体供給部に戻し、温度調整しながら循環させて使用すればよい。   On the other hand, a trunk side fluid supply section (not shown) is connected to the inlet 27 of the header member 26, and a recovery section or a demand destination of the trunk side fluid 13 is connected to the outlet 32 of the header member 31. When the trunk side fluid 13 is a heat medium, the trunk side fluid 13 recovered from the outlet 32 may be returned to the trunk side fluid supply unit and circulated while adjusting the temperature.

胴側流体供給部より供給される胴側流体13は、入口27よりヘッダ部材26内へ供給されると、ヘッダ部材26内で周方向に分散された後、外周側開口部151aより区画71aに流入する。その後、前述した胴側流体13の流通経路にしたがって、区画71aを通過した胴側流体13は、内周側接続流路17を経て区画71bに供給される。   When the cylinder side fluid 13 supplied from the cylinder side fluid supply unit is supplied into the header member 26 from the inlet 27, the cylinder side fluid 13 is dispersed in the circumferential direction in the header member 26, and then is divided into the section 71a from the outer peripheral side opening 151a. Inflow. Thereafter, the trunk side fluid 13 that has passed through the section 71 a is supplied to the section 71 b through the inner peripheral side connection flow path 17 in accordance with the flow path of the trunk side fluid 13 described above.

これにより、各区画71a,71b内では、それぞれの区画71a,71bに配置された各伝熱管9内を流通する管側流体12と、各伝熱管9の外側を流通する胴側流体13との間で、伝熱管9の管壁を介した熱交換が行われる。   Thereby, in each division 71a, 71b, tube side fluid 12 which distribute | circulates inside each heat exchanger tube 9 arrange | positioned at each division 71a, 71b, and trunk | drum side fluid 13 which distribute | circulates the outer side of each heat transfer tube 9 In the meantime, heat exchange through the tube wall of the heat transfer tube 9 is performed.

前記管側流体12との熱交換の処理が行われた後の胴側流体13は、外周側開口部151bを通して、その外周側に設けられているヘッダ部材31へ導かれた後、出口32から取り出される。この胴側流体13は、第1実施形態と同様に処理するようにすればよい。   After the heat exchange process with the pipe-side fluid 12 is performed, the trunk-side fluid 13 is guided to the header member 31 provided on the outer peripheral side through the outer peripheral side opening 151b, and then from the outlet 32. It is taken out. The trunk side fluid 13 may be processed in the same manner as in the first embodiment.

したがって、本実施形態の多管式熱交換器においても、管側流体12と胴側流体13との熱交換を実施させることができる。   Therefore, also in the multi-tube heat exchanger of the present embodiment, heat exchange between the tube-side fluid 12 and the trunk-side fluid 13 can be performed.

又、本実施形態の多管式熱交換器では、各区画71a,71b内での胴側流体13の流れは、容器軸心方向の流れ成分を含んだものとなる。特に、各区画71a,71bの容器軸心方向中間部付近の領域では、胴側流体13が、主として容器軸心方向に沿う流れとなる。   Further, in the multi-tube heat exchanger of the present embodiment, the flow of the trunk side fluid 13 in each of the compartments 71a and 71b includes a flow component in the container axial direction. In particular, in the region in the vicinity of the middle portion in the container axis direction of each of the sections 71a and 71b, the trunk side fluid 13 flows mainly along the container axis direction.

このため、本実施形態の多管式熱交換器によっても、第1実施形態の多管式熱交換器と同様の効果を得ることができる。   For this reason, the same effect as the multitubular heat exchanger of the first embodiment can be obtained also by the multitubular heat exchanger of the present embodiment.

[第3実施形態]
図6は、多管式熱交換器の第3実施形態を示すものであり、図6(a)は容器軸心位置での概略断面図、図6(b)は図6(a)のE−E方向矢視断面図、図6(c)は図6(a)のF−F方向矢視断面図である。
[Third Embodiment]
FIG. 6 shows a third embodiment of the multi-tube heat exchanger, FIG. 6 (a) is a schematic cross-sectional view at the container axis position, and FIG. 6 (b) is an E of FIG. 6 (a). -E direction arrow sectional drawing, FIG.6 (c) is FF direction arrow sectional drawing of Fig.6 (a).

なお、図6(a)(b)(c)において、図4(a)(b)(c)と同一のものには同一符号を付してその説明を省略する。   In FIGS. 6A, 6B, and 6C, the same components as those in FIGS. 4A, 4B, and 4C are denoted by the same reference numerals, and description thereof is omitted.

本実施形態の多管式熱交換器は、図6(a)(b)(c)に示すように、前記第2実施形態と同様に、管群設置領域7に、バッフル141a,141bによって仕切られた2つの区画71a,71bを備えた構成において、胴側流体13の流通経路を変更したものである。   As shown in FIGS. 6A, 6B, and 6C, the multi-tube heat exchanger of the present embodiment is partitioned by a baffle 141a, 141b in a tube group installation area 7, as in the second embodiment. In the configuration provided with the two sections 71a and 71b, the flow path of the trunk side fluid 13 is changed.

図7は、本実施形態における胴側流体13の流通経路の概要を説明するための図で、図5と同様に、管群設置領域7に形成された2つの区画71a,71bを、周方向に分離し、展開させて示してある。   FIG. 7 is a diagram for explaining the outline of the flow path of the trunk side fluid 13 in the present embodiment. Like FIG. 5, the two sections 71a and 71b formed in the tube group installation region 7 are arranged in the circumferential direction. It is separated and expanded.

本実施形態における胴側流体13の流通経路は、区画71aと71bを、互いの外周側開口部151aと151b同士が、外周側接続流路18を介して接続されている。この外周側接続流路18の具体的な構成は後述する。   In the present embodiment, the flow path of the trunk side fluid 13 is such that the sections 71a and 71b are connected to each other through the outer peripheral side connection flow path 18 between the outer peripheral side openings 151a and 151b. A specific configuration of the outer peripheral side connection flow path 18 will be described later.

このため、管群設置領域7には、内周側開口部161aを起端として、内周側開口部161aから、区画71aの内部空間、外周側開口部151a、外周側接続流路18、外周側開口部151b、区画71bの内部空間を順に経て、内周側開口部161bまで一連に繋がる胴側流体13の流通経路が形成される。   For this reason, the tube group installation region 7 starts from the inner circumferential side opening 161a and starts from the inner circumferential side opening 161a to the internal space of the partition 71a, the outer circumferential side opening 151a, the outer circumferential side connection flow path 18, and the outer circumference. A flow path for the trunk-side fluid 13 is formed, which sequentially passes through the side opening 151b and the internal space of the section 71b and continues to the inner peripheral opening 161b.

これにより、区画71aでは、容器軸心方向他端寄りの端部に設けられた内周側開口部161aより流入する胴側流体13が、容器軸心方向一端寄りの端部に設けられた外周側開口部151aに向けて流れるようになる。   Thereby, in the section 71a, the cylinder side fluid 13 flowing in from the inner peripheral side opening 161a provided at the end near the other end in the container axial direction is the outer periphery provided at the end near the one end in the container axial direction. It flows toward the side opening 151a.

又、区画71bでは、容器軸心方向一端寄りの端部に設けられた外周側開口部151bより流入する胴側流体13が、容器軸心方向他端寄りの端部に設けられた内周側開口部161bに向けて流れるようになる。   Further, in the section 71b, the trunk side fluid 13 flowing from the outer peripheral side opening 151b provided at the end near one end in the container axial direction is the inner peripheral side provided at the end near the other end in the container axial direction. It flows toward the opening 161b.

したがって、本実施形態においても、図7に各区画71a,71bにおける胴側流体13の流れ方向の概要を示すように、各区画71a,71b内での胴側流体13の流れは、外周側開口部151a,151bと内周側開口部161a,161bが設けられている容器軸心方向両端寄りの領域で、管群直交流の流れ成分を含むようになるが、各区画71a,71b内における容器軸心方向の中間部の領域では、主として容器軸心方向に沿った流れとなる。   Therefore, also in this embodiment, as shown in FIG. 7 in which the outline of the flow direction of the trunk side fluid 13 in each section 71a, 71b is shown, the flow of the trunk side fluid 13 in each section 71a, 71b In the region near both ends in the axial direction of the container in which the portions 151a and 151b and the inner peripheral side openings 161a and 161b are provided, the flow components of the tube group cross flow are included, but the containers in the respective sections 71a and 71b In the middle region in the axial direction, the flow is mainly along the axial direction of the container.

外周側接続流路18の具体的な構成は、図6(a)(b)に示すように、胴6の外面に沿って周方向に延びる樋状の流路形成部材25が、胴6の外面における外周側開口部151aと151bの周縁部を一緒に覆うように配置された状態で取り付けられている。これにより、流路形成部材25の内部空間が、外周側開口部151aと151bとを接続する外周側接続流路18となる。   As shown in FIGS. 6A and 6B, the specific configuration of the outer peripheral side connection flow path 18 is such that a bowl-shaped flow path forming member 25 extending in the circumferential direction along the outer surface of the cylinder 6 The outer peripheral side openings 151a and 151b on the outer surface are attached so as to cover the peripheral portions together. Thereby, the internal space of the flow path forming member 25 becomes the outer peripheral side connection flow path 18 that connects the outer peripheral side openings 151a and 151b.

本実施形態では、胴側流体13の流通経路は、偶数である2つの区画71aと71bを接続したものとなっており、前記したように、内周側開口部161aを上流側端部(起端)とする胴側流体13の流通経路の下流側端部(末端)は、内周側開口部161bとなる。   In the present embodiment, the flow path of the trunk side fluid 13 is formed by connecting two even-numbered sections 71a and 71b, and as described above, the inner peripheral side opening 161a is connected to the upstream end (starting side). The downstream end (terminal) of the flow path of the trunk side fluid 13 as the end is an inner peripheral opening 161b.

そこで、図6(a)(c)に示すように、管板4には、管群設置領域7よりも内側となる中央部に、開口20が設けられている。開口20には、容器1の軸心方向に沿って集合ヘッダ5の内側に突出する管状部材21が取り付けられている。   Therefore, as shown in FIGS. 6A and 6C, the tube sheet 4 is provided with an opening 20 in a central portion that is inside the tube group installation region 7. A tubular member 21 that protrudes inside the collective header 5 along the axial direction of the container 1 is attached to the opening 20.

管群設置領域7よりも内側で、且つ閉止部材19の容器軸心方向他端寄りの端面から管板4の開口20までの間の空間には、容器1の軸心位置を通ってバッフル141aと141bの内周側端部同士を接続する内周部仕切部材22が設けられている。内周部仕切部材22の容器軸心方向一端寄りの端部は、閉止部材19の容器軸心方向他端寄りの端面に取り付けられている。   A baffle 141a passes through the axial center position of the container 1 in the space between the end surface near the other end in the container axial direction of the closing member 19 and the opening 20 of the tube plate 4 inside the tube group installation region 7. And 141b are provided with an inner peripheral partition member 22 that connects the inner peripheral end portions of the inner peripheral portion. An end of the inner peripheral partition member 22 near one end in the container axial direction is attached to an end surface of the closing member 19 near the other end in the container axial direction.

これにより、管群設置領域7よりも内側で、閉止部材19よりも容器軸心方向他端寄りとなる空間は、内周部仕切部材22により、内周側開口部161aにのみ連通する領域と、内周側開口部161bにのみ連通する領域とに仕切られる。このうち、内周側開口部161aに連通する領域は、前述した胴側流体13の流通経路で上流側端部に位置する内周側開口部161aへ胴側流体13を供給するための入口側のヘッダ33となる。一方、内周側開口部161bに連通する領域は、前述した胴側流体13の流通経路で最も下流側に位置する内周側開口部161bより流出する胴側流体13を集合させて、管状部材21に送るための出口側のヘッダ24となる。   Thereby, the space inside the tube group installation region 7 and closer to the other end in the container axial direction than the closing member 19 is communicated only with the inner peripheral side opening 161a by the inner peripheral partition member 22. , And a region communicating only with the inner peripheral side opening 161b. Of these, the region communicating with the inner circumferential side opening 161a is the inlet side for supplying the trunk side fluid 13 to the inner circumferential side opening 161a located at the upstream end in the flow path of the trunk side fluid 13 described above. Header 33. On the other hand, the region communicating with the inner peripheral side opening 161b collects the cylinder-side fluid 13 flowing out from the inner peripheral-side opening 161b located on the most downstream side in the flow path of the cylinder-side fluid 13, and the tubular member It becomes the header 24 on the exit side for sending to 21.

更に、管状部材21の内側は、内周部仕切部材22より容器軸心方向他端側へ一連に延びる仕切り34によって全長に亘り2つの空間に分割されている。更に、管状部材21には、前記2つの空間のうちの内周側開口部161aに連通する空間に対応する個所に、接続管35の一端部が接続されている。接続管35の他端部側は、集合ヘッダ5に対応する容器壁を貫通させて外部に突出させてある。本実施形態では、この接続管35の容器1外側に突出した端部が、胴側流体13の入口35aとなる。   Furthermore, the inner side of the tubular member 21 is divided into two spaces over the entire length by a partition 34 that continuously extends from the inner peripheral partition member 22 to the other end side in the container axial direction. Furthermore, one end portion of the connection pipe 35 is connected to the tubular member 21 at a location corresponding to a space communicating with the inner circumferential side opening 161a of the two spaces. The other end side of the connecting pipe 35 protrudes outside through the container wall corresponding to the collective header 5. In the present embodiment, the end of the connection pipe 35 that protrudes to the outside of the container 1 serves as the inlet 35 a of the trunk side fluid 13.

又、管状部材21において、前記2つの空間のうちの内周側開口部161bに連通する空間に対応する個所には、第1実施形態における接続管30と同様に、接続管30の一端部が接続されている。接続管30の他端部側は、集合ヘッダ5に対応する容器壁を貫通させて外部に突出させてある。この接続管30の容器1外側に突出した端部が、胴側流体13の出口30aとなる。   Further, in the tubular member 21, one end portion of the connection pipe 30 is provided at a position corresponding to the space communicating with the inner circumferential side opening 161 b of the two spaces, similarly to the connection pipe 30 in the first embodiment. It is connected. The other end portion side of the connecting pipe 30 penetrates the container wall corresponding to the collective header 5 and protrudes to the outside. The end of the connection pipe 30 that protrudes outside the container 1 serves as the outlet 30 a of the trunk side fluid 13.

以上の構成としてある本実施形態の多管式熱交換器を使用する場合は、管側流体入口10と管側流体出口11には、第1実施形態と同様に、図示しない管側流体供給部と管側流体12の需要先又は回収部をそれぞれ接続する。本実施形態において、管側流体12の流通は、第1実施形態と同様であるため、説明は省略する。   When the multi-tube heat exchanger of the present embodiment having the above-described configuration is used, the tube-side fluid inlet 10 and the tube-side fluid outlet 11 are provided with a tube-side fluid supply unit (not shown) as in the first embodiment. And the demand side or the recovery unit of the pipe-side fluid 12 are connected to each other. In the present embodiment, the flow of the pipe-side fluid 12 is the same as that in the first embodiment, and thus the description thereof is omitted.

一方、接続管35の入口35aの上流側には、図示しない胴側流体供給部を接続し、接続管30の出口30aには、胴側流体13の回収部あるいは需要先を接続する。なお、胴側流体13が熱媒である場合は、出口30aより回収される胴側流体13を、胴側流体供給部に戻し、温度調整しながら循環させて使用すればよい。   On the other hand, a trunk side fluid supply unit (not shown) is connected to the upstream side of the inlet 35 a of the connection pipe 35, and a recovery part or a demand destination of the trunk side fluid 13 is connected to the outlet 30 a of the connection pipe 30. When the trunk side fluid 13 is a heat medium, the trunk side fluid 13 recovered from the outlet 30a may be returned to the trunk side fluid supply unit and circulated while adjusting the temperature.

胴側流体供給部より供給される胴側流体13は、入口35aより接続管35と管状部材21と管板4の開口20を通して、ヘッダ33へ供給される。このヘッダ33に供給された胴側流体13は、内周側開口部161aより区画71aに流入する。その後、前述した胴側流体13の流通経路にしたがって、区画71aを通過した胴側流体13は、外周側接続流路18を経て区画71bに供給される。   The trunk side fluid 13 supplied from the trunk side fluid supply unit is supplied to the header 33 through the connection pipe 35, the tubular member 21, and the opening 20 of the tube plate 4 from the inlet 35a. The trunk side fluid 13 supplied to the header 33 flows into the section 71a from the inner peripheral side opening 161a. Thereafter, the cylinder side fluid 13 that has passed through the section 71 a is supplied to the section 71 b via the outer peripheral side connection flow path 18 in accordance with the flow path of the cylinder side fluid 13 described above.

これにより、各区画71a,71b内では、それぞれの区画71a,71bに配置された各伝熱管9内を流通する管側流体12と、各伝熱管9の外側を流通する胴側流体13との間で、伝熱管9の管壁を介した熱交換が行われる。   Thereby, in each division 71a, 71b, tube side fluid 12 which distribute | circulates inside each heat exchanger tube 9 arrange | positioned at each division 71a, 71b, and trunk | drum side fluid 13 which distribute | circulates the outer side of each heat transfer tube 9 In the meantime, heat exchange through the tube wall of the heat transfer tube 9 is performed.

前記管側流体12との熱交換の処理が行われた後の胴側流体13は、内周側開口部161bを通して、その内周側に設けられているヘッダ24へ導かれ、その後、管板4の開口20から、管状部材21と接続管30を通して出口30aまで導かれて取り出される。この胴側流体13は、第2実施形態と同様に処理するようにすればよい。   The body side fluid 13 after the heat exchange process with the tube side fluid 12 is guided to the header 24 provided on the inner peripheral side through the inner peripheral side opening 161b, and then the tube plate. From the four openings 20, the tubular member 21 and the connecting pipe 30 are led to the outlet 30 a and are taken out. The trunk side fluid 13 may be processed in the same manner as in the second embodiment.

したがって、本実施形態の多管式熱交換器においても、管側流体12と胴側流体13との熱交換を実施させることができる。   Therefore, also in the multi-tube heat exchanger of the present embodiment, heat exchange between the tube-side fluid 12 and the trunk-side fluid 13 can be performed.

又、本実施形態の多管式熱交換器でも、前記第2実施形態と同様に、各区画71a,71b内での胴側流体13の流れは、容器軸心方向の流れ成分を含んだものとなる。特に、各区画71a,71bの容器軸心方向中間部付近の領域では、胴側流体13が、主として容器軸心方向に沿う流れとなる。   In the multi-tube heat exchanger according to this embodiment, the flow of the trunk side fluid 13 in each of the compartments 71a and 71b includes a flow component in the container axial direction as in the second embodiment. It becomes. In particular, in the region in the vicinity of the middle portion in the container axis direction of each of the sections 71a and 71b, the trunk side fluid 13 flows mainly along the container axis direction.

このため、本実施形態の多管式熱交換器によっても、第2実施形態の多管式熱交換器と同様の効果を得ることができる。   For this reason, the multitubular heat exchanger of the present embodiment can achieve the same effects as the multitubular heat exchanger of the second embodiment.

なお、前記第1実施形態では、管群設置領域7に周方向に3分割された区画7a,7b,7cを形成した例を示し、又、前記第2実施形態及び第3実施形態では、管群設置領域7に周方向に2分割された区画71a,71bを形成した例を示した。これらの区画数である3と2は、いずれも1を除く正の約数は、その数以外にはない。したがって、複数の区画を通過するように設定する胴側流体13の流通経路は、すべての区画を通過する一系統のみとなる。   In the first embodiment, an example in which sections 7a, 7b, and 7c divided in the circumferential direction are formed in the tube group installation region 7 is shown. In the second and third embodiments, a pipe The example which formed the division 71a, 71b divided into 2 by the circumferential direction in the group installation area | region 7 was shown. As for these numbers of partitions, 3 and 2, there are no positive divisors other than 1 except for 1. Therefore, the flow path of the trunk side fluid 13 set so as to pass through a plurality of sections is only one system that passes through all the sections.

これに対し、たとえば、区画数が6、4、8のように、1とその数以外の約数を有する数である場合は、胴側流体13の流通経路は複数設定し得る。   On the other hand, for example, when the number of sections is a number having a divisor other than 1 and the number, such as 6, 4, and 8, a plurality of distribution paths of the trunk side fluid 13 can be set.

たとえば、6区画の場合は、2区画ずつを接続した3系統の流通経路、3区画ずつを接続した2系統の流通経路、及び、6区画を接続した1系統の流通経路が設定可能である。   For example, in the case of six sections, three distribution paths connecting two sections each, two distribution paths connecting two sections, and one distribution path connecting six sections can be set.

又、4区画の場合は、2区画ずつを接続した2系統の流通経路、及び、4区画を接続した1系統の流通経路が設定可能である。   In the case of four sections, two distribution paths connecting two sections each and one distribution path connecting four sections can be set.

更に、8区画の場合は、2区画ずつを接続した4系統の流通経路、4区画ずつを接続した2系統の流通経路、及び、8区画を接続した1系統の流通経路が設定可能である。
以下にこれらの例について示す。
Furthermore, in the case of eight sections, four distribution paths connecting two sections each, four distribution paths connecting four sections, and one distribution path connecting eight sections can be set.
These examples are shown below.

[第4実施形態]
図8は多管式熱交換器の第4実施形態を示すものであり、図8(a)(b)はそれぞれ図1(b)(c)に対応する位置での断面図である。
[Fourth Embodiment]
FIG. 8 shows a fourth embodiment of the multi-tube heat exchanger, and FIGS. 8A and 8B are cross-sectional views at positions corresponding to FIGS. 1B and 1C, respectively.

なお、図8(a)(b)において、図1(a)(b)(c)と同一のものには同一符号を付してその説明を省略する。又、本実施形態において、管側流体12の流通経路は、第1実施形態と同様であるため、説明は省略する。   In FIGS. 8A and 8B, the same components as those in FIGS. 1A, 1B, and 1C are denoted by the same reference numerals, and the description thereof is omitted. In the present embodiment, the flow path of the pipe-side fluid 12 is the same as that in the first embodiment, and a description thereof will be omitted.

本実施形態の多管式熱交換器は、図8(a)(b)に示すように、前記第1実施形態と同様の構成において、管群設置領域7における周方向120度間隔の3個所に、バッフル14a,14b,14cを設けた構成に代えて、管群設置領域7の周方向60度間隔の6個所に、前記バッフル14a,14b,14cと同様のバッフル142a,142b,142c,142d,142e,142fを設けた構成としてある。   As shown in FIGS. 8 (a) and 8 (b), the multi-tube heat exchanger of the present embodiment has three configurations at intervals of 120 degrees in the circumferential direction in the tube group installation region 7 in the same configuration as in the first embodiment. The baffles 142a, 142b, 142c, and 142d are the same as the baffles 14a, 14b, and 14c at six intervals of the circumferential direction of the tube group installation region 7 instead of the configuration in which the baffles 14a, 14b, and 14c are provided. , 142e, 142f are provided.

これにより、本実施形態では、管群設置領域7に、各バッフル142a,142b,142c,142d,142e,142fによって仕切られた6つの区画72a,72b,72c,72d,72e,72fが周方向に配列されて形成されている。   Thereby, in this embodiment, six division 72a, 72b, 72c, 72d, 72e, 72f partitioned by each baffle 142a, 142b, 142c, 142d, 142e, 142f in the pipe group installation area 7 in the circumferential direction. It is arranged and formed.

なお、各バッフル142a,142b,142c,142d,142e,142fは、第1実施形態における各バッフル14a,14b,14cの配置と同様に、三角配列とされた管群8の各伝熱管9同士の隙間が容器1の半径方向に連続して延びる6個所に配置することが望ましい。このような各バッフル142a,142b,142c,142d,142e,142fの配置によれば、管群設置領域7で、胴側流体13が局所的に容器1の半径方向に沿う方向へ通り抜ける現象を抑制することができる。   In addition, each baffle 142a, 142b, 142c, 142d, 142e, 142f is similar to the arrangement of each baffle 14a, 14b, 14c in the first embodiment, between the heat transfer tubes 9 of the tube group 8 in a triangular array. It is desirable to arrange the gaps at six locations extending continuously in the radial direction of the container 1. According to the arrangement of each of the baffles 142a, 142b, 142c, 142d, 142e, 142f, the phenomenon that the trunk-side fluid 13 passes through in the direction along the radial direction of the container 1 in the tube group installation region 7 is suppressed. can do.

各区画72a,72b,72c,72d,72e,72fには、外周部の容器軸心方向一端寄りの端部に、外周側開口部152a,152b,152c,152d,152e,152fが設けられている。又、各区画72a,72b,72c,72d,72e,72fの内周部の容器軸心方向他端寄りの端部には、内周側開口部162a,162b,162c,162d,162e,162fが設けられている。   Each partition 72a, 72b, 72c, 72d, 72e, 72f is provided with an outer peripheral side opening 152a, 152b, 152c, 152d, 152e, 152f at the end of the outer peripheral portion near one end in the container axial direction. . In addition, inner peripheral side openings 162a, 162b, 162c, 162d, 162e, 162f are provided at the ends of the inner peripheral portions of the respective sections 72a, 72b, 72c, 72d, 72e, 72f near the other end in the container axial direction. Is provided.

次に、前記のように管群設置領域7に形成された各区画72a,72b,72c,72d,72e,72fを通る胴側流体13の流通経路について説明する。   Next, the flow path of the trunk side fluid 13 passing through the sections 72a, 72b, 72c, 72d, 72e, 72f formed in the tube group installation area 7 as described above will be described.

本実施形態では、胴側流体13の流通経路は、区画72a,72b,72cと、区画72f,72e,72dの3区画ずつを接続した2系統の流通経路として設定される。   In the present embodiment, the distribution path of the trunk side fluid 13 is set as two distribution paths connecting the sections 72a, 72b, and 72c and the three sections 72f, 72e, and 72d.

そのために、内周側開口部162aと162bは、内周側接続流路17により接続される。又、外周側開口部152bと152cは、外周側接続流路18により接続される。これにより、区画72aと72bと72cを接続した胴側流体13の流通経路は、外周側開口部152aから、区画72aの内部空間とその内周側開口部162a、内周側接続流路17、内周側開口部162bと区画72bの内部空間とその外周側開口部152b、外周側接続流路18、外周側開口部152cと区画72cの内部空間を順に経て、内周側開口部162cまで一連に繋がる流通経路とされる。   Therefore, the inner peripheral side openings 162 a and 162 b are connected by the inner peripheral side connection flow path 17. Further, the outer peripheral side openings 152b and 152c are connected by the outer peripheral side connection flow path 18. Thereby, the flow path of the trunk side fluid 13 connecting the sections 72a, 72b, and 72c is changed from the outer peripheral side opening 152a to the inner space of the section 72a, its inner peripheral opening 162a, the inner peripheral connection flow path 17, The inner space of the inner peripheral side opening 162b and the section 72b and the outer peripheral side opening 152b, the outer peripheral side connection channel 18, the outer peripheral side opening 152c and the inner space of the section 72c are sequentially passed to the inner peripheral side opening 162c. It is considered as a distribution channel that leads to

一方、内周側開口部162fと162eは、別の内周側接続流路17により接続される。又、外周側開口部152eと152dは、別の外周側接続流路18により接続される。これにより、区画72fと72eと72dを接続した胴側流体13の流通経路は、外周側開口部152fから、区画72fの内部空間とその内周側開口部162f、内周側接続流路17、内周側開口部162eと区画72eの内部空間とその外周側開口部152e、外周側接続流路18、外周側開口部152dと区画72dの内部空間を順に経て、内周側開口部162dまで一連に繋がる流通経路とされる。   On the other hand, the inner peripheral side openings 162f and 162e are connected by another inner peripheral side connection flow path 17. Further, the outer peripheral side openings 152e and 152d are connected by another outer peripheral side connection flow path 18. Thereby, the flow path of the trunk side fluid 13 connecting the sections 72f, 72e, and 72d is changed from the outer peripheral side opening 152f to the inner space of the section 72f, its inner peripheral side opening 162f, the inner peripheral side connection flow path 17, The inner space of the inner peripheral side opening 162e and the partition 72e and its outer peripheral side opening 152e, the outer peripheral side connection flow path 18, the outer peripheral side opening 152d and the inner space of the partition 72d are sequentially passed to the inner peripheral side opening 162d. It is considered as a distribution channel that leads to

なお、各内周側接続流路17は、図8(b)に示すように、管群設置領域7よりも内側で、且つ閉止部材19の容器軸心方向他端寄りの端面から管板4の開口20までの間の空間を、内周部仕切部材22によって仕切ることで形成されている(図1(a)参照)。このため、内周部仕切部材22は、容器1の軸心位置からバッフル142a,142c,142eの内周側端部に向けて容器1の半径方向に沿って延びる3つの平板を繋いだ形状としてある。更に、各内周側接続流路17の容器軸心方向他端側は、図1(a)に示した閉塞部材23と同様の閉塞部材により閉止されているものとする。   As shown in FIG. 8 (b), each inner peripheral side connection flow path 17 is located on the inner side of the tube group installation region 7 and from the end surface near the other end in the container axial direction of the closing member 19. This is formed by partitioning the space between the opening 20 and the inner peripheral partition member 22 (see FIG. 1A). For this reason, the inner peripheral partition member 22 has a shape in which three flat plates extending along the radial direction of the container 1 are connected from the axial center position of the container 1 toward the inner peripheral side ends of the baffles 142a, 142c, 142e. is there. Furthermore, the container axial direction other end side of each inner peripheral side connection flow path 17 shall be closed by the closing member similar to the closing member 23 shown to Fig.1 (a).

図8(a)に示すように、外周側開口部152bと152cを接続する外周側接続流路18は、胴6の外面に、図1(a)(b)に示した流路形成部材25と同様の流路形成部材25を、外周側開口部152bと152cを覆うように取り付けることにより、この流路形成部材25の内部空間として形成されている。   As shown in FIG. 8A, the outer peripheral side connection flow path 18 connecting the outer peripheral side openings 152b and 152c is formed on the outer surface of the trunk 6 on the flow path forming member 25 shown in FIGS. The flow path forming member 25 similar to the above is attached so as to cover the outer peripheral side openings 152b and 152c, thereby forming an internal space of the flow path forming member 25.

同様に、外周側開口部152eと152dを接続する外周側接続流路18は、胴6の外面に、前記と同様の流路形成部材25を、外周側開口部152eと152dを覆うように取り付けることにより、この流路形成部材25の内部空間として形成されている。   Similarly, the outer peripheral side connection flow path 18 connecting the outer peripheral side openings 152e and 152d is attached to the outer surface of the trunk 6 with the same flow path forming member 25 as described above so as to cover the outer peripheral side openings 152e and 152d. Thus, it is formed as an internal space of the flow path forming member 25.

前述した胴側流体13の流通経路の2つの系統で、上流側端部(起端)に位置するのは、外周側開口部152aと、外周側開口部152fである。そこで、胴6の外面における外周側開口部152aと152fの外側には、図1(a)(b)に示したと同様の入口27を備えたヘッダ部材26が、各外周側開口部152aと152fを一緒に覆うように取り付けられている。   In the two systems of the flow path of the trunk side fluid 13 described above, the outer peripheral side opening 152a and the outer peripheral side opening 152f are positioned at the upstream end (starting end). Therefore, on the outer side of the outer peripheral side openings 152a and 152f on the outer surface of the body 6, the header member 26 having the same inlet 27 as shown in FIGS. 1 (a) and 1 (b) is provided with the outer peripheral side openings 152a and 152f. Are attached to cover together.

一方、前述した胴側流体13の流通経路の2つの系統で、下流側端部(末端)に位置するのは、内周側開口部162cと、内周側開口部162dである。そこで、これらの内周側開口部162cと162dの内側は、図1に示したと同様の管板4に設けた開口20に連通する共通のヘッダ24とされている。管板4の開口20には、図1に示したと同様の管状部材21と、容器1外側の端部を出口30aとした接続管30が接続されているものとする。   On the other hand, in the two systems of the flow path of the trunk side fluid 13 described above, the inner peripheral side opening 162c and the inner peripheral side opening 162d are positioned at the downstream end (terminal). Therefore, the inside of these inner peripheral side openings 162c and 162d is a common header 24 communicating with the opening 20 provided in the tube plate 4 similar to that shown in FIG. It is assumed that a tubular member 21 similar to that shown in FIG. 1 and a connecting tube 30 having an outlet 30a at the outer end of the container 1 are connected to the opening 20 of the tube plate 4.

以上の構成としてある本実施形態の多管式熱交換器によれば、入口27に接続された図示しない胴側流体供給部より供給される胴側流体13は、入口27よりヘッダ部材26内へ供給されると、ヘッダ部材26内で周方向に分散された後、外周側開口部152aと152fを通して区画72aと72fに流入する。   According to the multitubular heat exchanger of the present embodiment having the above-described configuration, the cylinder side fluid 13 supplied from a cylinder side fluid supply unit (not shown) connected to the inlet 27 enters the header member 26 from the inlet 27. When supplied, it is dispersed in the circumferential direction in the header member 26 and then flows into the sections 72a and 72f through the outer peripheral side openings 152a and 152f.

区画72aに流入した胴側流体13は、前述した区画72a,72b,72cを順に経る系統の流通経路を通った後、内周側開口部162cからヘッダ24に送られる。   The trunk side fluid 13 that has flowed into the section 72a is sent to the header 24 from the inner peripheral side opening 162c after passing through the distribution path of the system that passes through the sections 72a, 72b, and 72c in order.

同様に、区画72fに流入した胴側流体13は、前述した区画72f,72e,72dを順に経る系統の流通経路を通った後、内周側開口部162dからヘッダ24に送られる。   Similarly, the trunk side fluid 13 that has flowed into the section 72f is sent to the header 24 from the inner peripheral side opening 162d after passing through the distribution path of the system passing through the sections 72f, 72e, and 72d in order.

このヘッダ24まで達した胴側流体13は、図1(a)に示した第1実施形態の場合と同様に、管板4の開口と管状部材21と接続管30を通して出口30aまで導かれて取り出される。   The trunk-side fluid 13 reaching the header 24 is guided to the outlet 30a through the opening of the tube plate 4, the tubular member 21, and the connecting pipe 30 as in the case of the first embodiment shown in FIG. It is taken out.

したがって、本実施形態の多管式熱交換器によっても、胴側流体13の流通経路を形成している各区画72a,72b,72cと72f,72e,72d内では、胴側流体13の流れは、容器軸心方向の流れ成分を含んだものとなる。特に、容器軸心方向中間部付近の領域では、胴側流体13が主として容器軸心方向に沿う流れとなる。   Therefore, even with the multi-tube heat exchanger of this embodiment, the flow of the trunk side fluid 13 is within each of the sections 72a, 72b, 72c and 72f, 72e, 72d forming the circulation path of the trunk side fluid 13. The flow component in the container axial direction is included. In particular, in the region near the middle portion in the container axial direction, the trunk side fluid 13 flows mainly along the container axial direction.

このため、本実施形態の多管式熱交換器によっても、第1実施形態の多管式熱交換器と同様の効果を得ることができる。   For this reason, the same effect as the multitubular heat exchanger of the first embodiment can be obtained also by the multitubular heat exchanger of the present embodiment.

なお、本実施形態では、外周側開口部152aと152fの外側に共通のヘッダ部材26を設け、又、内周側開口部162cと162dの内側に共通のヘッダ24を設けた構成を示したが、胴側流体13の2つの系統の流通経路に、個別の入口側のヘッダ部材26と、出口側のヘッダ24を備える構成としてもよいことは勿論である。この場合、区画72dと72eと72fを接続した流通経路は、外周側開口部152dにヘッダ部材26を取り付け、内周側開口部162fの内側を管板4の開口20に連通する出口側のヘッダ24としてもよい。   In the present embodiment, the common header member 26 is provided outside the outer peripheral side openings 152a and 152f, and the common header 24 is provided inside the inner peripheral openings 162c and 162d. Of course, it is also possible to have a configuration in which the individual inlet-side header member 26 and the outlet-side header 24 are provided in the two distribution channels of the trunk-side fluid 13. In this case, the distribution path connecting the sections 72d, 72e, and 72f has the header member 26 attached to the outer peripheral opening 152d, and the outlet header that communicates the inside of the inner peripheral opening 162f with the opening 20 of the tube plate 4. It may be 24.

本実施形態のように管群設置領域7に周方向に6つの区画72a,72b,72c,72d,72e,72fを形成した構成では、胴側流体13の流通経路は、区画72a,72b,72cと区画72d,72e,72fの3区画ずつを接続した2系統の流通経路のほかに、前述したように6区画を接続した1系統の流通経路と、2区画ずつを接続した3系統の流通経路を設定することができる。   In the configuration in which six sections 72a, 72b, 72c, 72d, 72e, 72f are formed in the circumferential direction in the tube group installation region 7 as in the present embodiment, the flow path of the trunk side fluid 13 is the sections 72a, 72b, 72c. In addition to the two distribution routes connecting the three sections 72d, 72e, and 72f, as described above, the one distribution path connecting the six sections as described above and the three distribution paths connecting the two sections each. Can be set.

[第4実施形態の第1変形例]
図9は、第4実施形態の第1変形例として、6つの区画72a,72b,72c,72d,72e,72fを順に接続した1系統の流通経路を設けた形式を示すものである。
[First Modification of Fourth Embodiment]
FIG. 9 shows a form in which a single distribution channel is provided in which six sections 72a, 72b, 72c, 72d, 72e, and 72f are connected in order as a first modification of the fourth embodiment.

図9(a)(b)は、それぞれ図8(a)(b)に対応する図であり、図4(b)(c)に対応する位置での断面図である。   FIGS. 9A and 9B are diagrams corresponding to FIGS. 8A and 8B, respectively, and are cross-sectional views at positions corresponding to FIGS. 4B and 4C.

なお、図9(a)(b)において、図8(a)(b)と同一のものには同一符号を付してその説明を省略する。   9 (a) and 9 (b), the same components as those in FIGS. 8 (a) and 8 (b) are denoted by the same reference numerals, and the description thereof is omitted.

この第4実施形態の第1変形例では、内周側開口部162aと162b、内周側開口部162cと162d、内周側開口部162eと162fが、それぞれ個別の内周側接続流路17を介して接続されている。   In the first modified example of the fourth embodiment, the inner peripheral side openings 162a and 162b, the inner peripheral side openings 162c and 162d, and the inner peripheral side openings 162e and 162f are respectively separate inner peripheral side connection channels 17. Connected through.

又、外周側開口部152bと152c、外周側開口部152dと152eが、胴6の外面の対応する個所に取り付けられた個別の流路形成部材25によって形成した外周側接続流路18によりそれぞれ接続されている。   Further, the outer peripheral side openings 152b and 152c and the outer peripheral side openings 152d and 152e are respectively connected by the outer peripheral side connection flow paths 18 formed by the individual flow path forming members 25 attached to the corresponding portions of the outer surface of the body 6. Has been.

この変形例では、接続された区画数が偶数であるため、外周側開口部152aを上流側端部(起端)とする胴側流体13の流通経路の下流側端部(末端)は、外周側開口部152fとなる。   In this modification, since the number of connected sections is an even number, the downstream end (terminal) of the flow path of the trunk side fluid 13 with the outer peripheral opening 152a as the upstream end (starting end) is the outer periphery. It becomes the side opening 152f.

このため、胴6の外面には、外周側開口部152aの外側となる位置に、入口27を備えたヘッダ部材26が取り付けられている。一方、胴6の外面における外周側開口部152fの外側となる位置には、図4(a)(b)に示したと同様の出口32を備えたヘッダ部材31が取り付けられている。又、管板4は中央に開口のないものとしてある。   For this reason, the header member 26 provided with the inlet 27 is attached to the outer surface of the trunk 6 at a position that is outside the outer peripheral opening 152a. On the other hand, a header member 31 having an outlet 32 similar to that shown in FIGS. 4A and 4B is attached to a position on the outer surface of the body 6 that is outside the outer peripheral side opening 152f. Further, the tube sheet 4 has no opening in the center.

[第4実施形態の第2変形例]
図10は、第4実施形態の第2変形例として、6つの区画72a,72b,72c,72d,72e,72fのうち、2つずつの区画72aと72b、区画72cと72d、区画72eと72fを接続した3系統の流通経路を設けた形式を示すものである。
[Second Modification of Fourth Embodiment]
FIG. 10 shows, as a second modification of the fourth embodiment, two sections 72a and 72b, sections 72c and 72d, sections 72e and 72f, each of six sections 72a, 72b, 72c, 72d, 72e, and 72f. This shows a form in which three distribution channels are connected.

図10(a)(b)は、それぞれ図8(a)(b)に対応する図であり、図4(b)(c)に対応する位置での断面図である。   FIGS. 10A and 10B are views corresponding to FIGS. 8A and 8B, respectively, and are cross-sectional views at positions corresponding to FIGS. 4B and 4C.

なお、図10(a)(b)において、図8(a)(b)と同一のものには同一符号を付してその説明を省略する。   10 (a) and 10 (b), the same components as those in FIGS. 8 (a) and 8 (b) are denoted by the same reference numerals, and the description thereof is omitted.

この第4実施形態の第2変形例では、内周側開口部162aと162b、内周側開口部162cと162d、内周側開口部162eと162fが、それぞれ個別の内周側接続流路17を介して接続されている。   In the second modified example of the fourth embodiment, the inner peripheral side openings 162a and 162b, the inner peripheral side openings 162c and 162d, and the inner peripheral side openings 162e and 162f are respectively separate inner peripheral side connection channels 17. Connected through.

胴6の外面には、外周側開口部152aと152cと152eの外側となる位置には、図4(b)に示したと同様の入口27を備えたヘッダ部材26がそれぞれ取り付けられている。   On the outer surface of the body 6, header members 26 having the same inlets 27 as shown in FIG. 4B are attached to positions outside the outer peripheral side openings 152 a, 152 c and 152 e, respectively.

更に、胴6の外面における外周側開口部152bと152dと152fの外側となる位置には、図4(b)に示したと同様の出口32を備えたヘッダ部材31がそれぞれ取り付けられている。 Further, header members 31 having outlets 32 similar to those shown in FIG. 4B are attached to positions on the outer surface of the barrel 6 that are outside the outer peripheral side openings 152b, 152d, and 152f.

この変形例も、接続された区画数が偶数であるため、管板4は中央に開口のないものとしてあるものとする。   Also in this modified example, since the number of connected sections is an even number, the tube sheet 4 is assumed to have no opening in the center.

以上の第4実施形態の第1変形例及び第2変形例によっても、胴側流体13の流通経路の1つの系統に含まれる区画の数は異なるが、第4実施形態と同様に使用して同様の効果を得ることができる。   Even in the first and second modifications of the fourth embodiment described above, the number of sections included in one system of the flow path of the trunk side fluid 13 is different, but it is used in the same manner as in the fourth embodiment. Similar effects can be obtained.

[第5実施形態]
図11は多管式熱交換器の第5実施形態を示すものであり、図11(a)(b)はそれぞれ図4(b)(c)に対応する位置での断面図である。
[Fifth Embodiment]
FIG. 11 shows a fifth embodiment of the multitubular heat exchanger, and FIGS. 11 (a) and 11 (b) are cross-sectional views at positions corresponding to FIGS. 4 (b) and 4 (c), respectively.

なお、図11(a)(b)において、図4(a)(b)(c)と同一のものには同一符号を付してその説明を省略する。又、本実施形態において、管側流体12の流通経路は、第1実施形態と同様であるため、説明は省略する。   11A and 11B, the same components as those in FIGS. 4A, 4B, and 4C are denoted by the same reference numerals, and the description thereof is omitted. In the present embodiment, the flow path of the pipe-side fluid 12 is the same as that in the first embodiment, and a description thereof will be omitted.

本実施形態の多管式熱交換器は、管群8における伝熱管9の配列が、たとえば、図11(a)(b)に示すような正方形を単位とする四角配列となっている場合に適用する例を示すものである。   In the multi-tube heat exchanger of the present embodiment, the arrangement of the heat transfer tubes 9 in the tube group 8 is, for example, a square arrangement with a square unit as shown in FIGS. 11 (a) and 11 (b). An example of application is shown.

伝熱管9が四角配列となっている場合、管群8には、各伝熱管9同士の隙間が容器1の半径方向に連続して延びる個所が、周方向90度間隔の4個所に形成される。   When the heat transfer tubes 9 are in a square arrangement, the tube group 8 is formed with four locations where the gaps between the heat transfer tubes 9 continuously extend in the radial direction of the container 1 at intervals of 90 degrees in the circumferential direction. The

そこで、本実施形態では、図11(a)(b)に示すように、図4(a)(b)(c)に示した第2実施形態と同様の構成において、管群設置領域7における周方向90度間隔の4個所に、バッフル143a,143b,143c,143dを設けた構成としてある。   Therefore, in this embodiment, as shown in FIGS. 11A and 11B, in the configuration similar to that of the second embodiment shown in FIGS. 4A, 4B, and 4C, the tube group installation region 7 is used. Baffles 143a, 143b, 143c, and 143d are provided at four locations at intervals of 90 degrees in the circumferential direction.

これにより、本実施形態では、管群設置領域7に、各バッフル143a,143b,143c,143dによって仕切られた4つの区画73a,73b,73c,73dが周方向に配列されて形成されている。   Thereby, in this embodiment, four divisions 73a, 73b, 73c, and 73d partitioned by the respective baffles 143a, 143b, 143c, and 143d are formed in the tube group installation region 7 in the circumferential direction.

なお、各バッフル143a,143b,143c,143dは、四角配列された各伝熱管9同士の隙間が容器1の半径方向に連続して延びる4個所に配置することが望ましい。このような各バッフル143a,143b,143c,143dの配置によれば、管群設置領域7で、胴側流体13が局所的に容器1の半径方向に沿う方向へ通り抜ける現象を抑制することができる。   The baffles 143 a, 143 b, 143 c, and 143 d are preferably arranged at four locations where the gaps between the heat transfer tubes 9 arranged in a square form extend continuously in the radial direction of the container 1. According to such an arrangement of the baffles 143a, 143b, 143c, and 143d, it is possible to suppress a phenomenon in which the trunk side fluid 13 passes through in the direction along the radial direction of the container 1 in the tube group installation region 7. .

各区画73a,73b,73c,73dには、外周部の容器軸心方向一端寄りの端部に、外周側開口部153a,153b,153c,153dが設けられている。又、各区画73a,73b,73c,73dの内周部の容器軸心方向他端寄りの端部には、内周側開口部163a,163b,163c,163dが設けられている。   Each partition 73a, 73b, 73c, 73d is provided with an outer peripheral side opening 153a, 153b, 153c, 153d at the end of the outer peripheral portion near one end in the container axial direction. Inner peripheral side openings 163a, 163b, 163c, and 163d are provided at the ends of the inner peripheral portions of the compartments 73a, 73b, 73c, and 73d near the other end in the container axial direction.

次に、前記のように管群設置領域7に形成された各区画73a,73b,73c,73dを通る胴側流体13の流通経路について説明する。   Next, the flow path of the trunk side fluid 13 that passes through the sections 73a, 73b, 73c, 73d formed in the tube group installation region 7 as described above will be described.

本実施形態では、胴側流体13の流通経路は、区画73a,73bと、区画73c,73dの2区画ずつを接続した2系統の流通経路として設定される。   In the present embodiment, the distribution path of the trunk side fluid 13 is set as two distribution paths connecting the sections 73a and 73b and the sections 73c and 73d.

そのため、内周側開口部163aと163bは、内周側接続流路17により接続される。これにより、区画73aと73bを接続した胴側流体13の流通経路は、外周側開口部153aから、区画73aの内部空間とその内周側開口部163a、内周側接続流路17、内周側開口部163bと区画73bの内部空間を順に経て、外周側開口部153bまで一連に繋がる流通経路とされる。   Therefore, the inner peripheral side openings 163 a and 163 b are connected by the inner peripheral side connection flow path 17. Thereby, the flow path of the trunk side fluid 13 connecting the sections 73a and 73b is from the outer peripheral side opening 153a to the internal space of the section 73a and its inner peripheral side opening 163a, the inner peripheral side connection flow path 17, and the inner periphery. A flow path is formed that sequentially passes through the internal space of the side opening 163b and the partition 73b and continues to the outer periphery side opening 153b.

一方、内周側開口部163dと163cは、別の内周側接続流路17により接続される。これにより、区画73dと73cを接続した胴側流体13の流通経路は、外周側開口部153dから、区画73dの内部空間とその内周側開口部163d、内周側接続流路17、内周側開口部163cと区画73cの内部空間を順に経て、外周側開口部153cまで一連に繋がる流通経路とされる。   On the other hand, the inner circumferential side openings 163d and 163c are connected by another inner circumferential side connection flow path 17. Thereby, the flow path of the trunk side fluid 13 connecting the sections 73d and 73c is changed from the outer peripheral side opening 153d to the inner space of the section 73d and its inner peripheral side opening 163d, the inner peripheral side connection flow path 17, and the inner periphery. A flow path is formed that sequentially passes through the inner space of the side opening 163c and the partition 73c and continues to the outer periphery side opening 153c.

なお、各内周側接続流路17は、図11(b)に示すように、管群設置領域7よりも内側で、且つ閉止部材19の容器軸心方向他端寄りの端面から管板4までの間の空間を、内周部仕切部材22によって仕切ることで形成されている(図1(a)参照)。このため、内周部仕切部材22は、容器1の軸心位置を通ってバッフル143aと143cの内周側端部同士を接続した構成としてある。なお、管板4は、開口がないものとしてある。   As shown in FIG. 11 (b), each inner peripheral side connection flow path 17 is located on the inner side of the tube group installation region 7 and from the end surface near the other end in the container axial direction of the closing member 19. The space up to is formed by partitioning by an inner peripheral partition member 22 (see FIG. 1A). For this reason, the inner peripheral partition member 22 has a configuration in which the inner peripheral end portions of the baffles 143a and 143c are connected to each other through the axial center position of the container 1. The tube sheet 4 is assumed to have no opening.

前述した胴側流体13の流通経路の2つの系統で、上流側端部(起端)に位置するのは、外周側開口部153aと、外周側開口部153dである。そこで、胴6の外面における外周側開口部153aと153dの外側には、図4(a)(b)に示したと同様の入口27を備えたヘッダ部材26が、各外周側開口部153aと153dを一緒に覆うように取り付けられている。   In the two systems of the flow path of the trunk side fluid 13 described above, the outer peripheral side opening 153a and the outer peripheral side opening 153d are positioned at the upstream end (starting end). Therefore, a header member 26 having an inlet 27 similar to that shown in FIGS. 4 (a) and 4 (b) is provided outside the outer peripheral openings 153a and 153d on the outer surface of the body 6, and the outer peripheral openings 153a and 153d. Are attached to cover together.

一方、前述した胴側流体13の流通経路の2つの系統で、下流側端部(末端)に位置するのは、外周側開口部153bと外周側開口部153cである。そこで、胴6の外面における外周側開口部153bと153cの外側には、図4(a)(b)に示したと同様の出口32を備えたヘッダ部材31が、各外周側開口部153bと153cを一緒に覆うように取り付けられている。   On the other hand, in the two systems of the flow path of the trunk side fluid 13 described above, the outer peripheral side opening 153b and the outer peripheral side opening 153c are positioned at the downstream end (terminal). Therefore, on the outer side of the outer peripheral side openings 153b and 153c on the outer surface of the body 6, a header member 31 having an outlet 32 similar to that shown in FIGS. 4 (a) and 4 (b) is provided for each of the outer peripheral side openings 153b and 153c. Are attached to cover together.

以上の構成としてある本実施形態の多管式熱交換器によれば、入口27に接続された図示しない胴側流体供給部より供給される胴側流体13は、入口27よりヘッダ部材26内へ供給されると、ヘッダ部材26内で周方向に分散された後、外周側開口部153aと153dを通して区画73aと73dに流入する。   According to the multitubular heat exchanger of the present embodiment having the above-described configuration, the cylinder side fluid 13 supplied from a cylinder side fluid supply unit (not shown) connected to the inlet 27 enters the header member 26 from the inlet 27. When supplied, after being distributed in the circumferential direction in the header member 26, it flows into the sections 73a and 73d through the outer peripheral side openings 153a and 153d.

区画73aに流入した胴側流体13は、前述した区画73a,73bを順に経る系統の流通経路を通った後、外周側開口部153bからヘッダ部材31に送られる。   The trunk side fluid 13 that has flowed into the section 73a is sent to the header member 31 from the outer peripheral side opening 153b after passing through the distribution channel of the system passing through the sections 73a and 73b in order.

同様に、区画73dに流入した胴側流体13は、前述した区画73d,73cを順に経る系統の流通経路を通った後、外周側開口部153cからヘッダ部材31に送られる。   Similarly, the trunk side fluid 13 that has flowed into the section 73d is sent to the header member 31 from the outer peripheral side opening 153c after passing through the distribution channel of the system passing through the sections 73d and 73c in order.

このヘッダ部材31まで達した胴側流体13は、その出口32から取り出される。   The trunk side fluid 13 reaching the header member 31 is taken out from the outlet 32 thereof.

したがって、本実施形態の多管式熱交換器によっても、胴側流体13の流通経路を形成している各区画73a,73bと73d,73c内では、胴側流体13の流れは、容器軸心方向の流れ成分を含んだものとなる。特に、容器軸心方向中間部付近の領域では、胴側流体13が主として容器軸心方向に沿う流れとなる。   Therefore, also in the multi-tubular heat exchanger of the present embodiment, the flow of the trunk side fluid 13 is in the container axis in each of the sections 73a, 73b and 73d, 73c forming the circulation path of the trunk side fluid 13. It includes the flow component in the direction. In particular, in the region near the middle portion in the container axial direction, the trunk side fluid 13 flows mainly along the container axial direction.

このため、本実施形態の多管式熱交換器によっても、第1実施形態の多管式熱交換器と同様の効果を得ることができる。   For this reason, the same effect as the multitubular heat exchanger of the first embodiment can be obtained also by the multitubular heat exchanger of the present embodiment.

なお、本実施形態では、外周側開口部153aと153dの外側に共通のヘッダ部材26を設け、又、外周側開口部153bと153cの外側に共通のヘッダ部材31を設けた構成を示したが、胴側流体13の2つの系統の流通経路に、個別の入口側のヘッダ部材26と、出口側のヘッダ部材31を備える構成としてもよいことは勿論である。   In the present embodiment, the common header member 26 is provided outside the outer peripheral side openings 153a and 153d, and the common header member 31 is provided outside the outer peripheral openings 153b and 153c. Of course, it is possible to provide a configuration in which the individual inlet-side header member 26 and the outlet-side header member 31 are provided in the two distribution channels of the trunk-side fluid 13.

本実施形態のように管群設置領域7に周方向に4つの区画73a,73b,73c,73dを形成した構成では、胴側流体13の流通経路は、区画73a,73bと区画73c,73dの2区画ずつを接続した2系統の流通経路のほかに、前述したように4区画を接続した1系統の流通経路を設定することができる。   In the configuration in which four sections 73a, 73b, 73c, and 73d are formed in the circumferential direction in the tube group installation region 7 as in this embodiment, the flow path of the trunk side fluid 13 is between the sections 73a and 73b and the sections 73c and 73d. In addition to the two distribution paths connecting two sections, a single distribution path connecting four sections can be set as described above.

[第5実施形態の変形例]
図12は、第5実施形態の変形例として、4つの区画73a,73b,73c,73dを順に接続した1系統の流通経路を設けた形式を示すものである。
[Modification of Fifth Embodiment]
FIG. 12 shows a form in which one distribution channel is provided in which four sections 73a, 73b, 73c, and 73d are connected in order as a modification of the fifth embodiment.

図12(a)(b)は、それぞれ図11(a)(b)に対応する図であり、図4(b)(c)に対応する位置での断面図である。   12 (a) and 12 (b) are diagrams corresponding to FIGS. 11 (a) and 11 (b), respectively, and are cross-sectional views at positions corresponding to FIGS. 4 (b) and 4 (c).

なお、図12(a)(b)において、図11(a)(b)と同一のものには同一符号を付してその説明を省略する。   In FIGS. 12 (a) and 12 (b), the same components as those in FIGS. 11 (a) and 11 (b) are denoted by the same reference numerals, and the description thereof is omitted.

この第5実施形態の変形例では、内周側開口部163aと163b、及び、内周側開口部163cと163dは、第5実施形態と同様に、個別の内周側接続流路17を介して接続されている。   In the modified example of the fifth embodiment, the inner peripheral side openings 163a and 163b and the inner peripheral side openings 163c and 163d are connected via individual inner peripheral side connection channels 17 as in the fifth embodiment. Connected.

更に、外周側開口部153bと153cが、胴6の外面の対応する個所に取り付けられた流路形成部材25によって形成した外周側接続流路18により接続されている。   Further, the outer peripheral side openings 153 b and 153 c are connected by an outer peripheral side connection flow path 18 formed by a flow path forming member 25 attached to a corresponding portion of the outer surface of the trunk 6.

この変形例では、接続された区画数が偶数であるため、外周側開口部153aを上流側端部(起端)とする胴側流体13の流通経路の下流側端部(末端)は、外周側開口部153dとなる。   In this modification, since the number of connected sections is an even number, the downstream end (terminal) of the flow path of the trunk side fluid 13 with the outer peripheral opening 153a as the upstream end (starting end) is the outer periphery. A side opening 153d is formed.

このため、胴6の外面には、外周側開口部153aの外側となる位置に、入口27を備えたヘッダ部材26が取り付けられている。一方、胴6の外面における外周側開口部153dの外側となる位置には、出口32を備えたヘッダ部材31が取り付けられている。   For this reason, the header member 26 provided with the inlet 27 is attached to the outer surface of the trunk | drum 6 in the position used as the outer side of the outer peripheral side opening part 153a. On the other hand, a header member 31 having an outlet 32 is attached to a position on the outer surface of the trunk 6 that is outside the outer peripheral opening 153d.

以上の第5実施形態の変形例によっても、胴側流体13の流通経路の1つの系統に含まれる区画の数は異なるが、第5実施形態と同様に使用して同様の効果を得ることができる。   Even according to the modification of the fifth embodiment described above, the number of sections included in one system of the flow path of the trunk side fluid 13 is different, but the same effect can be obtained by using the same as in the fifth embodiment. it can.

[第6実施形態]
図13は多管式熱交換器の第6実施形態を示すものであり、図13(a)(b)はそれぞれ図11(a)(b)に対応する図であり、図4(b)(c)に対応する位置での断面図である。
[Sixth Embodiment]
FIG. 13 shows a sixth embodiment of the multi-tube heat exchanger, and FIGS. 13 (a) and 13 (b) are diagrams corresponding to FIGS. 11 (a) and 11 (b), respectively. It is sectional drawing in the position corresponding to (c).

なお、図13(a)(b)において、図11(a)(b)と同一のものには同一符号を付してその説明を省略する。又、本実施形態において、管側流体12の流通経路は、第1実施形態と同様であるため、その説明は省略する。   In FIGS. 13 (a) and 13 (b), the same components as those in FIGS. 11 (a) and 11 (b) are denoted by the same reference numerals, and the description thereof is omitted. In the present embodiment, the flow path of the pipe-side fluid 12 is the same as that in the first embodiment, and thus the description thereof is omitted.

本実施形態の多管式熱交換器は、管群8における伝熱管9の配列が、たとえば、図11(a)(b)に示すような正方形を単位とする四角配列となっている場合に適用する別の例を示すものである。   In the multi-tube heat exchanger of the present embodiment, the arrangement of the heat transfer tubes 9 in the tube group 8 is, for example, a square arrangement with a square unit as shown in FIGS. 11 (a) and 11 (b). Another example to apply is shown.

本実施形態では、図13(a)(b)に示すように、図11(a)(b)に示した第5実施形態と同様の構成において、管群設置領域7の4個所にバッフル143a,143b,143c,143dを設けた構成に代えて、管群設置領域における周方向45度間隔の8個所に、バッフル144a,144b,144c,144d,144e,144f,144g,144hを設けた構成としてある。   In this embodiment, as shown in FIGS. 13 (a) and 13 (b), baffles 143a are provided at four locations in the tube group installation area 7 in the same configuration as the fifth embodiment shown in FIGS. 11 (a) and 11 (b). , 143b, 143c, and 143d, instead of the configuration in which the baffles 144a, 144b, 144c, 144d, 144e, 144f, 144g, and 144h are provided at eight positions at intervals of 45 degrees in the circumferential direction in the tube group installation region. is there.

これにより、本実施形態では、管群設置領域7に、各バッフル144a,144b,144c,144d,144e,144f,144g,144hによって仕切られた8つの区画74a,74b,74c,74d,74e,74f,74g,74hが周方向に配列されて形成されている。   Thereby, in this embodiment, eight division 74a, 74b, 74c, 74d, 74e, 74f partitioned by each baffle 144a, 144b, 144c, 144d, 144e, 144f, 144g, 144h in the tube group installation area 7 , 74g, 74h are arranged in the circumferential direction.

なお、管群設置領域7における胴側流体13の局所的な通り抜けを抑制するという観点から考えると、バッフル144a,144b,144c,144d,144e,144f,144g,144hの半数は、図11に示したと同様に、正方配列された各伝熱管9同士の隙間が半径方向に連続して延びるようになる周方向90度間隔の4個所に合わせて配置するようにし、残りの半数は、管群8に配列されている各伝熱管9のうちの一部を間引くことで管群設置領域7に半径方向に延びるよう形成させた空間に設けるようにすることが望ましい。   From the viewpoint of suppressing local passage of the trunk side fluid 13 in the tube group installation region 7, half of the baffles 144a, 144b, 144c, 144d, 144e, 144f, 144g, and 144h are shown in FIG. In the same manner as described above, the gaps between the heat transfer tubes 9 arranged in the square are arranged at four locations at intervals of 90 degrees in the circumferential direction so as to continuously extend in the radial direction, and the remaining half is the tube group 8. It is desirable that a part of each heat transfer tube 9 arranged in the above is thinned out to be provided in a space formed in the tube group installation region 7 so as to extend in the radial direction.

各区画74a,74b,74c,74d,74e,74f,74g,74hには、外周部の容器軸心方向一端寄りの端部に、外周側開口部154a,154b,154c,154d,154e,154f,154g,154hが設けられている。又、各区画74a,74b,74c,74d,74e,74f,74g,74hの内周部の容器軸心方向他端寄りの端部には、内周側開口部164a,164b,164c,164d,164e,164f,164h,164gが設けられている。   In each of the compartments 74a, 74b, 74c, 74d, 74e, 74f, 74g, 74h, the outer peripheral side openings 154a, 154b, 154c, 154d, 154e, 154f, 154g and 154h are provided. Further, the inner peripheral side openings 164a, 164b, 164c, 164d, and the inner peripheral side ends of the compartments 74a, 74b, 74c, 74d, 74e, 74f, 74g, 74h 164e, 164f, 164h, and 164g are provided.

次に、前記のように管群設置領域7に形成された各区画74a,74b,74c,74d,74e,74f,74g,74hを通る胴側流体13の流通経路について説明する。   Next, the flow path of the trunk side fluid 13 passing through the sections 74a, 74b, 74c, 74d, 74e, 74f, 74g, and 74h formed in the tube group installation region 7 as described above will be described.

本実施形態では、胴側流体13の流通経路は、区画74a,74b,74c,74dと、区画74h,74g,74f,74eの4区画ずつを接続した2系統の流通経路として設定される。   In the present embodiment, the distribution path of the trunk side fluid 13 is set as two systems of distribution paths connecting the sections 74a, 74b, 74c, and 74d and the four sections 74h, 74g, 74f, and 74e.

そのため、内周側開口部164aと164b、内周側開口部164cと164dは、それぞれ別の内周側接続流路17により接続される。   Therefore, the inner peripheral side openings 164a and 164b and the inner peripheral side openings 164c and 164d are connected by different inner peripheral side connection channels 17 respectively.

更に、外周側開口部154bと154cが、外周側接続流路18により接続される。   Furthermore, the outer peripheral side openings 154 b and 154 c are connected by the outer peripheral side connection flow path 18.

これにより、区画74a,74b,74c,74dを接続した胴側流体13の流通経路は、外周側開口部154aから、区画74aの内部空間とその内周側開口部164a、第1の内周側接続流路17、内周側開口部164bと区画74bの内部空間と外周側開口部154b、外周側接続流路18、外周側開口部154cと区画74cの内部空間と内周側開口部164c、第2の内周側接続流路17、内周側開口部164dと区画74dの内部空間を順に経て、外周側開口部154dまで一連に繋がる流通経路とされる。   As a result, the flow path of the trunk side fluid 13 connecting the compartments 74a, 74b, 74c, and 74d is changed from the outer peripheral opening 154a to the internal space of the compartment 74a, its inner peripheral opening 164a, and the first inner peripheral side. Connection channel 17, inner space 164b and inner space of partition 74b and outer opening 154b, outer connection channel 18, outer space 154c and inner space of partition 74c and inner opening 164c, The second inner circumferential side connection flow path 17, the inner circumferential side opening 164d, and the internal space of the partition 74d are sequentially provided as a flow path that is continuously connected to the outer circumferential side opening 154d.

一方、内周側開口部164hと164g、内周側開口部164fと164eは、更に別々の内周側接続流路17により接続される。   On the other hand, the inner circumferential side openings 164h and 164g and the inner circumferential side openings 164f and 164e are further connected by separate inner circumferential side connection channels 17.

更に、外周側開口部154gと154fが、別の外周側接続流路18により接続される。   Furthermore, the outer peripheral side openings 154 g and 154 f are connected by another outer peripheral side connection flow path 18.

これにより、区画74h,74g,74f,74eを接続した胴側流体13の流通経路は、外周側開口部154hから、区画74hの内部空間とその内周側開口部164h、別の第1の内周側接続流路17、内周側開口部164gと区画74gの内部空間と外周側開口部154g、別の外周側接続流路18、外周側開口部154fと区画74fの内部空間と内周側開口部164f、別の第2の内周側接続流路17、内周側開口部164eと区画74eの内部空間を順に経て、外周側開口部154eまで一連に繋がる流通経路とされる。   As a result, the flow path of the trunk side fluid 13 connecting the compartments 74h, 74g, 74f, and 74e is changed from the outer peripheral side opening 154h to the internal space of the compartment 74h and its inner peripheral side opening 164h. Circumferential connection channel 17, inner space 164g and inner space of partition 74g and outer peripheral opening 154g, another outer connection channel 18, outer space 154f and inner space of partition 74f and inner peripheral side An opening 164f, another second inner peripheral side connection flow path 17, an inner peripheral side opening 164e, and an internal space of the section 74e are sequentially provided as a flow path that is continuously connected to the outer peripheral side opening 154e.

なお、各内周側接続流路17は、図13(b)に示すように、管群設置領域7よりも内側で、且つ閉止部材19の容器軸心方向他端寄りの端面から管板4までの間の空間を、内周部仕切部材22によって仕切ることで形成されている(図1(a)参照)。この内周部仕切部材22は、容器1の軸心位置からバッフル144aと144cと144eと144gの内周側端部に向けて容器1の半径方向に沿って延びる4つの平板を容器1の軸心位置で繋いだ形状とされ、その各端部がバッフル144aと144cと144eと144gの内周側端部に取り付けられている。   As shown in FIG. 13 (b), each inner peripheral side connection flow path 17 is located on the inner side of the tube group installation region 7 and from the end surface near the other end in the container axial direction of the closing member 19. The space up to is formed by partitioning by an inner peripheral partition member 22 (see FIG. 1A). The inner peripheral partition member 22 includes four flat plates extending along the radial direction of the container 1 from the axial center position of the container 1 toward the inner peripheral side ends of the baffles 144a, 144c, 144e, and 144g. The end portions are attached to the inner peripheral side ends of the baffles 144a, 144c, 144e, and 144g.

前述した胴側流体13の流通経路の2つの系統で、上流側端部(起端)に位置するのは、外周側開口部154aと、外周側開口部154hである。そこで、胴6の外面における外周側開口部154aと154hの外側には、図4(a)(b)に示したと同様の入口27を備えたヘッダ部材26が、各外周側開口部154aと154hを一緒に覆うように取り付けられている。   In the two systems of the flow path of the trunk side fluid 13 described above, the outer peripheral side opening 154a and the outer peripheral side opening 154h are positioned at the upstream end (starting end). Therefore, on the outer side of the outer peripheral side openings 154a and 154h on the outer surface of the body 6, a header member 26 having an inlet 27 similar to that shown in FIGS. 4 (a) and 4 (b) is provided for each of the outer peripheral side openings 154a and 154h. Are attached to cover together.

一方、前述した胴側流体13の流通経路の2つの系統で、下流側端部(末端)に位置するのは、外周側開口部154dと、外周側開口部154eである。そこで、胴6の外面における外周側開口部154dと154eの外側には、図4(a)(b)に示したと同様の出口32を備えたヘッダ部材31が、各外周側開口部154dと154eを一緒に覆うように取り付けられている。   On the other hand, in the two systems of the flow path of the trunk side fluid 13 described above, the outer peripheral side opening 154d and the outer peripheral side opening 154e are positioned at the downstream end (terminal). Therefore, on the outer side of the outer peripheral side openings 154d and 154e on the outer surface of the body 6, a header member 31 having the same outlet 32 as shown in FIGS. 4 (a) and 4 (b) is provided. Are attached to cover together.

以上の構成としてある本実施形態の多管式熱交換器によれば、入口27に接続された図示しない胴側流体供給部より供給される胴側流体13は、入口27よりヘッダ部材26内へ供給されると、ヘッダ部材26内で周方向に分散された後、外周側開口部154aと154hを通して区画74aと74hに流入する。   According to the multitubular heat exchanger of the present embodiment having the above-described configuration, the cylinder side fluid 13 supplied from a cylinder side fluid supply unit (not shown) connected to the inlet 27 enters the header member 26 from the inlet 27. When supplied, it is dispersed in the circumferential direction in the header member 26 and then flows into the compartments 74a and 74h through the outer peripheral side openings 154a and 154h.

区画74aに流入した胴側流体13は、前述した区画74a,74b,74c,74dを順に経る系統の流通経路を通った後、外周側開口部154dからヘッダ部材31に送られる。   The trunk side fluid 13 that has flowed into the section 74a is sent to the header member 31 from the outer peripheral side opening 154d after passing through the distribution path of the system passing through the sections 74a, 74b, 74c, and 74d in order.

同様に、区画74hに流入した胴側流体13は、前述した区画74h,74g,74f,74eを順に経る系統の流通経路を通った後、外周側開口部154eからヘッダ部材31に送られる。   Similarly, the trunk-side fluid 13 that has flowed into the section 74h is sent to the header member 31 from the outer peripheral side opening 154e after passing through the distribution channel of the system passing through the sections 74h, 74g, 74f, and 74e in order.

このヘッダ部材31まで達した胴側流体13は、その出口32から取り出される。   The trunk side fluid 13 reaching the header member 31 is taken out from the outlet 32 thereof.

したがって、本実施形態の多管式熱交換器によっても、胴側流体13の流通経路を形成している各区画74a,74b,74c,74dと区画74h,74g,74f,74e内では、胴側流体13の流れは、容器軸心方向の流れ成分を含んだものとなる。特に、容器軸心方向中間部付近の領域では、胴側流体13が主として容器軸心方向に沿う流れとなる。   Therefore, even in the multi-tube heat exchanger of the present embodiment, in each of the compartments 74a, 74b, 74c, 74d and the compartments 74h, 74g, 74f, 74e forming the circulation path of the trunk side fluid 13, the trunk side The flow of the fluid 13 includes a flow component in the container axial direction. In particular, in the region near the middle portion in the container axial direction, the trunk side fluid 13 flows mainly along the container axial direction.

このため、本実施形態の多管式熱交換器によっても、第1実施形態の多管式熱交換器と同様の効果を得ることができる。   For this reason, the same effect as the multitubular heat exchanger of the first embodiment can be obtained also by the multitubular heat exchanger of the present embodiment.

なお、本実施形態では、外周側開口部154aと154hの外側に共通のヘッダ部材26を設け、又、外周側開口部154dと154eの外側に共通のヘッダ部材31を設けた構成を示したが、胴側流体13の2つの系統の流通経路に、個別の入口側のヘッダ部材26と、出口側のヘッダ部材31を備える構成としてもよいことは勿論である。   In the present embodiment, the common header member 26 is provided outside the outer peripheral side openings 154a and 154h, and the common header member 31 is provided outside the outer peripheral openings 154d and 154e. Of course, it is possible to provide a configuration in which the individual inlet-side header member 26 and the outlet-side header member 31 are provided in the two distribution channels of the trunk-side fluid 13.

本実施形態のように管群設置領域7に周方向に8つの区画74a,74b,74c,74d,74e,74f,74g,74hを形成した構成では、胴側流体13の流通経路は、4区画ずつを接続した2系統の流通経路のほかに、前述したように8区画を接続した1系統の流通経路と、2区画ずつを接続した4系統の流通経路を設定することができる。   In the configuration in which eight sections 74a, 74b, 74c, 74d, 74e, 74f, 74g, and 74h are formed in the circumferential direction in the tube group installation area 7 as in the present embodiment, the flow path of the trunk side fluid 13 is divided into four sections. In addition to the two distribution routes connected to each other, as described above, one distribution route connecting eight sections and four distribution routes connecting two sections can be set.

[第6実施形態の第1変形例]
図14は、第6実施形態の第1変形例として、8つの区画74a,74b,74c,74d,74e,74f,74g,74hを順に接続した1系統の流通経路を設けた形式を示すものである。
[First Modification of Sixth Embodiment]
FIG. 14 shows a form in which a single distribution channel is provided in which eight sections 74a, 74b, 74c, 74d, 74e, 74f, 74g, and 74h are connected in order as a first modification of the sixth embodiment. is there.

図14(a)(b)は、それぞれ図13(a)(b)に対応する図であり、図4(b)(c)に対応する位置での断面図である。   14 (a) and 14 (b) are diagrams corresponding to FIGS. 13 (a) and 13 (b), respectively, and are cross-sectional views at positions corresponding to FIGS. 4 (b) and 4 (c).

なお、図14(a)(b)において、図13(a)(b)と同一のものには同一符号を付してその説明を省略する。   In FIGS. 14 (a) and 14 (b), the same components as those in FIGS. 13 (a) and 13 (b) are denoted by the same reference numerals, and the description thereof is omitted.

この第6実施形態の第1変形例では、図14(b)に示すように、内周側開口部164a,164b,164c,164d,164e,164f,164g,164hの内周側接続流路17を介した接続構造は、図13(b)に示した第6実施形態と同様とされている。   In the first modification of the sixth embodiment, as shown in FIG. 14 (b), the inner peripheral side connection flow path 17 of the inner peripheral side openings 164a, 164b, 164c, 164d, 164e, 164f, 164g, 164h. The connection structure via is similar to that of the sixth embodiment shown in FIG.

一方、図14(a)に示すように、外周側開口部154bと154c、外周側開口部154dと154e、外周側開口部154fと154gが、胴6の外面の対応する個所に取り付けられた個別の流路形成部材25によって形成した外周側接続流路18によりそれぞれ接続されている。   On the other hand, as shown in FIG. 14 (a), the outer peripheral side openings 154b and 154c, the outer peripheral side openings 154d and 154e, and the outer peripheral side openings 154f and 154g are individually attached to corresponding portions of the outer surface of the body 6. Are connected by outer peripheral side connection flow paths 18 formed by the flow path forming members 25.

この変形例では、接続された区画数が偶数であるため、外周側開口部154aを上流側端部(起端)とする胴側流体13の流通経路の下流側端部(末端)は、外周側開口部154hとなる。   In this modified example, since the number of connected sections is an even number, the downstream end (terminal) of the flow path of the trunk side fluid 13 having the outer peripheral opening 154a as the upstream end (starting end) is the outer periphery. It becomes the side opening part 154h.

このため、胴6の外面には、外周側開口部154aの外側となる位置に、入口27を備えたヘッダ部材26が取り付けられている。一方、胴6の外面における区画74hの外周側開口部154hの外側となる位置には、図13(a)に示したと同様の出口32を備えたヘッダ部材31が取り付けられている。   For this reason, the header member 26 provided with the inlet 27 is attached to the outer surface of the trunk | drum 6 in the position used as the outer side of the outer peripheral side opening part 154a. On the other hand, a header member 31 having an outlet 32 similar to that shown in FIG. 13A is attached to a position outside the outer peripheral side opening 154h of the section 74h on the outer surface of the barrel 6.

[第6実施形態の第2変形例]
図15は、第6実施形態の第2変形例として、8つの区画74a,74b,74c,74d,74e,74f,74g,74hのうち、2つずつの区画74aと74b、区画74cと74d、区画74eと74f、区画74gと74hを接続した4系統の流通経路を設けた形式を示すものである。
[Second Modification of Sixth Embodiment]
FIG. 15 shows, as a second modification of the sixth embodiment, two sections 74a and 74b, sections 74c and 74d, each of eight sections 74a, 74b, 74c, 74d, 74e, 74f, 74g, and 74h. The figure shows a form in which four distribution channels are provided by connecting the sections 74e and 74f and the sections 74g and 74h.

図15(a)(b)は、それぞれ図13(a)(b)に対応する図であり、図4(b)(c)に対応する位置での断面図である。   FIGS. 15A and 15B are views corresponding to FIGS. 13A and 13B, respectively, and are cross-sectional views at positions corresponding to FIGS. 4B and 4C.

なお、図15(a)(b)において、図13(a)(b)と同一のものには同一符号を付してその説明を省略する。   In FIGS. 15 (a) and 15 (b), the same components as those in FIGS. 13 (a) and 13 (b) are denoted by the same reference numerals, and the description thereof is omitted.

図15(b)に示すように、内周側開口部164a,164b,164c,164d,164e,164f,164g,164hの内周側接続流路17を介した接続構造は、図13(b)に示した第6実施形態と同様とされている。   As shown in FIG. 15B, the connection structure of the inner peripheral side openings 164a, 164b, 164c, 164d, 164e, 164f, 164g, and 164h through the inner peripheral connection channel 17 is shown in FIG. This is the same as the sixth embodiment shown in FIG.

一方、胴6の外面には、外周側開口部154aと154cと154eと154gの外側となる位置に、入口27を備えたヘッダ部材26がそれぞれ取り付けられている。   On the other hand, header members 26 each having an inlet 27 are attached to the outer surface of the body 6 at positions outside the outer peripheral side openings 154a, 154c, 154e, and 154g.

更に、胴6の外面における外周側開口部154bと154dと154fと154hの外側となる位置には、出口32を備えたヘッダ部材31がそれぞれ取り付けられている。   Further, header members 31 each having an outlet 32 are attached to positions outside the outer peripheral side openings 154b, 154d, 154f, and 154h on the outer surface of the barrel 6.

以上の第6実施形態の第1変形例及び第2変形例によっても、胴側流体13の流通経路の1つの系統に含まれる区画の数は異なるが、第6実施形態と同様に使用して同様の効果を得ることができる。   Even in the first and second modifications of the sixth embodiment described above, the number of sections included in one system of the flow path of the trunk side fluid 13 is different, but it is used in the same manner as in the sixth embodiment. Similar effects can be obtained.

なお、図10(a)(b)に示した第4実施形態の第2変形例、図11(a)(b)に示した第5実施形態、図12(a)(b)に示した第5実施形態の変形例、図13(a)(b)に示した第6実施形態、図14(a)(b)に示した第6実施形態の第1変形例、図15(a)(b)に示した第6実施形態の第2変形例は、いずれも、胴側流体13の一つの系統で接続されている区画数が偶数である。   10A and 10B, a second modification of the fourth embodiment, a fifth embodiment shown in FIGS. 11A and 11B, and FIGS. 12A and 12B. Modification of the fifth embodiment, the sixth embodiment shown in FIGS. 13 (a) and 13 (b), the first modification of the sixth embodiment shown in FIGS. 14 (a) and 14 (b), and FIG. 15 (a). In the second modification of the sixth embodiment shown in (b), the number of sections connected by one system of the trunk side fluid 13 is an even number.

そのため、各図では、胴側流体13の入口27と出口32が、それぞれ容器1の胴6の外周部に設けられた構成について示したが、第3実施形態と同様に、胴側流体13を、管群設置領域7の内側から行うようにしてもよい。   Therefore, in each figure, although it showed about the structure by which the inlet 27 and the outlet 32 of the trunk side fluid 13 were each provided in the outer peripheral part of the trunk | drum 6 of the container 1, similarly to 3rd Embodiment, the trunk side fluid 13 is shown. Alternatively, it may be performed from the inside of the tube group installation area 7.

この場合は、図示してないが、胴側流体13の流通経路の上流側端部(起端)となる区画の内周側開口部の内側と、流通経路の下流側端部(末端)となる区画の内周側開口部の内側に、図6(a)(c)に示した第3実施形態の場合と同様に、入口側のヘッダ33と出口側のヘッダ24をそれぞれ設け、これらのヘッダ33,24を、管板4の中央部に設けた開口20に取り付けて内部を適宜仕切った管状部材21を介して、容器外部に入口35aを有する接続管35、及び、容器外部に出口30aを有する接続管30に接続した構成とすればよい。   In this case, although not shown in the drawing, the inside of the inner peripheral side opening of the section that becomes the upstream end (starting end) of the circulation path of the trunk side fluid 13 and the downstream end (terminal) of the circulation path As in the case of the third embodiment shown in FIGS. 6 (a) and 6 (c), an inlet-side header 33 and an outlet-side header 24 are respectively provided inside the inner circumferential side opening of the partition. The connecting pipe 35 having an inlet 35a outside the container and the outlet 30a outside the container via a tubular member 21 in which the headers 33 and 24 are attached to the opening 20 provided in the central portion of the tube plate 4 and the inside is appropriately partitioned. What is necessary is just to set it as the structure connected to the connection pipe | tube 30 which has.

[第7実施形態]
図16は、多管式熱交換器の第7実施形態を示すものであり、図16(a)は容器軸心位置での概略断面図、図16(b)は図16(a)のG−G方向矢視断面図、図16(c)は図16(a)のH−H方向矢視断面図である。
[Seventh Embodiment]
FIG. 16 shows a seventh embodiment of the multi-tube heat exchanger, FIG. 16 (a) is a schematic cross-sectional view at the container axial center position, and FIG. 16 (b) is a diagram of G in FIG. 16 (a). -G direction arrow sectional drawing, FIG.16 (c) is a HH direction arrow sectional drawing of Fig.16 (a).

なお、図16(a)(b)(c)において、図1(a)(b)(c)と同一のものには同一符号を付してその説明を省略する。又、本実施形態において、管側流体12の流通経路は、第1実施形態と同様であるため、説明は省略する。   In FIGS. 16A, 16B, and 16C, the same components as those in FIGS. 1A, 1B, and 1C are denoted by the same reference numerals, and description thereof is omitted. In the present embodiment, the flow path of the pipe-side fluid 12 is the same as that in the first embodiment, and a description thereof will be omitted.

本実施形態の多管式熱交換器は、図1(a)(b)(c)に示した第1実施形態と同様に、管群設置領域7に、バッフル14a,14b,14cにより仕切られた3つの区画7aと7bと7cが、周方向に配列して形成されている。   The multi-tube heat exchanger of the present embodiment is partitioned by the baffles 14a, 14b, and 14c in the tube group installation region 7 as in the first embodiment shown in FIGS. The three sections 7a, 7b, and 7c are arranged in the circumferential direction.

管群設置領域7に形成された各区画7a,7b,7cを通る胴側流体13の流通経路は、以下のようにしてある。   The flow path of the trunk side fluid 13 passing through the sections 7a, 7b, 7c formed in the tube group installation region 7 is as follows.

図17は、胴側流体13の流通経路の概要を説明するための図で、図2と同様に、容器1の胴6内の管群設置領域7に形成された3つの区画7a,7b,7cを、周方向に分離し、展開させて示してある。図17において、図16に示したものと同一のものには同一符号が付してある。   FIG. 17 is a diagram for explaining the outline of the flow path of the trunk side fluid 13, and similarly to FIG. 2, three compartments 7 a, 7 b, formed in the tube group installation region 7 in the trunk 6 of the container 1. 7c is shown separated and developed in the circumferential direction. In FIG. 17, the same components as those shown in FIG. 16 are denoted by the same reference numerals.

各区画7a,7b,7cは、図17にハッチングを付して示すように、外周部における容器軸心方向の中間部に、外周側開口部15a,15b,15cを備え、内周部における容器軸心方向の両端部の2個所に、内周側開口部16a,16b,16cをそれぞれ備えている。   Each of the compartments 7a, 7b, and 7c is provided with outer peripheral side openings 15a, 15b, and 15c in the middle portion of the outer peripheral portion in the axial direction of the container as shown by hatching in FIG. Inner peripheral side openings 16a, 16b, and 16c are provided at two locations on both ends in the axial direction.

周方向に配列された3つの区画7a,7b,7cのうち、隣接する区画7aと7bは、互いの周方向に隣接する内周側開口部16aと16b同士が、区画7aと7bの内側に設けられた内周側接続流路17を介してそれぞれ接続されている。更に、隣接する区画7bと7cは、互いの外周側開口部15bと15c同士が、容器1の胴6の外側に設けた外周側接続流路18を介して接続されている。   Of the three sections 7a, 7b and 7c arranged in the circumferential direction, the adjacent sections 7a and 7b have inner circumferential side openings 16a and 16b which are adjacent to each other in the circumferential direction inside the sections 7a and 7b. They are respectively connected via the provided inner peripheral side connection flow path 17. Further, the adjacent sections 7 b and 7 c are connected to each other through the outer peripheral side connection flow path 18 provided on the outer side of the body 6 of the container 1.

以上により、管群設置領域7には、外周側開口部15aから、区画7aの内部空間、各内周側開口部16a、各内周側接続流路17、各内周側開口部16b、区画7bの内部空間、外周側開口部15b、外周側接続流路18、外周側開口部15c、及び、区画7cの内部空間を順に経て、各内周側開口部16cまで上下流方向に繋がる胴側流体13の流通経路が形成される。   As described above, in the tube group installation region 7, from the outer peripheral side opening 15a, the internal space of the partition 7a, each inner peripheral side opening 16a, each inner peripheral side connection flow path 17, each inner peripheral side opening 16b, the partition 7b, the outer peripheral side opening 15b, the outer peripheral side connection flow path 18, the outer peripheral side opening 15c, and the inner side of the section 7c in order, the trunk side connected to each inner peripheral side opening 16c in the upstream and downstream direction A flow path for the fluid 13 is formed.

これにより、区画7aと7cでは、容器軸心方向中間部に設けられた外周側開口部15a,15cより流入する胴側流体13が、容器軸心方向両端部に設けられた2つの内周側開口部16a,16cに向けて流れるようになる。   Thereby, in the compartments 7a and 7c, the cylinder side fluid 13 flowing in from the outer peripheral side openings 15a and 15c provided in the intermediate portion in the container axial direction is the two inner peripheral sides provided in both ends in the container axial direction. It flows toward the openings 16a and 16c.

又、区画7bでは、容器軸心方向両端部に設けられた2つの内周側開口部16bより流入する胴側流体13が、容器軸心方向中間部に設けられた外周側開口部15bに向けて流れるようになる。   Further, in the section 7b, the trunk side fluid 13 flowing in from the two inner peripheral side openings 16b provided at both ends in the container axial direction is directed to the outer peripheral side openings 15b provided in the intermediate part in the container axial direction. Will begin to flow.

したがって、各区画7a,7b,7cでは、胴側流体13が、外周側開口部15a,15b,15cと内周側開口部16a,16b,16cが設けられている容器軸心方向中間部と両端部寄りの領域では、管群直交流の流れ成分を含むようになるが、その間の領域では、主として容器軸心方向に沿った流れとなる。   Therefore, in each of the compartments 7a, 7b, and 7c, the trunk side fluid 13 is disposed at both ends of the container axial direction in which the outer peripheral side openings 15a, 15b, and 15c and the inner peripheral openings 16a, 16b, and 16c are provided. In the region close to the portion, the flow component of the tube group cross flow is included, but in the region in between, the flow is mainly along the container axial direction.

本実施形態において、胴6の外側に流路形成部材25によって形成される外周側接続流路18、及び、区画7aの外側に設けられる胴側流体13の入口27を備えたヘッダ部材26は、第1実施形態と同様とされている。   In the present embodiment, the outer peripheral side connection flow path 18 formed by the flow path forming member 25 on the outer side of the trunk 6 and the header member 26 including the inlet 27 of the trunk side fluid 13 provided on the outer side of the section 7a are: This is the same as in the first embodiment.

一方、内周側接続流路17は、管群設置領域7の内側に設ける閉止部材19を、容器軸心方向一端側の管板2及び容器軸心方向他端側の管板4の双方と所定の間隔を隔てて配置し、閉止部材19の容器軸心方向両端側の端面と各管板2,4との間の空間に、図1(c)に示した内周部仕切部材22と同様の内周部仕切部材22を設けることで形成されている。   On the other hand, the inner peripheral side connection flow path 17 has a closing member 19 provided inside the tube group installation region 7 with both the tube plate 2 on one end side in the container axial direction and the tube plate 4 on the other end side in the container axial direction. An inner peripheral partition member 22 shown in FIG. 1 (c) is disposed in a space between the end faces of the closing member 19 at both ends in the container axial direction and the tube plates 2 and 4 with a predetermined interval. A similar inner peripheral partition member 22 is provided.

更に、管板4に加えて、管板2にも、管群設置領域7よりも内側となる中央部に、図1(a)に示した管板4と同様の開口20が設けられ、この開口20に、容器1の軸心方向に沿って分配ヘッダ3の内側に突出する管状部材21が取り付けられている。管状部材21の突出端部は閉塞されている。更に、管板2側の管状部材21には、接続管30の一端側が接続されている。該接続管30の他端側は、分配ヘッダ3に対応する容器壁を貫通させて外部に突出されている。外部に突出した接続管30の他端側は、胴側流体13の出口30aとされている。   Further, in addition to the tube plate 4, the tube plate 2 is also provided with an opening 20 similar to the tube plate 4 shown in FIG. A tubular member 21 that protrudes inside the distribution header 3 along the axial direction of the container 1 is attached to the opening 20. The protruding end of the tubular member 21 is closed. Furthermore, one end side of the connection pipe 30 is connected to the tubular member 21 on the tube plate 2 side. The other end side of the connection pipe 30 protrudes outside through the container wall corresponding to the distribution header 3. The other end side of the connecting pipe 30 protruding to the outside is an outlet 30 a for the trunk side fluid 13.

以上の構成としてある第7実施形態の多管式熱交換器も、第1実施形態と同様に使用して、管側流体12と胴側流体13との熱交換を実施することができる。   The multitubular heat exchanger of the seventh embodiment having the above configuration can also be used in the same manner as in the first embodiment to exchange heat between the tube-side fluid 12 and the trunk-side fluid 13.

又、本実施形態の多管式熱交換器でも、各区画7a,7b,7c内での胴側流体13の流れは、容器軸心方向の流れ成分を含んだものとなり、特に、各区画7a,7b,7cにおいて、容器軸心方向の中間部と、容器軸心方向両端部との間の領域では、胴側流体13が、主として容器軸心方向に沿う流れとなる。   In the multi-tube heat exchanger of the present embodiment, the flow of the trunk side fluid 13 in each of the compartments 7a, 7b, 7c includes a flow component in the container axial direction. , 7b, 7c, in the region between the intermediate portion in the container axial direction and both ends in the container axial direction, the trunk side fluid 13 mainly flows along the container axial direction.

このため、本実施形態の多管式熱交換器によっても、第1実施形態の多管式熱交換器と同様の効果を得ることができる。   For this reason, the same effect as the multitubular heat exchanger of the first embodiment can be obtained also by the multitubular heat exchanger of the present embodiment.

更に、本実施形態では、接続管30の出口30aを入口とし、ヘッダ部材26の入口27を出口として、胴側流体13の流れを逆にしてもよい。   Furthermore, in the present embodiment, the flow of the trunk side fluid 13 may be reversed with the outlet 30a of the connection pipe 30 as an inlet and the inlet 27 of the header member 26 as an outlet.

本実施形態では、各区画7a,7b,7c内に、容器軸心方向の中間部を挟んで、一端寄りと他端寄りに2つに分かれて胴側流体13が流通するため、容器1の管群設置領域7の容器軸心方向に沿う寸法が大きい場合に、胴側流体13の流路が過度に長くなるのを抑制する場合に有利な構成とすることができる。   In the present embodiment, the body side fluid 13 is divided into two sections near one end and the other end with the middle portion in the container axial direction sandwiched between the compartments 7a, 7b, and 7c. When the dimension along the container axial direction of the tube group installation region 7 is large, it is possible to obtain an advantageous configuration for suppressing the flow path of the trunk side fluid 13 from becoming excessively long.

ここで、前述の各実施形態から明らかとなる本発明の多管式熱交換器に備える胴側流体13の流通経路の配置パターンについて述べる。   Here, the arrangement pattern of the flow path of the trunk side fluid 13 provided in the multitubular heat exchanger according to the present invention, which will be apparent from the above-described embodiments, will be described.

本発明の多管式熱交換器では、管群設置領域7の周方向に形成する複数の区画について、すべての区画を経る一系統のみの流通経路を形成する構成としてもよく、あるいは、区画数が、1とその数以外の約数を有する数となっている場合は、その約数ずつに分けた区画を接続した複数系統の流通経路を形成する構成としてもよい。   In the multi-tube heat exchanger of the present invention, a plurality of sections formed in the circumferential direction of the tube group installation region 7 may be configured to form a single distribution channel passing through all sections, or the number of sections However, when it is a number having a divisor other than 1 and the number thereof, a configuration may be adopted in which a plurality of distribution channels are formed by connecting sections divided into divisors.

又、一つの系統の胴側流体13の流通経路が偶数の区画を接続した構成である場合は、その流通経路の上流側端部(起端)と下流側端部(末端)は、共に区画の内周側開口部とする構成と、共に区画の外周側開口部とする構成のいずれであってもよい。   Further, when the distribution path of the trunk side fluid 13 of one system has a configuration in which an even number of sections are connected, the upstream end (starting end) and the downstream end (terminal) of the distribution path are both partitioned. Any of the structure used as the inner peripheral side opening part of this and the structure used as the outer peripheral side opening part of a division may be sufficient.

一方、胴側流体13の流通経路が奇数の区画を接続した構成である場合は、その流通経路の上流側端部(起端)を区画の外周側開口部とし、下流側端部(末端)を区画の内周側開口部とする構成と、その流通経路の上流側端部(起端)を区画の内周側開口部とし、下流側端部(末端)を区画の外周側開口部とする構成のいずれを採用してもよい。   On the other hand, when the distribution path of the trunk side fluid 13 is configured to connect odd-numbered sections, the upstream end (starting end) of the distribution path is used as the outer peripheral side opening of the section, and the downstream end (terminal). And the upstream end (starting end) of the distribution path as the inner peripheral side opening of the partition and the downstream end (terminal) as the outer peripheral side opening of the partition. Any of the configurations may be adopted.

更に、複数系統の胴側流体13の流通経路を備える構成では、それぞれの系統の流通経路ごとに、周方向に配列された区画を順に経て胴側流体を移動させる方向は、容器1の軸心方向の一端側から見て時計回り方向、又は、反時計回り方向のいずれに設定してもよい。   Furthermore, in the configuration including the distribution paths of the plurality of systems of the trunk side fluid 13, the direction in which the cylinder side fluid is moved through the compartments arranged in the circumferential direction in order for each distribution path of each system is the axis of the container 1 You may set to either the clockwise direction seeing from the one end side of a direction, or a counterclockwise direction.

[第8実施形態]
図18は、多管式熱交換器の第8実施形態を示すもので、図18(a)(b)(c)は、図1(a)(b)(c)に対応する図である。
[Eighth Embodiment]
FIG. 18 shows an eighth embodiment of the multi-tube heat exchanger, and FIGS. 18 (a), (b), and (c) are diagrams corresponding to FIGS. 1 (a), (b), and (c). .

なお、図18(a)(b)(c)において、図1(a)(b)(c)と同一のものには同一符号を付してその説明を省略する。   In FIGS. 18A, 18B, and 18C, the same components as those in FIGS. 1A, 1B, and 1C are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態の多管式熱交換器は、図1(a)(b)(c)に示した第1実施形態と同様の構成において、管群8の各伝熱管9に触媒36が充填された構成としてある。且つ、各伝熱管9に流通させる管側流体12は、触媒36を介した触媒反応の対象とする反応原料及び反応生成物としてのプロセス流体とし、各伝熱管9の外側に流通させる胴側流体13は、熱媒とした構成とする。   The multi-tube heat exchanger of this embodiment has the same configuration as that of the first embodiment shown in FIGS. 1A, 1B, and 1C, and each heat transfer tube 9 of the tube group 8 is filled with a catalyst 36. As a configuration. In addition, the tube-side fluid 12 circulated through each heat transfer tube 9 is a process fluid as a reaction raw material and a reaction product to be subjected to a catalytic reaction via the catalyst 36, and a cylinder-side fluid circulated outside each heat transfer tube 9. Reference numeral 13 denotes a configuration using a heat medium.

なお、本実施形態の多管式熱交換器では、各伝熱管9の外側に流通させる胴側流体13が、内周側と周辺部で流路断面積の相違により速度変化を生じる点、及び、胴側流体13が各区画7a,7b,7cを順に流通するようにしてある点に鑑みて、前記熱媒として用いる胴側流体13は、各伝熱管9の管内側におけるプロセス流体である管側流体12の熱伝達率に比して、管外側の熱伝達率が大きくなるように、密度、比熱、熱伝導率や流量が設定してあるものとする。又、該熱媒としての胴側流体13は、触媒反応が発熱反応の場合は、冷却媒体を、又、触媒反応が吸熱反応の場合は、加熱媒体を用いるようにすればよい。更に、熱媒の種類は、触媒反応に所望される温度条件等に応じて適宜選定すればよい。   In addition, in the multi-tube heat exchanger of the present embodiment, the cylinder side fluid 13 circulated to the outside of each heat transfer tube 9 causes a speed change due to the difference in the cross-sectional area of the flow path between the inner peripheral side and the peripheral part, and In view of the fact that the cylinder-side fluid 13 flows through each of the compartments 7a, 7b, 7c in turn, the cylinder-side fluid 13 used as the heating medium is a pipe that is a process fluid inside the pipe of each heat transfer pipe 9. It is assumed that the density, specific heat, thermal conductivity, and flow rate are set so that the heat transfer coefficient outside the tube is larger than the heat transfer coefficient of the side fluid 12. The body side fluid 13 as the heat medium may be a cooling medium when the catalytic reaction is an exothermic reaction, and a heating medium when the catalytic reaction is an endothermic reaction. Furthermore, the kind of the heat medium may be appropriately selected according to the temperature condition desired for the catalytic reaction.

本実施形態の多管式熱交換器では、前記各伝熱管9の内部で、触媒36により反応原料より反応生成物を生成させる触媒反応が進行する。   In the multi-tube heat exchanger of the present embodiment, a catalytic reaction in which a reaction product is generated from a reaction raw material by the catalyst 36 progresses inside each heat transfer tube 9.

この際、前記したように、各伝熱管9では、管内側の熱伝達率が管外側の熱伝達率よりも小さくなるようにしてあるため、各伝熱管9の管壁を介した前記反応原料及び反応生成物となる管側流体12と、熱媒となる胴側流体13との熱通過率(総括熱伝達係数)は、前記管内側の熱伝達率に大きく依存している。そのために、本実施形態の多管式熱交換器では、前記管内側の熱伝達率が、前記管壁内外方向の熱通過率の全体に対して律速となる。   At this time, as described above, in each heat transfer tube 9, the heat transfer coefficient inside the tube is made smaller than the heat transfer coefficient outside the tube, and thus the reaction raw material via the tube wall of each heat transfer tube 9. The heat transfer rate (overall heat transfer coefficient) between the tube-side fluid 12 serving as a reaction product and the body-side fluid 13 serving as a heat medium greatly depends on the heat transfer rate inside the tube. Therefore, in the multi-tube heat exchanger of the present embodiment, the heat transfer coefficient inside the tube is rate-limiting with respect to the overall heat passage rate in the tube wall inside / outside direction.

よって、本実施形態の多管式熱交換器は、熱媒となる胴側流体13に前記したような速度変化が生じたり、各区画7a,7b,7cを順次経ることで多少の温度変化が生じたりする場合であっても、胴側流体13による管外側の熱伝達率は、前記熱通過率への寄与が小さい。そのため、各伝熱管9内をほぼ均一な温度条件に保持することができる。よって、本実施形態の多管式熱交換器は、各伝熱管9で前記触媒反応を一様に進行させることが可能な多管式反応器として使用することができる。   Therefore, in the multitubular heat exchanger according to the present embodiment, the above-described speed change occurs in the trunk side fluid 13 serving as a heat medium, or a slight temperature change occurs due to the sequential passage through each of the compartments 7a, 7b, and 7c. Even if it occurs, the heat transfer rate outside the tube by the trunk side fluid 13 has a small contribution to the heat transfer rate. Therefore, the inside of each heat transfer tube 9 can be maintained at a substantially uniform temperature condition. Therefore, the multitubular heat exchanger of the present embodiment can be used as a multitubular reactor capable of causing the catalytic reaction to proceed uniformly in each heat transfer tube 9.

なお、本実施形態のように各伝熱管9に触媒36を充填する構成は、前述の各実施形態、応用例、及び変形例に適用してもよいことは勿論である。   Of course, the configuration in which each heat transfer tube 9 is filled with the catalyst 36 as in this embodiment may be applied to the above-described embodiments, application examples, and modifications.

なお、本発明は前述の各実施形態、応用例、及び変形例のみに限定されるものではなく、管側流体入口10と管側流体出口11を入れ替えて、容器1の他端部の管板4により仕切られた空間を分配ヘッダ3とし、容器1の一端側の管板2により仕切られた空間を集合ヘッダ5としてもよい。かかる構成では、前述の各実施形態に対して管側流体12の流れ方向は逆になるが、各実施形態と同様の効果を得ることができる。   In addition, this invention is not limited only to each above-mentioned embodiment, an application example, and a modified example, The tube side fluid inlet 10 and the tube side fluid outlet 11 are replaced, and the tube plate of the other end part of the container 1 is carried out. The space partitioned by 4 may be used as the distribution header 3, and the space partitioned by the tube plate 2 at one end of the container 1 may be used as the collective header 5. In such a configuration, the flow direction of the tube-side fluid 12 is reversed with respect to the above-described embodiments, but the same effects as those of the embodiments can be obtained.

管群設置領域7に設けるバッフルの数は、図示した以外の数としてもよい。したがって、管群設置領域に周方向に並べて形成させる区画の数も、図示した以外の数としてもよい。   The number of baffles provided in the tube group installation area 7 may be a number other than that illustrated. Therefore, the number of sections formed side by side in the circumferential direction in the tube group installation region may be other than the illustrated number.

管群8における各伝熱管9の配列としては、三角配列と四角配列を例示したが、図示した以外の規則配列や、その他、任意の配列を採用してもよい。又、各伝熱管9の径や本数、配列ピッチは適宜変更してよい。更に、管群設置領域7における胴側流体13の局所的な通り抜けを抑制するという観点から考えると、管群8を構成している各伝熱管9同士の隙間が半径方向に連続して延びる個所に合わせてバッフルを配設することが望ましいが、その他の個所であってもよい。   Examples of the arrangement of the heat transfer tubes 9 in the tube group 8 include a triangular arrangement and a square arrangement, but a regular arrangement other than the illustrated arrangement, or any other arrangement may be adopted. Moreover, you may change suitably the diameter of each heat exchanger tube 9, the number, and arrangement pitch. Furthermore, from the viewpoint of suppressing local passage of the trunk side fluid 13 in the tube group installation region 7, the gap between the heat transfer tubes 9 constituting the tube group 8 extends continuously in the radial direction. It is desirable to arrange the baffle according to the above, but other locations may be used.

容器1の軸心方向寸法と径寸法との比、容器1内における各管板2と4の設置位置、分配ヘッダ3と集合ヘッダ5の容積、各管板2と4同士の間隔、各区画の外周側開口部と内周側開口部の容器軸心方向の寸法等は、管側流体12と胴側流体13の供給量や、温度条件等の熱交換処理に所望される種々の条件に応じて、図示したものから適宜変更してもよい。   Ratio of axial dimension and diameter dimension of container 1, installation position of each tube sheet 2 and 4 in container 1, volume of distribution header 3 and collective header 5, distance between each tube sheet 2 and 4, each section The dimensions of the outer peripheral side opening and the inner peripheral side opening in the container axial direction are in various conditions desired for heat exchange processing such as the supply amount of the tube side fluid 12 and the trunk side fluid 13 and temperature conditions. Accordingly, it may be appropriately changed from the illustrated one.

前記管側流体12及び胴側流体13は、ガス又は液体のいずれであってもよい。   The tube side fluid 12 and the trunk side fluid 13 may be either gas or liquid.

本発明の多管式熱交換器は、いかなる熱交換処理を行う熱交換器に適用してもよい。   The multitubular heat exchanger of the present invention may be applied to a heat exchanger that performs any heat exchange treatment.

本発明の多管式熱交換器は、容器1の軸心方向を、上下方向以外のいかなる方向に向けた姿勢で用いるようにしてもよい。   The multitubular heat exchanger of the present invention may be used in a posture in which the axial center direction of the container 1 is oriented in any direction other than the vertical direction.

各伝熱管9について、長手方向の途中位置で振れ止めのための支持が必要な場合は、ワイヤやロッドを格子状に組み合わせたロッドバッフル等の管支持材で支持するようにすればよい。   If each heat transfer tube 9 needs to be supported for steadying at an intermediate position in the longitudinal direction, it may be supported by a tube support material such as a rod baffle in which wires and rods are combined in a lattice shape.

その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。   Of course, various modifications can be made without departing from the scope of the present invention.

本発明の多管式熱交換器に関し、第1実施形態とその応用例、第2実施形態、第3実施形態、第4実施形態とその第1変形例、第5実施形態とその変形例、第6実施形態とその第1変形例及び第2変形例、第7実施形態の各構成について、伝熱管9と管内側を流通させる管側流体12との間の熱伝達率(管内側の熱伝達率)h、及び、伝熱管9と管外側を流通させる胴側流体13との間の熱伝達率(管外側の熱伝達率)hと、管側流体12と胴側流体13との伝熱管9の管壁を介した熱通過率Kと、管側流体12側の圧力損失、及び、胴側流体13側の圧力損失について数値解析した。 Regarding the multi-tube heat exchanger of the present invention, the first embodiment and its application example, the second embodiment, the third embodiment, the fourth embodiment and its first modification, the fifth embodiment and its modification, About each structure of 6th Embodiment, its 1st modification, 2nd modification, and 7th Embodiment, it is the heat transfer coefficient (heat | fever inside a pipe | tube) between the heat exchanger tube 9 and the pipe | tube side fluid 12 which distribute | circulates a pipe inner side. (Conductivity) h 1 , heat transfer coefficient between the heat transfer tube 9 and the cylinder side fluid 13 that circulates outside the tube (heat transfer coefficient outside the pipe) h 2 , the tube side fluid 12 and the cylinder side fluid 13 A numerical analysis was conducted on the heat transfer rate K through the tube wall of the heat transfer tube 9, the pressure loss on the tube side fluid 12 side, and the pressure loss on the body side fluid 13 side.

なお、熱通過率Kの算出は、以下の式に基づいて行った。

Figure 2016061510
その解析結果を、以下の表1に示す。 The calculation of the heat transmission rate K was performed based on the following formula.
Figure 2016061510
The analysis results are shown in Table 1 below.

表1における比較例1は、従来の多管式熱交換器であって、管群設置領域に、伝熱管の長手方向の3個所に、伝熱管の長手方向に直交する面内に配置したドーナツ状のバッフル2枚とディスク状のバッフル1枚を設けてなる4段流路構成としたものである。   Comparative Example 1 in Table 1 is a conventional multi-tube heat exchanger, and in a tube group installation region, three donuts arranged in a plane perpendicular to the longitudinal direction of the heat transfer tube at three locations in the longitudinal direction of the heat transfer tube A four-stage flow path structure is provided by providing two disk-shaped baffles and one disk-shaped baffle.

又、比較例2は、前記比較例1と同様の構成において、各バッフルにおける伝熱管挿通孔と伝熱管との隙間からのリークを考慮したものである。   Further, Comparative Example 2 considers leakage from the gap between the heat transfer tube insertion hole and the heat transfer tube in each baffle in the same configuration as Comparative Example 1.

このリークの算出条件は以下のようにした。
隙間形状係数:Z=67
管本数:約20000本
Zの定義は、下記による。
Z=2t/(D−d)
t:バッフル厚さ
D:バッフルの管挿通孔の径
d:伝熱管の外径
The leak calculation conditions were as follows.
Gap shape factor: Z = 67
Number of tubes: about 20000 The definition of Z is as follows.
Z = 2t / (D−d)
t: baffle thickness D: diameter of baffle tube insertion hole d: outer diameter of heat transfer tube

この比較例1、2の構成について、前記と同様に、管側流体側の熱伝達率(管内側の熱伝達率)hと、胴側流体側の熱伝達率(管外側の熱伝達率)hと、熱通過率Kと、管側流体側の圧力損失と、胴側流体側の圧力損失について数値解析したものである。 Regarding the configurations of Comparative Examples 1 and 2, similarly to the above, the heat transfer coefficient on the pipe side fluid side (heat transfer coefficient on the pipe inner side) h 1 and the heat transfer coefficient on the trunk side fluid side (heat transfer coefficient on the outer side of the pipe) ) H 2 , heat transfer rate K, pressure loss on the pipe side fluid side, and pressure loss on the body side fluid side are numerically analyzed.

なお、前述の各実施形態、及び、比較例1、2の構成は、伝熱管9の径、管ピッチ、本数、管側流体12の流量、胴側流体13の流量、容器1の径、高さを同様に設定してある。   In addition, each structure mentioned above and the structure of the comparative examples 1 and 2 are the diameter of the heat exchanger tube 9, a pipe pitch, the number, the flow volume of the pipe side fluid 12, the flow volume of the trunk | drum side fluid 13, the diameter of the container 1, high Is set in the same way.

なお、前記伝熱管9には触媒が充填され、管側流体12がガスであると想定して、管内側の管側流体12が、管外側の胴側流体13に比して熱伝達率が低くなるように設定してある。   Assuming that the heat transfer tube 9 is filled with a catalyst and the tube-side fluid 12 is a gas, the tube-side fluid 12 on the inside of the tube has a heat transfer coefficient as compared with the trunk-side fluid 13 on the outside of the tube. It is set to be low.

又、以下の表1では、各熱伝達率h及びhと、熱通過率Kについては、各実施形態と比較例1、2に共通している伝熱管9内に流通させる管側流体12側の熱伝達率(管内側の熱伝達率)hの解析結果の値を基準となる1.0とおいて、各実施形態と比較例1、2の前記各項目の解析結果を規格化している。圧力損失については、前記と同様に、管側流体12側の圧力損失の解析結果の値を基準となる1.0とおいて、各実施形態と比較例1、2の前記各項目の解析結果を規格化している。 In Table 1 below, the heat transfer coefficients h 1 and h 2 and the heat transfer coefficient K are pipe side fluids that are circulated in the heat transfer pipes 9 common to the respective embodiments and Comparative Examples 1 and 2. The value of the analysis result of the heat transfer coefficient on the 12th side (heat transfer coefficient inside the pipe) h 1 is set to 1.0 as a reference, and the analysis results of the respective items of the embodiments and comparative examples 1 and 2 are normalized. ing. As for the pressure loss, similarly to the above, the value of the analysis result of the pressure loss on the pipe-side fluid 12 side is set to 1.0, and the analysis result of each item of each embodiment and Comparative Examples 1 and 2 is used as the reference. It is standardized.

Figure 2016061510
Figure 2016061510

以上の結果から明らかなように、各実施形態のいずれにおいても、比較例1、2とした伝熱管長手方向に直交するバッフルを備えた多管式熱交換器に比して、伝熱管9と胴側流体13側の熱伝達率(管外側の熱伝達率)hは低下する。しかし、熱交換器の熱交換性能の指標となる熱通過率Kに関しては、律速の因子となる伝熱管9と管側流体12側の熱伝達率hが変化しないため、各実施形態の熱通過率Kは、それぞれ0.92〜0.76の範囲の値となり、比較例1、比較例2の熱通過率Kの0.97という値に比して熱交換性能はあまり低下していない。 As is clear from the above results, in any of the embodiments, the heat transfer tube 9 and the comparative example 1 and 2 are compared with the multi-tube heat exchanger provided with the baffle perpendicular to the longitudinal direction of the heat transfer tube. heat transfer coefficient of the body-side fluid 13 side (the heat transfer coefficient of the abluminal) h 2 is reduced. However, regarding the heat transfer rate K, which is an index of the heat exchange performance of the heat exchanger, the heat transfer rate h 1 on the heat transfer tube 9 and the tube side fluid 12 side, which is a rate-determining factor, does not change. The passage rates K are values in the range of 0.92 to 0.76, respectively, and the heat exchange performance is not so lowered as compared with the heat passage rate K of Comparative Example 1 and Comparative Example 2 of 0.97. .

一方、各実施形態では、胴側流体13側の圧力損失は、それぞれ、0.025〜1.0の範囲の値となっており、比較例1の胴側流体側の圧力損失の4.4という値に比して、更には、比較例2の胴側流体側の圧力損失の1.8という値に比しても低減させることができることが判明した。よって、本発明の多管式熱交換器では、熱通過率Kの低下を抑制しながら、すなわち、熱交換性能の低下を抑制しながら、胴側流体13の圧力損失を大幅に低減できることが判明した。   On the other hand, in each embodiment, the pressure loss on the cylinder side fluid 13 side has a value in the range of 0.025 to 1.0, and 4.4 of the pressure loss on the cylinder side fluid side in Comparative Example 1. Further, it was found that the pressure loss on the trunk side fluid side of Comparative Example 2 could be reduced even when compared with the value of 1.8. Therefore, in the multi-tube heat exchanger of the present invention, it has been found that the pressure loss of the trunk side fluid 13 can be greatly reduced while suppressing the decrease in the heat transfer rate K, that is, suppressing the decrease in the heat exchange performance. did.

1 容器、2 管板、3 分配ヘッダ、4 管板、5 集合ヘッダ、6 胴、7 管群設置領域、7a,7b,7c 区画、71a,71b 区画、72a,72b,72c,72d,72e,72f 区画、73a,73b,73c,73d 区画、74a,74b,74c,74d,74e,74f,74g,74h 区画、8 管群、9 伝熱管、14a,14b,14c バッフル、141a,141b バッフル、142a,142b,142c,142d,142e,142f バッフル、143a,143b,143c,143d バッフル、144a,144b,144c,144d,144e,144f,144g,144h バッフル、12 管側流体(第1の流体)、13 胴側流体(第2の流体)、15a,15b,15c 外周側開口部、151a,151b 外周側開口部、152a,152b,152c,152d,152e,152f 外周側開口部、153a,153b,153c,153d 外周側開口部、154a,154b,154c,154d,154e,154f,154g,154h 外周側開口部、16a,16b,16c 内周側開口部、161a,161b 内周側開口部、162a,162b,162c,162d,162e,162f 内周側開口部、163a,163b,163c,163d 内周側開口部、164a,164b,164c,164d,164e,164f,164g,164h 内周側開口部、17 内周側接続流路、18 外周側接続流路、36 触媒 1 container, 2 tube plate, 3 distribution header, 4 tube plate, 5 collective header, 6 barrel, 7 tube group installation area, 7a, 7b, 7c partition, 71a, 71b partition, 72a, 72b, 72c, 72d, 72e, 72f section, 73a, 73b, 73c, 73d section, 74a, 74b, 74c, 74d, 74e, 74f, 74g, 74h section, 8 tube groups, 9 heat transfer tubes, 14a, 14b, 14c baffles, 141a, 141b baffles, 142a 142b, 142c, 142d, 142e, 142f baffle, 143a, 143b, 143c, 143d baffle, 144a, 144b, 144c, 144d, 144e, 144f, 144g, 144h baffle, 12 pipe side fluid (first fluid), 13 Body side fluid (second fluid), 15a, 15b, 15c Openings, 151a, 151b Peripheral openings, 152a, 152b, 152c, 152d, 152e, 152f Peripheral openings, 153a, 153b, 153c, 153d Peripheral openings, 154a, 154b, 154c, 154d, 154e, 154f , 154g, 154h Outer peripheral opening, 16a, 16b, 16c Inner peripheral opening, 161a, 161b Inner peripheral opening, 162a, 162b, 162c, 162d, 162e, 162f Inner peripheral opening, 163a, 163b, 163c, 163d Inner peripheral side opening, 164a, 164b, 164c, 164d, 164e, 164f, 164g, 164h Inner peripheral side opening, 17 Inner peripheral side connection flow path, 18 Outer peripheral side connection flow path, 36 Catalyst

Claims (4)

伝熱管内を流通させる第1の流体と伝熱管の外側を流通させる第2の流体とを熱交換させる多管式熱交換器において、
容器と、
前記容器内の軸心方向の一方の端部に管板により仕切って形成した第1の流体の分配ヘッダと、
前記容器内の軸心方向の他方の端部に別の管板により仕切って形成した前記第1の流体の集合ヘッダと、
前記容器における前記各管板の間に位置する胴の内側の空間部に環状に設定した管群設置領域と、
前記管群設置領域に配置した前記容器の軸心方向に平行な複数の伝熱管による管群と、
前記管群設置領域に、周方向の複数個所を前記容器の軸心方向に平行で且つ半径方向に沿うバッフルで仕切って周方向に形成した複数の区画と、
前記各区画の外周側と内周側の容器軸心方向にずれた位置に備えた外周側開口部及び内周側開口部と、を有し、
周方向に隣接する2つの区画の外周側開口部同士を胴の外面に沿う位置で接続する外周側接続流路、又は周方向に隣接する2つの区画の内周側開口部同士を管群設置領域の内側の空間を通して接続する内周側接続流路のいずれか一方又は双方を備え、
少なくとも2つの区画が接続された第2の流体の流通経路を備えたこと
を特徴とする多管式熱交換器。
In the multi-tube heat exchanger for exchanging heat between the first fluid flowing through the heat transfer tube and the second fluid flowing outside the heat transfer tube,
A container,
A first fluid distribution header formed by partitioning with a tube plate at one end in the axial direction in the container;
An assembly header of the first fluid formed by partitioning with another tube plate at the other end in the axial direction in the container;
A tube group installation region that is annularly set in the space inside the barrel located between the tube plates in the container;
A tube group composed of a plurality of heat transfer tubes parallel to the axial direction of the container disposed in the tube group installation region;
In the tube group installation region, a plurality of sections formed in the circumferential direction by dividing a plurality of locations in the circumferential direction by baffles parallel to the axial direction of the container and along the radial direction;
An outer peripheral side opening and an inner peripheral side opening provided at positions deviated in the container axial direction on the outer peripheral side and inner peripheral side of each section;
The outer peripheral side connection channel connecting the outer peripheral side openings of two sections adjacent in the circumferential direction at a position along the outer surface of the trunk, or the inner peripheral side openings of the two sections adjacent in the circumferential direction are installed in a tube group Including either one or both of the inner peripheral side connection flow paths connecting through the space inside the region,
A multi-tube heat exchanger comprising a second fluid flow path to which at least two compartments are connected.
前記各区画は、容器軸心方向の一端側と他端側に、外周側開口部と内周側開口部を備えたものとしたこと
を特徴とする請求項1記載の多管式熱交換器。
The multi-tube heat exchanger according to claim 1, wherein each of the sections includes an outer peripheral side opening and an inner peripheral side opening on one end side and the other end side in the container axial direction. .
前記各区画は、容器軸心方向の中間部に、外周側開口部を備え、且つ容器軸心方向の両端側に、内周側開口部を備えるものとしたこと
を特徴とする請求項1記載の多管式熱交換器。
The said each division shall be equipped with the outer peripheral side opening part in the intermediate part of a container axial direction, and shall be equipped with the inner peripheral side opening part at the both ends of a container axial direction. Multi-tube heat exchanger.
前記各伝熱管には、触媒が充填されていること
を特徴とする請求項1から請求項3のいずれか一項に記載の多管式熱交換器。
The multi-tube heat exchanger according to any one of claims 1 to 3, wherein each of the heat transfer tubes is filled with a catalyst.
JP2014190724A 2014-09-19 2014-09-19 Multi-tube heat exchanger Active JP6379916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014190724A JP6379916B2 (en) 2014-09-19 2014-09-19 Multi-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014190724A JP6379916B2 (en) 2014-09-19 2014-09-19 Multi-tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2016061510A true JP2016061510A (en) 2016-04-25
JP6379916B2 JP6379916B2 (en) 2018-08-29

Family

ID=55797419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014190724A Active JP6379916B2 (en) 2014-09-19 2014-09-19 Multi-tube heat exchanger

Country Status (1)

Country Link
JP (1) JP6379916B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782170A (en) * 2016-08-30 2018-03-09 江苏吉华化工有限公司 Industrial chemicals cooling device
CN113617041A (en) * 2021-07-21 2021-11-09 简庄春 Reboiler for alcohol processing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677690A (en) * 1979-11-30 1981-06-26 Mitsubishi Heavy Ind Ltd Heat exchanger
JPS56165261U (en) * 1980-05-08 1981-12-08
JP2004083430A (en) * 2002-08-23 2004-03-18 Mitsubishi Chemicals Corp Method for gas phase catalytic oxidation using multitubular reactor
JP2004184045A (en) * 2002-12-06 2004-07-02 Ngk Insulators Ltd Heat exchanger
JP2011033229A (en) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd Exhaust gas heat recovery device
US20140262162A1 (en) * 2013-03-15 2014-09-18 Caloris Engineering, LLC Liquid to liquid multi-pass countercurrent heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677690A (en) * 1979-11-30 1981-06-26 Mitsubishi Heavy Ind Ltd Heat exchanger
JPS56165261U (en) * 1980-05-08 1981-12-08
JP2004083430A (en) * 2002-08-23 2004-03-18 Mitsubishi Chemicals Corp Method for gas phase catalytic oxidation using multitubular reactor
JP2004184045A (en) * 2002-12-06 2004-07-02 Ngk Insulators Ltd Heat exchanger
JP2011033229A (en) * 2009-07-30 2011-02-17 Mitsubishi Heavy Ind Ltd Exhaust gas heat recovery device
US20140262162A1 (en) * 2013-03-15 2014-09-18 Caloris Engineering, LLC Liquid to liquid multi-pass countercurrent heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782170A (en) * 2016-08-30 2018-03-09 江苏吉华化工有限公司 Industrial chemicals cooling device
CN113617041A (en) * 2021-07-21 2021-11-09 简庄春 Reboiler for alcohol processing
CN113617041B (en) * 2021-07-21 2022-11-29 邳州市鑫盛创业投资有限公司 Reboiler for alcohol processing

Also Published As

Publication number Publication date
JP6379916B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6367869B2 (en) Counterflow heat exchanger with spiral passage
JP5155150B2 (en) Axial heat exchanger
US9885523B2 (en) Liquid to liquid multi-pass countercurrent heat exchanger
WO2015132920A1 (en) Heat exchanger and method for manufacturing heat exchanger
JP6379916B2 (en) Multi-tube heat exchanger
JP6311302B2 (en) Multi-tube heat exchanger
FI130318B (en) A shell and tube heat exchanger
JP2019105418A (en) Multitubular heat exchanger and heat exchange system
US3297081A (en) Tube-shell heat exchanger
JP2020523546A (en) Plate and shell heat exchange system with split manifold tubes
JPH06180194A (en) Shell and tube heat-exchanger
CN103471429A (en) Novel surface type micro-channel cross-flow heat exchanger
CN107270741B (en) Multiple flow reduced pipe wound tube heat exchanger
JP4684070B2 (en) Heat exchanger
JP4414197B2 (en) Double tube heat exchanger
RU2382973C1 (en) Single-flow tubular coil
JP6634770B2 (en) Multi-tube heat exchanger
JP7421953B2 (en) Flow path switching device for heat exchanger
JP6805805B2 (en) Multi-tube heat exchanger and heat exchange system
JPS603157B2 (en) Heat exchanger
RU2557146C1 (en) Radial and spiral heat exchanger
JP2019105417A (en) Multitubular heat exchanger and heat exchange system
JP2021169907A5 (en)
US10697708B2 (en) Heat exchangers
JP2012067997A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R151 Written notification of patent or utility model registration

Ref document number: 6379916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151