Nothing Special   »   [go: up one dir, main page]

JP2015230922A - Manufacturing method of chip resistor - Google Patents

Manufacturing method of chip resistor Download PDF

Info

Publication number
JP2015230922A
JP2015230922A JP2014115180A JP2014115180A JP2015230922A JP 2015230922 A JP2015230922 A JP 2015230922A JP 2014115180 A JP2014115180 A JP 2014115180A JP 2014115180 A JP2014115180 A JP 2014115180A JP 2015230922 A JP2015230922 A JP 2015230922A
Authority
JP
Japan
Prior art keywords
electrode
resistor
chip
resistance value
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014115180A
Other languages
Japanese (ja)
Inventor
久和 永田
Hisakazu Nagata
久和 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2014115180A priority Critical patent/JP2015230922A/en
Publication of JP2015230922A publication Critical patent/JP2015230922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a chip resistor which improves sulfur resistance and also improves resistance value precision.SOLUTION: An aggregate substrate 10 is divided into a number of chip regions S1 and sub regions S2 by primary dividing grooves 11 and secondary dividing grooves 12 extending in a lattice shape. A pair of front electrodes 3 which confront each other while interposing a predetermined interval therebetween, a resistor 6 spread over the pair of front electrodes 3, a first insulation layer 7 covering the resistor 6 and the like are formed in the chip region S1. The front electrode 3 connected with the resistor 6 is formed from an electrode material of high specific resistance containing Pd or the like with sulfur resistance, an extending portion 3a is formed by projecting the front electrode 3 to the sub region S2 neighboring to the chip region S1 over the primary dividing groove 11. An auxiliary electrode 14 of low specific resistance containing Ag as a main component is formed on the extending portion 3a, a probe is brought into contact with paired auxiliary electrodes 14, and a resistance value of the resistor 6 is measured.

Description

本発明は、面実装タイプのチップ抵抗器の製造方法に関するものである。   The present invention relates to a method of manufacturing a surface mount type chip resistor.

チップ抵抗器は、直方体形状の絶縁性基板と、絶縁性基板の表面に所定間隔を存して対向配置された一対の表電極と、絶縁性基板の裏面に所定間隔を存して対向配置された一対の裏電極と、表電極と裏電極を橋絡する端面電極と、対をなす表電極どうしを橋絡する抵抗体と、抵抗体を覆う第1絶縁層および第2絶縁層等によって主に構成されている。   The chip resistor is disposed to face the rectangular parallelepiped insulating substrate, a pair of front electrodes opposed to the surface of the insulating substrate with a predetermined interval, and the back surface of the insulating substrate with a predetermined interval. A pair of back electrodes, an end face electrode that bridges the front electrode and the back electrode, a resistor that bridges the pair of front electrodes, and a first insulating layer and a second insulating layer that cover the resistor. It is configured.

一般的に、このようなチップ抵抗器を製造する場合、大判の集合基板に対して多数個分の電極や抵抗体や絶縁層等を一括して形成した後、この集合基板を格子状の分割ライン(例えば分割溝)に沿って分割してチップ抵抗器を多数個取りするようにしている。かかるチップ抵抗器の製造過程で、集合基板の片面には所定の配列で多数の抵抗体が印刷形成されるが、印刷時の位置ずれや滲み、あるいは焼成炉内の温度むら等の影響により、各抵抗体の大きさや膜厚に若干のばらつきを生じることは避け難いため、集合基板の状態で各抵抗体にトリミング溝を形成して所望の抵抗値に設定するという抵抗値調整作業が行われる。   In general, when manufacturing such a chip resistor, after forming a large number of electrodes, resistors, insulating layers, etc. on a large aggregate substrate at once, the aggregate substrate is divided into a grid pattern. A plurality of chip resistors are taken along a line (for example, a dividing groove). In the manufacturing process of such a chip resistor, a large number of resistors are printed and formed in a predetermined arrangement on one side of the collective substrate, but due to the influence of positional deviation and bleeding during printing, temperature unevenness in the firing furnace, etc. Since it is difficult to avoid slight variations in the size and film thickness of each resistor, a resistance value adjustment operation is performed in which trimming grooves are formed in each resistor in the state of the aggregate substrate and set to a desired resistance value. .

この抵抗値調整作業では、抵抗体によって橋絡されている一対の表電極にプローブを接触させて抵抗値を測定しながら、該抵抗体にレーザー光を照射してトリミング溝を形成していく。そして、トリミング溝を長くするのに伴って抵抗値が増大していくので、トリミング対象の抵抗体の抵抗値が目標となる抵抗値に到達した時点で、レーザー光の照射を停止して抵抗値調整作業を終了する。   In this resistance value adjustment operation, a probe is brought into contact with a pair of surface electrodes that are bridged by a resistor, and the resistance value is measured, and the resistor is irradiated with laser light to form a trimming groove. Since the resistance value increases as the trimming groove is lengthened, when the resistance value of the resistor to be trimmed reaches the target resistance value, the irradiation of laser light is stopped and the resistance value is reached. The adjustment work is finished.

ここで、表電極に対するプローブの接触位置がばらつくと、プローブの接触位置から抵抗体に至る表電極の距離が変動するため、表電極の比抵抗は抵抗体の抵抗値精度に大きく影響することになり、比抵抗の低い銀を主成分とする銀系材料で表電極を形成した場合は、プローブの接触位置のばらつきに関わらず精度良く抵抗値測定を行うことができる。しかしながら、銀系材料からなる表電極は、硫化ガスが多く存在する環境下で使用されると、銀と硫化ガスが反応して硫化銀を生成し、導通不良や断線といった不具合を生じるという課題がある。   Here, if the contact position of the probe with respect to the surface electrode varies, the distance of the surface electrode from the contact position of the probe to the resistor fluctuates, so that the specific resistance of the surface electrode greatly affects the resistance value accuracy of the resistor. Thus, when the surface electrode is formed of a silver-based material mainly composed of silver having a low specific resistance, the resistance value can be accurately measured regardless of variations in the contact position of the probe. However, when a surface electrode made of a silver-based material is used in an environment where a large amount of sulfur gas exists, silver and sulfide gas react to generate silver sulfide, causing problems such as poor conduction and disconnection. is there.

このような課題に対する対応策として、特許文献1には、表電極を耐硫化性のあるパラジウム等を含有する電極材料(例えばAg−Pd−Au)に変更することにより、表電極の硫化の進行を抑制するようにしたチップ抵抗器が開示されている。また、特許文献2には、表電極を下面電極層と上面電極層の二層構造とし、下層の下面電極層を銀系材料で形成すると共に、上層の上面電極層をパラジウムを含有する銀系材料で形成することにより、下面電極層の硫化を上面電極層で抑制すようにしたチップ抵抗器が開示されている。   As a countermeasure against such a problem, Patent Document 1 discloses that the surface electrode is changed to an electrode material (for example, Ag—Pd—Au) containing sulfide-resistant palladium or the like, thereby progressing the sulfidation of the surface electrode. A chip resistor that suppresses the above is disclosed. Further, in Patent Document 2, a surface electrode has a two-layer structure of a lower electrode layer and an upper electrode layer, a lower electrode layer as a lower layer is formed of a silver-based material, and a silver-based material containing palladium as an upper upper electrode layer. A chip resistor is disclosed that is formed of a material to suppress sulfidation of the lower electrode layer at the upper electrode layer.

特開2008−300607号公報JP 2008-300607 A 特開2002−64003号公報JP 2002-64003 A

しかしながら、特許文献1に開示された従来例のように、耐硫化性のあるパラジウム等を含有する電極材料で表電極を形成した場合、表電極の比抵抗が高くなってしまうため、プローブと表電極の接触位置の変動に伴って抵抗体の測定値にばらつきが発生し、抵抗値測定を高精度に行うことが困難となる。また、特許文献2に開示された従来例のように、表電極をAg系の下面電極層とAg/Pd系の上面電極層で二層構造とした場合、下面電極層の銀系材料によって表電極の比抵抗は低くなるものの、電極材料の焼成時に下面電極層の銀が抵抗体の中に拡散してしまうため、TCR特性の悪いチップ抵抗器になってしまうという問題がある。また、電極材料の焼成時に下面電極層の銀が抵抗体だけでなく上面電極層の中にも拡散してしまうため、上面電極層に耐硫化性のある高価なパラジウムをより多く使用する必要があり、それに伴って製品コストが上昇してしまうという問題もある。   However, when the surface electrode is formed of an electrode material containing sulfide-resistant palladium or the like as in the conventional example disclosed in Patent Document 1, the specific resistance of the surface electrode is increased. As the contact position of the electrode fluctuates, the measured value of the resistor varies, making it difficult to measure the resistance value with high accuracy. Further, as in the conventional example disclosed in Patent Document 2, when the front electrode has a two-layer structure of an Ag-based lower electrode layer and an Ag / Pd upper electrode layer, the surface electrode is represented by a silver-based material of the lower electrode layer. Although the specific resistance of the electrode is reduced, there is a problem that the silver of the lower electrode layer diffuses into the resistor during firing of the electrode material, resulting in a chip resistor with poor TCR characteristics. Moreover, since the silver of the lower electrode layer diffuses not only in the resistor but also in the upper electrode layer when the electrode material is baked, it is necessary to use more expensive palladium having sulfur resistance in the upper electrode layer. There is also a problem that the product cost rises accordingly.

本発明は、上記した従来技術の実情に鑑みてなされたものであり、その目的は、耐硫化性に優れて抵抗値精度も高いチップ抵抗器の製造方法を提供することにある。   The present invention has been made in view of the above-described prior art, and an object of the present invention is to provide a method of manufacturing a chip resistor that has excellent resistance to sulfidation and high resistance value accuracy.

上記目的を達成するために、本発明によるチップ抵抗器の製造方法は、格子状の分割ラインによって区画された複数のチップ領域を有する集合基板を準備し、前記集合基板の前記チップ領域に、所定間隔を存して対向する一対の表電極を形成する工程と、これら一対の表電極に跨る抵抗体を形成する工程と、前記抵抗体の上面を覆う絶縁性の保護層を形成する工程と、前記抵抗体と前記保護層の一部にトリミング溝を形成して抵抗値を調整する工程とを備え、前記表電極が銀を主成分として少なくともパラジウムを含む電極材料からなり、この表電極を前記分割ラインを越えて前記チップ領域の外方へ延出させると共に、この延出部分の前記表電極上に銀を主成分とする電極材料からなる補助電極を設け、対をなす前記補助電極にプローブを接触させて前記抵抗体の抵抗値を測定するようにした。   In order to achieve the above object, a method for manufacturing a chip resistor according to the present invention provides a collective substrate having a plurality of chip regions partitioned by a grid-like dividing line, and a predetermined region is provided in the chip region of the collective substrate. A step of forming a pair of front electrodes facing each other with a gap, a step of forming a resistor straddling the pair of surface electrodes, a step of forming an insulating protective layer covering the upper surface of the resistor, A step of adjusting a resistance value by forming a trimming groove in a part of the resistor and the protective layer, and the surface electrode is made of an electrode material containing silver as a main component and containing at least palladium. The auxiliary electrode made of an electrode material containing silver as a main component is provided on the surface electrode of the extended portion and extends to the outside of the chip region beyond the dividing line, and the auxiliary electrode forming a pair is probed The And to measure the resistance value of the resistor by touch.

本発明によるチップ抵抗器の製造方法では、抵抗体と接続する表電極が耐硫化性のあるパラジウム等を含有する比抵抗の高い電極材料からなり、この表電極の分割ラインを越えてチップ領域の外方へ突出する延出部分に、銀を主成分とする比抵抗の低い補助電極が形成されているため、補助電極に対するプローブの接触位置がばらついたとしても、そのばらつきが抵抗値測定の精度に影響を及ぼすことはほとんどなく、安定した抵抗値測定を行うことができる。また、補助電極が形成された部分は製品となるチップ領域に存在せず、製品となる部分に形成されるのは耐硫化性に優れたパラジウム等を含有する表電極であるため、補助電極の銀が抵抗体の中に拡散してTCR特性を悪化させたり、補助電極の銀が表電極の中に拡散して硫化特性を悪化させる虞はなく、耐硫化性に優れたチップ抵抗器を提供することができる。   In the manufacturing method of the chip resistor according to the present invention, the surface electrode connected to the resistor is made of an electrode material having a high specific resistance containing palladium or the like having resistance to sulfidation. Since the auxiliary electrode consisting mainly of silver and having a low specific resistance is formed on the protruding part that protrudes outward, even if the contact position of the probe with respect to the auxiliary electrode varies, the variation is the accuracy of resistance measurement. The resistance value can be measured stably. In addition, the portion where the auxiliary electrode is formed does not exist in the chip region that is the product, and the portion that is the product is a surface electrode containing palladium or the like having excellent sulfidation resistance. There is no risk of silver diffusing into the resistor to deteriorate the TCR characteristics, or silver at the auxiliary electrode diffusing into the surface electrode to deteriorate the sulfidation characteristics. can do.

本発明によるチップ抵抗器の製造方法では、抵抗体と接続する表電極が耐硫化性のあるパラジウム等を含有する電極材料からなり、この表電極の分割ラインを越えてチップ領域の外方へ突出する延出部分に、銀を主成分とする比抵抗の低い補助電極を形成して部分的に2層構造とし、この補助電極にプローブを接触させて抵抗体の抵抗値を測定するようにしたので、プローブの接触位置のばらつきに関わらず安定した抵抗値測定を行うことができると共に、TCR特性や耐硫化特性が悪化することを防止できる。   In the method of manufacturing a chip resistor according to the present invention, the surface electrode connected to the resistor is made of an electrode material containing sulfur-resistant palladium or the like, and protrudes outward from the chip region beyond the dividing line of the surface electrode. An auxiliary electrode mainly composed of silver and having a low specific resistance is formed on the extending portion to partially form a two-layer structure, and a probe is brought into contact with the auxiliary electrode to measure the resistance value of the resistor. Therefore, stable resistance value measurement can be performed regardless of variations in the contact position of the probe, and deterioration of TCR characteristics and sulfuration resistance characteristics can be prevented.

本発明の実施形態例に係るチップ抵抗器の断面図である。It is sectional drawing of the chip resistor which concerns on the example embodiment of this invention. 該チップ抵抗器の製造過程で用いられる集合基板の平面図である。It is a top view of the collective board used in the manufacture process of this chip resistor. 図2の集合基板に表電極を形成した状態を示す平面視の工程図である。FIG. 3 is a process view in plan view showing a state where a surface electrode is formed on the collective substrate of FIG. 2. 図3の表電極に補助電極を形成した状態を示す平面視の工程図である。It is process drawing of planar view which shows the state which formed the auxiliary electrode in the surface electrode of FIG. 該集合基板に抵抗体を形成した状態を示す平面視の工程図である。It is process drawing of planar view which shows the state in which the resistor was formed in this aggregate substrate. 図5の抵抗体にトリミング溝を形成した状態を示す平面視の工程図である。It is process drawing of planar view which shows the state which formed the trimming groove | channel in the resistor of FIG. 該トリミング溝の形成時に使用されるプローブの接触状態を示す断面視の工程図である。It is process drawing of the cross sectional view which shows the contact state of the probe used at the time of formation of this trimming groove | channel.

以下、発明の実施の形態について図面を参照しながら説明すると、図1に示すように、本発明の実施形態例に係るチップ抵抗器1は、直方体形状の絶縁性基板2と、絶縁性基板2の上面における長手方向の両端部に設けられた一対の表電極3と、絶縁性基板2の下面における長手方向の両端部に設けられた一対の裏電極4と、絶縁性基板2の側面に設けられて対応する表電極3と裏電極4を橋絡している一対の端面電極5と、絶縁性基板2の上面に設けられて長手方向の両側の表電極3どうしを橋絡している抵抗体6と、抵抗体6を被覆する第1絶縁層7と、第1絶縁層7を被覆する第2絶縁層8と、表電極3と裏電極4および端面電極5を被覆するメッキ層9とによって主に構成されている。   Hereinafter, embodiments of the invention will be described with reference to the drawings. As shown in FIG. 1, a chip resistor 1 according to an embodiment of the present invention includes a rectangular parallelepiped insulating substrate 2 and an insulating substrate 2. A pair of front electrodes 3 provided at both ends in the longitudinal direction on the upper surface of the substrate, a pair of back electrodes 4 provided at both ends in the longitudinal direction on the lower surface of the insulating substrate 2, and provided on the side surfaces of the insulating substrate 2. And a pair of end face electrodes 5 that bridge the corresponding front electrode 3 and back electrode 4 and a resistance that is provided on the upper surface of the insulating substrate 2 and bridges the front electrodes 3 on both sides in the longitudinal direction. Body 6, first insulating layer 7 covering resistor 6, second insulating layer 8 covering first insulating layer 7, plating layer 9 covering front electrode 3, back electrode 4 and end surface electrode 5, It is mainly composed by.

絶縁性基板2はセラミックス等からなり、この絶縁性基板2は後述する大判の集合基板(図2参照)を縦横の分割溝に沿って分割することにより個片化されたものである。   The insulating substrate 2 is made of ceramics or the like, and the insulating substrate 2 is divided into individual pieces by dividing a large-sized collective substrate (see FIG. 2) described later along vertical and horizontal dividing grooves.

表電極3は、第2絶縁層8とメッキ層9の境界部分の真下に位置し、この境界部分から侵入する硫化ガスの影響を受けるため、Ag(銀)を主成分として耐硫化性のあるPd(パラジウム)を15〜25wt%、Au(金)を1〜20wt%含む電極材料からなる。これに対して裏電極4は、実装側の電極で硫化ガスの影響を受けないため、PdやAuを含まないAg系の電極材料や、Pdの含有量が少ないAg−Pd系の電極材料からなる。   The front electrode 3 is located immediately below the boundary portion between the second insulating layer 8 and the plating layer 9 and is affected by the sulfur gas entering from the boundary portion, and therefore has resistance to sulfur with Ag (silver) as a main component. It consists of an electrode material containing 15 to 25 wt% Pd (palladium) and 1 to 20 wt% Au (gold). On the other hand, the back electrode 4 is an electrode on the mounting side and is not affected by the sulfide gas. Therefore, the back electrode 4 is made of an Ag-based electrode material that does not contain Pd or Au, or an Ag-Pd-based electrode material that has a low Pd content. Become.

表電極3と端面電極5および裏電極4は略コ字状に連続する下地電極層として絶縁性基板2の長手方向の両端部に形成されており、この下地電極層にメッキ層9を被着させてチップ抵抗器1の電極部となしている。表電極3と裏電極4は集合基板に一括形成されたものであるが、端面電極5は集合基板を一次分割してなる短冊状基板の分割面に形成されたものである。なお、メッキ層9は、下地電極層に密着する最内層のNiメッキ層と、外表面に露出する最外層の半田メッキ層(Sn/Pbメッキ層またはSnメッキ層)とを含む2層以上の積層構造になっている。   The front electrode 3, the end face electrode 5, and the back electrode 4 are formed at both ends in the longitudinal direction of the insulating substrate 2 as base electrode layers that are substantially U-shaped, and a plating layer 9 is attached to the base electrode layer. Thus, the electrode part of the chip resistor 1 is formed. The front electrode 3 and the back electrode 4 are collectively formed on the collective substrate, while the end face electrode 5 is formed on a split surface of a strip-shaped substrate obtained by primarily dividing the collective substrate. The plating layer 9 includes two or more layers including an innermost Ni plating layer that is in close contact with the base electrode layer and an outermost solder plating layer (Sn / Pb plating layer or Sn plating layer) exposed on the outer surface. It has a laminated structure.

抵抗体6は酸化ルテニウム等からなり、詳細については後述するが、この抵抗体6と第1絶縁層7にトリミング溝を形成することによってチップ抵抗器1の抵抗値が調整されている。   The resistor 6 is made of ruthenium oxide or the like, and the resistance value of the chip resistor 1 is adjusted by forming a trimming groove in the resistor 6 and the first insulating layer 7 as will be described in detail later.

第1絶縁層7と第2絶縁層8は2層構造の保護層を構成し、そのうち第1絶縁層7はトリミング溝を形成する前に抵抗体6を覆うアンダーコート層であり、第2絶縁層8はトリミング溝を形成した後の第1絶縁層7を覆うオーバーコート層である。   The first insulating layer 7 and the second insulating layer 8 constitute a protective layer having a two-layer structure, of which the first insulating layer 7 is an undercoat layer that covers the resistor 6 before the trimming groove is formed. The layer 8 is an overcoat layer that covers the first insulating layer 7 after the trimming grooves are formed.

次に、上記の如く構成されたチップ抵抗器1の製造方法について、図2〜図7を参照しながら説明する。   Next, a manufacturing method of the chip resistor 1 configured as described above will be described with reference to FIGS.

まず、図2に示すように、縦横に格子状に延びる一次分割溝11と二次分割溝12が形成された集合基板10を準備する。これら一次分割溝11と二次分割溝12により、集合基板10の表裏両面は多数のチップ領域S1とサブ領域S2に区画される。各チップ領域S1は1個のチップ抵抗器1の平面形状(上面または下面)に相当し、各サブ領域S2は集合基板10を一次分割溝11に沿って一次分割した後に破棄される部分である。集合基板10の表裏両面には、チップ領域S1とサブ領域S2が二次分割溝12の延出方向に沿って交互に並んでおり、これらチップ領域S1とサブ領域S2の列が一次分割溝11の延出方向に沿って多数並んだ配置となっている。   First, as shown in FIG. 2, a collective substrate 10 is prepared in which primary divided grooves 11 and secondary divided grooves 12 extending in a lattice shape in the vertical and horizontal directions are formed. By these primary division grooves 11 and secondary division grooves 12, the front and back surfaces of the collective substrate 10 are partitioned into a large number of chip areas S1 and sub areas S2. Each chip region S1 corresponds to a planar shape (upper surface or lower surface) of one chip resistor 1, and each sub-region S2 is a portion that is discarded after the aggregate substrate 10 is primarily divided along the primary division grooves 11. . Chip regions S1 and sub-regions S2 are alternately arranged on the front and back surfaces of the collective substrate 10 along the extending direction of the secondary dividing grooves 12, and the rows of the chip regions S1 and the sub-regions S2 are arranged in the primary dividing grooves 11. Many are arranged along the extending direction.

そして、この集合基板10の表面で一次分割溝11を横断する位置に電極ペーストをスクリーン印刷して焼成することにより、図3に示すように、所定の大きさの電極パターン13を形成する。この電極ペーストは、Ag(銀)を主成分とし、Pd(パラジウム)が15〜25wt%、Au(金)が1〜20wt%含まれ、残部がAgである金属成分からなるAg−Pd−Auペーストであり、このような電極ペーストを用いて形成された電極パターン13のうち、チップ領域S1内に存する部分が表電極3に相当し、サブ領域S2内に存する部分は延出部分3aとなっている。つまり、電極パターン13を形成することによって、チップ領域S1の長手方向の両端部に表電極3が形成されると共に、この表電極3が一次分割溝11を超えてサブ領域S2に突出して延出部分3aとなっている。   Then, an electrode paste is screen-printed at a position crossing the primary dividing groove 11 on the surface of the collective substrate 10 and baked to form an electrode pattern 13 having a predetermined size as shown in FIG. This electrode paste is mainly composed of Ag (silver), Pd (palladium) is contained in an amount of 15 to 25 wt%, Au (gold) is contained in an amount of 1 to 20 wt%, and the balance is Ag—Pd—Au composed of a metal component of Ag. Of the electrode pattern 13 formed using such an electrode paste, a portion existing in the chip region S1 corresponds to the front electrode 3, and a portion existing in the sub-region S2 becomes an extended portion 3a. ing. That is, by forming the electrode pattern 13, the surface electrode 3 is formed at both ends in the longitudinal direction of the chip region S1, and the surface electrode 3 extends beyond the primary dividing groove 11 to project into the sub region S2. It is part 3a.

図示省略されているが、かかる電極パターン13の形成工程に前後して、集合基板10の裏面に一次分割溝11に跨がるように複数対の裏電極4を形成する。この裏電極4は実装側の電極であるため、Ag系ペーストやPdの含有量が少ないAg−Pdペーストをスクリーン印刷して焼成することによって形成される。   Although not shown, a plurality of pairs of back electrodes 4 are formed on the back surface of the collective substrate 10 so as to straddle the primary dividing grooves 11 before and after the electrode pattern 13 forming step. Since the back electrode 4 is an electrode on the mounting side, the back electrode 4 is formed by screen-printing and baking an Ag-based paste or an Ag-Pd paste having a low Pd content.

次なる工程として、サブ領域S2内に存する延出部分3a上に、Ag系ペーストやPdの含有量が少ないAg−Pd系ペーストをスクリーン印刷して焼成することにより、図4に示すように、電極パターン13の延出部分3a上に比抵抗の低い補助電極14を形成する。   As a next step, on the extended portion 3a existing in the sub-region S2, by printing and baking Ag-Pd paste having a low content of Ag-based paste or Pd, as shown in FIG. An auxiliary electrode 14 having a low specific resistance is formed on the extended portion 3 a of the electrode pattern 13.

次なる工程として、集合基板10の表面に酸化ルテニウム等を含有した抵抗体ペーストをスクリーン印刷して焼成することにより、図5に示すように、チップ領域S1内で長手方向の両端部を表電極3に重ね合わせた抵抗体6を一括形成する。この工程で、各チップ領域S1内で対をなす表電極3どうしは抵抗体6によって橋絡される。   As a next step, a resistor paste containing ruthenium oxide or the like is screen printed on the surface of the collective substrate 10 and baked, so that both end portions in the longitudinal direction in the chip region S1 are surface electrodes as shown in FIG. 3 is formed in a lump. In this step, the surface electrodes 3 paired in each chip region S1 are bridged by the resistor 6.

次なる工程として、各抵抗体6を個別に覆う領域にガラスペーストをスクリーン印刷して焼成することにより、図6に示すように、チップ領域S1内で抵抗体6を被覆する第1絶縁層7を一括形成する。   As a next step, the first insulating layer 7 that covers the resistor 6 in the chip region S1 as shown in FIG. 6 is obtained by screen-printing and baking a glass paste in a region that covers each resistor 6 individually. Are collectively formed.

次なる工程として、各抵抗体6の抵抗値を調整するために、第1絶縁層7に覆われている多数の抵抗体6に対して、順次、レーザー光を照射してトリミング溝15を形成する。その際、図7に示すように、チップ領域S1を挟んで対向する一対のサブ領域S2内の補助電極14にプローブ16をそれぞれ接触させ、これらプローブ16を介してトリミング対象となる抵抗体6の抵抗値を測定する。   As a next step, in order to adjust the resistance value of each resistor 6, a number of resistors 6 covered by the first insulating layer 7 are sequentially irradiated with laser light to form trimming grooves 15. To do. At that time, as shown in FIG. 7, the probes 16 are brought into contact with the auxiliary electrodes 14 in the pair of sub-regions S2 facing each other with the chip region S1 interposed therebetween, and the resistor 6 to be trimmed is connected via these probes 16. Measure the resistance value.

ここで、抵抗体6と接続する表電極3は耐硫化性のあるPd等を含有する比抵抗の高い電極材料からなるが、この表電極3の一次分割溝11を超えてサブ領域S2に突出する延出部分3a上に、Agを主成分とする比抵抗の低い補助電極14が形成されているため、補助電極14に対するプローブ16の接触位置がばらついたとしても、そのばらつきが抵抗値測定の精度に影響を及ぼすことはほとんどなく、安定した抵抗値測定を行うことができる。   Here, the surface electrode 3 connected to the resistor 6 is made of an electrode material having a high specific resistance containing Pd or the like having sulfur resistance, but protrudes beyond the primary division groove 11 of the surface electrode 3 to the sub-region S2. Since the auxiliary electrode 14 mainly composed of Ag and having a low specific resistance is formed on the extending portion 3a, even if the contact position of the probe 16 with respect to the auxiliary electrode 14 varies, the variation is not measured in the resistance value measurement. The accuracy is hardly affected, and stable resistance measurement can be performed.

図示省略されているが、次なる工程として、第1絶縁層7と抵抗体6およびトリミング溝15等を覆うように、エポキシ系等の樹脂ペーストをスクリーン印刷して加熱硬化することにより、一次分割溝11の延出方向に沿って帯状に延びる第2絶縁層8を形成する。なお、前述した第1絶縁層7はレーザー光の熱で抵抗体6のトリミング溝15近傍が損傷しないようにするためのものであり、この第2絶縁層8は抵抗体6を外部環境から保護するためのものである。   Although not shown in the drawings, as the next step, primary division is performed by screen printing an epoxy resin paste so as to cover the first insulating layer 7, the resistor 6, the trimming groove 15, and the like, followed by heat curing. A second insulating layer 8 extending in a strip shape along the extending direction of the groove 11 is formed. The first insulating layer 7 described above is for preventing the vicinity of the trimming groove 15 of the resistor 6 from being damaged by the heat of the laser beam, and the second insulating layer 8 protects the resistor 6 from the external environment. Is to do.

これまでの工程は集合基板10に対する一括処理であるが、次なる工程では、集合基板10を一次分割溝11に沿って短冊状に一次分割することにより、チップ領域S1の長手方向を幅寸法とする短冊状基板(図示せず)を得る。この工程で、電極パターン13は一次分割溝11で表電極3と延出部分3aに分割されるため、短冊状基板には耐硫化性に優れた比抵抗の高い表電極3が残り、電極パターン13の延出部分3aや補助電極14が残るサブ領域S2は捨て基板として破棄される。   The process so far is batch processing for the collective substrate 10. In the next process, the collective substrate 10 is primarily divided into strips along the primary division grooves 11, so that the longitudinal direction of the chip region S1 is defined as the width dimension. A strip-shaped substrate (not shown) is obtained. In this step, since the electrode pattern 13 is divided into the surface electrode 3 and the extended portion 3a by the primary dividing groove 11, the strip-shaped substrate has the surface electrode 3 having excellent resistance to sulfidation and a high specific resistance remaining. The sub-region S2 in which the 13 extended portions 3a and the auxiliary electrode 14 remain is discarded as a discarded substrate.

そして、次なる工程で、短冊状基板の分割面にNi/Cr等をスパッタリングすることにより、表電極3と裏電極4を橋絡する端面電極5を形成する。しかる後、短冊状基板を二次分割溝12に沿って二次分割することにより、チップ抵抗器1と同等の大きさの個片(チップ単体)を得る。   Then, in the next step, Ni / Cr or the like is sputtered onto the split surface of the strip-shaped substrate, thereby forming the end face electrode 5 that bridges the front electrode 3 and the back electrode 4. Thereafter, the strip-shaped substrate is secondarily divided along the second divided grooves 12 to obtain individual pieces (chip alone) having the same size as the chip resistor 1.

最後に、各チップ単体の下地電極層(表電極3と裏電極4および端面電極5)に対して、Niメッキや半田メッキを施して下地電極層を被覆する積層構造のメッキ層9を形成することにより、図1に示すようなチップ抵抗器1が完成する。   Finally, Ni plating or solder plating is applied to the base electrode layer (the front electrode 3, the back electrode 4, and the end face electrode 5) of each single chip to form a plating layer 9 having a laminated structure that covers the base electrode layer. Thereby, the chip resistor 1 as shown in FIG. 1 is completed.

以上説明したように、本実施形態例に係るチップ抵抗器1の製造方法では、抵抗体6と接続する表電極3が耐硫化性のあるPd(パラジウム)等を含有する比抵抗の高い電極材料からなり、この表電極3を一次分割溝11を越えてチップ領域S1に隣接するサブ領域S2へ突出させて延出部分3aとなすと共に、この延出部分3a上にAg(銀)を主成分とする比抵抗の低い補助電極14が形成されているため、補助電極14に対するプローブ16の接触位置がばらついたとしても、そのばらつきが抵抗値測定の精度に影響を及ぼすことはほとんどなく、安定した抵抗値測定を行うことができる。また、補助電極14が形成された集合基板10のサブ領域S2は製品とならずに破棄される部分であり、製品となるチップ領域S1に形成されるのは耐硫化性に優れたPd等を含有する表電極3であるため、補助電極14の銀が抵抗体6の中に拡散してTCR特性を悪化させたり、補助電極14の銀が表電極3の中に拡散して硫化特性を悪化させる虞はなく、耐硫化性に優れたチップ抵抗器1を提供することができる。   As described above, in the method for manufacturing the chip resistor 1 according to this embodiment, the surface electrode 3 connected to the resistor 6 includes an electrode material having a high specific resistance containing Pd (palladium) having sulfur resistance. The surface electrode 3 is projected beyond the primary dividing groove 11 to a sub-region S2 adjacent to the chip region S1 to form an extended portion 3a, and Ag (silver) is a main component on the extended portion 3a. Since the auxiliary electrode 14 having a low specific resistance is formed, even if the contact position of the probe 16 with respect to the auxiliary electrode 14 varies, the variation hardly affects the accuracy of the resistance value measurement and is stable. Resistance value measurement can be performed. In addition, the sub-region S2 of the collective substrate 10 on which the auxiliary electrode 14 is formed is a portion that is discarded instead of being a product, and what is formed in the chip region S1 that is a product is Pd or the like having excellent resistance to sulfidation. Since the surface electrode 3 is contained, the silver of the auxiliary electrode 14 diffuses into the resistor 6 to deteriorate the TCR characteristic, or the silver of the auxiliary electrode 14 diffuses into the surface electrode 3 to deteriorate the sulfurization characteristic. There is no fear that the chip resistor 1 is excellent in sulfuration resistance.

なお、上記実施形態例では、予め集合基板10に格子状の分割溝11,12を刻設して多数のチップ領域S1とサブ領域S2に区画しているが、仮想線として設定した格子状の分割ラインでこれらチップ領域S1とサブ領域S2を区画し、この分割ラインに沿って集合基板10をダイシングやレーザー光等で切断するようにしても良い。   In the above embodiment, the grid-like dividing grooves 11 and 12 are engraved on the collective substrate 10 in advance to divide the chip area S1 and the sub-areas S2, but the grid-like grid line set as a virtual line is used. The chip area S1 and the sub area S2 may be partitioned by a dividing line, and the collective substrate 10 may be cut by dicing, laser light, or the like along the dividing line.

1 チップ抵抗器
2 絶縁性基板
3 表電極
3a 延出部分
4 裏電極
5 端面電極
6 抵抗体
7 第1絶縁層
8 第2絶縁層
9 メッキ層
10 集合基板
11 一次分割溝
12 二次分割溝
13 電極パターン
14 補助電極
15 トリミング溝
16 プローブ
S1 チップ領域
S2 サブ領域
DESCRIPTION OF SYMBOLS 1 Chip resistor 2 Insulating substrate 3 Front electrode 3a Extension part 4 Back electrode 5 End surface electrode 6 Resistor 7 1st insulating layer 8 2nd insulating layer 9 Plating layer 10 Aggregate substrate 11 Primary divided groove 12 Secondary divided groove 13 Electrode pattern 14 Auxiliary electrode 15 Trimming groove 16 Probe S1 Tip area S2 Sub area

Claims (1)

格子状の分割ラインによって区画された複数のチップ領域を有する集合基板を準備し、前記集合基板の前記チップ領域に、所定間隔を存して対向する一対の表電極を形成する工程と、これら一対の表電極に跨る抵抗体を形成する工程と、前記抵抗体の上面を覆う絶縁性の保護層を形成する工程と、前記抵抗体と前記保護層の一部にトリミング溝を形成して抵抗値を調整する工程とを備え、
前記表電極が銀を主成分として少なくともパラジウムを含む電極材料からなり、この表電極を前記分割ラインを越えて前記チップ領域の外方へ延出させると共に、この延出部分の前記表電極上に銀を主成分とする電極材料からなる補助電極を設け、
対をなす前記補助電極にプローブを接触させて前記抵抗体の抵抗値を測定することを特徴とするチップ抵抗器の製造方法。
Preparing an aggregate substrate having a plurality of chip regions partitioned by a grid-like dividing line, and forming a pair of front electrodes facing each other at a predetermined interval in the chip region of the aggregate substrate; Forming a resistor straddling the surface electrode, forming an insulating protective layer covering the upper surface of the resistor, and forming a trimming groove in a part of the resistor and the protective layer to provide a resistance value And a process of adjusting
The surface electrode is made of an electrode material containing silver as a main component and containing at least palladium. The surface electrode extends beyond the dividing line to the outside of the chip region, and on the surface electrode of the extended portion. Provide an auxiliary electrode made of an electrode material mainly composed of silver,
A chip resistor manufacturing method, wherein a probe is brought into contact with the pair of auxiliary electrodes to measure a resistance value of the resistor.
JP2014115180A 2014-06-03 2014-06-03 Manufacturing method of chip resistor Pending JP2015230922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014115180A JP2015230922A (en) 2014-06-03 2014-06-03 Manufacturing method of chip resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014115180A JP2015230922A (en) 2014-06-03 2014-06-03 Manufacturing method of chip resistor

Publications (1)

Publication Number Publication Date
JP2015230922A true JP2015230922A (en) 2015-12-21

Family

ID=54887582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014115180A Pending JP2015230922A (en) 2014-06-03 2014-06-03 Manufacturing method of chip resistor

Country Status (1)

Country Link
JP (1) JP2015230922A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153084A1 (en) * 2019-01-24 2020-07-30 Koa株式会社 Sulfurization detection resistor and manufacturing method therefor
WO2020162067A1 (en) * 2019-02-04 2020-08-13 Koa株式会社 Sulfurization detection resistor
WO2021161630A1 (en) * 2020-02-12 2021-08-19 Koa株式会社 Sulfurization detection sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153084A1 (en) * 2019-01-24 2020-07-30 Koa株式会社 Sulfurization detection resistor and manufacturing method therefor
JP2020118568A (en) * 2019-01-24 2020-08-06 Koa株式会社 Sulfurization detection resistor and manufacturing method therefor
CN113302709A (en) * 2019-01-24 2021-08-24 Koa株式会社 Vulcanization detection resistor and manufacturing method thereof
JP7185541B2 (en) 2019-01-24 2022-12-07 Koa株式会社 Sulfurization detection resistor
US11940401B2 (en) 2019-01-24 2024-03-26 Koa Corporation Sulfurization detection resistor and manufacturing method therefor
WO2020162067A1 (en) * 2019-02-04 2020-08-13 Koa株式会社 Sulfurization detection resistor
JP2020125966A (en) * 2019-02-04 2020-08-20 Koa株式会社 Sulfurization detection resistor
JP7166183B2 (en) 2019-02-04 2022-11-07 Koa株式会社 Sulfurization detection resistor
WO2021161630A1 (en) * 2020-02-12 2021-08-19 Koa株式会社 Sulfurization detection sensor

Similar Documents

Publication Publication Date Title
JP6326192B2 (en) Chip resistor and manufacturing method thereof
JP6371187B2 (en) Resistor trimming method
JP6479361B2 (en) Chip resistor
JP2015230922A (en) Manufacturing method of chip resistor
US10109398B2 (en) Chip resistor and method for producing same
JP6371080B2 (en) Manufacturing method of chip resistor
WO2019082523A1 (en) Chip resistor and method for manufacturing chip resistor
JP5696331B2 (en) Chip resistor and manufacturing method thereof
JP6453599B2 (en) Manufacturing method of chip resistor
JP4227821B2 (en) Manufacturing method of chip resistor
JP6453598B2 (en) Chip resistor
JP5820294B2 (en) Collective substrate for chip resistor and manufacturing method of chip resistor
JP6615637B2 (en) Manufacturing method of chip resistor
JP6393484B2 (en) Chip resistor
JP2016225572A (en) Chip resistor and method of manufacturing the same
JP6792484B2 (en) Chip resistors and their manufacturing methods
JP2021005683A (en) Chip resistor
JP6498885B2 (en) Chip resistor and chip resistor trimming method
JP6731246B2 (en) Manufacturing method of chip resistor
JP2021072420A (en) Method for manufacturing chip resistor
JP2018190923A (en) Manufacturing method of chip resistor
JP7352436B2 (en) How to manufacture chip resistors
JP2013089655A (en) Method for manufacturing chip resistor
TW202249039A (en) Chip resistor and method for manufacturing chip resistor
JP6364606B2 (en) Manufacturing method of chip resistor