Nothing Special   »   [go: up one dir, main page]

JP2015135928A - Thermoelectric conversion power generator - Google Patents

Thermoelectric conversion power generator Download PDF

Info

Publication number
JP2015135928A
JP2015135928A JP2014007583A JP2014007583A JP2015135928A JP 2015135928 A JP2015135928 A JP 2015135928A JP 2014007583 A JP2014007583 A JP 2014007583A JP 2014007583 A JP2014007583 A JP 2014007583A JP 2015135928 A JP2015135928 A JP 2015135928A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion module
heating plate
power generator
plate portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2014007583A
Other languages
Japanese (ja)
Inventor
昌尚 冨永
Masanao Tominaga
昌尚 冨永
孝広 地主
Takahiro Jinushi
孝広 地主
征央 根岸
Motohiro Negishi
征央 根岸
石島 善三
Zenzo Ishijima
善三 石島
森 正芳
Masayoshi Mori
正芳 森
山上 武
Takeshi Yamagami
武 山上
松田 洋
Hiroshi Matsuda
洋 松田
寛治 松本
Kanji Matsumoto
寛治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Resonac Corp
Original Assignee
Honda Motor Co Ltd
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Chemical Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014007583A priority Critical patent/JP2015135928A/en
Publication of JP2015135928A publication Critical patent/JP2015135928A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion power generator capable of suppressing damage on a thermoelectric conversion element effectively, by reducing a stress applied to the thermoelectric conversion element.SOLUTION: In a power generator generating power by providing a cooling jacket 3 on the outer surface side of a tube body 25, disposing a thermoelectric conversion module 4 while sandwiching between the main plate 251 of the tube body 25 and cooling jacket 3, and then giving a temperature difference to the thermoelectric conversion module 4 by means of the tube body 25 heated by heating fluid H and cooling jacket 3, rigidity of the tube body 25 is reduced by forming an elastically deformable recess 255 projecting inward in the side plate 252 of the flat tube body 25, thereby making the main plate 251 deformable and making the thermoelectric conversion element 41 of the thermoelectric conversion module 4 less likely to be damaged.

Description

本発明は、熱電変換モジュールに温度差を与えて熱エネルギーを電気エネルギーに変換する熱電変換式発電装置に関する。   The present invention relates to a thermoelectric power generation apparatus that converts a thermal energy into an electrical energy by giving a temperature difference to a thermoelectric conversion module.

熱電変換素子を用いて熱エネルギーを電気エネルギーに変換する発電技術が知られている。熱電変換素子は、離間した部位に温度差を与えることで高温部と低温部との間に電位差を生じさせるといったゼーベック効果を利用したもので、温度差が大きいほど発電量が大きくなる。このような熱電変換素子は、複数を電極によって接合した熱電変換素子モジュールという形態で用いられる。例えば、管体の外面に熱電変換モジュールと冷却部とを積層して管体の内部に加熱流体を導入することで、加熱される管体(高温部)と冷却部(低温部)との間に挟んだ熱電変換モジュールに温度差を生じさせて電気を取り出す構成の熱電変換式発電装置が知られている(特許文献1)。   A power generation technique for converting thermal energy into electrical energy using a thermoelectric conversion element is known. The thermoelectric conversion element uses a Seebeck effect that causes a potential difference between a high temperature part and a low temperature part by giving a temperature difference to a separated part, and the power generation amount increases as the temperature difference increases. Such a thermoelectric conversion element is used in the form of a thermoelectric conversion element module in which a plurality are joined by electrodes. For example, by laminating a thermoelectric conversion module and a cooling part on the outer surface of the pipe body and introducing a heating fluid into the pipe body, the space between the heated pipe body (high temperature part) and the cooling part (low temperature part) 2. Description of the Related Art A thermoelectric conversion power generator having a configuration in which electricity is extracted by causing a temperature difference in a thermoelectric conversion module sandwiched between two is known (Patent Document 1).

特開2006−217756号公報JP 2006-217756 A

上記構成の熱電変換式発電装置にあっては、高温部と低温部とによって温度差が与えられる熱電変換モジュールの熱電変換素子には熱膨張差による熱応力が生じる。熱電変換素子は高温側の電極を介して管体に接合されているため、熱電変換素子に生じた熱応力は管体に伝わり、管体を変形させようとする。しかし、管体は通常ステンレス等の金属で構成されて剛性を有することから変形しにくくなっており、このため熱電変換素子は管体から応力を受けることになり、その結果、熱電変換素子に割れや破損が生じる場合があった。   In the thermoelectric conversion power generation device having the above configuration, thermal stress due to a difference in thermal expansion is generated in the thermoelectric conversion element of the thermoelectric conversion module to which a temperature difference is given between the high temperature portion and the low temperature portion. Since the thermoelectric conversion element is joined to the tubular body via the high temperature side electrode, the thermal stress generated in the thermoelectric conversion element is transmitted to the tubular body and tries to deform the tubular body. However, since the tube is usually made of a metal such as stainless steel and has rigidity, it is difficult to deform. Therefore, the thermoelectric conversion element receives stress from the tube, and as a result, the thermoelectric conversion element is cracked. Or damage may occur.

本発明は上記事情に鑑みてなされたもので、その主たる課題は、熱電変換素子にかかる応力を減少させて熱電変換素子の破損を効果的に抑えることができる熱電変換式発電装置を提供することにある。   The present invention has been made in view of the above circumstances, and a main problem thereof is to provide a thermoelectric conversion power generation device that can reduce the stress applied to the thermoelectric conversion element and effectively suppress breakage of the thermoelectric conversion element. It is in.

本発明の熱電変換式発電装置は、対向する一対の加熱板部とこれら加熱板部の両側部を連結する側板部とを備え、内部に加熱流体が流される管路が形成された管体と、前記加熱板部の外面側に配設される冷却部と、前記加熱板部と前記冷却部との間に配設される熱電変換素子を有する熱電変換モジュールと、を備え、前記加熱板部と前記冷却部とによって前記熱電変換モジュールに温度差が与えられることで発電する熱電変換式発電装置において、前記管体の前記側板部は、少なくとも一部に前記加熱板部を変形可能とする可撓部を有することを特徴とする。   The thermoelectric conversion power generation device of the present invention includes a pipe body including a pair of opposed heating plate portions and side plate portions that connect both side portions of the heating plate portions, and in which a pipe line through which a heating fluid flows is formed. A cooling part disposed on the outer surface side of the heating plate part, and a thermoelectric conversion module having a thermoelectric conversion element disposed between the heating plate part and the cooling part, and the heating plate part In the thermoelectric conversion power generation device that generates power by applying a temperature difference to the thermoelectric conversion module by the cooling unit, the side plate portion of the tubular body is capable of deforming the heating plate portion at least partially. It has a flexible part.

本発明では、管体内の管路に流される加熱流体によって加熱板部が加熱され、その熱が熱電変換モジュールの内面側(管体側)に伝わって加熱される。一方、冷却部によって熱電変換モジュールの外面側が冷却され、これにより熱電変換モジュールに温度差が生じ、発電する。管体は側板部に可撓部を有することにより剛性が高くなることが抑えられ、可撓部が変形することで加熱板部は変形可能となっている。したがって熱電変換素子に加わる熱応力に応じて加熱板部は変形し、このため熱電変換素子が加熱板部から受ける応力が従来より減少する。その結果、熱電変換素子の破損が効果的に抑えられる。   In the present invention, the heating plate portion is heated by the heating fluid flowing through the pipe line in the pipe body, and the heat is transmitted to the inner surface side (pipe body side) of the thermoelectric conversion module and heated. On the other hand, the outer surface side of the thermoelectric conversion module is cooled by the cooling unit, thereby generating a temperature difference in the thermoelectric conversion module and generating power. Since the tube body has a flexible portion in the side plate portion, the rigidity is suppressed from increasing, and the heating plate portion can be deformed by the deformation of the flexible portion. Therefore, the heating plate portion is deformed in accordance with the thermal stress applied to the thermoelectric conversion element, and the stress that the thermoelectric conversion element receives from the heating plate portion is reduced as compared with the conventional case. As a result, damage to the thermoelectric conversion element can be effectively suppressed.

本発明は、以下の形態を含む。
前記可撓部は弾性変形する弾性変形部である。また、前記可撓部は、断面形状が前記管体の内側に突出する凹状、前記管体の外側に突出する凸状、蛇腹状、のいずれかである。
The present invention includes the following forms.
The flexible portion is an elastically deformable portion that is elastically deformed. Further, the flexible part has any one of a concave shape that protrudes inward of the tubular body, a convex shape that protrudes outward of the tubular body, and a bellows shape.

また、本発明は、前記管路に、前記加熱流体の熱を集熱して前記加熱板部に伝達するフィンが配設されていることを特徴とする。この形態では、管体の内部に流される加熱流体の熱はフィンで集熱されて一対の加熱板部に伝わり、加熱板部の高温化が促進され発電効率が向上する。   Further, the present invention is characterized in that fins for collecting heat of the heating fluid and transmitting it to the heating plate portion are disposed in the pipe line. In this embodiment, the heat of the heating fluid flowing inside the tube body is collected by the fins and transmitted to the pair of heating plate portions, and the heating plate portions are increased in temperature and the power generation efficiency is improved.

本発明によれば、熱電変換素子にかかる応力を減少させて熱電変換素子の破損を効果的に抑えることができるといった効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, there exists an effect that the damage concerning a thermoelectric conversion element can be effectively suppressed by reducing the stress concerning a thermoelectric conversion element.

本発明の一実施形態に係る熱電変換式発電装置の全体斜視図である。1 is an overall perspective view of a thermoelectric conversion power generator according to an embodiment of the present invention. 図1のII方向矢視図である。It is an II directional arrow line view of FIG. 図2のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 図2のIV−IV断面図である。It is IV-IV sectional drawing of FIG. 同発電装置が備える密閉容器の筐体の構成を示す斜視図である。It is a perspective view which shows the structure of the housing | casing of the airtight container with which the same electric power generating apparatus is provided. 同発電装置が備える管体の正面図である。It is a front view of the tubular body with which the power generator is provided. 図4の一部拡大図であって、熱電変換モジュールおよびフィンの構成を示す断面図である。FIG. 5 is a partially enlarged view of FIG. 4, and is a cross-sectional view illustrating a configuration of a thermoelectric conversion module and fins. 他の実施形態に係る管体を示す正面図である。It is a front view which shows the tubular body which concerns on other embodiment.

以下、図面を参照して本発明の一実施形態を説明する。
[1]熱電変換式発電装置の構成
図1〜図4は、一実施形態の熱電変換式発電装置(以下、発電装置)1を示しており、図1は全体斜視図、図2は図1のII方向矢視図、図3、図4はそれぞれ図2のIII−III断面図、IV−IV断面図である。この発電装置1は全体が扁平な直方体状(図1、図3、図4でX方向が長手方向)に形成されており、水冷ジャケット(冷却部)3と、水冷ジャケット3内に収納された密閉容器2を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[1] Configuration of Thermoelectric Conversion Power Generation Device FIGS. 1 to 4 show a thermoelectric conversion power generation device (hereinafter referred to as a power generation device) 1 according to an embodiment. FIG. 1 is an overall perspective view, and FIG. II direction view, FIG. 3 and FIG. 4 are a III-III sectional view and an IV-IV sectional view of FIG. 2, respectively. This power generator 1 is formed in a flat rectangular parallelepiped shape (the X direction is the longitudinal direction in FIGS. 1, 3, and 4), and is housed in a water cooling jacket (cooling portion) 3 and the water cooling jacket 3. A sealed container 2 is provided.

密閉容器2は、扁平管状の筐体20内の中央部に同じく扁平管状の管体25が収納された二重管構造を呈しており、筐体20と管体25との間の空間は減圧空間29とされ、この減圧空間29のX方向両端の開口が封止カバー26で気密的に閉塞されている。水冷ジャケット3は密閉容器2の外形にほぼ沿った扁平管状に形成されたもので、その内部に収納された密閉容器2は、開口側の両端部が水冷ジャケット3の両端開口から突出している。   The sealed container 2 has a double tube structure in which a flat tubular tube 25 is housed in the center of the flat tubular housing 20, and the space between the housing 20 and the tubular body 25 is decompressed. The opening at both ends in the X direction of the decompression space 29 is hermetically closed by the sealing cover 26. The water-cooling jacket 3 is formed in a flat tubular shape substantially along the outer shape of the sealed container 2, and the sealed container 2 housed therein has both end portions on the opening side projecting from both end openings of the water-cooled jacket 3.

筐体20は、図5に示すように、主体となる剛性部21と、剛性部21に接合される長方形状の薄板22とから構成されている。剛性部21は、長方形状の外枠板部211と外枠板部211内を長手方向(X方向)に分かれた長方形状の2つの孔213に仕切る内枠板部212とを有する一対の枠板210が、上下方向(Z方向)に間隔を空けて互いに平行に対面し、外枠板部211の長手方向に沿った端縁どうしが側板部215で連結され、長手方向の両端部に開口218を形成する開口管部217を有するものである。   As shown in FIG. 5, the housing 20 is composed of a rigid portion 21 as a main body and a rectangular thin plate 22 joined to the rigid portion 21. The rigid portion 21 includes a pair of frames having a rectangular outer frame plate portion 211 and an inner frame plate portion 212 that partitions the inside of the outer frame plate portion 211 into two rectangular holes 213 divided in the longitudinal direction (X direction). The plates 210 face each other in parallel in the vertical direction (Z direction), the edges along the longitudinal direction of the outer frame plate portion 211 are connected by the side plate portions 215, and open at both ends in the longitudinal direction. It has the opening pipe part 217 which forms 218. FIG.

薄板22は、可撓性を有する弾性変形可能な板材によって剛性部21の2つの孔213を覆う大きさの長方形状に形成されたものである。薄板22は、各枠板210の外面の孔213の周囲にろう付け等の接合手段で接合され、これにより2つの孔213は1枚の薄板22で塞がれている。薄板22の材料としては、SUS444等のステンレスあるいはアルミニウム等の耐熱性、耐酸化性を有する金属板が好ましく、その板厚は、例えば0.1mm程度のものが用いられる。   The thin plate 22 is formed in a rectangular shape having a size that covers the two holes 213 of the rigid portion 21 with a flexible elastically deformable plate material. The thin plate 22 is joined to the periphery of the hole 213 on the outer surface of each frame plate 210 by a joining means such as brazing, whereby the two holes 213 are closed by the single thin plate 22. The material of the thin plate 22 is preferably a metal plate having heat resistance and oxidation resistance, such as stainless steel or aluminum such as SUS444, and the thickness thereof is, for example, about 0.1 mm.

筐体20の内部に収納された管体25は、図3、図4および図6に示すように、筐体20の上下の枠板210と平行な上下一対の平板な長方形状の主板部251の長手方向に沿った端縁どうしが筐体20の側板部215と平行な側板部252で連結されたもので、両端開口縁の外面が、筐体20の剛性部21の開口管部217の内面に、断面が内側にへこんだ断面U字状で全体としては長円状の封止カバー26を介して接合されている。   As shown in FIGS. 3, 4, and 6, the tubular body 25 housed in the housing 20 has a pair of upper and lower flat rectangular main plate portions 251 parallel to the upper and lower frame plates 210 of the housing 20. Are connected by side plate portions 252 parallel to the side plate portions 215 of the housing 20, and the outer surfaces of the opening edges at both ends are the opening tube portions 217 of the rigid portion 21 of the housing 20. The inner surface is joined via an oval sealing cover 26 having a U-shaped cross-section that is recessed inward.

図6に示すように、管体25の側板部252は平板状ではなく、断面形状が管体25の内側にへこんで突出する形状の凹部(可撓部、弾性変形部)255が形成されている。この凹部255は撓んで弾性変形することが可能となっており、管体25の主板部251に応力がかかると凹部255が変形し、主板部251が内側あるいは外側に反るように撓んで変形することが可能となっている。   As shown in FIG. 6, the side plate portion 252 of the tube body 25 is not flat, but has a recess (flexible portion, elastic deformation portion) 255 having a shape in which the cross-sectional shape is dented inward of the tube body 25. Yes. The concave portion 255 can be bent and elastically deformed. When stress is applied to the main plate portion 251 of the tube body 25, the concave portion 255 is deformed, and the main plate portion 251 is bent and deformed so as to warp inward or outward. It is possible to do.

管体25の内部は、加熱流体H(図3および図4参照)が一方の開口から他方の開口へ向かって流される管路253として形成されており、この管路253には、加熱流体Hの熱を集熱して管体25に伝えるフィン7が配設されている。   The inside of the pipe body 25 is formed as a pipe line 253 through which the heating fluid H (see FIGS. 3 and 4) flows from one opening toward the other opening. The fins 7 that collect and transfer the heat to the tube body 25 are disposed.

図7に示すように、フィン7はこの場合、上側の主板部251に接触するものと下側の主板部251に接触するものとの上下一対の状態で設けられている。フィン7は、1枚の板材を折り曲げ加工することにより、断面略V字状に屈曲するV字部71が並列する蛇腹状のコルゲート板で構成されており、V字部71の先端部711が主板部251にろう付け等の接合手段で接合されている。この接合状態で、上下のフィン7の間には所定の間隔が空いている(図2および図4では接触しているが、実際には間隔が空いている)。管路253に流される加熱流体Hは、V字部71内のトンネル状の空間712を、主板部251やフィン7に接触しながら通過する。フィン7は、例えば上記薄板22と同様に、SUS444等のステンレスあるいはアルミニウム等の耐熱性、耐酸化性を有し、板厚が例えば0.1mm程度の金属板を用いて作製される。   As shown in FIG. 7, in this case, the fins 7 are provided in a pair of upper and lower states, one in contact with the upper main plate portion 251 and one in contact with the lower main plate portion 251. The fin 7 is formed of a bellows-like corrugated plate in which V-shaped portions 71 bent in a substantially V-shaped cross-section are formed by bending a single plate material, and a tip portion 711 of the V-shaped portion 71 is formed. It is joined to the main plate portion 251 by joining means such as brazing. In this joined state, there is a predetermined gap between the upper and lower fins 7 (in FIG. 2 and FIG. 4, they are in contact but are actually spaced). The heating fluid H flowing through the pipe 253 passes through the tunnel-shaped space 712 in the V-shaped portion 71 while being in contact with the main plate portion 251 and the fins 7. The fin 7 is manufactured using a metal plate having a heat resistance and an oxidation resistance such as stainless steel such as SUS444 or aluminum and having a plate thickness of, for example, about 0.1 mm, for example, like the thin plate 22.

密閉容器2を構成する筐体20の剛性部21、管体25、封止カバー26は、薄板22と同様の材料が用いられる。密閉容器2の、筐体20の薄板22と管体25の主板部251との間には、複数の熱電変換モジュール4がそれぞれ配設されている。   The same material as that of the thin plate 22 is used for the rigid portion 21, the tubular body 25, and the sealing cover 26 of the casing 20 that constitute the sealed container 2. A plurality of thermoelectric conversion modules 4 are respectively disposed between the thin plate 22 of the casing 20 and the main plate portion 251 of the tubular body 25 of the sealed container 2.

熱電変換モジュール4は、図7に示すように、平面状に並べられた複数の熱電変換素子41の、一方側の面および他方側の面を、長方形状の銅板等の金属板からなる電極42によりジグザグ状に直列に連結して構成されたもので、一方の面側の電極42が管体25の主板部251の外面にろう付け等の接合手段で接合されている。また、他方の面側の電極42は筐体20の薄板22の内面に対向し、薄板22と電極42との間には緩衝材5が挟まれて保持されている。薄板22と緩衝材5、および緩衝材5と電極42はいずれも接合されてはおらず、摺動可能に当接している。この場合、熱電変換モジュール4は、筐体20の1つの孔213を塞ぐ薄板22に対して1つが並列して組み込まれ、合計4つが装備されている。また、電極42は管体25および緩衝材5と絶縁されている。   As shown in FIG. 7, the thermoelectric conversion module 4 includes electrodes 42 made of a metal plate such as a rectangular copper plate on one side and the other side of a plurality of thermoelectric conversion elements 41 arranged in a plane. Thus, the electrode 42 on one surface side is joined to the outer surface of the main plate portion 251 of the tubular body 25 by a joining means such as brazing. The electrode 42 on the other side faces the inner surface of the thin plate 22 of the housing 20, and the buffer material 5 is held between the thin plate 22 and the electrode 42. The thin plate 22 and the buffer material 5 and the buffer material 5 and the electrode 42 are not joined, but are in contact with each other so as to be slidable. In this case, one thermoelectric conversion module 4 is incorporated in parallel with the thin plate 22 that closes one hole 213 of the housing 20, and a total of four thermoelectric conversion modules 4 are equipped. The electrode 42 is insulated from the tube body 25 and the buffer material 5.

緩衝材5は可撓性を有するシート状のものが好適であり、例えば薄いカーボンシート等が用いられる。なお、本実施形態では薄板22と熱電変換モジュール4との間に緩衝材5を挟み込んでいるが、緩衝材5は必要に応じて用いられ、薄板22が熱電変換モジュール4に直接当接する形態も選択され得る。   The buffer material 5 is preferably a flexible sheet-like material such as a thin carbon sheet. In the present embodiment, the buffer material 5 is sandwiched between the thin plate 22 and the thermoelectric conversion module 4. However, the buffer material 5 is used as necessary, and the thin plate 22 directly contacts the thermoelectric conversion module 4. Can be selected.

熱電変換モジュール4を構成する熱電変換素子41は、耐熱温度が高い種類が用いられ、例えば、シリコン−ゲルマニウム系、マグネシウム−シリコン系、マンガン−シリコン系、珪化鉄系等が好適に用いられる。熱電変換モジュール4が収納された密閉容器2の減圧空間29は、剛性部21と薄板22とからなる筐体20、管体25および封止カバー26によって気密的に封止される。上記フィン7は、図4に示すように、熱電変換モジュール4に対応する領域の大きさを有し、フィン7の両側に熱電変換モジュール4が配設された状態となっている。   As the thermoelectric conversion element 41 constituting the thermoelectric conversion module 4, a type having a high heat-resistant temperature is used. For example, a silicon-germanium system, a magnesium-silicon system, a manganese-silicon system, an iron silicide system, or the like is preferably used. The decompression space 29 of the sealed container 2 in which the thermoelectric conversion module 4 is housed is hermetically sealed by a casing 20, a tubular body 25, and a sealing cover 26 that are formed of the rigid portion 21 and the thin plate 22. As shown in FIG. 4, the fin 7 has a size corresponding to the thermoelectric conversion module 4, and the thermoelectric conversion module 4 is disposed on both sides of the fin 7.

上記密閉容器2は、水冷ジャケット3内に収納されている。図3および図4に示すように、水冷ジャケット3は、両端の開口縁に形成された内側に屈曲する封止枠部31が、密閉容器2における剛性部21の外枠板部211の外面に、ろう付け等の手段で気密的に接合されている。水冷ジャケット3内の空間、すなわち剛性部21と水冷ジャケット3との間に形成される空間が、冷却水が供給されて薄板22を冷却するための冷却空間32となっている。水冷ジャケット3における筐体20の各側板部215に対応する箇所の中央部には、冷却水の導入出口33が設けられている。   The sealed container 2 is stored in a water-cooled jacket 3. As shown in FIGS. 3 and 4, the water-cooling jacket 3 has a sealing frame portion 31 that is bent inward and formed on the opening edges at both ends, on the outer surface of the outer frame plate portion 211 of the rigid portion 21 in the sealed container 2. And airtightly joined by means such as brazing. A space in the water cooling jacket 3, that is, a space formed between the rigid portion 21 and the water cooling jacket 3 is a cooling space 32 for cooling the thin plate 22 by supplying cooling water. A cooling water inlet / outlet 33 is provided at a central portion of the water cooling jacket 3 corresponding to each side plate portion 215 of the housing 20.

密閉容器2内には、合計4つの熱電変換モジュール4が収納されているが、これら熱電変換モジュール4は直列に接続されている。そして、図1〜図3で示す+・−の2本のリード線49から外部に電気が取り出される。リード線49は、密閉容器2の側板部215および水冷ジャケット3を貫通して外部に引き出され、側板部215および水冷ジャケット3のリード線貫通孔は気密的に塞ぐ処理がなされている。   A total of four thermoelectric conversion modules 4 are accommodated in the sealed container 2, and these thermoelectric conversion modules 4 are connected in series. Then, electricity is taken out from the two lead wires 49 of + • − shown in FIGS. The lead wire 49 passes through the side plate portion 215 and the water cooling jacket 3 of the sealed container 2 and is drawn to the outside, and the lead wire through hole of the side plate portion 215 and the water cooling jacket 3 is hermetically closed.

冷却空間32の熱電変換モジュール4に対応する箇所には、熱交換手段6が薄板22に接合されている。熱交換手段6は、冷却空間32に供給されて流れる冷却水が接触することで薄板22を放熱させて冷却を促進させるもので、薄板22の可撓性を妨げない状態で設けられている。   The heat exchange means 6 is joined to the thin plate 22 at a location corresponding to the thermoelectric conversion module 4 in the cooling space 32. The heat exchange means 6 is provided in a state in which the cooling of the thin plate 22 is not hindered by the cooling water supplied to the cooling space 32 being brought into contact to dissipate the thin plate 22 to promote cooling.

熱交換手段6は、薄板22の可撓性を妨げない柔軟性を有するフィン等の熱交換部材からなるものが挙げられる。また、硬いフィン等の熱交換部材であっても、複数の独立した熱交換部材が薄板22に対し点在的に接触して設けられて薄板22の可撓性を妨げないようになされていてもよい。   Examples of the heat exchanging means 6 include a heat exchanging member such as a fin having flexibility that does not hinder the flexibility of the thin plate 22. Moreover, even if it is a heat exchange member such as a hard fin, a plurality of independent heat exchange members are provided in contact with the thin plate 22 in a scattered manner so as not to hinder the flexibility of the thin plate 22. Also good.

上記密閉容器2は、所定箇所に形成された図示せぬ減圧封止口から減圧空間29の空気を吸引して減圧空間29を所定圧力(例えば1〜100Pa程度)に減圧し、減圧封止口を溶接するなどして気密的に封止した状態とされる。これにより密閉容器2においては、減圧空間29の圧力が外部の大気よりも低くなるという圧力差が生じ、この圧力差によって、筐体20の薄板22が熱電変換モジュール4側に加圧される力を受ける。   The sealed container 2 sucks air in the decompression space 29 from a decompression sealing port (not shown) formed at a predetermined location to decompress the decompression space 29 to a predetermined pressure (for example, about 1 to 100 Pa). Are hermetically sealed by welding or the like. As a result, in the sealed container 2, a pressure difference is generated in which the pressure in the decompression space 29 is lower than that in the outside atmosphere, and the force that pressurizes the thin plate 22 of the housing 20 toward the thermoelectric conversion module 4 due to the pressure difference. Receive.

[2]発電装置の作用
上記構成からなる発電装置1では、管体25の管路253に、一方の開口から他方の開口に向けて高温の加熱流体Hを流して管体25を加熱する。また、水冷ジャケット3の一方の導入出口33から冷却水を冷却空間32に導入するとともに他方の導入出口33から冷却水を排出させ、冷却空間32に冷却水を充満させた状態で流すことにより密閉容器2の薄板22を冷却する。
[2] Action of Power Generation Device In the power generation device 1 having the above-described configuration, the pipe body 25 is heated by flowing a high-temperature heating fluid H from one opening to the other opening in the pipe line 253 of the pipe body 25. In addition, the cooling water is introduced into the cooling space 32 from one introduction outlet 33 of the water cooling jacket 3, the cooling water is discharged from the other introduction outlet 33, and the cooling space 32 is filled with the cooling water to be sealed. The thin plate 22 of the container 2 is cooled.

管路253に流される加熱流体Hの熱は、管体25の対向する一対の主板部251を直接加熱し、また、フィン7によって集熱されて各主板部251に伝わり、主板部251の高温化が促進される。加熱された管体25の主板部251の熱は熱電変換モジュール4の内面側に伝わり、熱電変換モジュール4の内面側が加熱される。一方、薄板22は冷却水で冷却される熱交換手段6により冷却が促進される。冷却された薄板22の熱は熱電変換モジュール4の外面側に伝わり、熱電変換モジュール4の外面側が冷却される。これにより、熱電変換モジュール4の熱電変換素子41には、内面側が高温、外面側が低温というように温度差が与えられる。   The heat of the heating fluid H that flows through the pipe 253 directly heats the pair of opposing main plate portions 251 of the tube body 25, and is collected by the fins 7 and transmitted to each main plate portion 251, and the high temperature of the main plate portion 251. Is promoted. Heat of the main plate portion 251 of the heated tube body 25 is transmitted to the inner surface side of the thermoelectric conversion module 4, and the inner surface side of the thermoelectric conversion module 4 is heated. On the other hand, the cooling of the thin plate 22 is promoted by the heat exchange means 6 that is cooled by cooling water. The heat of the cooled thin plate 22 is transmitted to the outer surface side of the thermoelectric conversion module 4, and the outer surface side of the thermoelectric conversion module 4 is cooled. Thereby, a temperature difference is given to the thermoelectric conversion element 41 of the thermoelectric conversion module 4 so that the inner surface side is high temperature and the outer surface side is low temperature.

密閉容器2においては上記のように内部の減圧空間29が減圧されて外部と圧力差が生じることにより、筐体20の薄板22が熱電変換モジュール4側に加圧される。これにより、筐体20の薄板22が緩衝材5に加圧されて密着し、緩衝材5は熱電変換モジュール4側に加圧された状態で密着する。   In the hermetic container 2, the internal decompression space 29 is decompressed as described above to generate a pressure difference with the outside, whereby the thin plate 22 of the housing 20 is pressurized toward the thermoelectric conversion module 4. Thereby, the thin plate 22 of the housing | casing 20 is pressurized and closely_contact | adhered to the shock absorbing material 5, and the shock absorbing material 5 closely_contact | adheres in the state pressurized to the thermoelectric conversion module 4 side.

上記のようにして熱電変換モジュール4の外面側と内面側に温度差が与えられることで、熱電変換モジュール4は発電し、リード線49から電気が取り出される。管路253に流される加熱流体Hの熱はフィン7で集熱されて一対の主板部251に伝わり、主板部251の高温化が促進され発電効率が向上する。   As described above, a temperature difference is given between the outer surface side and the inner surface side of the thermoelectric conversion module 4, so that the thermoelectric conversion module 4 generates power and electricity is extracted from the lead wire 49. The heat of the heating fluid H that flows through the pipe 253 is collected by the fins 7 and transmitted to the pair of main plate portions 251, and the main plate portion 251 is heated to a high temperature and the power generation efficiency is improved.

本実施形態の発電装置1は、例えば工場やゴミ焼却炉で発生する排熱ガスや、自動車の排気ガスなどが、上記加熱流体Hとして利用される。   In the power generation apparatus 1 of this embodiment, for example, exhaust heat gas generated in a factory or a garbage incinerator, automobile exhaust gas, or the like is used as the heating fluid H.

[3]一実施形態の作用効果
上記実施形態の発電装置1においては、温度差が与えられる熱電変換モジュール4の熱電変換素子41には熱膨張差による熱応力が生じ、その熱応力は管体25の主板部251に伝わって主板部251を変形させようとする。ここで、従来では管体に剛性があるため管体は変形しにくくなっており、このため熱電変換素子は管体から応力を受けて割れや破損が生じるという問題があった。
[3] Effects of One Embodiment In the power generation apparatus 1 of the above-described embodiment, thermal stress due to a difference in thermal expansion is generated in the thermoelectric conversion element 41 of the thermoelectric conversion module 4 to which a temperature difference is given. The main plate portion 251 is deformed by being transmitted to the 25 main plate portions 251. Here, conventionally, since the tubular body has rigidity, the tubular body is difficult to be deformed. For this reason, the thermoelectric conversion element has a problem that it receives a stress from the tubular body and is cracked or broken.

しかし本実施形態の管体25は、側板部252に形成された弾性変形可能な凹部255を有することにより剛性が高くなることが抑えられている。このため、主板部251が変形しようとすると凹部255が撓んで弾性変形することで、主板部251が変形しやすくなっている。したがって熱電変換素子41に加わる熱応力に応じて主板部251は内側あるいは外側に反るよう撓んで変形する。各主板部251の間には一対のフィン7が配設されているが、これらフィン7の間は間隔が空いているので、フィン7どうしは干渉せず主板部251が内側に変形することは可能である。このように主板部251が変形可能であるため主板部251から熱電変換素子41にかかる応力は従来より減少し、その結果、熱電変換素子41が破損するおそれが低減する。   However, the tubular body 25 according to the present embodiment has an elastically deformable concave portion 255 formed in the side plate portion 252, so that an increase in rigidity is suppressed. For this reason, when the main plate portion 251 tries to deform, the concave portion 255 is bent and elastically deformed, so that the main plate portion 251 is easily deformed. Therefore, according to the thermal stress applied to the thermoelectric conversion element 41, the main plate portion 251 is bent and deformed so as to warp inward or outward. A pair of fins 7 are disposed between the main plate portions 251, but since the fins 7 are spaced apart from each other, the fins 7 do not interfere with each other and the main plate portion 251 is not deformed inward. Is possible. Since the main plate portion 251 can be deformed in this way, the stress applied to the thermoelectric conversion element 41 from the main plate portion 251 is reduced as compared with the conventional case, and as a result, the possibility that the thermoelectric conversion element 41 is damaged is reduced.

[4]他の実施形態
上記実施形態においては、側板部252の高さ方向(図2でZ方向)のほぼ全体が弾性変形する凹部255として形成されているが、本発明は加熱板部である主板部251が変形可能となる構成であれば、側板部252の高さ方向の少なくとも一部に凹部255のような可撓部が形成されている構成であってよい。
[4] Other Embodiments In the above embodiment, the entire side plate 252 in the height direction (Z direction in FIG. 2) is formed as a recess 255 that is elastically deformed. As long as a certain main plate portion 251 can be deformed, a flexible portion such as a concave portion 255 may be formed in at least a part of the side plate portion 252 in the height direction.

また、側板部252に形成される本発明の可撓部の形状は上記凹部255に限定されず、自身が変形することで主板部251が変形可能であれば、いかなる形状であってもよい。例えば、図8(a)に示すように断面形状が管体の外側に突出する凸状に形成された形態や、図8(b)に示す断面蛇腹状の形態が考えられる。いずれの場合も自身が撓んで変形することで、主板部251の変形を可能とするものである。   In addition, the shape of the flexible portion of the present invention formed on the side plate portion 252 is not limited to the concave portion 255, and may be any shape as long as the main plate portion 251 can be deformed by deformation of itself. For example, as shown to Fig.8 (a), the cross-sectional shape formed in the convex shape which protrudes the outer side of a tubular body, or the cross-sectional bellows-like form shown in FIG.8 (b) can be considered. In either case, the main plate portion 251 can be deformed by bending and deforming itself.

1…熱電変換式発電装置、25…管体、251…主板部(加熱板部)、252…側板部、253…管路、255…凹部(可撓部、弾性変形部)、3…水冷ジャケット(冷却部)、4…熱電変換モジュール、41…熱電変換素子、7…フィン、 H…加熱流体。   DESCRIPTION OF SYMBOLS 1 ... Thermoelectric conversion type generator, 25 ... Tube, 251 ... Main plate part (heating plate part), 252 ... Side plate part, 253 ... Pipe line, 255 ... Recessed part (flexible part, elastic deformation part), 3 ... Water cooling jacket (Cooling part) 4 ... thermoelectric conversion module, 41 ... thermoelectric conversion element, 7 ... fin, H ... heating fluid.

Claims (4)

対向する一対の加熱板部とこれら加熱板部の両側部を連結する側板部とを備え、内部に加熱流体が流される管路が形成された管体と、
前記加熱板部の外面側に配設される冷却部と、
前記加熱板部と前記冷却部との間に配設される熱電変換素子を有する熱電変換モジュールと、
を備え、
前記加熱板部と前記冷却部とによって前記熱電変換モジュールに温度差が与えられることで発電する熱電変換式発電装置において、
前記管体の前記側板部は、少なくとも一部に前記加熱板部を変形可能とする可撓部を有すること
を特徴とする熱電変換式発電装置。
A tube body having a pair of opposed heating plate portions and side plate portions that connect both side portions of these heating plate portions, and in which a pipe line through which a heating fluid flows is formed;
A cooling part disposed on the outer surface side of the heating plate part;
A thermoelectric conversion module having a thermoelectric conversion element disposed between the heating plate portion and the cooling portion;
With
In the thermoelectric conversion power generator that generates power by giving a temperature difference to the thermoelectric conversion module by the heating plate part and the cooling part,
The thermoelectric power generator according to claim 1, wherein the side plate portion of the tubular body has a flexible portion that can deform the heating plate portion at least in part.
前記可撓部は弾性変形する弾性変形部であることを特徴とする請求項1に記載の熱電変換式発電装置。   The thermoelectric power generation apparatus according to claim 1, wherein the flexible portion is an elastically deformable portion that is elastically deformed. 前記可撓部は、断面形状が前記管体の内側に突出する凹状、前記管体の外側に突出する凸状、蛇腹状、のいずれかであることを特徴とする請求項1または2に記載の熱電変換式発電装置。   3. The flexible portion according to claim 1, wherein a cross-sectional shape of the flexible portion is any one of a concave shape protruding inside the tubular body, a convex shape protruding outside the tubular body, and a bellows shape. Thermoelectric power generator. 前記管路に、前記加熱流体の熱を集熱して前記加熱板部に伝達するフィンが配設されていることを特徴とする請求項1または2に記載の熱電変換式発電装置。   The thermoelectric conversion power generator according to claim 1 or 2, wherein fins for collecting heat of the heating fluid and transmitting the heat to the heating plate portion are disposed in the pipe line.
JP2014007583A 2014-01-20 2014-01-20 Thermoelectric conversion power generator Abandoned JP2015135928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007583A JP2015135928A (en) 2014-01-20 2014-01-20 Thermoelectric conversion power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007583A JP2015135928A (en) 2014-01-20 2014-01-20 Thermoelectric conversion power generator

Publications (1)

Publication Number Publication Date
JP2015135928A true JP2015135928A (en) 2015-07-27

Family

ID=53767580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007583A Abandoned JP2015135928A (en) 2014-01-20 2014-01-20 Thermoelectric conversion power generator

Country Status (1)

Country Link
JP (1) JP2015135928A (en)

Similar Documents

Publication Publication Date Title
JP6078412B2 (en) Thermoelectric power generator
US20150280097A1 (en) Thermoelectric conversion generating device
US10777725B2 (en) Thermoelectric generator
JP2017045971A (en) Cooler module, and manufacturing method of cooler module
JP6039348B2 (en) Thermoelectric power generator
JP2015527731A (en) Heat exchanger and internal combustion engine for automobile
JP2015140713A (en) Thermoelectric generation device
JP2006211780A (en) Thermoelectric generator
EP3352366B1 (en) Thermoelectric power generation device and method for manufacturing same
JP6358209B2 (en) Thermoelectric generator
JP2015135928A (en) Thermoelectric conversion power generator
JP2015138790A (en) Thermoelectric conversion power generator
JP2015138792A (en) Thermoelectric conversion power generator
JP2015138793A (en) Thermoelectric conversion power generator
JP2016063104A (en) Thermoelectric converter
JP2009272327A (en) Thermoelectric conversion system
JP6641858B2 (en) Thermoelectric conversion module, thermoelectric converter, and method of manufacturing thermoelectric conversion module
JP2015138794A (en) Thermoelectric conversion type power generator
JP5972743B2 (en) Thermoelectric power generator
JP5988827B2 (en) Thermoelectric conversion module
JP4923997B2 (en) Thermoelectric generator
JP5956155B2 (en) Thermoelectric generator
JP2014212167A (en) Thermoelectric conversion type power generator
JP6376511B2 (en) Thermoelectric converter
JP6001988B2 (en) Thermoelectric power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161011

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20170531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170608