Nothing Special   »   [go: up one dir, main page]

JP2015134734A - Live vaccine formulation and preventive method for edwardsiella disease - Google Patents

Live vaccine formulation and preventive method for edwardsiella disease Download PDF

Info

Publication number
JP2015134734A
JP2015134734A JP2014007118A JP2014007118A JP2015134734A JP 2015134734 A JP2015134734 A JP 2015134734A JP 2014007118 A JP2014007118 A JP 2014007118A JP 2014007118 A JP2014007118 A JP 2014007118A JP 2015134734 A JP2015134734 A JP 2015134734A
Authority
JP
Japan
Prior art keywords
strain
fishes
tarda
live
thai
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014007118A
Other languages
Japanese (ja)
Other versions
JP6252902B2 (en
Inventor
彩奈 村上
Ayana Murakami
彩奈 村上
耕平 福田
Kohei Fukuda
耕平 福田
良子 高野
Ryoko Takano
良子 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Seiyaku Corp
Original Assignee
Kyoritsu Seiyaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Seiyaku Corp filed Critical Kyoritsu Seiyaku Corp
Priority to JP2014007118A priority Critical patent/JP6252902B2/en
Publication of JP2015134734A publication Critical patent/JP2015134734A/en
Application granted granted Critical
Publication of JP6252902B2 publication Critical patent/JP6252902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an effective preventive means against Edwardsiella disease in Sparidae or Carangidae fishes.SOLUTION: The live vaccine formulation contains a live virus of a typical strain of Edwardsiella trade (e.g., HET-1 strain) which shows strong pathogenicity to fishes except Sparidae or Carangidae fishes, but has low pathogenicity or non-pathogenicity to Sparidae or Carangidae fishes, such as Anguilla japonica and Paralichthys olivaceus, and has strong immunogenicity against Edwardsiella disease in Sparidae or Carangidae fishes.

Description

本発明は、タイ科魚類又はアジ科魚類のエドワジエラ症に対するワクチン製剤、並びにエドワジエラ症予防方法などに関連する。より詳細には、Edwardsiella tarda定型株の生菌を含有する生ワクチン製剤、並びにエドワジエラ症予防方法などに関連する。   The present invention relates to a vaccine preparation for edwardiadiasis of Thai fish or phlogopaceae, and a method for preventing edovazierasis. More specifically, the present invention relates to a live vaccine preparation containing a viable bacterium of Edwardsiella tarda standard strain and a method for preventing Edwardsiella disease.

タイ科魚類は、スズキ目スズキ亜目に属し、マダイ、チダイ、クロダイなどを含む。アジ科魚類は、同じくスズキ目スズキ亜目に属し、ブリ属のブリ、ヒラマサ、カンパチや、マアジ属のマアジなどを含む。   Thai fishes belong to the order Persian and Persian and include red sea bream, chidai and black sea bream. The genus Dendrobidae also belongs to the order of the periwinkle, perch, and includes the yellowtail, yellowtail, amberjack, and yellowtail.

タイ科魚類やアジ科魚類には、食用として利用されているものが多く、また、養殖が実用化されているものも多い。特に、ブリ類やマダイは生産量も高く、養殖が広く普及している。   Many Thai fishes and phlogopid fishes are used for food, and many have been put to practical use. In particular, yellowtail and red sea bream have a high production volume and aquaculture is widespread.

一般に、魚類の養殖では、比較的狭い領域で多くの魚を飼育するため、感染症が発生・流行しやすい。養殖過程で感染症が流行すると、経済的に多大な被害を生むことがある。そのため、感染症発生予防の観点から、各疾患に対し、ワクチンの開発が試みられており、実用化されているものも多い。   In general, in fish farming, many fish are bred in a relatively small area, so that infectious diseases are easily generated and prevalent. If an infectious disease prevails during the aquaculture process, it can cause significant economic damage. Therefore, from the viewpoint of preventing the occurrence of infectious diseases, the development of vaccines for each disease has been attempted, and many have been put into practical use.

Edwardsiella tarda(学名、以下同じ)は、腸内細菌科Edwardsiella属に分類される細菌である。E. tardaの宿主域は広く、魚類のほか、無脊椎動物、両生類、爬虫類、鳥類、哺乳類などでも分離報告がある。   Edwardsiella tarda (scientific name, the same applies hereinafter) is a bacterium classified into the genus Edwardiella. E. tarda has a wide host range, and in addition to fish, invertebrates, amphibians, reptiles, birds and mammals have been isolated.

E. tardaは、定型株(wild-type)と非定型株(biogroup 1)に大きく分類される。定型株は、運動性を有し、マンニトール、アラビノース、サッカロースを発酵しない株であり、ウナギ、ヒラメ、ナマズ、ティラピア、ターボット、ストライプドバス、マスノスケ、ヒトなどで分離例がある。非定型株は、運動性がなく、マンニトール、アラビノース、サッカロースを発酵する株であり、ティラピア、マダイ、チダイで分離例がある。なお、定型株と非定型株の両方で分離例があるのは、ティラピアのみである。   E. tarda is broadly classified into a typical strain (wild-type) and an atypical strain (biogroup 1). A typical strain is a strain that has motility and does not ferment mannitol, arabinose, or saccharose, and there are separation examples such as eel, flounder, catfish, tilapia, turbot, striped bath, masunosuke, and human. An atypical strain is a strain that does not have motility and ferments mannitol, arabinose, and saccharose, and there are separation examples of tilapia, red sea bream, and red sea bream. It is only tilapia that has a separation example of both standard and atypical stocks.

E. tardaによって引き起こされる魚類の細菌感染症は、エドワジエラ症と呼ばれる。例えば、ヒラメのエドワジエラ症では、定型株が分離され、摂食不良、体色黒化、腹部膨満、脱腸、腹水貯留などの症状を呈し、ウナギのエドワジエラ症(パラコロ病)では、同じく定型株が分離され、腎臓後部に膿瘍病巣が形成され、肛門の拡大突出、その周囲の発赤腫脹などの症状を呈する。一方、マダイのエドワジエラ症では、非定型株が分離され、緩慢遊泳、体表や鰾腔内の潰瘍形成などの症状を呈する。   The bacterial infection in fish caused by E. tarda is called edwardiellosis. For example, in flounder edovadierosis, typical strains were isolated and presented with symptoms such as poor feeding, darkening of the body, abdominal distension, ileum, ascites, etc. It is isolated and an abscess lesion is formed in the back of the kidney. Symptoms such as an enlarged protrusion of the anus and redness swelling around it occur. On the other hand, in a red sea bream, an atypical strain is isolated and exhibits symptoms such as slow swimming and ulceration in the body surface and in the cavity.

魚類のエドワジエラ症に対するワクチンの研究は、ヒラメ用のものを中心に広く行われており、現時点で、ヒラメ用の不活化ワクチンが実用化されているが、マダイ用のワクチンは実用化されていない。魚類のエドワジエラ症に対する生ワクチンとして、例えば、非特許文献1には、ティラピアに対して病原性を示す定型変異株を用いてティラピアを免疫した例が、非特許文献2には、ヒト由来の標準株を用いてヒラメを免疫した例が、非特許文献3には、ウナギから分離された株を用いてヒラメを免疫した例が、それぞれ開示されている。また、マダイに対する不活化ワクチンとして、非特許文献4には、マダイ由来株の不活化菌液で腹腔内注射免疫を行った後、ホモ株で腹腔内注射攻撃を行った結果、ワクチン効果が認められたことが報告されている。その他、特許文献1には、定型株の不活化菌体を含有する、非定型株によるエドワジエラ症に対する不活化ワクチン、若しくは非定型株の不活化菌体を含有する、定型株によるエドワジエラ症に対する不活化ワクチンが、特許文献2には、投与対象の魚種には病原性を示さないE. tarda由来の抗原を含有する、E. tardaに起因する魚類感染症に対する不活化ワクチンが、それぞれ開示されている。
特許第4892296号公報 特開2007-238505号公報 Arisa Igarashi and Takaji Iida, “A Vaccination Trial Using Live Cells of Edwardsiella tarda in Tilapia”; Fish pathology, 37(3),145-148,2002.9 Shuang Cheng, Yong-hua Hu, Min Zhang and Li Sun, “Analysis of the vaccine potential of a natural avirulent Edwardsiella tarda isolate”; Vaccine 28(2010)2716-2721 Tomokazu Takano, Tomomasa Matsuyama, Norihisa Oseko, Takamitsu Sakai, Takashi Kamaishi, Chihaya Nakayasu, Motohiko Sano and Takaji Iida, “The efficacy of five avirulent Edwardsiella tarda strains in a live vaccine against Edwardsiellosis in Japanese flounder, Paralichtyhs olivaceus”; Fish & Shellfish Immunology Tomokazu Takano, Tomomasa Matsuyama, Takamitsu Sakai and Chihaya Nakayasu, “Protective Efficacy of a Formalin-Killed Vaccine against Atypical Edwardsiella tarda Infection in Red Sea Bream Pagrus major” ; Fish pathology, 46(4),120-122,2011.12
Research on vaccines against fish edwardiellosis has been widely conducted, mainly for flounder. Currently, inactivated vaccines for flounder have been put to practical use, but vaccines for red sea bream have not been put to practical use. . As a live vaccine against edwardiadiosis of fish, for example, Non-Patent Document 1 shows an example of immunizing tilapia using a typical mutant that shows pathogenicity against tilapia, and Non-Patent Document 2 shows a human-derived standard. Examples of immunizing flounder using a strain are disclosed in Non-Patent Document 3, respectively, in which examples of immunizing flounder using a strain isolated from eel are disclosed. In addition, as an inactivated vaccine against red sea bream, Non-Patent Document 4 showed that the vaccine effect was confirmed as a result of intraperitoneal injection immunization with an inactivated bacterial solution of a red sea bream-derived strain followed by intraperitoneal injection attack with a homologous strain. Has been reported. In addition, Patent Document 1 discloses that an inactivated vaccine against edwardiellosis caused by an atypical strain containing an inactivated microbial cell of a typical strain, or an edible type of edeziella disease caused by a typical strain containing an inactivated microbial cell of an atypical strain. Patent Document 2 discloses an inactivated vaccine against fish infection caused by E. tarda, which contains an antigen derived from E. tarda that is not pathogenic to the fish species to be administered. ing.
Japanese Patent No. 4892296 JP 2007-238505 A Arisa Igarashi and Takaji Iida, “A Vaccination Trial Using Live Cells of Edwardsiella tarda in Tilapia”; Fish pathology, 37 (3), 145-148,2002.9 Shuang Cheng, Yong-hua Hu, Min Zhang and Li Sun, “Analysis of the vaccine potential of a natural avirulent Edwardsiella tarda isolate”; Vaccine 28 (2010) 2716-2721 Tomokazu Takano, Tomomasa Matsuyama, Norihisa Oseko, Takamitsu Sakai, Takashi Kamaishi, Chihaya Nakayasu, Motohiko Sano and Takaji Iida, “The efficacy of five avirulent Edwardsiella tarda strains in a live vaccine against Edwardsiellosis in Japanese flounder, Paralichtyhs olivaceus”; Fish & Shellfish Immunology Tomokazu Takano, Tomomasa Matsuyama, Takamitsu Sakai and Chihaya Nakayasu, “Protective Efficacy of a Formalin-Killed Vaccine against Atypical Edwardsiella tarda Infection in Red Sea Bream Pagrus major”; Fish pathology, 46 (4), 120-122,2011.12

本発明は、タイ科魚類又はアジ科魚類のエドワジエラ症に対する有効な予防手段を提供することなどを目的とする。   An object of the present invention is to provide an effective preventive measure against edwardiadiasis of Thai fishes or phlogid fishes.

本発明者らは、Edwardsiella tarda定型株、即ち、ウナギ、ヒラメなど、タイ科魚類又はアジ科魚類以外の魚類由来のE. tardaの生菌が、タイ科魚類又はアジ科魚類に対して低病原性又は非病原性であり、かつ強い免疫原性を有することを実証するとともに、E. tarda定型株の生菌を弱毒化又は不活化せずにタイ科魚類又はアジ科魚類に接種することにより、タイ科魚類又はアジ科魚類のエドワジエラ症を有効に予防できることを新規に見出した。   The inventors of the present invention have established that a viable E. tarda derived from a standard strain of Edwardsiella tarda, i.e. eels, flounder, etc. By inoculating Thai fish or horse mackerel fish without attenuating or inactivating live bacteria of E. tarda standard strains, while demonstrating that they are sexually or non-pathogenic and have strong immunogenicity The present inventors have newly found that it is possible to effectively prevent edwadierasis in Thai fishes or phlogid fishes.

そこで、本発明は、タイ科魚類又はアジ科魚類のエドワジエラ症に対するワクチン製剤であって、Edwardsiella tarda定型株の生菌を含有する生ワクチン製剤を提供する。   Therefore, the present invention provides a vaccine preparation for Thai edible fish or phlogopaceae edovadierosis, which contains a live bacterium of Edwardsiella tarda standard strain.

E. tarda定型株の生菌は、ウナギ、ヒラメなど、タイ科魚類又はアジ科魚類以外の魚類では強い病原性を示す。一方、タイ科魚類又はアジ科魚類に対して低病原性又は非病原性であり、かつタイ科魚類又はアジ科魚類のエドワジエラ症に対する強い免疫原性を有する。従って、E. tarda定型株の生菌は、タイ科魚類又はアジ科魚類のエドワジエラ症に対する生ワクチンとして有効であり、かつ弱毒化又は不活化せずにワクチンとして適用可能である。   The live E. tarda strains show strong pathogenicity in fishes other than Thai fish and shark fish such as eel and flounder. On the other hand, it is low-pathogenic or non-pathogenic to Thai fishes or Carpidae fishes, and has strong immunogenicity against Edwardsiellasis of Thai fishes or Carpidae fishes. Therefore, the E. tarda standard strain live bacteria is effective as a live vaccine against edwardiellosis of Thai fishes and phlogid fishes, and can be applied as vaccines without being attenuated or inactivated.

本発明では、E. tarda定型株の生菌を弱毒化又は不活化せずに適用できるため、製剤の製造・調製を簡易かつ低コストで行うことができる。また、生ワクチンとして適用できるため、ワクチンとしての効果が高く、また、少量の接種で免疫することができる。   In the present invention, since the E. tarda standard strain live bacteria can be applied without being attenuated or inactivated, the preparation and preparation of the preparation can be performed easily and at low cost. Moreover, since it can be applied as a live vaccine, the effect as a vaccine is high, and it can immunize with a small amount of inoculation.

なお、本発明は、例えば、種苗生産施設など、自然環境中の海域から隔離された区域内で適用する製剤として用いることにより、海域がこの生菌で汚染される懸念を解消でき、自然環境中に存在するタイ科魚類又はアジ科魚類以外の魚類がこの生菌に感染する危険性を抑止できる。   In addition, the present invention can eliminate the concern that the marine area is contaminated with the live bacteria by using it as a preparation to be applied in an area isolated from the marine area in the natural environment, such as a seedling production facility. It is possible to suppress the risk that fish other than the Thai fishes or the horse mackerel fishes present in the plant will be infected with the live bacteria.

本発明により、タイ科魚類又はアジ科魚類のエドワジエラ症を有効に予防できる。   According to the present invention, it is possible to effectively prevent edwadierasis of Thai fishes or phlogid fishes.

<本発明に係る生ワクチン製剤について>
本発明に係る生ワクチン製剤は、タイ科魚類又はアジ科魚類のエドワジエラ症に対するワクチン製剤であって、E. tarda定型株の生菌を含有するものをすべて包含する。
<About live vaccine formulation according to the present invention>
The live vaccine preparation according to the present invention includes all vaccine preparations against edwardiaria disease of Thai fishes or phlogid fishes, which contain live E. tarda strains.

上記の通り、E. tarda定型株(wild-type)は、運動性を有し、マンニトール、アラビノース、サッカロースを発酵しない株であり、ウナギ、ヒラメ、ナマズ、ティラピア、ターボット、ストライプドバス、マスノスケ、ヒトなどのエドワジエラ症罹患個体より分離できる。本発明は、E. tarda定型株の生菌が、タイ科魚類又はアジ科魚類に対して低病原性又は非病原性であり、かつタイ科魚類又はアジ科魚類のエドワジエラ症に対して免疫原性を有するものを広く適用できる。   As described above, the E. tarda wild-type strain is a strain that has motility and does not ferment mannitol, arabinose, or saccharose, and includes eel, flounder, catfish, tilapia, turbot, striped bath, trout, and human. It can be isolated from individuals suffering from Edwardsiella disease. The present invention relates to an E. tarda standard strain that is virulent or non-pathogenic to Thai fishes or phlogid fishes, and is an immunogen against edawadiera disease of Thai fishes or phlogid fishes. Widely applicable to those having properties.

例えば、E. tarda株のゲノムのうち繊毛遺伝子群上流域の配列に、配列番号1に記載された配列、又は、該配列と好適には92%以上、より好適には95%以上、最も好適には97%以上の相同性を有する配列を含む株は、本発明で用いるE. tarda定型株の生菌に適している。   For example, the sequence described in SEQ ID NO: 1 in the upstream region of the ciliary gene group in the genome of the E. tarda strain, or preferably 92% or more, more preferably 95% or more, most preferably with the sequence. A strain containing a sequence having a homology of 97% or more is suitable for viable E. tarda standard strains used in the present invention.

即ち、E. tarda株のゲノムのうちの繊毛遺伝子群上流域の配列では、定型株(wild-type)と非定型株(biogroup 1)とで相違がみられるため、例えば、候補株のゲノムの繊毛遺伝子群上流域の一部配列と、配列番号1に記載された配列との相同性に基づいて、タイ科魚類又はアジ科魚類に対して低病原性又は非病原性である株を適切に選択できる。   That is, in the sequence of the upstream region of the cilia gene group in the genome of the E. tarda strain, there is a difference between a typical strain (wild-type) and an atypical strain (biogroup 1). Based on the homology between the partial sequence of the upstream region of the ciliary gene group and the sequence described in SEQ ID NO: 1, appropriately select a strain that is low or non-pathogenic to Thai fish You can choose.

また、菌体から抽出したゲノムDNAを鋳型として、配列番号2及び配列番号3のプライマーを用いてPCRを行うと繊毛遺伝子群上流域の配列が増幅し、配列番号4及び配列番号5のプライマーを用いてPCRを行うと繊毛遺伝子群上流域の配列が増幅しない株は、本発明で用いるE. tarda定型株の生菌に適している。   In addition, when PCR was performed using the genomic DNA extracted from the bacterial cells as a template and the primers of SEQ ID NO: 2 and SEQ ID NO: 3, the sequence in the upstream region of the cilia gene group was amplified, and the primers of SEQ ID NO: 4 and SEQ ID NO: 5 were used. A strain in which the sequence in the upstream region of the cilia gene group is not amplified when PCR is performed is suitable for viable bacteria of the E. tarda routine strain used in the present invention.

配列番号2及び配列番号3のプライマーを用いてPCRを行っても繊毛遺伝子群上流域の配列が増幅しない場合は、E. tardaの定型株と非定型株のいずれにも該当しないため、タイ科魚類又はアジ科魚類のエドワジエラ症に対する免疫原性が低い可能性がある。一方、配列番号4及び配列番号5のプライマーを用いてPCRを行うと繊毛遺伝子群上流域の配列が増幅しない場合は、E. tardaの非定型株に該当する可能性があるため、タイ科魚類又はアジ科魚類に対する病原性が高い可能性がある。従って、配列番号2〜5のプライマーを用いてPCRを行うことにより、タイ科魚類又はアジ科魚類に対して免疫原性を有し、かつ低病原性又は非病原性である株を適切に選択できる。   If the sequence in the upstream region of the cilia gene group does not amplify even when PCR is performed using the primers of SEQ ID NO: 2 and SEQ ID NO: 3, it does not fall into either the E. tarda typical strain or the atypical strain. The immunogenicity of edwardierosis in fish or phlogopaceae may be low. On the other hand, when PCR is performed using the primers of SEQ ID NO: 4 and SEQ ID NO: 5, if the sequence in the upstream region of the cilia gene group does not amplify, it may be an atypical strain of E. tarda. Or it may be highly pathogenic to phlogid fish. Therefore, by performing PCR using the primers of SEQ ID NOs: 2 to 5, a strain that has immunogenicity and is less pathogenic or non-pathogenic to Thai fishes or phlogid fishes is appropriately selected. it can.

本発明では、弱毒化又は不活化したE. tarda定型株の菌体を用いることも可能であるが、E. tarda定型株の生菌を含有させたものが最も好適である。E. tarda定型株の生菌を含有することにより、弱毒株の樹立、製剤の製造・調製など、弱毒化又は不活化する際に生じる労力を低減でき、不活化剤などの薬剤のコストを低減できる。また、弱毒化又は不活化による免疫原性の低下を防止でき、ワクチンとしての効果を高く、若しくは接種量を少なくできる。その他、不活化処理の際に用いる薬剤が魚体へ残留する懸念を排除できる。   In the present invention, it is possible to use attenuated or inactivated cells of the E. tarda standard strain, but those containing live E. tarda standard strain are most preferable. By containing viable bacteria of E. tarda standard strains, it is possible to reduce the labor required for the attenuation or inactivation, such as the establishment of attenuated strains, the manufacture and preparation of pharmaceuticals, and the cost of drugs such as inactivating agents it can. Moreover, the fall of the immunogenicity by attenuation or inactivation can be prevented, the effect as a vaccine is high, or an inoculation amount can be decreased. In addition, it is possible to eliminate the concern that the chemical used in the inactivation treatment remains in the fish body.

タイ科魚類又はアジ科魚類に対して低病原性又は非病原性であり、かつタイ科魚類又はアジ科魚類のエドワジエラ症に対して免疫原性を有するE. tarda定型株として、例えば、Edwardsiella tarda HET-1株 (受託番号NITE BP-01759、寄託機関:独立行政法人製品評価技術基盤機構特許微生物寄託センター、所在地:日本国千葉県木更津市かずさ鎌足2-5-8、受託日:2013年11月28日、日本において採取された菌株)を用いてもよい。   For example, Edwardsiella tarda is a typical E. tarda strain that is hypopathogenic or non-pathogenic to Thai fish or phlogid fish, and is immunogenic for edwardiosis of Thai fish or phlogid fish. HET-1 strain (Accession number NITE BP-01759, Depositary: National Institute for Product Evaluation Technology Patent Microorganisms Deposit Center, Location: 2-5-8 Kazusa Kamashi, Kisarazu, Chiba, Japan, Date of accession: 2013 A strain collected in Japan on November 28) may be used.

HET-1株の形態的性状としては、通常のE. tarda定型株の形態と一致し、グラム陰性通性嫌気性桿菌の形状を示す。周毛性鞭毛を持ち、運動性を有し、芽胞形成はない。培養的性質としては、SS寒天培地、DHL寒天培地などで硫化水素により中心部が黒色の菌集落を形成する。また、乳糖を分解しないため、マッコンキー培地で無色のコロニーを形成する。至適培養温度は25〜30℃である。   The morphological characteristics of the HET-1 strain are consistent with those of the normal E. tarda standard strain and show the shape of a Gram-negative facultative anaerobic gonococcus. Has periflagellate flagella, motility, no spore formation. As a culture property, a black colony is formed by hydrogen sulfide in SS agar medium, DHL agar medium, or the like. Moreover, since lactose is not decomposed, a colorless colony is formed in the MacConkey medium. The optimum culture temperature is 25-30 ° C.

HET-1株の生化学的性状を以下に示す。
(1)グラム染色性:グラム陰性
(2)カタラーゼ:+
(3)チトクロームオキシダーゼ:−
(4)ブドウ糖分解性:発酵
(5)TSI斜面培地による糖発酵性:斜面で乳糖及び白糖のどちらも分解せず、高層でブドウ糖発酵及びガス産生、硫化水素産生あり。
(6)β-ガラクトシダーゼ活性:−
(7)アルギニンジヒドロラーゼ:−
(8)リジンデカルボキシラーゼ:+
(9)オルニチンデカルボキシラーゼ:+
(10)クエン酸利用性:−
(11)硫化水素産生:+
(12)ウレアーゼ:−
(13)トリプトファンデアミナーゼ:−
(14)インドール産生:+
(15)アセトイン産生:−
(16)ゼラチナーゼ:−
(17)グルコースの利用:+
(18)マンニトールの利用:−
(19)イソシトール1の利用:−
(20)ソルビトールの利用:−
(21)ラムノースの利用:−
(22)サッカロースの利用:−
(23)メリビオースの利用:−
(24)アミグダリンの利用:−
(25)アラビノースの利用:−
(26)二酸化窒素の産生:+
(27)窒素ガスへの還元:−
(28)マッコンキー培地での発育:+
The biochemical properties of HET-1 strain are shown below.
(1) Gram staining: Gram negative
(2) Catalase: +
(3) Cytochrome oxidase: −
(4) Glucose degradability: fermentation
(5) Sugar fermentability with TSI slope medium: Lactose and white sugar are not decomposed on the slope, and glucose fermentation, gas production, and hydrogen sulfide production are observed in the upper layer.
(6) β-galactosidase activity: −
(7) Arginine dihydrolase:-
(8) Lysine decarboxylase: +
(9) Ornithine decarboxylase: +
(10) Citric acid availability:-
(11) Hydrogen sulfide production: +
(12) Urease:-
(13) Tryptophan deaminase: −
(14) Indole production: +
(15) Acetoin production: −
(16) Gelatinase: −
(17) Use of glucose: +
(18) Use of mannitol:-
(19) Use of isositol 1:
(20) Use of sorbitol:-
(21) Use of rhamnose:-
(22) Use of sucrose:
(23) Use of melibiose:-
(24) Use of amygdalin:-
(25) Use of arabinose: −
(26) Nitrogen dioxide production: +
(27) Reduction to nitrogen gas:-
(28) Growth on MacConkey medium: +

本発明に係る生ワクチン製剤では、目的・用途などに応じて、緩衝剤、等張化剤、防腐剤、抗菌剤、抗酸化剤などを適宜添加してもよい。   In the live vaccine preparation according to the present invention, a buffer, an isotonic agent, an antiseptic, an antibacterial agent, an antioxidant and the like may be appropriately added according to the purpose and use.

緩衝剤の好適な例として、例えば、リン酸塩、酢酸塩、炭酸塩、クエン酸塩等の緩衝液などを用いることができる。   As a suitable example of a buffering agent, buffer solutions, such as a phosphate, acetate, carbonate, citrate, etc. can be used, for example.

等張化剤の好適な例として、例えば、塩化ナトリウム、グリセリン、D-マンニトールなどを用いることができる。   As a suitable example of an isotonizing agent, sodium chloride, glycerin, D-mannitol etc. can be used, for example.

防腐を目的とした薬剤の好適な例として、例えば、チメロサール、パラオキシ安息香酸エステル類、フェノキシエタノール、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸、その他、各種防腐剤、抗生物質、合成抗菌剤などを用いることができる。   Suitable examples of antiseptic agents include, for example, thimerosal, paraoxybenzoates, phenoxyethanol, chlorobutanol, benzyl alcohol, phenethyl alcohol, dehydroacetic acid, sorbic acid, other antiseptics, antibiotics, and synthetic antibacterials. An agent or the like can be used.

抗酸化剤の好適な例として、例えば、亜硫酸塩、アスコルビン酸などを用いることができる。   As a suitable example of an antioxidant, a sulfite, ascorbic acid, etc. can be used, for example.

その他、この薬剤には、補助成分、例えば、保存・効能の助剤となる光吸収色素(リボフラビン、アデニン、アデノシンなど)、安定化のためのキレート剤・還元剤(ビタミンC、クエン酸など)、炭水化物(ソルビトール、ラクトース、マンニトール、デンプン、シュークロース、グルコース、デキストランなど)、カゼイン消化物、各種ビタミンなどを含有させてもよい。   In addition, this drug includes auxiliary ingredients such as light-absorbing dyes (riboflavin, adenine, adenosine, etc.) that serve as storage and efficacy aids, and chelating / reducing agents (vitamin C, citric acid, etc.) for stabilization. , Carbohydrates (sorbitol, lactose, mannitol, starch, sucrose, glucose, dextran, etc.), casein digests, various vitamins, and the like may be included.

ワクチン製剤の剤型などについては、公知のものを採用でき、特に限定されない。例えば、液体製剤として用いてもよいし、凍結乾燥などの処置の後、餌などに混入させて経口投与したり、凍結乾燥したものを使用時に水を加えて溶解し、浸漬法・注射法・経口法・スプレー法・経肛門法などにより接種したりしてもよい。   About the dosage form etc. of a vaccine formulation, a well-known thing can be employ | adopted and it does not specifically limit. For example, it may be used as a liquid formulation, or after treatment such as lyophilization, it is mixed with food and administered orally, or lyophilized is dissolved by adding water at the time of use. You may inoculate by oral method, spray method, transanal method.

<本発明に係るエドワジエラ症予防方法について>
本発明は、上述の生ワクチン製剤をタイ科魚類又はアジ科魚類に接種する手順を少なくとも含む、タイ科魚類又はアジ科魚類のエドワジエラ症予防方法をすべて包含する。
<Regarding the method for preventing Edwardsiellosis according to the invention>
The present invention includes all methods for preventing edwardiellosis of Thai fishes or phlogid fishes, including at least a procedure for inoculating Thai fishes or phlogid fishes with the above live vaccine preparation.

上述の通り、本発明に係る生ワクチン製剤は、タイ科魚類又はアジ科魚類に対して低病原性又は非病原性であり、かつ強い免疫原性を有するため、タイ科魚類又はアジ科魚類のエドワジエラ症の予防に有効である。   As described above, the live vaccine preparation according to the present invention has low pathogenicity or non-pathogenicity against Thai fish or phlogid fish and has strong immunogenicity. It is effective for the prevention of Edwardsiellosis.

適用対象には、E. tarda非定型株(biogroup 1)感受性の魚類、即ち、E. tarda非定型株に感染することによりエドワジエラ症を発症する魚類がすべて包含される。例えば、マダイ、チダイ、クロダイなどのタイ科魚類、ブリ属魚類(ブリ、カンパチ、ヒラマサなど)、マアジ属魚類(マアジなど)などのアジ科魚類などが適用対象に包含される。   Applicable objects include all fish susceptible to E. tarda atypical strains (biogroup 1), that is, fish that develops Ewadierosis due to infection with E. tarda atypical strains. For example, Thai fishes such as red sea bream, red sea bream, and black sea bream, and genus fishes such as yellowtail fish (such as yellowtail, amberjack, and kingfish), and horse mackerel fish (such as sea bream) are included in the application target.

本発明に係る生ワクチン製剤の接種方法として、例えば、注射法、浸漬法、経口法、スプレー法、経肛門法などが挙げられる。   Examples of the method for inoculating the live vaccine preparation according to the present invention include an injection method, a dipping method, an oral method, a spray method, and a transanal method.

注射法、経口法、スプレー法、又は経肛門法による場合、例えば、注射法、経口法、スプレー法、又は経肛門法により、一回当たり、101〜107CFU/尾を投与することが好適であり、103〜106CFU/尾を投与することがより好適であり、103〜105CFU/尾を投与することがもっとも好適である。 In the case of injection method, oral method, spray method or transanal method, for example, 10 1 to 10 7 CFU / tail may be administered at a time by injection method, oral method, spray method or transanal method. It is preferred to administer 10 3 to 10 6 CFU / tail, and most preferred to administer 10 3 to 10 5 CFU / tail.

浸漬法による場合、例えば、浸漬法により、一回当たり、103〜108CFU/mLのワクチン液に浸漬することが好適であり、103〜107CFU/mLのワクチン液に浸漬することがより好適であり、103〜106CFU/mLのワクチン液に浸漬することがもっとも好適である(使用時の濃度)。浸漬する時間については、例えば、1〜120分間浸漬することが好適であり、1〜90分間浸漬することがより好適であり、1〜60分間浸漬することが最も好適である。 In the case of the immersion method, for example, it is preferable to immerse in a vaccine solution of 10 3 to 10 8 CFU / mL at a time by the immersion method, and to immerse in a vaccine solution of 10 3 to 10 7 CFU / mL. Is more preferable, and it is most preferable to immerse in a vaccine solution of 10 3 to 10 6 CFU / mL (concentration at the time of use). About immersion time, for example, it is preferable to immerse for 1 to 120 minutes, it is more preferable to immerse for 1 to 90 minutes, and it is most preferable to immerse for 1 to 60 minutes.

このうち、注射法による腹腔内投与が、感染予防効果が高く、免疫持続期間が長いため、最も好適である。   Of these, intraperitoneal administration by the injection method is most preferred because of its high infection prevention effect and long immunity duration.

ワクチン製剤の接種回数は、その作用が持続する限り1回でよいが、対象魚類の大きさ、ワクチン効果の度合いなどに応じて、1〜60日間隔で複数回接種してもよい。その他、複数の接種方法を適宜組み合わせて、対象魚類にワクチン製剤を接種してもよい。   The number of inoculations of the vaccine preparation may be one as long as the action continues, but it may be inoculated several times at intervals of 1 to 60 days depending on the size of the target fish, the degree of vaccine effect, and the like. In addition, the target fish may be inoculated with the vaccine preparation by appropriately combining a plurality of inoculation methods.

本発明は、例えば、種苗生産施設など、自然環境中の海域から隔離された区域内で適用してもよい。これにより、海域がこの生菌で汚染される懸念を解消でき、自然環境中に存在するタイ科魚類又はアジ科魚類以外の魚類がこの生菌に感染する危険性を抑止できる。   The present invention may be applied in an area isolated from the sea area in the natural environment, such as a seedling production facility. Thereby, the concern that the sea area is contaminated with the live bacteria can be solved, and the risk that fish other than the Thai fish or the horse mackerel fish existing in the natural environment can be suppressed.

実施例1では、ヒラメ由来のE. tarda(定型株)のマダイに対する病原性を検討した。   In Example 1, pathogenicity of Japanese flounder-derived E. tarda (typical strain) against red sea bream was examined.

マダイ(n=25〜27)に、ヒラメから分離されたE. tardaの定型株(HET-1株を含む計7株)を、104〜105CFU/尾、腹腔内注射投与した。その結果、いずれの株を投与した場合でも、感染の13日後において、ほとんど死亡例は観察されなかった。 Red sea bream (n = 25 to 27) was administered with 10 4 to 10 5 CFU / tail, intraperitoneal injections of standard E. tarda strains isolated from Japanese flounder (7 strains including HET-1 strain). As a result, in any case of administration of any strain, almost no deaths were observed 13 days after infection.

また、マダイ(n=25〜27)に、ヒラメから分離されたE. tardaの定型株(HET-1株を含む計7株)を、105〜106CFU/mLの濃度で浸漬感染させた。その結果、腹腔内注射投与の場合と同様、いずれの株を感染させた場合でも、感染の14日後において、ほとんど死亡例は観察されなかった。 Also, red sea bream (n = 25-27) was immersed and infected with E. tarda standard strains (total 7 including HET-1 strain) isolated from Japanese flounder at a concentration of 10 5 to 10 6 CFU / mL. It was. As a result, as in the case of intraperitoneal injection administration, almost no deaths were observed 14 days after infection in any strain.

その他、マダイ(n=25〜27)に、ヒラメから分離されたE. tardaの定型株(HET-1株を含む計7株)を、106〜107CFU/尾と高用量で腹腔内注射投与した。その結果、いずれの株を投与した場合においても、感染の9日後において、累積死亡率が80〜100%であった。死亡した個体のほとんどは投与後2日以内に死亡した。 In addition, red sea bream (n = 25-27), E. tarda typical strains (total 7 including HET-1) isolated from Japanese flounder were injected intraperitoneally at a high dose of 10 6 to 10 7 CFU / tail. It was administered by injection. As a result, when any strain was administered, the cumulative mortality rate was 80 to 100% 9 days after infection. Most of the dead individuals died within 2 days after administration.

このように、104〜105CFU/尾の用量での腹腔内注射投与、若しくは105〜106CFU/mLの濃度での浸漬感染では、ほとんど死亡例は観察されなかった。また、高用量での腹腔内注射投与についても、ほとんどが投与後2日以内に死亡しているため、大量の菌体が体内に投与されたことによる敗血症性ショック死であると推測される。従って、これらの結果は、ヒラメ由来の定型株のE. tardaが、マダイに対しては低病原性であることを示唆する。 Thus, almost no deaths were observed in intraperitoneal injection at a dose of 10 4 to 10 5 CFU / tail or immersion infection at a concentration of 10 5 to 10 6 CFU / mL. In addition, most intraperitoneal injections at high doses have died within 2 days after administration, so it is estimated that the death was due to septic shock caused by the administration of a large amount of cells into the body. Therefore, these results suggest that the common strain E. tarda derived from Japanese flounder is less pathogenic to red sea bream.

実施例2では、マダイに対して低病原性であるヒラメ由来E. tardaが、マダイのエドワジエラ症に対し、ワクチンとしての効果を有するか検討した。   In Example 2, it was examined whether E. tarda derived from Japanese flounder, which has low pathogenicity against red sea bream, has an effect as a vaccine against red sea bream edodesia.

マダイ(n=20)に、ヒラメから分離されたE. tardaのHET-1株の生菌を1.1×104CFU/尾、筋肉内注射投与し、免疫した。また、比較例として、マダイ(n=20)に、マダイから分離されたE. tardaのUT-1株の不活化菌液を5.5×108CFU/尾、筋肉内注射投与し、免疫した。その他、無投与群として、マダイ(n=20)を準備した。 Red sea bream (n = 20) was immunized by intramuscular injection of 1.1 × 10 4 CFU / tail of E. tarda HET-1 strain isolated from Japanese flounder. Further, as a comparative example, red sea bream (n = 20) was immunized by injecting 5.5 × 10 8 CFU / tail intramuscularly with an inactivated bacterial solution of E. tarda UT-1 strain isolated from red sea bream. In addition, red sea bream (n = 20) was prepared as a non-administration group.

免疫から14日後、マダイ由来E. tardaのETE1005株を4.4×104CFU/尾、各個体に腹腔内注射投与し、攻撃した。 Fourteen days after immunization, E. tarda ETE1005 strain derived from red sea bream was administered by intraperitoneal injection to each individual at 4.4 × 10 4 CFU / tail and challenged.

マダイ由来E. tardaで攻撃した日から30日間観察を続け、生残率を求めた。   Observation was continued for 30 days from the day of attack with red sea bream E. tarda, and the survival rate was calculated.

結果を図1に示す。図1は、ヒラメから分離されたE. tardaのHET-1株で免疫した後、マダイ由来E. tarda株で腹腔内注射攻撃した場合における生残率を示すグラフである。図中、横軸はマダイ由来E. tarda株で攻撃した日からの日数を、縦軸は生残率(%)を、それぞれ表す。図中、「HET-1(生)」はヒラメから分離されたE. tardaのHET-1株の生菌で免疫した場合の結果を、「UT-1(不活化)」はマダイから分離されたE. tardaのUT-1株のホルマリン不活化菌液で免疫した場合の結果を、「対照群」は無投与群(免疫していない群)の結果を、それぞれ表す。なお、図1の結果では、各群相互において、Fisher直接確率計算法の片側検定(p<0.025)による統計学的有意差が認められた。   The results are shown in Figure 1. FIG. 1 is a graph showing the survival rate in the case of immunization with E. tarda HET-1 strain isolated from Japanese flounder followed by intraperitoneal injection challenge with red sea bream E. tarda strain. In the figure, the horizontal axis represents the number of days from the day of attack with the red sea bream E. tarda strain, and the vertical axis represents the survival rate (%). In the figure, “HET-1 (live)” is the result of immunization with live E. tarda HET-1 strain isolated from Japanese flounder, and “UT-1 (inactivated)” is isolated from red sea bream. The results of immunization with a formalin-inactivated bacterial solution of E. tarda UT-1 strain, and “control group” represent the results of the non-administered group (non-immunized group), respectively. In addition, in the result of FIG. 1, the statistical significance by the one-sided test (p <0.025) of Fisher direct probability calculation method was recognized between each group.

図1に示す通り、無投与群ではマダイ由来E. tardaによる攻撃に対する生残率が0%であったのに対し、ヒラメから分離されたE. tardaのHET-1株で免疫した群では、生残率が65.0%であり、高い免疫効果が認められた。また、マダイ由来E. tarda株の不活化菌液で免疫した場合と比較しても、少量で顕著に高い免疫効果が認められた。   As shown in Figure 1, in the non-administered group, the survival rate against attack by red sea bream E. tarda was 0%, whereas in the group immunized with E. tarda HET-1 strain isolated from Japanese flounder, The survival rate was 65.0%, and a high immune effect was recognized. In addition, a markedly high immunity effect was observed in a small amount even when immunized with an inactivated bacterial solution of red sea bream-derived E. tarda strain.

この結果は、ヒラメから分離されたE. tarda株の生菌が、マダイのエドワジエラ症の予防に有効であることを示す。   This result shows that the live E. tarda strain isolated from Japanese flounder is effective for the prevention of red sea bream edovadierosis.

実施例3では、ヒラメから分離されたE. tarda株で免疫した場合において、浸漬攻撃を行った場合における生残率を調べた。   In Example 3, when immunized with an E. tarda strain isolated from Japanese flounder, the survival rate in the case of immersion attack was examined.

マダイ(n=23)に、ヒラメから分離されたE. tardaのHET-1株の生菌を8.8×103CFU/尾、筋肉内注射投与し、免疫した。また、無投与群のマダイ(n=26)を別に準備した。 Red sea bream (n = 23) was immunized with 8.8 × 10 3 CFU / tail, intramuscular injection of E. tarda HET-1 strain isolated from Japanese flounder. In addition, red sea bream (n = 26) in the non-administration group was prepared separately.

免疫から14日後、マダイ由来E. tardaのETE1005株を2.6×105CFU/mL又は2.6×106CFU/mLの濃度に調製し、そこにマダイを浸漬させて攻撃した。 14 days after immunization, E. tarda ETE1005 strain derived from red sea bream was prepared at a concentration of 2.6 × 10 5 CFU / mL or 2.6 × 10 6 CFU / mL, and then red sea bream was immersed therein and attacked.

マダイ由来E. tardaで攻撃した日から30日間観察を続け、生残率を求めた。   Observation was continued for 30 days from the day of attack with red sea bream E. tarda, and the survival rate was calculated.

結果を図2A及び図2Bに示す。図2Aはヒラメから分離されたE. tardaのHET-1株で免疫した後、2.6×105CFU/mLの濃度で浸漬攻撃した場合における生残率を示すグラフ、図2Bは、同じく2.6×106CFU/mLの濃度で浸漬攻撃した場合における生残率を示すグラフである。図中、横軸はマダイ由来E. tarda株で攻撃した日からの日数を、縦軸は生残率(%)を、それぞれ表す。図中、「HET-1(生)」はヒラメから分離されたE. tardaのHET-1株で免疫した場合の結果を、「対照群」は無投与群(免疫していない群)の結果を、それぞれ表す。なお、図2A及び図2Bの結果では、各群相互において、Fisher直接確率計算法の片側検定(p<0.025)による統計学的有意差が認められた。 The results are shown in FIGS. 2A and 2B. FIG. 2A is a graph showing the survival rate in the case of immersing and attacking at a concentration of 2.6 × 10 5 CFU / mL after immunization with E. tarda HET-1 strain isolated from Japanese flounder, FIG. 2B is also 2.6 × It is a graph which shows the survival rate at the time of immersion attack at the density | concentration of 10 < 6 > CFU / mL. In the figure, the horizontal axis represents the number of days from the day of attack with the red sea bream E. tarda strain, and the vertical axis represents the survival rate (%). In the figure, “HET-1 (live)” is the result of immunization with E. tarda HET-1 strain isolated from Japanese flounder, and “control group” is the result of non-administration group (non-immunized group). Respectively. In the results of FIGS. 2A and 2B, a statistically significant difference was found between the groups by the one-sided test (p <0.025) of the Fisher direct probability calculation method.

図2A及び図2Bに示す通り、マダイ由来E. tarda株による浸漬攻撃を行った場合でも、ヒラメから分離されたE. tarda株で免疫した群では、無投与群と比較して顕著に生残率が高かった。   As shown in FIG. 2A and FIG. 2B, even in the case of immersion attack with red sea bream E. tarda strain, the group immunized with E. tarda strain isolated from Japanese flounder remarkably survived compared to the non-treated group. The rate was high.

一般に、浸漬攻撃は、通常の養殖環境で感染する場合と同等の条件で攻撃を試験することができるとともに、ワクチンとしての効果が高くないと良好な結果が得られない。それに対し、本実施例では、浸漬攻撃を行った場合でも、顕著に生残率が高かった。この結果は、ヒラメから分離されたE. tarda株が、マダイのエドワジエラ症用の生ワクチンとして高い効力を有することを示す。   In general, the immersion attack can be tested under the same conditions as in the case of infection in a normal aquaculture environment, and good results cannot be obtained unless the effect as a vaccine is high. On the other hand, in this example, even when immersion attack was performed, the survival rate was remarkably high. This result indicates that the E. tarda strain isolated from Japanese flounder has high efficacy as a live vaccine for red sea bream edodezieriosis.

実施例4では、ヒラメ由来E. tarda株の繊毛遺伝子群上流域の塩基配列を決定した。   In Example 4, the base sequence of the upstream region of the cilia gene group of the flounder-derived E. tarda strain was determined.

ヒラメ由来E. tarda株であるHET-1株をSCDb寒天培地に接種し、28℃で20時間培養した。1.5mLチューブに超純水1mLを入れ、寒天培地から供試菌株を1コロニー釣菌してその中に入れ、懸濁し、遠心処理後、上清を除去した。「InstaGene Matrix(BioRad社製)」を200μL加え、56℃で15分間加熱し、激しく混合し、100℃で8分間加熱し、激しく混合した後、遠心分離により集菌し、上清をDNA含有液として回収した。   The flounder-derived E. tarda strain HET-1 was inoculated on a SCDb agar medium and cultured at 28 ° C. for 20 hours. 1 mL of ultrapure water was put into a 1.5 mL tube, and 1 colony of the test strain was picked up from the agar medium, placed in it, suspended, centrifuged, and the supernatant was removed. Add 200 μL of “InstaGene Matrix (BioRad)”, heat at 56 ° C. for 15 minutes, mix vigorously, heat at 100 ° C. for 8 minutes, mix vigorously, collect by centrifugation, and collect supernatant with DNA It recovered as a liquid.

そのDNA含有液を鋳型とし、プライマーとして配列番号2の配列(フォワード)及び配列番号3(リバース)の配列を用いて、PCRにより、E. tarda株の繊毛遺伝子群上流域の配列を増幅した。「MinElute PCR Purification Kit(Qiagen社製)」を用いてそのPCR産物を精製し、「TOPO TA Cloning Kit for Sequencing(Invitrogen社製)」を用いてTAクローニングを行った。PCR産物のインサートが確認されたコロニーを再度釣菌し、LB液体培地5mLに接種し、37℃で16時間振とう培養した後、「QIAprep Spin Miniprep Kit(Qiagen社製)」を用いて培養菌液からプラスミドDNAを抽出した。抽出したプラスミドDNAについて、サイクルシーケンス法により、増幅部分(E. tarda株の繊毛遺伝子群上流域)の塩基配列を決定した。   Using the DNA-containing solution as a template and the sequences of SEQ ID NO: 2 (forward) and SEQ ID NO: 3 (reverse) as primers, the sequence of the upstream region of the cilia gene group of E. tarda strain was amplified by PCR. The PCR product was purified using “MinElute PCR Purification Kit (Qiagen)”, and TA cloning was performed using “TOPO TA Cloning Kit for Sequencing (Invitrogen)”. Colonies with confirmed PCR product inserts are picked again, inoculated into 5 mL of LB liquid medium, cultured at 37 ° C for 16 hours with shaking, and then cultured with "QIAprep Spin Miniprep Kit (Qiagen)". Plasmid DNA was extracted from the solution. For the extracted plasmid DNA, the base sequence of the amplified portion (upstream region of the cilia gene group of E. tarda strain) was determined by the cycle sequence method.

ヒラメ由来E. tarda株であるHET-1株の繊毛遺伝子群上流域の塩基配列を配列番号1に示す。HET-1株の繊毛遺伝子群上流域の塩基配列は、既知のヒラメ由来E. tarda株の当該領域の塩基配列と100%一致した。一方、マダイ由来E. tarda株であるUT-1株の当該領域の塩基配列と比較した結果、相同性は91.4%(775/848bp)であった。   SEQ ID NO: 1 shows the base sequence of the upstream region of the cilia gene group of HET-1 strain, which is an E. tarda strain derived from Japanese flounder. The base sequence of the upstream region of the ciliary gene group of the HET-1 strain was 100% identical with the base sequence of the region of the known flounder-derived E. tarda strain. On the other hand, the homology was 91.4% (775/848 bp) as a result of comparison with the nucleotide sequence of the region of the UT-1 strain, which was the E. tarda strain derived from red sea bream.

実施例5では、ヒラメ由来E. tarda株のDNAを鋳型にし、マダイ由来E. tarda株特異的プライマーを用いてPCRを行った場合に、増幅が見られるか検討した。   In Example 5, it was examined whether amplification was observed when PCR was performed using DNA of flounder-derived E. tarda strain as a template and using red sea bream-derived E. tarda strain-specific primers.

ヒラメ由来E. tarda株の繊毛遺伝子群上流域の塩基配列を含むDNAとして、実施例4で調製したHET-1株由来のプラスミドDNAを鋳型とし、プライマーとして配列番号4の配列(フォワード)及び配列番号5(リバース)の配列を用いて、PCRにより、E. tarda株の繊毛遺伝子群上流域の配列の増幅を試みた。同時に、陽性対照として、マダイ由来E. tarda株であるUT-1株の繊毛遺伝子群上流域の塩基配列を含むDNAを実施例4と同じ方法で調製し、そのDNAを鋳型として、同じプライマーを用いて、PCRにより、E. tarda株の繊毛遺伝子群上流域の配列を増幅した。両PCR産物をアガロースゲル電気泳動した後、エチジウムブロマイド染色し、E. tarda株の繊毛遺伝子群上流域の配列の増幅の有無を検出した。   As DNA containing the base sequence of the ciliary gene group upstream region of the flounder E. tarda strain, the plasmid DNA derived from the HET-1 strain prepared in Example 4 was used as a template, and the sequence of SEQ ID NO: 4 (forward) and sequence as primers An attempt was made to amplify the sequence in the upstream region of the cilia gene group of E. tarda strain by PCR using the sequence of No. 5 (reverse). At the same time, as a positive control, a DNA containing the base sequence of the ciliary gene group upstream region of the UT-1 strain, a red sea bream-derived E. tarda strain, was prepared by the same method as in Example 4, and the DNA was used as a template and the same primer was used. The sequence in the upstream region of the cilia gene group of E. tarda strain was amplified by PCR. Both PCR products were subjected to agarose gel electrophoresis and then stained with ethidium bromide to detect the presence or absence of amplification of the upstream region of the cilia gene group of the E. tarda strain.

その結果、配列番号4及び配列番号5のプライマーを用いてPCRを行った場合、陽性対照であるUT-1株の繊毛遺伝子群上流域の増幅は検出されたのに対し、HET-1株の繊毛遺伝子群上流域の増幅は検出されなかった。   As a result, when PCR was performed using the primers of SEQ ID NO: 4 and SEQ ID NO: 5, amplification of the upstream region of the cilia gene group of the positive control UT-1 strain was detected, whereas that of the HET-1 strain No amplification in the upstream region of the cilia gene group was detected.

この結果は、マダイに対する病原性が低く、かつ免疫原性が高いE. tarda株が、配列番号2及び配列番号3のプライマーを用いてPCRを行うと繊毛遺伝子群上流域の配列が増幅し、配列番号4及び配列番号5のプライマーを用いてPCRを行うと繊毛遺伝子群上流域の配列が増幅しないものであること、即ち、配列番号2及び配列番号3のプライマーを用いてPCRを行うと繊毛遺伝子群上流域の配列が増幅し、配列番号4及び配列番号5のプライマーを用いてPCRを行うと繊毛遺伝子群上流域の配列が増幅しないE. tarda株が、マダイのエドワジエラ症に対する生ワクチンに適用可能であることを示唆する。   As a result, when the E. tarda strain having low pathogenicity against red sea bream and having high immunogenicity is subjected to PCR using the primers of SEQ ID NO: 2 and SEQ ID NO: 3, the sequence in the upstream region of the cilia gene group is amplified, When PCR is performed using the primers of SEQ ID NO: 4 and SEQ ID NO: 5, the sequence in the upstream region of the cilia gene group is not amplified, that is, when PCR is performed using the primers of SEQ ID NO: 2 and SEQ ID NO: 3, cilia The sequence of the upstream region of the gene group is amplified, and when PCR is performed using the primers of SEQ ID NO: 4 and SEQ ID NO: 5, the sequence of the upstream region of the cilia gene group does not amplify. Suggest that it is applicable.

実施例2において、ヒラメから分離されたE. tardaのHET-1株の生菌で免疫した後、マダイ由来E. tarda株で腹腔内注射攻撃した場合における生残率を示すグラフ。The graph which shows the survival rate at the time of intraperitoneal injection attack with the red sea bream origin E.tarda strain | stump | stock after immunizing with the live E. tarda strain | stump | stock HET-1 isolate | separated from Japanese flounder in Example 2. FIG. 実施例3において、ヒラメから分離されたE. tardaのHET-1株の生菌で免疫した後、2.6×105CFU/mLの濃度で浸漬攻撃した場合における生残率を示すグラフ。The graph which shows the survival rate at the time of carrying out immersion attack at the density | concentration of 2.6 * 10 < 5 > CFU / mL after immunizing with the live microbe of E. tarda HET-1 isolate | separated from the Japanese flounder in Example 3. FIG. 実施例3において、ヒラメから分離されたE. tardaのHET-1株の生菌で免疫した後、2.6×106CFU/mLの濃度で浸漬攻撃した場合における生残率を示すグラフ。The graph which shows the survival rate at the time of carrying out immersion attack at the density | concentration of 2.6 * 10 < 6 > CFU / mL after immunizing with the living microbe of E. tarda HET-1 isolate | separated in Example 3.

Claims (6)

タイ科魚類又はアジ科魚類のエドワジエラ症に対するワクチン製剤であって、
Edwardsiella tarda定型株の生菌を含有する生ワクチン製剤。
A vaccine preparation for edwardiadiosis of Thai fish or Carp family,
A live vaccine preparation containing viable bacteria of Edwardsiella tarda standard strain.
前記Edwardsiella tarda定型株の生菌が、タイ科魚類又はアジ科魚類に対して低病原性又は非病原性である請求項1記載の生ワクチン製剤。   2. The live vaccine preparation according to claim 1, wherein the live bacteria of the Edwardsiella tarda standard strain is low pathogenic or non-pathogenic to Thai fishes or Carpidae fishes. 前記Edwardsiella tarda株のゲノムのうち繊毛遺伝子群上流域の配列に、配列番号1に記載された配列又は該配列と92%以上の相同性を有する配列を含む請求項1又は請求項2記載の生ワクチン製剤。   The live according to claim 1 or 2, wherein the sequence of the upstream region of the ciliary gene group in the genome of the Edwardsiella tarda strain includes the sequence described in SEQ ID NO: 1 or a sequence having 92% or more homology with the sequence. Vaccine formulation. 前記Edwardsiella tarda定型株が、Edwardsiella tarda HET-1株(受託番号NITE BP-01759)である請求項1〜3のいずれか一項記載の生ワクチン製剤。   The live vaccine preparation according to any one of claims 1 to 3, wherein the Edwardsiella tarda fixed strain is Edwardsiella tarda HET-1 strain (Accession No. NITE BP-01759). 注射法、経口法、スプレー法、又は経肛門法により、一回当たり、101〜107CFU/尾を投与するか、若しくは浸漬法により、一回当たり、103〜108CFU/mLのワクチン液に1〜120分間浸漬する請求項1〜4のいずれか一項記載の生ワクチン製剤。 Administer 10 1 to 10 7 CFU / tail at a time by injection, oral, spray, or transanal, or 10 3 to 10 8 CFU / mL at a time by immersion The live vaccine formulation according to any one of claims 1 to 4, which is immersed in a vaccine solution for 1 to 120 minutes. 請求項1〜5のいずれか一項記載の生ワクチン製剤をタイ科魚類又はアジ科魚類に接種する、タイ科魚類又はアジ科魚類のエドワジエラ症予防方法。   A method for preventing edwardiellosis of Thai fishes or phlogid fishes, wherein the live vaccine preparation according to any one of claims 1 to 5 is inoculated into Thai fishes or phlogid fishes.
JP2014007118A 2014-01-17 2014-01-17 Live vaccine preparation and method for preventing edovadierosis Active JP6252902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007118A JP6252902B2 (en) 2014-01-17 2014-01-17 Live vaccine preparation and method for preventing edovadierosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007118A JP6252902B2 (en) 2014-01-17 2014-01-17 Live vaccine preparation and method for preventing edovadierosis

Publications (2)

Publication Number Publication Date
JP2015134734A true JP2015134734A (en) 2015-07-27
JP6252902B2 JP6252902B2 (en) 2017-12-27

Family

ID=53766886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007118A Active JP6252902B2 (en) 2014-01-17 2014-01-17 Live vaccine preparation and method for preventing edovadierosis

Country Status (1)

Country Link
JP (1) JP6252902B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238505A (en) * 2006-03-08 2007-09-20 Nagasaki Univ Vaccine for fish, method for producing the same, and method for preventing fish from infectious disease
JP2008050300A (en) * 2006-08-24 2008-03-06 Kawasaki Mitaka Seiyaku Kk Vaccine for edwardsiellasis and streptococcosis of fish

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238505A (en) * 2006-03-08 2007-09-20 Nagasaki Univ Vaccine for fish, method for producing the same, and method for preventing fish from infectious disease
JP2008050300A (en) * 2006-08-24 2008-03-06 Kawasaki Mitaka Seiyaku Kk Vaccine for edwardsiellasis and streptococcosis of fish

Also Published As

Publication number Publication date
JP6252902B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
EP0555366B1 (en) Bacterial attenuation method and vaccine
CN1360594A (en) Attenuated microorganisms for treatment of infection
CN102271693B (en) Pharmaceutical composition to protect an animal against a disorder arising from an infection with a bacterium that belongs to the group of nocardioform actinomycetes
JP5745731B2 (en) Salmonella vaccine
CN102140430B (en) Mouse-typhus salmonella gene-deletion mutant strain without containing resistance marks, vaccine and application thereof
EP2424974B1 (en) Mutants of francisella tularensis and uses thereof
CN106906141B (en) Screening method of live aeromonas hydrophila vaccine strain
JP6252902B2 (en) Live vaccine preparation and method for preventing edovadierosis
JP4716542B2 (en) Live attenuated bacteria for use in vaccines
Marshall et al. Vaccination against piscirickettsiosis
CN101962625A (en) Salmonella choleraesuis gene deletion mutant without resistant marker and vaccine thereof
KR101717281B1 (en) Composite Vaccine Composition For Preventing Scuticociliatosis in Fish
JP4705573B2 (en) Live attenuated bacterial vaccine
Joh et al. Characterization of Yersinia ruckeri isolated from the farm-cultured eel Anguilla japonica in Korea
WO2024171316A1 (en) Inactivated vaccine preparation and infection prevention method
KR101976764B1 (en) Tenacibaculum maritimum virulence attenuation technique and live attenuated vaccine for preventing fish Tenacibaculosis disease
CN117305191B (en) Drug-resistant Edwardsiella tarda for killing turbot
JP2023080057A (en) Inactivated vaccine formulation and infection preventing method
KR101992455B1 (en) Tenacibaculum maritimum virulence attenuation technique and live attenuated vaccine for preventing fish Tenacibaculosis disease
CN104919036A (en) Edwardsiella tarda mutant strain and application thereof
KR101774863B1 (en) Salmonella enteritidis mutant strains hid2092 and hid2114 and pharmaceutical composition using the same
Kutu Biochemical and genetic characterization of bacteria isolated from diseased rainbow trout (Oncorhynchus mykiss) farmed in Lesotho and Mpumalanga province of South Africa
KR100436740B1 (en) Attenuated Strain of Salmonella gallinarum and vaccine composition for the prevention of Fowl typhoid comprising the same
CN114854654A (en) Salmonella enteritidis live vaccine
KR101797276B1 (en) Multiple mutated Salmonella Typhimurium and vaccine composition for prevention of food poisoning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171116

R150 Certificate of patent or registration of utility model

Ref document number: 6252902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250