Nothing Special   »   [go: up one dir, main page]

JP2015124093A - Aluminum molten metal resistant silicon nitride sintered compact, and method for producing the same - Google Patents

Aluminum molten metal resistant silicon nitride sintered compact, and method for producing the same Download PDF

Info

Publication number
JP2015124093A
JP2015124093A JP2013267234A JP2013267234A JP2015124093A JP 2015124093 A JP2015124093 A JP 2015124093A JP 2013267234 A JP2013267234 A JP 2013267234A JP 2013267234 A JP2013267234 A JP 2013267234A JP 2015124093 A JP2015124093 A JP 2015124093A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride sintered
residual stress
sintered body
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013267234A
Other languages
Japanese (ja)
Inventor
直幸 米久
Naoyuki Yonehisa
直幸 米久
光昭 他田
Mitsuaki Osada
光昭 他田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KONETSU KOGYO KK
Tokai Konetsu Kogyo Co Ltd
Original Assignee
TOKAI KONETSU KOGYO KK
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KONETSU KOGYO KK, Tokai Konetsu Kogyo Co Ltd filed Critical TOKAI KONETSU KOGYO KK
Priority to JP2013267234A priority Critical patent/JP2015124093A/en
Publication of JP2015124093A publication Critical patent/JP2015124093A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum molten metal resistant silicon nitride sintered compact in which initial cracks are hard to be generated.SOLUTION: Provided is a tubular or box-shaped silicon nitride sintered compact used as a member for aluminum molten metal, the silicon nitride sintered compact is sintered with the total addition amount of the silicon nitride sintered compact as below 18 wt.%, and further, the difference between the residual stress of the outer surface of the sintered compact and the residual stress of the inner surface is controlled to 50 MPa or lower, and also, the absolute value of the residual stress is controlled to 100 MPa or lower.

Description

本発明は、アルミニウム溶湯用部材として用いる耐アルミニウム溶湯用窒化けい素焼結体およびその製造方法に関する。   The present invention relates to a silicon nitride sintered body for molten aluminum resistance used as a member for molten aluminum and a method for producing the same.

窒化けい素焼結体は、耐食性、機械的特性、耐熱衝撃性、耐磨耗性などに優れているため、金属溶湯用部材、エンジン部品、切削工具などの産業用部品として広い分野で使用されている。特に溶融アルミニウムに曝されるアルミニウム溶湯用部材として、熱電対保護管、アルミニウム溶湯を加熱するためのヒーターチューブ、アルミニウム溶湯を鋳型に供給するためのストーク、アルミニウム溶湯をダイキャストスリーブへ注入するためのラドルなど、管状または箱状のものが自動車産業分野において利用されている。   Silicon nitride sintered bodies are excellent in corrosion resistance, mechanical properties, thermal shock resistance, wear resistance, etc., so they are used in a wide range of industrial parts such as metal melt parts, engine parts, and cutting tools. Yes. In particular, as a member for molten aluminum exposed to molten aluminum, a thermocouple protection tube, a heater tube for heating molten aluminum, stalk for supplying molten aluminum to a mold, and pouring molten aluminum into a die-cast sleeve Tubular or box-like things such as ladle are used in the automobile industry.

このような部材、部品として使用する窒化けい素焼結体の高強度高靭性化や耐磨耗性を高めるため、高融点の結晶相を生成する焼結助剤の使用や柱状β型窒化けい素の添加、ジルコニア、ハフニアなどの第3成分の添加などが試みられ、焼結した後、再加熱、急冷して残留応力を高める方法など、焼結後の残留応力を高める種々の方法も提案されている。   In order to increase the strength, toughness and wear resistance of the silicon nitride sintered body used as such a member or part, use of a sintering aid that produces a crystalline phase with a high melting point or columnar β-type silicon nitride Various methods for increasing the residual stress after sintering have been proposed, such as the addition of a third component such as zirconia and hafnia, and the method of increasing the residual stress after sintering and reheating and quenching. ing.

また、残留応力を小さくして窒化けい素焼結体の組織内の結晶粒の異常成長を防止して強度向上を図る手法、アルミニウム溶湯部材として使用するための窒化けい素焼結体において、繰り返し使用に伴うクラックの発生を防止し、アルミニウム溶湯との濡れ角を大きくするための表面構造の提案もなされている。   In addition, a method for improving the strength by reducing the residual stress to prevent abnormal growth of crystal grains in the structure of the silicon nitride sintered body, and the silicon nitride sintered body for use as a molten aluminum member are repeatedly used. A surface structure has also been proposed to prevent the occurrence of cracks and increase the wetting angle with the molten aluminum.

特開平6−305834号公報Japanese Patent Laid-Open No. 6-305834 特開2013−75796号公報JP 2013-75796 A 特開平08−319166号公報JP-A-08-319166 特開2005−179176号公報JP 2005-179176 A 特開2005−213081号公報JP 2005-213081 A 特開平11−180773号公報Japanese Patent Laid-Open No. 11-180773

上記の提案のうち、焼結体に圧縮残留応力を残すことは強度と破壊靱性を高める上で有効な方法であるが、窒化けい素焼結体の形状が管状または箱状の場合、外表面と内表面の残留応力が均等でない場合があり、これに起因して割れが生じるという問題がある。   Of the above proposals, leaving compressive residual stress in the sintered body is an effective method for increasing the strength and fracture toughness. However, if the shape of the silicon nitride sintered body is tubular or box-shaped, the outer surface There is a case where the residual stress on the inner surface is not uniform, and there is a problem that cracks occur due to this.

例えば、ヒーターチューブの場合、内表面は1200〜1400℃のヒーターから受熱し続け、外表面は680℃程度のアルミニウム溶湯により冷却され続けるため、内表面と外表面の温度差が200℃以上にもなる。ヒーターチューブは、加熱により熱膨張することによって残留応力が緩和されると共に、内表面と外表面の温度差による熱膨張差から、内表面と外表面の残留応力との差が大きくなるため、使用開始直後や数回の使用で破損する、いわゆる初期割れが発生することがある。   For example, in the case of a heater tube, the inner surface continues to receive heat from a heater at 1200 to 1400 ° C, and the outer surface continues to be cooled by molten aluminum at about 680 ° C, so the temperature difference between the inner surface and the outer surface is 200 ° C or more. Become. The heater tube is used because the residual stress is relaxed by thermal expansion due to heating, and the difference between the residual stress on the inner surface and the outer surface is increased due to the difference in thermal expansion due to the temperature difference between the inner surface and the outer surface. There may be a so-called initial crack that breaks immediately after starting or after several uses.

本発明は、アルミニウム溶湯用部材として用いる形状が管状または箱状の窒化けい素焼結体の初期割れを防止するために、外表面と内表面の残留応力と初期割れ発生との関係について試験、検討を行った結果としてなされたものであり、その目的は、初期割れが発生し難い耐アルミニウム溶湯用窒化けい素焼結体およびその製造方法を提供することにある。   In order to prevent initial cracking of a silicon nitride sintered body having a tubular or box shape used as a member for molten aluminum, the present invention tests and examines the relationship between residual stress on the outer surface and inner surface and occurrence of initial cracking. The object of the present invention is to provide a silicon nitride sintered body for molten aluminum resistance that is less prone to initial cracking and a method for producing the same.

上記の目的を達成するための請求項1による耐アルミニウム溶湯用窒化けい素焼結体は、アルミニウム溶湯用部材として用いる管状または箱状の窒化けい素焼結体であって、該窒化けい素焼結体は焼結助剤の総添加量を18重量%未満として焼結されたものであり、焼結体の外表面の残留応力と内表面の残留応力の差が50MPaより小さく且つ残留応力の絶対値が100MPa以下であることを特徴とする。   To achieve the above object, a silicon nitride sintered body for molten aluminum resistance according to claim 1 is a tubular or box-shaped silicon nitride sintered body used as a member for molten aluminum, and the silicon nitride sintered body is The sintered additive was sintered with a total addition amount of less than 18% by weight, the difference between the residual stress on the outer surface of the sintered body and the residual stress on the inner surface was less than 50 MPa, and the absolute value of the residual stress was It is 100 MPa or less.

請求項2による耐アルミニウム溶湯用窒化けい素焼結体の製造方法は、請求項1記載の窒化けい素焼結体を製造する方法であって、常法に従って焼結した後、焼結後の冷却過程において、窒素ガス雰囲気の下で、700〜1150℃の温度域に保持する処理を行うことを特徴とする。   A method for manufacturing a silicon nitride sintered body for resistance to molten aluminum according to claim 2 is a method for manufacturing the silicon nitride sintered body according to claim 1, wherein the cooling process is performed after sintering according to a conventional method. The method is characterized in that a treatment is performed in a temperature range of 700 to 1150 ° C. under a nitrogen gas atmosphere.

本発明によれば、アルミニウム溶湯用部材として用いる管状または箱状の窒化けい素焼結体であって、外表面と内表面の残留応力が少なく、初期割れが発生し難い耐アルミニウム溶湯用窒化けい素焼結体およびその製造方法が提供される。   According to the present invention, a tubular or box-shaped silicon nitride sintered body used as a member for molten aluminum, the residual stress on the outer surface and the inner surface is small, and initial cracking is difficult to occur. A ligation and a method for producing the same are provided.

本発明による耐アルミニウム溶湯用窒化けい素焼結体は、アルミニウム溶湯(アルミニウム合金溶湯を含む)に浸漬して用いることができる形状が管状または箱状の窒化けい素焼結体であり、外表面の残留応力と内表面の残留応力の差が50MPaより小さく且つ残留応力の絶対値が100MPa以下であることを特徴とする。   The silicon nitride sintered body for resistance to molten aluminum according to the present invention is a tubular or box-shaped silicon nitride sintered body that can be used by being immersed in molten aluminum (including molten aluminum alloy), and has a residual outer surface. The difference between the stress and the residual stress on the inner surface is smaller than 50 MPa, and the absolute value of the residual stress is 100 MPa or less.

管状または箱状の焼結体の外表面の残留応力と内表面の残留応力の差が50MPa以上では、使用の初期に割れが生じ易くなる。外表面の残留応力と内表面の残留応力の絶対値はいずれも100MPa以下が好ましく、いずれかの絶対値が100MPaを超えると初期割れが生じ易くなる。   When the difference between the residual stress on the outer surface of the tubular or box-shaped sintered body and the residual stress on the inner surface is 50 MPa or more, cracking tends to occur at the initial stage of use. The absolute values of the residual stress on the outer surface and the residual stress on the inner surface are both preferably 100 MPa or less, and if any of the absolute values exceeds 100 MPa, initial cracking is likely to occur.

本発明による耐アルミニウム溶湯用窒化けい素焼結体は、一般的な焼結法である反応焼結、常圧焼結によって焼結し、焼結後の冷却過程において、窒素ガス雰囲気の下で、700〜1150℃の温度域に保持する処理を行うことにより製造される。   The silicon nitride sintered body for resistance to molten aluminum according to the present invention is sintered by reaction sintering, ordinary pressure sintering, which is a general sintering method, and in a cooling process after sintering under a nitrogen gas atmosphere, Manufactured by carrying out a treatment in a temperature range of 700 to 1150 ° C.

具体的実施形態は、焼結後の冷却過程において、焼結された窒化けい素焼結体を700〜1150℃の温度域内のT℃まで降温し、窒素ガス雰囲気の下、T℃の温度に保持する熱処理を行う。保持温度(T℃)は使用する焼結助剤の結晶化温度より50℃以上低い温度、さらに好ましくは100℃以上低い温度とするのが望ましい。700℃より低い温度では本発明の特性が得難い。 Particular embodiments, in the course of cooling after sintering, sintered silicon nitride sintered body was cooled down to T 1 ° C. of the temperature range of from 700 to 1,150 ° C., under a nitrogen gas atmosphere at a temperature of T 1 ° C. Heat treatment is carried out. The holding temperature (T 1 ° C.) is desirably 50 ° C. or more lower than the crystallization temperature of the sintering aid to be used, more preferably 100 ° C. or more. It is difficult to obtain the characteristics of the present invention at a temperature lower than 700 ° C.

その後さらに前記温度域内のT℃(T℃>T℃≧700℃)まで降温して、窒素ガス雰囲気の下、T℃の温度に保持してもよく、このような保持を複数段繰り返すこともできる。各温度での保持時間は実用上0.5〜3時間程度が好ましい。保持する温度が1150℃を超えると残留応力が大きくなり本発明の特性が得難くなる。また、焼結後、焼結体を常温まで冷却し、その後、700〜1150℃の温度域に加熱して、この温度域内の温度に保持した場合も、本発明の特性を得ることが難しい。 Thereafter, the temperature may be further lowered to T 2 ° C (T 1 ° C> T 2 ° C ≧ 700 ° C.) in the temperature range, and maintained at a temperature of T 2 ° C. under a nitrogen gas atmosphere. Can be repeated step by step. The holding time at each temperature is preferably about 0.5 to 3 hours in practice. If the holding temperature exceeds 1150 ° C., the residual stress increases, making it difficult to obtain the characteristics of the present invention. In addition, it is difficult to obtain the characteristics of the present invention even when the sintered body is cooled to room temperature after sintering and then heated to a temperature range of 700 to 1150 ° C. and kept at a temperature within this temperature range.

本発明による耐アルミニウム溶湯用窒化けい素焼結体は、前記のように、一般的な焼結法である反応焼結、常圧焼結によって焼結することにより製造されるが、この場合、焼結時における焼結助剤の総添加量を18重量%未満とするのが好ましく、焼結助剤の総添加量が18重量%以上では粒界に存在する焼結助剤の量が多くなって、外表面と内表面の残留応力の差が大きくなり、またその絶対値も100MPaを超え易くなる。   As described above, the silicon nitride sintered body for molten aluminum resistance according to the present invention is produced by sintering by reaction sintering or normal pressure sintering, which are general sintering methods. It is preferable that the total amount of sintering aid added at the time of sintering is less than 18% by weight. When the total amount of sintering aid added is 18% by weight or more, the amount of sintering aid present at the grain boundaries increases. Thus, the difference in residual stress between the outer surface and the inner surface increases, and the absolute value thereof easily exceeds 100 MPa.

以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

実施例1、比較例1
シリコン(Si)を出発原料として、表1に示すように、焼結助剤を配合し、外径56mm、内径42mm、長さ900mmの管状閉端管を成形した。この成形体を1300℃の温度で窒化処理した後、黒鉛トレーに収納して、表1に示す焼結温度、窒素ガス圧1.5気圧で4時間焼結し、焼結後の冷却過程において、表1に示すように、窒素雰囲気で700〜1150℃の温度域内の温度に保持する熱処理を行ったものと、熱処理を行わないものとを作製し、外径50mm、内径38mm、長さ800mmの管状閉端管の焼結体(試験材1〜6)を得た。なお、表1において、本発明の条件を外れたものには下線を付した。
Example 1 and Comparative Example 1
Using silicon (Si) as a starting material, as shown in Table 1, a sintering aid was blended to form a tubular closed end tube having an outer diameter of 56 mm, an inner diameter of 42 mm, and a length of 900 mm. After nitriding this molded body at a temperature of 1300 ° C., it is stored in a graphite tray and sintered for 4 hours at a sintering temperature shown in Table 1 and a nitrogen gas pressure of 1.5 atm. In the cooling process after sintering, As shown in Table 1, a heat treatment that is performed in a nitrogen atmosphere at a temperature within a temperature range of 700 to 1150 ° C. and a heat treatment that is not performed are prepared, and the outer diameter is 50 mm, the inner diameter is 38 mm, and the length is 800 mm. A sintered body (test materials 1 to 6) of the tubular closed end tube was obtained. In Table 1, those outside the conditions of the present invention are underlined.

(残留応力の測定):
得られた試験材から、外径50mm、内径38mm、長さ100のパイプを切り出し、半円筒状に切断して残留応力測定試料を作成し、X線回折法にて外表面と内表面の残留応力を測定した。その結果を表2に示す。
(Measurement of residual stress):
From the obtained test material, a pipe having an outer diameter of 50 mm, an inner diameter of 38 mm, and a length of 100 is cut out and cut into a semi-cylindrical shape to prepare a residual stress measurement sample. Stress was measured. The results are shown in Table 2.

(耐アルミニウム溶湯試験)
得られた試験材を680℃のアルミニウム溶湯直上にて5分保持した後、アルミニウム溶湯中に深さ350mmまで速やかに浸漬し、10分保持した後、同じ速度で引き上げ、室温まで放冷後、外観確認と打音検査により、破損・クラック発生の有無を調べる試験を5回実施した。5回実施で破損やクラック発生が無いものを合格(○)と評価した。結果を表2に示す。
(Aluminum resistance test)
The obtained test material was held immediately above the molten aluminum at 680 ° C. for 5 minutes, then quickly immersed in the molten aluminum to a depth of 350 mm, held for 10 minutes, then pulled up at the same speed, allowed to cool to room temperature, Tests were conducted five times to check for the presence of damage and cracks by visual confirmation and hammering inspection. Those that were not damaged or cracked after 5 implementations were evaluated as acceptable (O). The results are shown in Table 2.

(大気中酸化試験)
得られた試験材を大気中1000℃の温度に24時間保持して冷却後の状態を観察した。冷却後の状態が正常なものを合格(○)と評価した。結果を表2に示す。なお、表2において、本発明の条件を外れたものには下線を付した。
(Atmospheric oxidation test)
The obtained test material was kept at a temperature of 1000 ° C. in the atmosphere for 24 hours, and the state after cooling was observed. Those in which the state after cooling was normal were evaluated as acceptable (◯). The results are shown in Table 2. In Table 2, those outside the conditions of the present invention are underlined.

Figure 2015124093
Figure 2015124093

Figure 2015124093
Figure 2015124093

表2に示すように、本発明に従う試験材1、3、5はいずれも、耐アルミニウム溶湯試験でクラックの発生がなく、大気中酸化試験後の状態も正常であった。これに対して、焼結後の冷却過程で熱処理を行わなかった試験材2、4、および焼結助剤の総添加量が18重量%を超える試験材6は、耐アルミニウム溶湯試験でクラックが生じ。あるいは大気中酸化試験で亀裂や破損が生じた。   As shown in Table 2, all of the test materials 1, 3, and 5 according to the present invention were free from cracks in the molten aluminum test, and the state after the atmospheric oxidation test was normal. In contrast, the test materials 2 and 4 that were not heat-treated in the cooling process after sintering, and the test material 6 in which the total amount of the sintering aid added exceeded 18% by weight were cracked in the molten aluminum resistance test. Arise. Alternatively, cracks and breakage occurred in the atmospheric oxidation test.

実施例2、比較例2
出発原料を表3に示す原料に変え、実施例1と同様に処理して外径50mm、内径38mm、長さ800mmの管状閉端管の焼結体(試験材7〜12)を作製し、実施例1と同じ方法で残留応力を測定し、耐アルミニウム溶湯試験、大気中酸化試験を行った。結果を表4に示す。表3、4において、本発明の条件を外れたものには下線を付した。
Example 2 and Comparative Example 2
The starting raw material was changed to the raw material shown in Table 3, and the same treatment as in Example 1 was performed to produce a sintered body (test materials 7 to 12) of a tubular closed end tube having an outer diameter of 50 mm, an inner diameter of 38 mm, and a length of 800 mm. Residual stress was measured by the same method as in Example 1, and a molten aluminum test and an atmospheric oxidation test were conducted. The results are shown in Table 4. In Tables 3 and 4, those outside the conditions of the present invention are underlined.

Figure 2015124093
Figure 2015124093

Figure 2015124093
Figure 2015124093

表4に示すように、本発明に従う試験材7、8、10、12はいずれも、耐アルミニウム溶湯試験でクラックの発生がなく、大気中酸化試験後の状態も正常であった。これに対して、焼結後の冷却過程で熱処理を行わなかった試験材9、および焼結助剤の総添加量が18重量%を超える試験材11は、耐アルミニウム溶湯試験ではクラックが生じなかったが、大気中酸化試験でチッピングや破損が生じた。   As shown in Table 4, all of the test materials 7, 8, 10, and 12 according to the present invention were free from cracks in the molten aluminum test, and the state after the atmospheric oxidation test was normal. On the other hand, the test material 9 that was not heat-treated in the cooling process after sintering, and the test material 11 in which the total amount of sintering aid added exceeded 18% by weight did not cause cracks in the molten aluminum test. However, chipping and damage occurred in the atmospheric oxidation test.

Claims (2)

アルミニウム溶湯用部材として用いる管状または箱状の窒化けい素焼結体であって、該窒化けい素焼結体は焼結助剤の総添加量を18重量%未満として焼結されたものであり、焼結体の外表面の残留応力と内表面の残留応力の差が50MPaより小さく且つ残留応力の絶対値が100MPa以下であることを特徴とする耐アルミニウム溶湯用窒化けい素焼結体。 A tubular or box-shaped silicon nitride sintered body used as a member for molten aluminum, the silicon nitride sintered body being sintered with a total amount of sintering aid added of less than 18% by weight. A silicon nitride sintered body for aluminum-resistant molten metal, characterized in that the difference between the residual stress on the outer surface and the residual stress on the inner surface is less than 50 MPa and the absolute value of the residual stress is 100 MPa or less. 請求項1記載の窒化けい素焼結体を製造する方法であって、常法に従って焼結した後、焼結後の冷却過程において、窒素ガス雰囲気の下で、700〜1150℃の温度域に保持する処理を行うことを特徴とする耐アルミニウム溶湯用窒化けい素焼結体の製造方法。 A method for producing the silicon nitride sintered body according to claim 1, wherein the sintered body is sintered according to a conventional method, and then maintained in a temperature range of 700 to 1150 ° C under a nitrogen gas atmosphere in a cooling process after the sintering. The manufacturing method of the silicon nitride sintered compact for aluminum-resistant molten metal characterized by performing the process to perform.
JP2013267234A 2013-12-25 2013-12-25 Aluminum molten metal resistant silicon nitride sintered compact, and method for producing the same Pending JP2015124093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013267234A JP2015124093A (en) 2013-12-25 2013-12-25 Aluminum molten metal resistant silicon nitride sintered compact, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013267234A JP2015124093A (en) 2013-12-25 2013-12-25 Aluminum molten metal resistant silicon nitride sintered compact, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2015124093A true JP2015124093A (en) 2015-07-06

Family

ID=53535066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013267234A Pending JP2015124093A (en) 2013-12-25 2013-12-25 Aluminum molten metal resistant silicon nitride sintered compact, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2015124093A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192455U (en) * 1984-11-16 1986-06-14
JPH0947965A (en) * 1995-08-10 1997-02-18 Kubota Corp Manufacture of ceramics radlux for bottom tap type hot water feed
JP2006055892A (en) * 2004-08-20 2006-03-02 Mitsubishi Electric Corp Ceramic stoke and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192455U (en) * 1984-11-16 1986-06-14
JPH0947965A (en) * 1995-08-10 1997-02-18 Kubota Corp Manufacture of ceramics radlux for bottom tap type hot water feed
JP2006055892A (en) * 2004-08-20 2006-03-02 Mitsubishi Electric Corp Ceramic stoke and its production method

Similar Documents

Publication Publication Date Title
US10851442B2 (en) Magnesium-lithium alloy, rolled stock made of magnesium-lithium alloy, and processed product including magnesium-lithium alloy as material
JP6660573B2 (en) Manufacturing method of hot forgings
JP4954596B2 (en) Method for producing silicon carbide single crystal ingot
JP6645627B2 (en) Ni-base alloy for hot die and hot forging die using the same
JP2016027188A (en) Low-thermal expansion cast steel product and method for producing the same
US9994946B2 (en) High strength, homogeneous copper-nickel-tin alloy and production process
WO2013150972A1 (en) Fe-Al ALLOY PRODUCTION METHOD
JP5273952B2 (en) Hot forging die and manufacturing method thereof
JP2015124093A (en) Aluminum molten metal resistant silicon nitride sintered compact, and method for producing the same
JP2018059165A (en) Iridium alloy crucible
WO2017179652A1 (en) Titanium alloy and method for producing material for timepiece exterior parts
TWI427152B (en) Quenching method for mold
JP5893659B2 (en) Low thermal expansion cast alloy and manufacturing method thereof
JP2019178388A (en) Ti-BASED ALLOY, MANUFACTURING METHOD THEREFOR, COMPONENT FOR WATCH
JP4673189B2 (en) Method for producing cemented carbide and cemented carbide produced thereby
RU2675326C1 (en) Method of high-temperature soldering of parts from aluminum heat-strengthened alloys
JPH11320028A (en) Core for precision casting excellent in high temperature strength and heat shock resistance
KR100203379B1 (en) Ultra heat-resistance nickel alloy
JP2021123736A (en) Low thermal expansion casting
JP6692466B2 (en) Low thermal expansion alloy
JP6872786B2 (en) Low thermal expansion cast steel and forged steel with low anisotropy and little aging
JPWO2017006659A1 (en) High-strength low-temperature expansion cast alloy for high temperature, its manufacturing method, and casting for turbine
JP2013100580A (en) Refractory for converter bottom-blown tuyere, and converter using the same
JP6803573B2 (en) Ni-based unidirectional solidified alloy
JP2018145474A (en) Low thermal expansion alloy

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171025