Nothing Special   »   [go: up one dir, main page]

JP2015163837A - Heat exchanger with combustor for heating fluid - Google Patents

Heat exchanger with combustor for heating fluid Download PDF

Info

Publication number
JP2015163837A
JP2015163837A JP2015090365A JP2015090365A JP2015163837A JP 2015163837 A JP2015163837 A JP 2015163837A JP 2015090365 A JP2015090365 A JP 2015090365A JP 2015090365 A JP2015090365 A JP 2015090365A JP 2015163837 A JP2015163837 A JP 2015163837A
Authority
JP
Japan
Prior art keywords
heat
combustion
tube
combustor
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015090365A
Other languages
Japanese (ja)
Other versions
JP6019165B2 (en
Inventor
向一 西川
Koichi Nishikawa
向一 西川
桜子 十河
Sakurako Sogo
桜子 十河
湯本 範夫
Norio Yumoto
範夫 湯本
進 秦
Susumu Hata
進 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Hosoyama Nekki Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Hosoyama Nekki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Hosoyama Nekki Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2015090365A priority Critical patent/JP6019165B2/en
Publication of JP2015163837A publication Critical patent/JP2015163837A/en
Application granted granted Critical
Publication of JP6019165B2 publication Critical patent/JP6019165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas Burners (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small fluid heating device which achieves good heat transfer efficiency without needing large scale facilities such as a combustion gas passage and a smoke pipe.SOLUTION: A heat exchanger with a combustor for heating fluid includes: a heat transfer pipe which houses the combustor therein and forms a combustion gas passage for passing a combustion gas occurring in the combustor between an inner peripheral surface thereof and an outer peripheral surface of the combustor; one or multiple heat conductors which are disposed in the combustion gas passage and contact with the outer peripheral surface of the combustor and the inner peripheral surface of the heat transfer pipe. The above object is achieved by the heat exchanger with the combustor for heating fluid.

Description

本発明は、流体加熱用燃焼器付熱交換器に関し、詳細には、水や油、空気などの流体を加熱する小型で熱効率の良い流体加熱用の燃焼器付熱交換器に関するものである。   The present invention relates to a heat exchanger with a combustor for fluid heating, and more particularly, to a heat exchanger with a combustor for fluid heating that is small and has high thermal efficiency for heating fluid such as water, oil, and air.

従来から水などの流体を加熱する装置は種々提案されている。例えば、特許文献1、2には、水槽内に配置された燃焼ガス通路或いは煙管内にバーナによって発生された高温の燃焼ガスを吹き込んで、水槽内の水を加熱する流体加熱装置が開示されている。しかし、これらの流体加熱装置においては、燃焼ガスを発生させるバーナとは別に、熱交換器として機能する燃焼ガス通路或いは煙管などを水槽内に配置しなければならず、装置が複雑で大掛かりなものとなるという不都合がある。また、燃焼ガス通路或いは煙管内を通過する燃焼ガスから水槽内の水への熱の伝達効率がそれほど高くなく、バーナが発生する燃焼ガスはまだ十分な熱量を持ったまま排気口から外部へと排出されてしまうので、効率の良い加熱ができないという欠点もあった。   Conventionally, various apparatuses for heating a fluid such as water have been proposed. For example, Patent Documents 1 and 2 disclose a fluid heating apparatus that heats water in a water tank by blowing high-temperature combustion gas generated by a burner into a combustion gas passage or a smoke pipe disposed in the water tank. Yes. However, in these fluid heating devices, apart from the burner that generates combustion gas, a combustion gas passage or a smoke pipe that functions as a heat exchanger must be arranged in the water tank, and the device is complicated and large. There is an inconvenience that it becomes. In addition, the heat transfer efficiency from the combustion gas passing through the combustion gas passage or the smoke pipe to the water in the water tank is not so high, and the combustion gas generated by the burner still has a sufficient amount of heat from the exhaust port to the outside. Since it was discharged, there was a drawback that efficient heating could not be performed.

このため、例えば特許文献3においては、全一次予混合強制燃焼式バーナを用い、バーナから発生する燃焼ガスを水槽内に配置した噴出体に設けられた多数の噴出口から水槽内に設けられた吸熱面に対して噴出させ、伝熱係数の増大を図ることが提案されている。また、特許文献4では、水槽の底面をバーナで直接加熱するとともに、バーナの燃焼ガスを水槽内に立設された噴出体内に導き、噴出体に設けられた多数の噴出口から水槽内に設けられた被加熱面に対して噴出させることによって、伝熱性能の向上を図ることが提案されている。   For this reason, in Patent Document 3, for example, an all-primary premixed forced combustion burner is used, and the combustion gas generated from the burner is provided in the water tank from a large number of outlets provided in a jet body arranged in the water tank. It has been proposed to increase the heat transfer coefficient by ejecting the heat absorbing surface. Moreover, in patent document 4, while the bottom face of a water tank is directly heated with a burner, the combustion gas of a burner is guide | induced to the jet body standing in the water tank, and it provides in a water tank from many jet nozzles provided in the jet body. It has been proposed to improve heat transfer performance by ejecting the heated surface.

しかし、これらの流体加熱装置は、いずれも、多数の噴出口を備えた噴出体などを水槽内に設置する必要があり、構造が複雑で装置が大掛かりなものとなる上に、それほど高い伝熱効率が得られないという不都合がある。   However, all of these fluid heating devices require installation of a jet body with a large number of jet nozzles in the water tank, which makes the structure complicated and large-scale, and has a very high heat transfer efficiency. There is an inconvenience that cannot be obtained.

特開平6−221675号公報JP-A-6-221675 特開平10−325603号公報JP 10-325603 A 特開2000−257852号公報JP 2000-257852 A 特開2005−69614号公報JP 2005-69614 A

本発明は、上記従来の流体加熱装置の欠点を解消するために為されたもので、燃焼ガス通路や煙管などの大掛かりな設備を必要とせず、小型で伝熱効率の良い流体加熱装置を提供することを課題とするものである。   The present invention was made to eliminate the above-mentioned drawbacks of the conventional fluid heating apparatus, and provides a fluid heating apparatus that is small and has high heat transfer efficiency without requiring large facilities such as a combustion gas passage or a smoke pipe. This is a problem.

本発明者らは、上記の課題を解決すべく鋭意研究と試行錯誤を重ねた結果、通常は被加熱流体を収容する流体容器内に設置される煙管などの燃焼ガス通路を燃焼器と一体化させて燃焼器における燃焼室の外側に配置し、燃焼器の燃焼室からの熱と、燃焼ガス通路を通過する燃焼ガスが有している熱の双方を、燃焼ガス通路を形成する伝熱管に伝えることによって、燃焼ガス通路や煙管などの大掛かりな設備を必要とせずに、小型で伝熱効率の良い流体加熱装置が得られることを見出して本発明を完成した。   As a result of intensive research and trial and error in order to solve the above-mentioned problems, the present inventors have integrated a combustion gas passage such as a smoke pipe, which is usually installed in a fluid container containing a heated fluid, with a combustor. It is arranged outside the combustion chamber in the combustor, and both the heat from the combustion chamber of the combustor and the heat possessed by the combustion gas passing through the combustion gas passage are transferred to a heat transfer tube that forms the combustion gas passage. The present invention has been completed by discovering that a fluid heating device having a small size and good heat transfer efficiency can be obtained without transmitting a large-scale facility such as a combustion gas passage or a smoke pipe.

すなわち、本発明は、燃焼器と;内部に前記燃焼器を収容し、自身の内周面と前記燃焼器の外周面との間に、前記燃焼器内で発生した燃焼ガスを通過させる燃焼ガス通路を形成する伝熱管と;前記燃焼ガス通路に配置され、前記燃焼器の外周面と前記伝熱管の内周面の双方と接触する1又は複数の熱伝導体とを有する流体加熱用燃焼器付熱交換器を提供することによって、上記の課題を解決するものである。   That is, the present invention relates to a combustor; a combustion gas that accommodates the combustor therein, and allows a combustion gas generated in the combustor to pass between an inner peripheral surface of the combustor and an outer peripheral surface of the combustor. A heat transfer tube that forms a passage; and a combustor for fluid heating that is disposed in the combustion gas passage and includes one or more heat conductors that are in contact with both the outer peripheral surface of the combustor and the inner peripheral surface of the heat transfer tube By providing an attached heat exchanger, the above-described problems are solved.

上記のとおり、本発明の流体加熱用燃焼器付熱交換器においては、燃焼器の外側に、燃焼器内で発生した燃焼ガスが通過する燃焼ガス通路を形成する伝熱管が設けられており、かつ、その燃焼ガス通路には、燃焼器の外周面と前記伝熱管の内周面の双方と接触する1又は複数の熱伝導体が配置されているので、燃焼ガス通路を通過する燃焼ガスが持っている熱が前記熱伝導体を介して伝熱管に伝えられるだけでなく、燃焼器の燃焼室内で発生した熱も、燃焼室を形成する壁面を伝熱面として前記熱伝導体を介して伝熱管に伝えられる。このため、極めて効率の良い伝熱が可能となる。なお、上記熱伝導体と、燃焼器の外周面、及び伝熱管の内周面との接触は、当然のことながら、接触面での熱伝導がスムースに行われるように密に接触しているのが好ましい。   As described above, in the heat exchanger with a combustor for fluid heating of the present invention, a heat transfer tube that forms a combustion gas passage through which the combustion gas generated in the combustor passes is provided outside the combustor, And since the 1 or several heat conductor which contacts both the outer peripheral surface of a combustor and the internal peripheral surface of the said heat exchanger tube is arrange | positioned in the combustion gas channel | path, the combustion gas which passes a combustion gas channel | path Not only is the heat it has transferred to the heat transfer tube via the heat conductor, but the heat generated in the combustion chamber of the combustor also passes through the heat conductor with the wall surface forming the combustion chamber as the heat transfer surface. It is transmitted to the heat transfer tube. For this reason, extremely efficient heat transfer is possible. Note that the heat conductor and the outer peripheral surface of the combustor and the inner peripheral surface of the heat transfer tube are in close contact with each other so that heat conduction at the contact surface is performed smoothly. Is preferred.

燃焼ガス通路に配置される前記熱伝導体は、燃焼ガス通路を閉塞することなく、燃焼器の外周面及び伝熱管の内周面の双方と接触していれば良く、その形状や数には特段の制限はない。例えば、燃焼ガスが通過する通路を形成するように折り曲げた1又は複数の板状の熱伝導体、若しくは、短冊状に裁断された複数の板状の熱伝導体を、燃焼器の外周面及び伝熱管の内周面と接触させて燃焼ガス通路に配置しても良い。或いは、燃焼ガスが通過することができる空間部を内部若しくは表面に形成した1又は複数のブロック状の熱伝導体を燃焼器の外周面及び伝熱管の内周面の双方と接触するように燃焼ガス通路に配置しても良いし、複数の柱状の熱伝導体をその上端と下端とをそれぞれ燃焼器の外周面及び伝熱管の内周面と接触させて、互いに間隔をあけて千鳥状又は碁盤目状に燃焼ガス通路に配置しても良い。さらには、これら種々の形状の熱伝導体の1種若しくは複数種を混在させても良い。板状の熱伝導体を用いる場合には、その板面は平面であっても曲面であっても良く、柱状の熱伝導体としては、その断面形状が円形、楕円形、三角、四角、五角、六角等の多角形のいずれであっても良く、任意の他の形状であっても良い。また、板状の熱伝導体を燃焼ガス通路に配置する場合には、熱伝導体の板面は、燃焼ガス通路における燃焼ガスの通過方向に対して平行であっても良いし、傾斜していても良い。   The heat conductor disposed in the combustion gas passage may be in contact with both the outer peripheral surface of the combustor and the inner peripheral surface of the heat transfer tube without blocking the combustion gas passage. There are no particular restrictions. For example, one or a plurality of plate-like heat conductors bent so as to form a passage through which combustion gas passes, or a plurality of plate-like heat conductors cut into strips, and the outer peripheral surface of the combustor and You may arrange | position to a combustion gas channel | path, making it contact with the internal peripheral surface of a heat exchanger tube. Alternatively, combustion is performed so that one or more block-shaped heat conductors, in which the space through which combustion gas can pass, are formed, or in the surface, are in contact with both the outer peripheral surface of the combustor and the inner peripheral surface of the heat transfer tube It may be arranged in the gas passage, or a plurality of columnar heat conductors with their upper and lower ends in contact with the outer peripheral surface of the combustor and the inner peripheral surface of the heat transfer tube, respectively, and staggered or You may arrange | position in a combustion gas channel | path by a grid shape. Further, one or more of these various shapes of heat conductors may be mixed. When a plate-like heat conductor is used, the plate surface may be flat or curved, and the columnar heat conductor has a circular, elliptical, triangular, square, pentagonal cross-sectional shape. Any of polygons such as hexagons and any other shape may be used. When a plate-like heat conductor is disposed in the combustion gas passage, the plate surface of the heat conductor may be parallel to or inclined with respect to the direction of passage of the combustion gas in the combustion gas passage. May be.

熱伝導体としては、熱伝導性を有し、燃焼ガスと接触して燃焼ガスの熱を伝熱管に効率良く伝達することができるとともに、燃焼器の壁面からの熱も伝熱管に伝えることができるものであれば、どのような材料を使用しても良いが、熱伝導率の高い材料を用いるのが好ましく、例えば、アルミニウム、銅、ステンレス、鉄、チタンなどの金属を使用することができるが、中でもアルミニウム又は銅を用いるのが好ましい。   As a heat conductor, it has thermal conductivity, can contact the combustion gas and efficiently transfer the heat of the combustion gas to the heat transfer tube, and can also transfer the heat from the wall of the combustor to the heat transfer tube. Any material may be used as long as it can be used, but a material having high thermal conductivity is preferably used. For example, metals such as aluminum, copper, stainless steel, iron, and titanium can be used. However, among these, it is preferable to use aluminum or copper.

このように、本発明の流体加熱用燃焼器付熱交換器においては、いわば、熱交換器の内側に燃焼器が配置され、両者が一体化した構造となっているので、非常に小型でコンパクトな流体加熱装置が実現される。本発明の流体加熱用燃焼器付熱交換器によれば、本発明の流体加熱用燃焼器付熱交換器を少なくともその伝熱管の部分が流体容器内に位置するように流体容器に取り付けるか、浸漬するだけで各種の流体を加熱することができ、別途、燃焼ガス通路や煙管などを流体容器内に設置する必要がない。   Thus, in the heat exchanger with a combustor for fluid heating according to the present invention, the combustor is arranged inside the heat exchanger and the both are integrated, so that it is very small and compact. A fluid heating device is realized. According to the heat exchanger with a combustor for fluid heating of the present invention, the heat exchanger with a combustor for fluid heating of the present invention is attached to a fluid container so that at least a portion of the heat transfer tube is located in the fluid container, Various fluids can be heated only by immersion, and there is no need to separately install a combustion gas passage or a smoke pipe in the fluid container.

本発明の流体加熱用燃焼器付熱交換器に用いられる燃焼器としては、燃焼室を備え、かつ、燃焼ガスを発生させることができるものであれば、どのような燃焼器を用いても良いが、好適には、先端部が開口し、内部に燃焼室を形成する燃焼管と、前記燃焼管内に配置されたバーナとから構成されているのが望ましい。また、バーナとしては、開口した先端部と混合ガス入口を有するバーナ管と、バーナ管の開口した先端部と混合ガス入口との間に配置された混合ガス噴出部とを有しているバーナを使用するのが好適である。さらに、前記伝熱管は、自身の内周面と燃焼器の外周面との間に燃焼ガス通路を形成すべく、前記燃焼器を構成する燃焼管の開口した先端部と間隙をあけて対向する閉止された先端部と、この閉止された先端部と前記燃焼ガス通路を隔てた位置に燃焼ガス排気口を有しているのが好ましい。   As a combustor used for the heat exchanger with a combustor for fluid heating of the present invention, any combustor may be used as long as it has a combustion chamber and can generate combustion gas. However, it is preferable that the front end portion is opened and a combustion tube that forms a combustion chamber is formed, and a burner disposed in the combustion tube. Further, as the burner, a burner pipe having an open front end portion and a mixed gas inlet, and a mixed gas ejection portion arranged between the open end portion of the burner pipe and the mixed gas inlet is used. It is preferred to use. Further, the heat transfer tube is opposed to the open end of the combustion tube constituting the combustor with a gap so as to form a combustion gas passage between the inner peripheral surface of the heat transfer tube and the outer peripheral surface of the combustor. It is preferable to have a closed end portion and a combustion gas exhaust port at a position separating the closed end portion and the combustion gas passage.

また、本発明の流体加熱用燃焼器付熱交換器は、その好ましい一態様において、バーナ管に供給される混合ガスを燃焼ガスの熱で予熱する構造を備えている。すなわち、その好ましい一態様において本発明の流体加熱用燃焼器付熱交換器は、外部から混合ガスの供給を受ける混合ガス供給口を有する混合ガス供給管を備え、前記混合ガス供給管は、前記バーナ管の外周面と自身の内周面との間に前記混合ガス供給口から前記混合ガス入口へと向かう混合ガス通路を形成するとともに、前記伝熱管の内周面と自身の外周面との間に前記燃焼ガス通路から前記燃焼ガス排気口へと向かう燃焼ガス排気通路を形成し、前記混合ガス通路の少なくとも一部は前記混合ガス供給管の管壁を隔てて前記燃焼ガス排気通路と間接的に接触する位置にあり、前記混合ガス通路を通過する混合ガスが前記燃焼ガス排気通路を通過する燃焼ガスによって予熱される流体加熱用燃焼器付熱交換器である。   Moreover, the heat exchanger with a combustor for fluid heating according to the present invention has a structure in which the mixed gas supplied to the burner pipe is preheated with the heat of the combustion gas in a preferred embodiment. That is, in a preferred embodiment thereof, the heat exchanger with a combustor for fluid heating according to the present invention includes a mixed gas supply pipe having a mixed gas supply port that receives supply of the mixed gas from the outside, and the mixed gas supply pipe includes A mixed gas passage from the mixed gas supply port to the mixed gas inlet is formed between the outer peripheral surface of the burner tube and the inner peripheral surface of the burner tube, and the inner peripheral surface of the heat transfer tube and the outer peripheral surface of the heat transfer tube A combustion gas exhaust passage from the combustion gas passage to the combustion gas exhaust port is formed therebetween, and at least a part of the mixed gas passage is indirectly connected to the combustion gas exhaust passage with a tube wall of the mixed gas supply pipe interposed therebetween. A heat exchanger with a combustor for fluid heating, in which the mixed gas passing through the mixed gas passage is preheated by the combustion gas passing through the combustion gas exhaust passage.

燃焼ガス通路に配置される熱伝導体を介して自身の熱を伝熱管に伝えた後であっても、燃焼ガスの温度は、外部からバーナ管に供給される混合ガスに比べればまだ高温であるので、この燃焼ガスが持つ熱を前記混合ガス供給管の管壁を介してバーナ管に供給される混合ガスに伝達して混合ガスを予熱することによって、さらに伝熱効率を高めることができる。前記燃焼ガス排気通路及び/又は前記混合ガス通路には、前記燃焼ガス排気通路を通過する燃焼ガスからの伝熱や、前記混合ガス通路を通過する混合ガスへの伝熱を効率良く行うために、熱伝導性を有するフィンを設置するのが望ましく、このフィンは前記混合ガス供給管と接触しているのが望ましい。   Even after transferring its own heat to the heat transfer tube via the heat conductor placed in the combustion gas passage, the temperature of the combustion gas is still higher than that of the mixed gas supplied to the burner tube from the outside. Therefore, the heat transfer efficiency can be further enhanced by preheating the mixed gas by transmitting the heat of the combustion gas to the mixed gas supplied to the burner tube through the tube wall of the mixed gas supply tube. In the combustion gas exhaust passage and / or the mixed gas passage, in order to efficiently transfer heat from the combustion gas passing through the combustion gas exhaust passage and heat transfer to the mixed gas passing through the mixed gas passage. It is desirable to install a fin having thermal conductivity, and this fin is preferably in contact with the mixed gas supply pipe.

本発明の流体加熱用燃焼器付熱交換器は、内側に燃焼ガス通路を有する伝熱管の部分が加熱対象である流体と接触するように、加熱対象である流体を収容する容器の壁面、底面、若しくは上面に取り付けるか、加熱対象である流体内に浸漬して使用することができる。本発明の流体加熱用燃焼器付熱交換器が燃料として用いる混合ガスとしては、本発明の流体加熱用燃焼器付熱交換器によって燃焼させることができる限り特段の制限はないが、好適には、液化石油ガス、液化天然ガス、或いは都市ガスなどの燃料ガスと空気との混合ガスを用いることができる。なお、本発明の流体加熱用燃焼器付熱交換器は、好適には、例えば水、油などの液体や、空気などの気体などの加熱に用いられ、例えば、湯沸かし器、ボイラー、フライヤー、空気加熱器などとして使用することができるが、どのような流体の加熱に用いても良いことは勿論である。   The heat exchanger with a combustor for fluid heating according to the present invention includes a wall surface and a bottom surface of a container for storing a fluid to be heated so that a portion of the heat transfer tube having a combustion gas passage on the inside contacts the fluid to be heated. Or attached to the upper surface, or immersed in a fluid to be heated. The mixed gas used as the fuel by the heat exchanger with a combustor for fluid heating of the present invention is not particularly limited as long as it can be burned by the heat exchanger with a combustor for fluid heating of the present invention. Alternatively, a mixed gas of fuel gas such as liquefied petroleum gas, liquefied natural gas, or city gas and air can be used. The heat exchanger with a combustor for fluid heating according to the present invention is preferably used for heating a liquid such as water or oil, or a gas such as air, for example, a water heater, a boiler, a fryer, or an air heating. Of course, it can be used for heating any fluid.

本発明の流体加熱用燃焼器付熱交換器によれば、小型で伝熱効率の良い流体加熱装置が実現されるので、燃料ガスの使用量を減らし省エネルギーであるとともに、COの削減にも寄与することができるという利点が得られる。また、本発明の流体加熱用燃焼器付熱交換器は、コンパクトに構成されているので、使用材料を減らし、省資源にも寄与するものである。さらに、本発明の流体加熱用燃焼器付熱交換器によれば、内側に燃焼ガス通路を有する伝熱管部分が加熱対象である流体と接触するように、被加熱流体を収容する容器の壁面、底面、若しくは上面に取り付けるか、或いは被加熱流体内に浸漬するだけで、容器内の流体を効率良く加熱することがきるので、極めて使い勝手が良いという利点が得られる。 According to the heat exchanger with a combustor for fluid heating of the present invention, a fluid heating device with a small size and good heat transfer efficiency is realized, so that the amount of fuel gas used is reduced and energy is saved, and also it contributes to CO 2 reduction. The advantage of being able to do is obtained. Moreover, since the heat exchanger with a combustor for fluid heating according to the present invention is configured compactly, it reduces the amount of materials used and contributes to resource saving. Furthermore, according to the heat exchanger with a combustor for heating fluid according to the present invention, the wall surface of the container for storing the fluid to be heated so that the heat transfer tube portion having the combustion gas passage on the inside contacts the fluid to be heated, Since the fluid in the container can be efficiently heated only by being attached to the bottom surface or the top surface or being immersed in the fluid to be heated, there is an advantage that it is extremely easy to use.

本発明の流体加熱用燃焼器付熱交換器の一例を示す断面図である。It is sectional drawing which shows an example of the heat exchanger with a combustor for fluid heating of this invention. 図1のX−X’断面図であり、熱伝導体の配置の一例を示す図である。FIG. 2 is a cross-sectional view taken along line X-X ′ in FIG. 1, illustrating an example of arrangement of heat conductors. 熱伝導体の配置の他の一例を示す図である。It is a figure which shows another example of arrangement | positioning of a heat conductor. 熱伝導体の配置のさらに他の一例を示す図である。It is a figure which shows another example of arrangement | positioning of a heat conductor. 熱伝導体の配置のさらに他の一例を示す図である。It is a figure which shows another example of arrangement | positioning of a heat conductor. 図5のZ−Z’断面図である。FIG. 6 is a Z-Z ′ sectional view of FIG. 5. 熱伝導体の配置のさらに他の一例を示す図である。It is a figure which shows another example of arrangement | positioning of a heat conductor. 図7のZ−Z’断面図である。It is Z-Z 'sectional drawing of FIG. 本発明の流体加熱用燃焼器付熱交換器の他の一例を示す断面図である。It is sectional drawing which shows another example of the heat exchanger with a combustor for fluid heating of this invention. 図9のY−Y’断面図であり、フィンの配置の一例を示す図である。FIG. 10 is a cross-sectional view taken along line Y-Y ′ of FIG. 9, illustrating an example of fin arrangement.

以下、図面を用いて本発明の流体加熱用燃焼器付熱交換器を説明するが、本発明が図示のものに限られないことは勿論である。   Hereinafter, although the heat exchanger with a combustor for fluid heating of the present invention will be described with reference to the drawings, the present invention is not limited to the illustrated one.

図1は、本発明の流体加熱用燃焼器付熱交換器の一例を示す断面図である。図1において、1は本発明の流体加熱用燃焼器付熱交換器、2はバーナ管である。図に示すとおり、バーナ管2の先端部2fは開口しており、バーナ管2の基端部側には、混合ガス入口3が設けられている。4は、バーナ管2内に設けられた混合ガス噴出部であり、混合ガス噴出部4はバーナ管2の先端部2fと混合ガス入口3との間の位置に配置されている。本例において、混合ガス噴出部4には、後述するとおり、混合ガス噴出口としてノズルが形成されているが、ノズルに代えて、表裏連通した多数の細孔を有する、例えばメタルニットなどの金属繊維製の多孔質部材や、多孔質セラミックなどを混合ガス噴出部4として用いても良い。5は、バーナ管2の内側に配置されたスパークプラグであり、スパークプラグ5の先端部はバーナ管2の先端部2fよりも先端部側に突出している。6はスパークプラグ5の保護管であり、バーナ管2の基端部2bは保護管6を挿通した状態で閉止されている。本例においては、バーナ管2、混合ガス噴出部4、及びスパークプラグ5によってバーナが構成されている。なお、本明細書において、先端部側とは流体加熱用燃焼器付熱交換器1の先端部の側(図1においては左側)を意味し、基端部側とは流体加熱用燃焼器付熱交換器1の基端部の側(図1においては右側)を意味する。   FIG. 1 is a cross-sectional view showing an example of a heat exchanger with a combustor for fluid heating according to the present invention. In FIG. 1, 1 is a heat exchanger with a combustor for fluid heating according to the present invention, and 2 is a burner tube. As shown in the drawing, the front end 2 f of the burner tube 2 is open, and a mixed gas inlet 3 is provided on the base end side of the burner tube 2. Reference numeral 4 denotes a mixed gas ejection part provided in the burner pipe 2, and the mixed gas ejection part 4 is arranged at a position between the tip 2 f of the burner pipe 2 and the mixed gas inlet 3. In this example, the mixed gas ejection part 4 has a nozzle as a mixed gas ejection port, as will be described later. However, instead of the nozzle, it has a large number of pores communicating with the front and back, for example, a metal such as a metal knit. A fiber porous member, a porous ceramic, or the like may be used as the mixed gas ejection portion 4. Reference numeral 5 denotes a spark plug disposed inside the burner tube 2, and the distal end portion of the spark plug 5 protrudes further toward the distal end portion than the distal end portion 2 f of the burner tube 2. Reference numeral 6 denotes a protective tube for the spark plug 5, and the base end portion 2 b of the burner tube 2 is closed in a state where the protective tube 6 is inserted. In this example, a burner is constituted by the burner tube 2, the mixed gas ejection part 4, and the spark plug 5. In the present specification, the distal end side means the distal end side (left side in FIG. 1) of the heat exchanger 1 with a fluid heating combustor, and the proximal end side includes a fluid heating combustor. It means the base end side of the heat exchanger 1 (the right side in FIG. 1).

7は燃焼管であり、燃焼管7は、バーナ管2の外径よりも大きな内径を有しており、バーナ管2の少なくとも先端部2fの部分をその内側に内包して、バーナ管2の外側にバーナ管2と同軸に配置されている。燃焼管7の先端部7fは開口しており、燃焼管7の基端部7bは閉止されている。燃焼管7の内側の空間は燃焼室αとして機能する。本例においては、この燃焼管7と、バーナ管2、混合ガス噴出部4、及びスパークプラグ5によって構成されるバーナとによって、燃焼器が構成されている。   Reference numeral 7 denotes a combustion pipe. The combustion pipe 7 has an inner diameter larger than the outer diameter of the burner pipe 2, and at least the tip 2 f of the burner pipe 2 is contained inside the burner pipe 2. The outer side of the burner tube 2 is arranged coaxially. The distal end portion 7f of the combustion tube 7 is open, and the proximal end portion 7b of the combustion tube 7 is closed. The space inside the combustion tube 7 functions as a combustion chamber α. In this example, a combustor is constituted by the combustion pipe 7 and the burner constituted by the burner pipe 2, the mixed gas ejection part 4, and the spark plug 5.

8は伝熱管であり、伝熱管8の先端部8f及び基端部8bは閉止されており、閉止された先端部8fは燃焼管7の先端部7fと間隔をあけて対向している。9は伝熱管8の基端部に取り付けられている燃焼ガス排気口である。伝熱管8は、燃焼管7の外径よりも大きな内径を有しており、燃焼管7と同軸に配置され、伝熱管8の内周面と燃焼管7の外周面との間に燃焼ガス通路Vを形成している。燃焼ガス通路Vには、燃焼管7の外周面と伝熱管8の内周面の双方に接触する熱伝導体10が配置されている。本例において、燃焼ガス通路Vは、熱伝導体10によって、燃焼ガスの進行方向に沿った複数の小通路に仕切られている。なお、11は本発明の流体加熱用燃焼器付熱交換器1を容器壁面などに取り付ける際に利用される取付用のフランジである。   Reference numeral 8 denotes a heat transfer tube. The distal end portion 8f and the base end portion 8b of the heat transfer tube 8 are closed, and the closed distal end portion 8f faces the distal end portion 7f of the combustion tube 7 with a gap. Reference numeral 9 denotes a combustion gas exhaust port attached to the proximal end portion of the heat transfer tube 8. The heat transfer tube 8 has an inner diameter larger than the outer diameter of the combustion tube 7, is disposed coaxially with the combustion tube 7, and is a combustion gas between the inner peripheral surface of the heat transfer tube 8 and the outer peripheral surface of the combustion tube 7. A passage V is formed. In the combustion gas passage V, a heat conductor 10 that contacts both the outer peripheral surface of the combustion tube 7 and the inner peripheral surface of the heat transfer tube 8 is disposed. In this example, the combustion gas passage V is partitioned by the heat conductor 10 into a plurality of small passages along the traveling direction of the combustion gas. In addition, 11 is a flange for attachment utilized when attaching the heat exchanger 1 with a combustor for fluid heating of this invention to a container wall surface.

本例の流体加熱用燃焼器付熱交換器1においては、バーナを構成するバーナ管2、燃焼器を構成する燃焼管7、及び伝熱管8はいずれも断面円形の円筒形状を有しているが、バーナ管2、燃焼管7、及び伝熱管8の断面形状は円形に限られない。また、本例の流体加熱用燃焼器付熱交換器1においては、バーナ管2、燃焼管7、及び伝熱管8はいずれも同軸に配置されているが、これら三者のうちのいずれか1つは他の2つと同軸に配置されていなくても良く、また三者とも同軸でなくても良い。   In the heat exchanger with a combustor 1 for fluid heating of this example, the burner tube 2 constituting the burner, the combustion tube 7 constituting the combustor, and the heat transfer tube 8 all have a cylindrical shape with a circular cross section. However, the cross-sectional shapes of the burner tube 2, the combustion tube 7, and the heat transfer tube 8 are not limited to a circular shape. Moreover, in the heat exchanger 1 with a combustor for fluid heating of this example, the burner tube 2, the combustion tube 7 and the heat transfer tube 8 are all arranged coaxially, but any one of these three components. One does not have to be arranged coaxially with the other two, and the three do not have to be coaxial.

図2は図1のX−X’断面図である。図に示すとおり、燃焼管7の外周と伝熱管8の内周との間に形成されている燃焼ガス通路Vは、熱伝導体10によって、燃焼ガスの進行方向に沿って、燃焼ガスの進行方向と平行な複数の小通路v1、v2、v3・・・に仕切られている。本例においては、熱伝導体10は、薄い板状の部材を、断面が交互に逆向きのコの字となるように折り曲げたものであり、その折り曲げた状態のまま、燃焼ガス通路V内に挿入され、配置されている。熱伝導体10の外側の面は、一つおきの小通路v1、v3、v5・・・において伝熱管8の内周面と接触しており、熱伝導体10の内側の面は、一つおきの小通路v2、v4、v6・・・において燃焼管7の外周面と接触している。なお、熱伝導体10は、燃焼ガス通路V内における燃焼ガスの進行方向に沿った方向において2若しくは3以上の部分に分割されていても良い。   FIG. 2 is a cross-sectional view taken along the line X-X ′ of FIG. 1. As shown in the figure, the combustion gas passage V formed between the outer periphery of the combustion tube 7 and the inner periphery of the heat transfer tube 8 is advanced by the heat conductor 10 along the traveling direction of the combustion gas. It is partitioned into a plurality of small passages v1, v2, v3... Parallel to the direction. In this example, the heat conductor 10 is formed by bending a thin plate-like member so that the cross-sections are alternately reversed in a U-shape, and the bent state is maintained in the combustion gas passage V. Inserted and placed. The outer surface of the heat conductor 10 is in contact with the inner peripheral surface of the heat transfer tube 8 in every other small passage v1, v3, v5..., And the inner surface of the heat conductor 10 is one. It contacts with the outer peripheral surface of the combustion pipe 7 in every small passage v2, v4, v6. The heat conductor 10 may be divided into two or more portions in the direction along the traveling direction of the combustion gas in the combustion gas passage V.

本例の流体加熱用燃焼器付熱交換器1においては、燃焼ガス通路V内に、燃焼ガス通路Vを複数の小通路v1、v2、v3・・・に仕切る熱伝導体10が存在し、熱伝導体10は伝熱管8の内周面及び燃焼管7の外周面の双方と接触している。このため、燃焼ガス通路Vを通過する燃焼ガスは、複数の小通路v1、v2、v3・・・内を通過する際に、広い面積で熱伝導体10と接触して、持っていた熱を効率良く熱伝導体10を介して、伝熱管8へと伝達することができる。同時に、燃焼器を構成する燃焼管7内の燃焼室αで発生した熱は燃焼管7の壁面を伝熱面として熱伝導体10に伝わり、熱伝導体10を介して伝熱管8へと伝達される。   In the heat exchanger 1 with a combustor for fluid heating of this example, a heat conductor 10 that divides the combustion gas passage V into a plurality of small passages v1, v2, v3,. The heat conductor 10 is in contact with both the inner peripheral surface of the heat transfer tube 8 and the outer peripheral surface of the combustion tube 7. Therefore, when the combustion gas passing through the combustion gas passage V passes through the plurality of small passages v1, v2, v3,... It can be efficiently transmitted to the heat transfer tube 8 through the heat conductor 10. At the same time, the heat generated in the combustion chamber α in the combustion tube 7 constituting the combustor is transferred to the heat conductor 10 using the wall surface of the combustion tube 7 as a heat transfer surface, and is transferred to the heat transfer tube 8 via the heat conductor 10. Is done.

このように、本発明の流体加熱用燃焼器付熱交換器1においては、燃焼ガス通路Vを通過する燃焼ガスが持っている熱と、燃焼器を構成する燃焼管7内の燃焼室αに発生する熱の双方が、熱伝導体10を介して伝熱管8へと伝達され、伝熱管8の外側に存在する水などの流体を加熱するので、極めて伝熱効率の良い加熱が実現される。また、燃焼室α内で発生する熱を、燃焼管7の管壁を伝熱面として熱伝導体10を介して伝熱管8へと伝えて逃がすことができるので、燃焼管7の温度上昇を抑制し、過熱による燃焼管7の破損や、寿命の低下を防止することができる。   As described above, in the heat exchanger with a combustor 1 for fluid heating according to the present invention, the heat of the combustion gas passing through the combustion gas passage V and the combustion chamber α in the combustion tube 7 constituting the combustor. Both generated heat is transmitted to the heat transfer tube 8 through the heat conductor 10 and heats a fluid such as water existing outside the heat transfer tube 8, so that heating with extremely high heat transfer efficiency is realized. Further, the heat generated in the combustion chamber α can be transferred to the heat transfer tube 8 through the heat conductor 10 with the tube wall of the combustion tube 7 as the heat transfer surface, so that the temperature rise of the combustion tube 7 can be released. It is possible to suppress the damage of the combustion tube 7 due to overheating and the reduction of the service life.

図2において、4nは混合ガス噴出部4に形成されているノズルであり、そのうちの1つのノズル4nはスパークプラグ5の外周と混合ガス噴出部4の内周との間隙として形成されており、他の4つのノズル4nは混合ガス噴出部4に互いに90度の間隔をあけて設けられた開口として形成されている。なお、混合ガス噴出部4にノズルを形成する代わりに、混合ガス噴出部4を、例えばメタルニットなどの金属繊維製の多孔質部材や、多孔質セラミックなどの表裏連通した多数の細孔を有する多孔質部材で構成しても良い。その場合には、スパークプラグ5の外周と混合ガス噴出部4の内周との間隙は混合ガス噴出部4によって閉塞されるのが望ましい。   In FIG. 2, 4n is a nozzle formed in the mixed gas ejection part 4, and one of the nozzles 4n is formed as a gap between the outer circumference of the spark plug 5 and the inner circumference of the mixed gas ejection part 4. The other four nozzles 4n are formed as openings provided in the mixed gas jetting portion 4 at intervals of 90 degrees. Instead of forming a nozzle in the mixed gas jetting portion 4, the mixed gas jetting portion 4 has a porous member made of a metal fiber such as metal knit, and a large number of pores communicating front and back such as porous ceramic. You may comprise with a porous member. In that case, it is desirable that the gap between the outer periphery of the spark plug 5 and the inner periphery of the mixed gas ejection part 4 is closed by the mixed gas ejection part 4.

図1及び図2に示される本発明の流体加熱用燃焼器付熱交換器1は以下のように動作する。すなわち、図示しない混合ガス供給源から燃料用ガスと空気との混合ガスを混合ガス入口3に供給すると、供給された混合ガスはバーナ管2内を流れ、混合ガス噴出部4に設けられたノズル4nから、バーナ管2の先端部2fに向かって噴出する。タイミングを見計らってスパークプラグ5に電圧を印加すると、スパークプラグ5とアース電極を兼ねるバーナ管2の先端部2fとの間で放電して混合ガスに着火し、混合ガスは燃焼室α内で炎Fとなって燃焼する。なお、スパークプラグ5に代えて、例えば電熱ヒータ等の他の点火手段を用いて混合ガスに着火するようにしても良い。   The fluid heat exchanger with a combustor 1 of the present invention shown in FIGS. 1 and 2 operates as follows. That is, when a mixed gas of fuel gas and air is supplied from a mixed gas supply source (not shown) to the mixed gas inlet 3, the supplied mixed gas flows through the burner pipe 2 and is provided in a nozzle provided in the mixed gas ejection portion 4. From 4n, it ejects toward the front-end | tip part 2f of the burner pipe | tube 2. As shown in FIG. When a voltage is applied to the spark plug 5 at the timing, the gas is discharged between the spark plug 5 and the tip 2f of the burner tube 2 that also serves as a ground electrode, and the mixed gas is ignited. Burns as F. In place of the spark plug 5, the mixed gas may be ignited using other ignition means such as an electric heater.

この燃焼により発生した高温の燃焼ガスは燃焼管7内を先端部7fに向かって流れ、伝熱管8の閉止された先端部8fによって流れの向きを変えられて、燃焼ガス通路V、すなわち、複数の小通路v1、v2、v3・・・内へと進行する。小通路v1、v2、v3・・・内を通過する燃焼ガスは、前述したとおり、熱伝導体10と広い面積で接触し、持っていた熱を効率良く熱伝導体10に伝達する。同時に、熱伝導体10は燃焼管7の外周面とも接触しているので、燃焼管7の表面を伝熱面として燃焼室αからも直接に熱の伝達を受け、燃焼ガスから伝達された熱とともに伝熱管8に伝達する。伝熱管8に伝達された熱はその周囲に存在する水などの流体を加熱することになる。小通路v1、v2、v3・・・内を通過した燃焼ガスは、燃焼ガス排気口9から外部へと排出される。   The high-temperature combustion gas generated by this combustion flows in the combustion tube 7 toward the tip portion 7f, and the direction of the flow is changed by the closed tip portion 8f of the heat transfer tube 8, so that the combustion gas passage V, that is, a plurality of To the small passages v1, v2, v3. The combustion gas passing through the small passages v1, v2, v3,... Contacts the heat conductor 10 over a wide area as described above, and efficiently transfers the heat it has to the heat conductor 10. At the same time, since the heat conductor 10 is also in contact with the outer peripheral surface of the combustion tube 7, heat is directly transmitted from the combustion chamber α using the surface of the combustion tube 7 as a heat transfer surface, and the heat transferred from the combustion gas. At the same time, it is transmitted to the heat transfer tube 8. The heat transferred to the heat transfer tube 8 heats a fluid such as water existing around the heat transfer tube 8. The combustion gas that has passed through the small passages v1, v2, v3... Is discharged from the combustion gas exhaust port 9 to the outside.

図3は熱伝導体10の他の例を示す図である。本例において熱伝導体10は、燃焼ガス通路Vの断面形状と同じドーナツ状の断面形状を有するブロック状の熱伝導体であり、その外周表面に形成された空間部である複数の凹部が小通路v1、v2、v3・・・を形成している。また、熱伝導体10の外周面は伝熱管8の内周面と接触し、熱伝導体10の内周面は燃焼管7の外周面と接触している。このような熱伝導体10が燃焼ガス通路Vに配置されている場合には、小通路v1、v2、v3・・・内を通過する燃焼ガスの熱は、直接に伝熱管8の内周面に伝達されるとともに、小通路v1、v2、v3・・・の側面を形成する熱伝導体10にも伝達され、熱伝導体10を介して伝熱管8へと伝達される。ブロック状の熱伝導体10は、単一体であっても良いし、複数に分割されていても良い。   FIG. 3 is a view showing another example of the heat conductor 10. In this example, the heat conductor 10 is a block-shaped heat conductor having a donut-like cross-sectional shape that is the same as the cross-sectional shape of the combustion gas passage V, and a plurality of concave portions that are space portions formed on the outer peripheral surface thereof are small. Passages v1, v2, v3... Are formed. The outer peripheral surface of the heat conductor 10 is in contact with the inner peripheral surface of the heat transfer tube 8, and the inner peripheral surface of the heat conductor 10 is in contact with the outer peripheral surface of the combustion tube 7. When such a heat conductor 10 is arranged in the combustion gas passage V, the heat of the combustion gas passing through the small passages v1, v2, v3. Are transmitted to the heat conductor 10 that forms the side surfaces of the small passages v 1, v 2, v 3... And transmitted to the heat transfer tube 8 through the heat conductor 10. The block-shaped heat conductor 10 may be a single body or may be divided into a plurality of blocks.

また、本例においても熱伝導体10は、伝熱管8の内周面だけでなく、燃焼管7の外周面とも接触しているので、燃焼管7内の燃焼室αで発生した熱は燃焼管7の壁面を伝熱面として熱伝導体10に伝わることができ、伝熱管8へと伝達される。なお、本例においては、燃焼管7の外周面と伝熱管8の内周面の双方と接触する熱伝導体10の円周方向の厚みが、図2に示す薄い板状の熱伝導体10に比べて厚いので、図2に示す熱伝導体10を使用する場合よりも大量の熱を、燃焼管7の管壁から熱伝導体10を介して伝熱管8へと伝達することができる。   Also in this example, since the heat conductor 10 is in contact with not only the inner peripheral surface of the heat transfer tube 8 but also the outer peripheral surface of the combustion tube 7, the heat generated in the combustion chamber α in the combustion tube 7 is combusted. The wall surface of the tube 7 can be transmitted to the heat conductor 10 as a heat transfer surface, and is transmitted to the heat transfer tube 8. In this example, the thickness of the heat conductor 10 in contact with both the outer peripheral surface of the combustion tube 7 and the inner peripheral surface of the heat transfer tube 8 in the circumferential direction is a thin plate-like heat conductor 10 shown in FIG. Therefore, a larger amount of heat can be transferred from the tube wall of the combustion tube 7 to the heat transfer tube 8 through the heat conductor 10 than when the heat conductor 10 shown in FIG. 2 is used.

図4は熱伝導体10の他の例を示す図である。本例において熱伝導体10は、燃焼ガス通路Vの断面形状と同じドーナツ状の断面形状を有するブロック状の熱伝導体であり、その内部に設けられた空間部である複数の貫通孔が小通路v1、v2、v3・・・を形成している。熱伝導体10の外周面は伝熱管8の内周面と接触し、熱伝導体10の内周面は燃焼管7の外周面と接触している。このような熱伝導体10が燃焼ガス通路Vに配置されている場合には、小通路v1、v2、v3・・・内を通過する燃焼ガスは、小通路v1、v2、v3・・・の周囲を取り囲む熱伝導体10と広い面積で接触し、持っていた熱を熱伝導体10に効率良く伝達する。燃焼ガスから熱伝導体10に伝達された熱は熱伝導体10を介して伝熱管8へと伝達される。本例においても、ブロック状の熱伝導体10は、単一体であっても良いし、複数に分割されていても良い。   FIG. 4 is a diagram showing another example of the heat conductor 10. In this example, the heat conductor 10 is a block-shaped heat conductor having a donut-like cross-sectional shape that is the same as the cross-sectional shape of the combustion gas passage V, and a plurality of through-holes that are space portions provided therein are small. Passages v1, v2, v3... Are formed. The outer peripheral surface of the heat conductor 10 is in contact with the inner peripheral surface of the heat transfer tube 8, and the inner peripheral surface of the heat conductor 10 is in contact with the outer peripheral surface of the combustion tube 7. When such a heat conductor 10 is arranged in the combustion gas passage V, the combustion gas passing through the small passages v1, v2, v3,... Passes through the small passages v1, v2, v3,. The heat conductor 10 which surrounds the surroundings is contacted over a wide area, and the heat it has is efficiently transferred to the heat conductor 10. The heat transferred from the combustion gas to the heat conductor 10 is transferred to the heat transfer tube 8 through the heat conductor 10. Also in this example, the block-shaped heat conductor 10 may be a single body or may be divided into a plurality of blocks.

また、本例においては、燃焼管7の外周面と伝熱管8の内周面とは、熱伝導体10を介して、ほぼその全面積において接触しているので、図2に示す熱伝導体10を使用する場合や、図3に示す熱伝導体10を使用する場合よりも大量の熱を、燃焼管7の管壁から熱伝導体10を介して伝熱管8へと伝達することができる。このため、燃焼器を構成する燃焼管7の過熱による温度上昇をより効果的に抑制することができる。   Further, in this example, the outer peripheral surface of the combustion tube 7 and the inner peripheral surface of the heat transfer tube 8 are in contact with each other over almost the entire area via the heat conductor 10, so that the heat conductor shown in FIG. A larger amount of heat can be transferred from the tube wall of the combustion tube 7 to the heat transfer tube 8 through the heat conductor 10 than when the heat conductor 10 is used or when the heat conductor 10 shown in FIG. 3 is used. . For this reason, the temperature rise by the overheating of the combustion pipe 7 which comprises a combustor can be suppressed more effectively.

図5、図6は熱伝導体10のさらに他の例を示す図である。図6は、図5のZ−Z’断面図であるが、便宜上、燃焼管7を平面状に展開して示してある。図5及び図6に示すとおり、本例における熱伝導体10、10、10・・・は、短冊状に裁断された板状部材をその長手方向に沿って交互に逆向きの「くの字」状に折り曲げた形状をしており、隣接する熱伝導体10、10間に形成される小通路v1、v2、v3・・・が、図中矢印で示す燃焼ガスの通過方向に沿ってジグザグになるように、燃焼ガス通路V内に配置されている。また、熱伝導体10、10、10・・・の上端及び下端は、それぞれ伝熱管8の内周面及び燃焼管7の外周面に接触している。小通路v1、v2、v3・・・を通過する燃焼ガスは、熱伝導体10、10、10の板面が燃焼ガスの進行方向に対して傾斜しているので、熱伝導体10の板面に衝突して乱流となり、持っている熱を効率良く熱伝導体10に伝達することができる。また、熱伝導体10、10、10・・・が燃焼管7の外周面と伝熱管8の内周面の双方に接触しているので、燃焼室αの熱も、燃焼管7の壁面を伝熱面として熱伝導体10を介して伝熱管8に効果的に伝達される。   5 and 6 are diagrams showing still another example of the heat conductor 10. FIG. FIG. 6 is a cross-sectional view taken along the line Z-Z ′ of FIG. 5, but for convenience, the combustion tube 7 is shown in a flat shape. As shown in FIG. 5 and FIG. 6, the heat conductors 10, 10, 10... In this example are plate-shaped members that are cut into strips. The small passages v1, v2, v3... Formed between the adjacent heat conductors 10 and 10 are zigzag along the passage direction of the combustion gas indicated by an arrow in the figure. It arrange | positions in the combustion gas channel | path V so that it may become. Further, the upper and lower ends of the heat conductors 10, 10, 10,... Are in contact with the inner peripheral surface of the heat transfer tube 8 and the outer peripheral surface of the combustion tube 7, respectively. The combustion gas passing through the small passages v1, v2, v3,... Has a plate surface of the heat conductors 10, 10, 10 inclined with respect to the traveling direction of the combustion gas. It becomes a turbulent flow by colliding with the heat and can efficiently transfer the heat it has to the heat conductor 10. Further, since the heat conductors 10, 10, 10... Are in contact with both the outer peripheral surface of the combustion tube 7 and the inner peripheral surface of the heat transfer tube 8, the heat of the combustion chamber α is also applied to the wall surface of the combustion tube 7. The heat transfer surface is effectively transmitted to the heat transfer tube 8 through the heat conductor 10.

図7、図8は熱伝導体10のさらに他の例を示す図である。図8は、図7のZ−Z’断面図であるが、便宜上、燃焼管7を平面状に展開して示してある。図7及び図8に示すとおり、本例における熱伝導体10、10、10・・・は円柱状形状をしており、その上端及び下端をそれぞれ伝熱管8の内周面及び燃焼管7の外周面に接触させた状態で、千鳥状に配置されている。このため、燃焼ガス通路Vを通過する燃焼ガスは、図中矢印で示すように、円柱状の熱伝導体10、10、10・・・に衝突しながら進行し、持っている熱を効率良く熱伝導体10に伝達することができる。また、熱伝導体10、10、10・・・が燃焼管7の外周面と伝熱管8の内周面の双方に接触しているので、燃焼室αの熱も、燃焼管7の壁面を伝熱面とし熱伝導体10を介して効果的に伝熱管8に伝達される。   7 and 8 are diagrams showing still another example of the heat conductor 10. FIG. FIG. 8 is a cross-sectional view taken along the line Z-Z ′ of FIG. 7. For convenience, the combustion tube 7 is shown in a flat shape. As shown in FIGS. 7 and 8, the heat conductors 10, 10, 10... In this example have a columnar shape, and the upper end and the lower end thereof are the inner peripheral surface of the heat transfer tube 8 and the combustion tube 7, respectively. They are arranged in a staggered manner in contact with the outer peripheral surface. Therefore, as shown by the arrows in the figure, the combustion gas passing through the combustion gas passage V advances while colliding with the cylindrical heat conductors 10, 10, 10,. It can be transmitted to the heat conductor 10. Further, since the heat conductors 10, 10, 10... Are in contact with both the outer peripheral surface of the combustion tube 7 and the inner peripheral surface of the heat transfer tube 8, the heat of the combustion chamber α is also applied to the wall surface of the combustion tube 7. The heat transfer surface is effectively transmitted to the heat transfer tube 8 through the heat conductor 10.

図9は本発明の流体加熱用燃焼器付熱交換器の他の一例を示す断面図である。図1におけると同じ部材には同じ符号を付してある。図に示すとおり、本例の流体加熱用燃焼器付熱交換器1においては、バーナを構成するバーナ管2の先端部2fを内包する燃焼管7とは別に、バーナ管2の基端部側を内包する混合ガス供給管13が設けられている。混合ガス供給管13は基端部に混合ガス供給口14を有している。混合ガス供給管13は、その内周面とバーナ管2の外周面との間に、混合ガス供給口14とバーナ管2の混合ガス入口3とを連通する混合ガス通路Gを形成するようにバーナ管2と同軸に配置されている。当然のことながら、混合ガス供給管13の内径はバーナ管2の外径よりも大きい。   FIG. 9 is a cross-sectional view showing another example of a heat exchanger with a combustor for fluid heating according to the present invention. The same members as those in FIG. 1 are denoted by the same reference numerals. As shown in the figure, in the heat exchanger with a combustor 1 for fluid heating of this example, the base end side of the burner tube 2 is provided separately from the combustion tube 7 containing the tip 2f of the burner tube 2 constituting the burner. A mixed gas supply pipe 13 is provided. The mixed gas supply pipe 13 has a mixed gas supply port 14 at the base end. The mixed gas supply pipe 13 forms a mixed gas passage G that communicates the mixed gas supply port 14 and the mixed gas inlet 3 of the burner pipe 2 between its inner peripheral surface and the outer peripheral surface of the burner pipe 2. It is arranged coaxially with the burner tube 2. Naturally, the inner diameter of the mixed gas supply pipe 13 is larger than the outer diameter of the burner pipe 2.

混合ガス供給管13は伝熱管8とも同軸に配置されており、混合ガス供給管13の外側には伝熱管8が存在する。当然のことながら、混合ガス供給管13の外径は伝熱管8の内径よりも小さい。混合ガス供給管13の外周面と伝熱管8の内周面との間には、燃焼ガス通路Vから続く燃焼ガス排気通路Sが形成されており、混合ガス通路Gの少なくとも一部は、混合ガス供給管13の管壁を隔てて燃焼ガス排気通路Sと間接的に接触する位置にある。15は燃焼ガス排気通路S内に配置されたフィンであり、その基部は混合ガス供給管13の外周面に固定されており、混合ガス供給管13の外周面と接触している。また、16は混合ガス通路G内に配置されたフィンであり、その基部は混合ガス供給管13の内周面に固定されており、混合ガス供給管13の内周面と接触している。フィン15及びフィン16は熱伝導性の良い金属で形成するのが良く、例えば、前述した熱伝導体10と同様に、アルミニウム、銅、ステンレス、鉄、チタンなどから形成することができるが、中でも、アルミニウム又は銅によって形成するのが望ましい。   The mixed gas supply pipe 13 is also coaxially arranged with the heat transfer pipe 8, and the heat transfer pipe 8 exists outside the mixed gas supply pipe 13. As a matter of course, the outer diameter of the mixed gas supply pipe 13 is smaller than the inner diameter of the heat transfer pipe 8. A combustion gas exhaust passage S continuing from the combustion gas passage V is formed between the outer peripheral surface of the mixed gas supply pipe 13 and the inner peripheral surface of the heat transfer tube 8, and at least a part of the mixed gas passage G is mixed. The gas supply pipe 13 is in a position where it indirectly contacts the combustion gas exhaust passage S across the pipe wall. Reference numeral 15 denotes a fin disposed in the combustion gas exhaust passage S, and its base is fixed to the outer peripheral surface of the mixed gas supply pipe 13 and is in contact with the outer peripheral surface of the mixed gas supply pipe 13. Reference numeral 16 denotes a fin disposed in the mixed gas passage G, and its base is fixed to the inner peripheral surface of the mixed gas supply pipe 13 and is in contact with the inner peripheral surface of the mixed gas supply pipe 13. The fins 15 and 16 are preferably formed of a metal having good thermal conductivity. For example, the fins 15 and 16 can be formed of aluminum, copper, stainless steel, iron, titanium, etc. Desirably, aluminum or copper is used.

図10は図9のY−Y’断面図である。図に示すとおり、フィン15は燃焼ガス排気通路S内に配置され、その基部は混合ガス供給管13の外周面に固定され、その外周面と接触しているが、フィン15の先端部は対向する伝熱管8の内周とは接触していない。このため、燃焼ガス排気通路Sを通過する燃焼ガスからフィン15に伝達された熱は、もっぱら混合ガス供給管13に伝達されることになる。同様に、フィン16は混合ガス通路G内に配置され、その基部は混合ガス供給管13の内周面に固定され、その内周面と接触しているが、フィン16の先端部は対向するバーナ管2の外周面とは接触していない。このため、フィン15から混合ガス供給管13を介してフィン16に伝達された熱は、他に逃げることなく、混合ガス通路Gを通過する混合ガスに伝達されることになる。   10 is a cross-sectional view taken along the line Y-Y 'of FIG. As shown in the figure, the fin 15 is disposed in the combustion gas exhaust passage S, and its base is fixed to the outer peripheral surface of the mixed gas supply pipe 13 and is in contact with the outer peripheral surface, but the tip of the fin 15 is opposed. The inner circumference of the heat transfer tube 8 is not in contact. For this reason, the heat transmitted from the combustion gas passing through the combustion gas exhaust passage S to the fins 15 is transmitted exclusively to the mixed gas supply pipe 13. Similarly, the fin 16 is disposed in the mixed gas passage G, and its base is fixed to the inner peripheral surface of the mixed gas supply pipe 13 and is in contact with the inner peripheral surface, but the tip of the fin 16 faces. It is not in contact with the outer peripheral surface of the burner tube 2. For this reason, the heat transmitted from the fin 15 to the fin 16 via the mixed gas supply pipe 13 is transmitted to the mixed gas passing through the mixed gas passage G without escaping elsewhere.

図9及び図10に示される本発明の流体加熱用燃焼器付熱交換器1は以下のように動作する。すなわち、図示しない混合ガス供給源から燃料用ガスと空気との混合ガスを混合ガス供給口14に供給すると、供給された混合ガスは混合ガス供給管13の内周面とバーナ管2の外周面との間に形成される混合ガス通路Gを通って、混合ガス入口3からバーナ管2内に入り、混合ガス噴出部4から、バーナ管2の先端部2fに向かって噴出する。噴出した混合ガスは、スパークプラグ5によって着火され、燃焼室α内で炎Fとなって燃焼する。この燃焼により発生した高温の燃焼ガスは燃焼管7内を先端部7fに向かって流れ、伝熱管8の閉止された先端部8fによって流れの向きを変えられて、燃焼ガス通路V、すなわち、熱伝導体10で仕切られた複数の小通路v1、v2、v3・・・内を通り、そこで熱伝導体10と広い面積で接触することによって、持っていた熱を熱伝導体10を介して効率良く伝熱管8へと伝達する。同時に、燃焼器を構成する燃焼管7内の燃焼室αで発生した熱は、燃焼管7の管壁を伝熱面として熱伝導体10から伝熱管8へと伝えられ、燃焼ガスから伝えられた熱とともに、伝熱管8の周囲に存在する水などの流体を加熱する。   The heat exchanger with a combustor 1 for fluid heating of the present invention shown in FIGS. 9 and 10 operates as follows. That is, when a mixed gas of fuel gas and air is supplied to the mixed gas supply port 14 from a mixed gas supply source (not shown), the supplied mixed gas is mixed with the inner peripheral surface of the mixed gas supply tube 13 and the outer peripheral surface of the burner tube 2. The gas enters the burner pipe 2 from the mixed gas inlet 3 through the mixed gas passage G formed therebetween, and is ejected from the mixed gas ejection part 4 toward the tip 2f of the burner pipe 2. The jetted mixed gas is ignited by the spark plug 5 and burns as a flame F in the combustion chamber α. The high-temperature combustion gas generated by this combustion flows in the combustion tube 7 toward the tip portion 7f, and the direction of the flow is changed by the closed tip portion 8f of the heat transfer tube 8, so that the combustion gas passage V, that is, heat It passes through a plurality of small passages v1, v2, v3... Partitioned by the conductor 10 and makes contact with the heat conductor 10 over a wide area, thereby efficiently carrying the heat it has passed through the heat conductor 10. It is well transmitted to the heat transfer tube 8. At the same time, the heat generated in the combustion chamber α in the combustion tube 7 constituting the combustor is transmitted from the heat conductor 10 to the heat transfer tube 8 using the tube wall of the combustion tube 7 as a heat transfer surface, and from the combustion gas. Along with the heat, a fluid such as water existing around the heat transfer tube 8 is heated.

持っていた熱を熱伝導体10を介して伝熱管8に伝達し、温度が下がった燃焼ガスは、続いて、伝熱管8の内周面と混合ガス供給管13の外周面との間に形成される燃焼ガス排気通路Sへと進行する。燃焼ガス排気通路Sを通過する燃焼ガスは、フィン15と広い面積で接触し、持っている熱をさらにフィン15に伝達し、燃焼ガス排気口9から外部へと排出される。   The combustion gas that has been transferred to the heat transfer tube 8 through the heat conductor 10 and the temperature of the combustion gas has been lowered continues between the inner peripheral surface of the heat transfer tube 8 and the outer peripheral surface of the mixed gas supply tube 13. It progresses to the combustion gas exhaust passage S formed. The combustion gas passing through the combustion gas exhaust passage S comes into contact with the fin 15 over a wide area, further transfers the heat it has to the fin 15, and is discharged from the combustion gas exhaust port 9 to the outside.

燃焼ガスからフィン15に伝達された熱は、混合ガス供給管13の管壁を介して混合ガス通路G内に配置されているフィン16に伝達され、混合ガス通路G内を通過する混合ガスを加熱する。このように、混合ガス供給口14から混合ガス通路G内に供給される混合ガスは、燃焼ガス排気通路Sを通過する燃焼ガスによって予熱され、温度が上昇した状態でバーナ管2内の混合ガス噴出部4から燃焼室α内に噴出し、燃焼するので、より高い燃焼効率を実現することができる。   The heat transferred from the combustion gas to the fins 15 is transferred to the fins 16 disposed in the mixed gas passage G through the tube wall of the mixed gas supply pipe 13, and the mixed gas passing through the mixed gas passage G is transferred to the fins 16. Heat. Thus, the mixed gas supplied into the mixed gas passage G from the mixed gas supply port 14 is preheated by the combustion gas passing through the combustion gas exhaust passage S, and the mixed gas in the burner pipe 2 in a state where the temperature has risen. Since it ejects from the ejection part 4 into the combustion chamber α and burns, higher combustion efficiency can be realized.

以上述べたとおり、本発明の流体加熱用燃焼器付熱交換器は、高い伝熱効率で流体を効率良く加熱することができるので、省エネルギーであり、かつ、CO削減にも寄与するものである。さらに、本発明の流体加熱用燃焼器付熱交換器は、小型でコンパクトに構成できるので、使用材料が少なく省資源にも役立つものである。本発明の流体加熱用燃焼器付熱交換器は、その伝熱管部分が被加熱流体と接触するように被加熱流体を収容する容器に取り付けるか、被加熱流体内に浸漬するだけで、被加熱流体を効率良く加熱することができるので、水や油、空気などの流体の加熱を極めて容易かつ簡便に行うことができ、その産業上の利用可能性は多大である。 As described above, the heat exchanger with a combustor for fluid heating according to the present invention can efficiently heat a fluid with high heat transfer efficiency, which is energy saving and contributes to CO 2 reduction. . Furthermore, the heat exchanger with a combustor for fluid heating according to the present invention can be made compact and compact, so that it uses less material and is useful for resource saving. The heat exchanger with a combustor for fluid heating according to the present invention can be heated by simply attaching it to a container containing the heated fluid so that the heat transfer tube portion is in contact with the heated fluid or immersing it in the heated fluid. Since the fluid can be efficiently heated, the fluid such as water, oil, and air can be heated easily and simply, and its industrial applicability is great.

1 流体加熱用燃焼器付熱交換器
2 バーナ管
3 混合ガス入口
4 混合ガス噴出部
5 スパークプラグ
6 保護管
7 燃焼管
8 伝熱管
9 燃焼ガス排気口
10 熱伝導体
11 フランジ
12、15、16 フィン
13 混合ガス供給管
14 混合ガス供給口
α 燃焼室
F 炎
G 混合ガス通路
S 燃焼ガス排気通路
V 燃焼ガス通路
DESCRIPTION OF SYMBOLS 1 Heat exchanger with a combustor for fluid heating 2 Burner pipe 3 Mixed gas inlet 4 Mixed gas ejection part 5 Spark plug 6 Protection pipe 7 Combustion pipe 8 Heat transfer pipe 9 Combustion gas exhaust port 10 Thermal conductor 11 Flange 12, 15, 16 Fin 13 Mixed gas supply pipe 14 Mixed gas supply port α Combustion chamber F Flame G Mixed gas passage S Combustion gas exhaust passage V Combustion gas passage

Claims (2)

先端部が開口し、内部に燃焼室を形成する燃焼管と、前記燃焼管内に配置されたバーナとから構成される燃焼器と;内部に前記燃焼器を収容し、自身の内周面と前記燃焼管の外周面との間に、前記燃焼器内で発生した燃焼ガスを通過させる燃焼ガス通路を形成する伝熱管であって、前記燃焼管の前記開口した先端部と間隙をあけて対向する閉止された先端部と、前記閉止された先端部と前記燃焼ガス通路を隔てた位置に燃焼ガス排気口を有する伝熱管と;前記燃焼ガス通路に配置され、前記燃焼管の外周面と前記伝熱管の内周面の双方と面で接触し、前記燃焼管の管壁から前記伝熱管へと熱を伝達する1又は複数の熱伝導体とを有する流体加熱用燃焼器付熱交換器。   A combustor comprising a combustion tube having an opening at its tip and forming a combustion chamber therein; and a burner disposed in the combustion tube; housing the combustor therein; A heat transfer tube that forms a combustion gas passage through which the combustion gas generated in the combustor passes between the outer peripheral surface of the combustion tube, and is opposed to the opened tip of the combustion tube with a gap. A closed tip, a heat transfer pipe having a combustion gas exhaust port at a position separating the closed tip from the combustion gas passage; and disposed in the combustion gas passage, and an outer peripheral surface of the combustion pipe and the transmission A heat exchanger with a combustor for fluid heating, comprising one or a plurality of heat conductors that are in surface contact with both inner peripheral surfaces of the heat tube and transfer heat from a tube wall of the combustion tube to the heat transfer tube. 前記バーナが、開口した先端部と混合ガス入口を有するバーナ管と;前記バーナ管の前記開口した先端部と前記混合ガス入口との間に配置された混合ガス噴出部とを有している請求項1記載の流体加熱用燃焼器付熱交換器。   The burner has a burner pipe having an open front end and a mixed gas inlet; and a mixed gas ejection part disposed between the open front end of the burner pipe and the mixed gas inlet. Item 2. A heat exchanger with a combustor for fluid heating according to Item 1.
JP2015090365A 2015-04-27 2015-04-27 Heat exchanger with combustor for fluid heating Active JP6019165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015090365A JP6019165B2 (en) 2015-04-27 2015-04-27 Heat exchanger with combustor for fluid heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015090365A JP6019165B2 (en) 2015-04-27 2015-04-27 Heat exchanger with combustor for fluid heating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011007499A Division JP5763927B2 (en) 2011-01-18 2011-01-18 Heat exchanger with combustor for fluid heating

Publications (2)

Publication Number Publication Date
JP2015163837A true JP2015163837A (en) 2015-09-10
JP6019165B2 JP6019165B2 (en) 2016-11-02

Family

ID=54186826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015090365A Active JP6019165B2 (en) 2015-04-27 2015-04-27 Heat exchanger with combustor for fluid heating

Country Status (1)

Country Link
JP (1) JP6019165B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1734310A (en) * 1926-02-02 1929-11-05 Taylor Huston Boiler
US3266485A (en) * 1964-04-13 1966-08-16 C M Kemp Mfg Co Recirculating immersion heater
US3349754A (en) * 1966-06-29 1967-10-31 Bock Corp Heat exchange device
US3776199A (en) * 1972-05-05 1973-12-04 Hy Way Heat Systems Regenerative heat exchanger
US4493309A (en) * 1982-09-29 1985-01-15 British Gas Corporation Fuel fired heating element
JPS60216107A (en) * 1984-04-10 1985-10-29 Tokyo Gas Co Ltd Liquid heating apparatus of pulse combustion type
US5313914A (en) * 1991-10-30 1994-05-24 Woollen Donald E Potable hot water storage vessel and direct-fired heat exchanger
EP0889297A1 (en) * 1997-07-03 1999-01-07 Ruhrgas Aktiengesellschaft Installation for melting and/or holding a metallic bath at temperature
WO2002075209A1 (en) * 2001-03-19 2002-09-26 Sandvik Ab Radiant tube gas burner
US20030235798A1 (en) * 2001-05-10 2003-12-25 Moore Edward E. U-tube diffusion flame burner assembly having unique flame stabilization

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1734310A (en) * 1926-02-02 1929-11-05 Taylor Huston Boiler
US3266485A (en) * 1964-04-13 1966-08-16 C M Kemp Mfg Co Recirculating immersion heater
US3349754A (en) * 1966-06-29 1967-10-31 Bock Corp Heat exchange device
US3776199A (en) * 1972-05-05 1973-12-04 Hy Way Heat Systems Regenerative heat exchanger
US4493309A (en) * 1982-09-29 1985-01-15 British Gas Corporation Fuel fired heating element
JPS60216107A (en) * 1984-04-10 1985-10-29 Tokyo Gas Co Ltd Liquid heating apparatus of pulse combustion type
US5313914A (en) * 1991-10-30 1994-05-24 Woollen Donald E Potable hot water storage vessel and direct-fired heat exchanger
EP0889297A1 (en) * 1997-07-03 1999-01-07 Ruhrgas Aktiengesellschaft Installation for melting and/or holding a metallic bath at temperature
WO2002075209A1 (en) * 2001-03-19 2002-09-26 Sandvik Ab Radiant tube gas burner
US20030235798A1 (en) * 2001-05-10 2003-12-25 Moore Edward E. U-tube diffusion flame burner assembly having unique flame stabilization

Also Published As

Publication number Publication date
JP6019165B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6587411B2 (en) Radiant tube heating device
ES2728174T3 (en) Heated heat exchanger
JP5763927B2 (en) Heat exchanger with combustor for fluid heating
JP5687163B2 (en) Radiant tube burner
JP6019165B2 (en) Heat exchanger with combustor for fluid heating
JP6173178B2 (en) Single-ended radiant tube burner
WO2009110509A1 (en) Heating apparatus
KR101280453B1 (en) Heat exchanger
JP5785113B2 (en) Heat exchanger with combustor for fluid heating
KR102086205B1 (en) Flow-through boiler
JP6594749B2 (en) Radiant tube burner
US4267884A (en) Heat recovery device for use in return air duct of forced air furnace for recovering heat from the flue of such furnace
JP5182617B2 (en) Combustion heater
KR101864651B1 (en) Heat Exchanger for Heat Recovery
JP5211765B2 (en) Heating device
KR200285948Y1 (en) Heat exchanger
JP7105437B2 (en) heating heater
KR101795989B1 (en) Heat exchanger for thermal energy supply
RU2242681C2 (en) Gas heater
KR101429051B1 (en) Warming up Device of boiler
RU37407U1 (en) HEATER
JP2004177022A (en) Thermal device
KR101306782B1 (en) Combustion apparatus assembly exchanger for stirling engine
JP2018009721A (en) Compact-sized vortex combustor
CN112984551A (en) Orifice plate turbulent flow type oil-free pulverized coal igniter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6019165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250