Nothing Special   »   [go: up one dir, main page]

JP2015151093A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2015151093A
JP2015151093A JP2014028869A JP2014028869A JP2015151093A JP 2015151093 A JP2015151093 A JP 2015151093A JP 2014028869 A JP2014028869 A JP 2014028869A JP 2014028869 A JP2014028869 A JP 2014028869A JP 2015151093 A JP2015151093 A JP 2015151093A
Authority
JP
Japan
Prior art keywords
refrigerant
adsorption
cooling medium
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014028869A
Other languages
Japanese (ja)
Inventor
亮 瀧澤
Ryo Takizawa
亮 瀧澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014028869A priority Critical patent/JP2015151093A/en
Publication of JP2015151093A publication Critical patent/JP2015151093A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of improving cooling performance using a heat source 1, a refrigeration cycle device 15, and an adsorption type refrigeration device 6.SOLUTION: An air conditioner includes a heat source 1, a cooling medium circuit 2 through which a cooling medium for cooling the heat source 1 flows, and a refrigeration cycle device 15. The refrigeration cycle device 15 includes a compressor 8, a refrigerant circuit 11 for circulating a compressed refrigerant to an outdoor heat exchanger 9 and a heat exchanger 10 for cooling, and decompressing means 12 for decompressing and expanding the refrigerant. The air conditioner includes a cooling medium/refrigerant heat exchanger 4 for performing heat exchange between the cooling medium circuit 2 and the refrigerant circuit 11 and transmitting the heat from the refrigerant circuit 11 to the cooling medium circuit 2. The air conditioner further includes an adsorption type refrigeration device 6 for generating steam from an adsorption agent with the heat of the cooling medium circuit 2, and cooling an air conditioning space 60. When the temperature of the cooling medium circuit 2 is lower than a predetermined temperature, the heat from the refrigerant circuit 11 is transmitted to the cooling medium circuit 2 through the cooling medium/refrigerant heat exchanger 4.

Description

本発明は、熱源からの熱を用いて作動する吸着式冷凍装置と冷凍サイクル装置との両方を組み合わせた空調装置に関するものである。特に、車両でのエンジン冷却水の廃熱を用いた吸着式冷凍装置と冷凍サイクル装置の両方を組み合わせたバス用の車両用空調装置に関する。   The present invention relates to an air conditioner that combines both an adsorption refrigeration apparatus that operates using heat from a heat source and a refrigeration cycle apparatus. In particular, the present invention relates to a vehicular air conditioner for buses that combines both an adsorption refrigeration apparatus using waste heat of engine cooling water in a vehicle and a refrigeration cycle apparatus.

従来、吸収式冷凍装置が知られている。これは吸収力の高い液体に冷媒を吸収させて発生する低圧によって、別の位置の冷媒を気化させて低温を得る冷凍機である。   Conventionally, an absorption refrigeration apparatus is known. This is a refrigerating machine that obtains a low temperature by vaporizing a refrigerant at another position by a low pressure generated by absorbing the refrigerant in a liquid having a high absorption capacity.

吸収式冷凍装置の基本サイクルとしては、冷媒を低温低圧の蒸発器で蒸発させ冷水又は冷液をつくり、蒸発冷媒は、吸収器で吸収液に吸収させる。つまり、吸収による低圧が発生して、蒸発器で冷媒を蒸発させる。冷媒を吸収した吸収液は、再生器で熱を加えられ、冷媒を蒸発分離して、その冷媒は再び吸収器に戻される。蒸発分離した冷媒は、凝縮器で冷却して液化し、再び蒸発器で使用する。   As a basic cycle of the absorption refrigeration apparatus, the refrigerant is evaporated by a low-temperature and low-pressure evaporator to produce cold water or cold liquid, and the evaporated refrigerant is absorbed by the absorption liquid by the absorber. That is, a low pressure is generated by absorption, and the refrigerant is evaporated by the evaporator. The absorbing liquid that has absorbed the refrigerant is heated by the regenerator, evaporates and separates the refrigerant, and the refrigerant is returned to the absorber again. The refrigerant separated by evaporation is cooled by a condenser to be liquefied and used again in the evaporator.

このような吸収式冷凍装置の考え方を用いた装置として、特許文献1に記載のバス車両用冷房装置が知られている。この装置は、夏場使用しない暖房用の予熱器の活用のため、吸収式冷凍装置を使用している。   As an apparatus using such an idea of an absorption refrigeration apparatus, a cooling apparatus for a bus vehicle described in Patent Document 1 is known. This device uses an absorption refrigeration system to utilize a preheater for heating that is not used in summer.

そのために、この吸収式冷凍装置は、エンジン冷却水を加熱して適度の高温に保つ予熱式ヒータと、この予熱式ヒータからの高温のエンジン冷却水が導入され車室内を暖房するヒータコアとを備える。また、吸収式冷凍装置は、適温のエンジン冷却水が導入され冷媒と吸収剤との溶液を加熱して冷媒を蒸発させる発生器と、この発生器からの冷媒蒸気を凝縮させる凝縮器とを備える。   For this purpose, this absorption refrigeration apparatus includes a preheating heater that heats engine cooling water to keep it at a moderately high temperature, and a heater core that heats the vehicle interior by introducing high-temperature engine cooling water from the preheating heater. . Further, the absorption refrigeration apparatus includes a generator that introduces engine coolant at an appropriate temperature and heats a solution of the refrigerant and the absorbent to evaporate the refrigerant, and a condenser that condenses the refrigerant vapor from the generator. .

そして、吸収式冷凍装置は、凝縮器で凝縮された冷媒を断熱膨張させて蒸発させ、この蒸発熱によりバス車内を冷房している。蒸発器で蒸発した冷媒は、吸収剤に吸収される。次に、冷媒と吸収剤との溶液は、吸収器によって発生器に送られ、この発生器で再び加熱され冷媒が気化される。   Then, the absorption refrigeration apparatus adiabatically expands and evaporates the refrigerant condensed in the condenser, and cools the inside of the bus car by this evaporation heat. The refrigerant evaporated in the evaporator is absorbed by the absorbent. Next, the solution of the refrigerant and the absorbent is sent to the generator by the absorber, and heated again by this generator to vaporize the refrigerant.

一方、低温の熱で作動し、冷熱が得られる吸着式冷凍装置(吸着式冷凍システム)が知られている。この吸着式冷凍装置は、シリカゲルやゼオライト等の吸着剤に水又はアルコール等から成る冷媒を吸着させ、冷媒の蒸発を促し、その気化熱を取り出して冷却効果を得るものである。   On the other hand, an adsorption refrigeration apparatus (adsorption refrigeration system) that operates with low-temperature heat and obtains cold is known. In this adsorption refrigeration apparatus, a refrigerant composed of water or alcohol is adsorbed on an adsorbent such as silica gel or zeolite, the evaporation of the refrigerant is promoted, the heat of vaporization is taken out, and a cooling effect is obtained.

吸着式冷凍装置を利用した空調装置として特許文献2がある。この特許文献2では、複数の吸着コアと、複数の蒸発凝縮コアとを、複数の連通管にてそれぞれ独立に連通している。そして、第1送風手段の送風空気を第1送風路にて複数の吸着コアに導いている。   There exists patent document 2 as an air-conditioning apparatus using an adsorption | suction type freezing apparatus. In Patent Document 2, a plurality of adsorption cores and a plurality of evaporative condensation cores are independently communicated with each other through a plurality of communication pipes. And the ventilation air of the 1st ventilation means is guide | induced to the some adsorption | suction core by the 1st ventilation path.

また、第2送風手段の送風空気を第2送風路にて複数の蒸発凝縮コアに導いている。この特許文献2では、冷凍サイクル装置と吸着式冷凍装置の双方で車室内を空調できるが、冷凍サイクル装置の発生熱を吸着式冷凍装置が利用していない。   Further, the air blown from the second air blowing means is guided to the plurality of evaporation condensation cores through the second air passage. In Patent Document 2, the vehicle interior can be air-conditioned by both the refrigeration cycle apparatus and the adsorption refrigeration apparatus, but the heat generated by the refrigeration cycle apparatus is not utilized by the adsorption refrigeration apparatus.

吸着式冷凍装置の複数の吸着コアの吸着剤にて冷媒を脱着させるとき、PTCヒータにて加熱された送風空気を複数の吸着コアに送風している。更に、吸着式冷凍機の原理が、非特許文献1にわかりやすく紹介されている。   When the refrigerant is desorbed by the adsorbent of the plurality of adsorption cores of the adsorption refrigeration apparatus, the blown air heated by the PTC heater is blown to the plurality of adsorption cores. Furthermore, Non-Patent Document 1 introduces the principle of the adsorption refrigerator in an easy-to-understand manner.

特開昭52−133631号公報Japanese Patent Application Laid-Open No. Sho 52-133631 特開平11−108487号公報JP-A-11-108487

吸着式冷凍機の原理、ユニオン産業株式会社インターネット<URL:http://www.union-reitouki.com/chiller/principle.html>Principle of adsorption refrigerator, Union Sangyo Co., Ltd. Internet <URL: http://www.union-reitouki.com/chiller/principle.html>

上記特許文献1の技術によると、温度が高い条件で効率の良い吸収式冷凍装置が採用されているため、常に85℃以上の水温がなければ安定した能力が発揮できない。ただし、水温が高い条件を維持すると、冷却水回路の本来の目的であるエンジンの冷却能力が低下してしまう。従って、熱源となるエンジンの加熱を防ぐ手段が重要となり、上記特許文献1の技術では、エンジン温水回路のラジエータへの分岐回路を配置し、バルブなどでエンジン冷却水の流路を切り替えて対応している。   According to the technique of Patent Document 1, an efficient absorption refrigeration system is employed under a high temperature condition. Therefore, a stable ability cannot be exhibited unless the water temperature is always 85 ° C. or higher. However, if the condition where the water temperature is high is maintained, the cooling capacity of the engine, which is the original purpose of the cooling water circuit, is reduced. Therefore, it is important to prevent heating of the engine serving as a heat source. In the technique disclosed in Patent Document 1, a branch circuit to the radiator of the engine hot water circuit is arranged, and the flow path of the engine cooling water is switched by a valve or the like. ing.

廃熱を利用する観点からは、吸収式も吸着式も変わらないが、温度帯に違いがある。従って、バス車両でのエンジン冷却水の廃熱を用いた吸着式冷凍装置を使用することが考えられる。この吸着式冷凍装置においては、エンジンの温水温度が低い場合、吸着式冷凍装置の能力が充分に発揮できない。また、吸着式冷凍装置のために、温水温度を上昇させる予熱機を使用すると、吸着式冷凍装置の冷房能力は向上するが、全体の効率は改善しない。   From the viewpoint of using waste heat, neither the absorption type nor the adsorption type is changed, but there is a difference in the temperature range. Therefore, it is conceivable to use an adsorption refrigeration apparatus using waste heat of engine cooling water in a bus vehicle. In this adsorption refrigeration apparatus, the capacity of the adsorption refrigeration apparatus cannot be sufficiently exhibited when the hot water temperature of the engine is low. Further, if a preheater that raises the temperature of the hot water is used for the adsorption refrigeration apparatus, the cooling capacity of the adsorption refrigeration apparatus is improved, but the overall efficiency is not improved.

本発明は、このような従来の技術に存在する問題点に着目してなされたものであり、その目的は、熱源と冷凍サイクル装置と吸着式冷凍装置とを用いて、全体の冷房能力を向上できる空調装置を提供することを目的とする。   The present invention has been made paying attention to such problems existing in the prior art, and its purpose is to improve the overall cooling capacity by using a heat source, a refrigeration cycle apparatus, and an adsorption refrigeration apparatus. It aims at providing the air conditioner which can be performed.

従来技術として列挙された特許文献の記載内容は、この明細書に記載された技術的要素の説明として、参照によって導入ないし援用することができる。   Descriptions of patent documents listed as prior art can be introduced or incorporated by reference as explanations of technical elements described in this specification.

本発明は上記目的を達成するために、下記の技術的手段を採用する。すなわち、本発明の空調装置は、作動時に熱を発生する熱源(1)と、熱源(1)を冷却する冷却媒体が流れる冷却媒体回路(2)とを備える。また、空調装置は、冷媒を圧縮機(8)にて圧縮し、この圧縮された冷媒を、放熱器を構成する室外熱交換器(9)と空調風を冷却する冷却用熱交換器(10)とに流す冷媒回路(11)を備える。かつ、冷媒を減圧膨張させる減圧手段(12)とを備え、空調装置は、冷凍サイクル装置(15)を構成する。   In order to achieve the above object, the present invention employs the following technical means. That is, the air conditioner of the present invention includes a heat source (1) that generates heat during operation, and a cooling medium circuit (2) through which a cooling medium that cools the heat source (1) flows. Further, the air conditioner compresses the refrigerant by the compressor (8), and the compressed refrigerant is cooled by the outdoor heat exchanger (9) constituting the radiator and the cooling heat exchanger (10) for cooling the conditioned air. ) And a refrigerant circuit (11) flowing therethrough. And the decompression means (12) which decompresses and expands a refrigerant | coolant is provided, and an air conditioner comprises the refrigerating-cycle apparatus (15).

かつ空調装置は、冷却媒体回路(2)と冷媒回路(11)との熱交換を行い冷媒回路(11)からの熱を冷却媒体回路(2)に伝達する冷却媒体冷媒熱交換器(4)と、吸着式冷凍装置(6)と、を備える。   The air conditioner also performs heat exchange between the cooling medium circuit (2) and the refrigerant circuit (11) and transfers heat from the refrigerant circuit (11) to the cooling medium circuit (2). And an adsorption refrigeration apparatus (6).

吸着式冷凍装置(6)は、吸着剤を有する一対の吸着コア(AD1、AD2)の吸着剤が冷媒となる水蒸気を吸着することによって圧力が下がる。その結果、水が蒸発して冷熱を作り出す吸着エバポレータと、吸着コア(AD1又はAD2)から脱離した水蒸気を凝縮させる吸着コンデンサ(6C)とを備える。かつ、吸着式冷凍装置は、吸着した吸着コア(AD1又はAD2)を冷却する吸着ラジエータ(6R)を備える。   In the adsorption refrigeration apparatus (6), the pressure decreases as the adsorbent of the pair of adsorption cores (AD1, AD2) having the adsorbent adsorbs water vapor as a refrigerant. As a result, an adsorption evaporator that produces cold by evaporation of water and an adsorption condenser (6C) that condenses water vapor desorbed from the adsorption core (AD1 or AD2) are provided. In addition, the adsorption refrigeration apparatus includes an adsorption radiator (6R) that cools the adsorbed adsorption core (AD1 or AD2).

そして、冷却媒体回路(2)の温度が所定温度より低い場合に、冷却媒体冷媒熱交換器(4)を介して冷媒回路(11)からの熱を冷却媒体回路(2)に伝達する。また、吸着エバポレータの冷熱にて空調風の冷却又は放熱器の過冷却を行う。   And when the temperature of a cooling medium circuit (2) is lower than predetermined temperature, the heat from a refrigerant circuit (11) is transmitted to a cooling medium circuit (2) via a cooling medium refrigerant | coolant heat exchanger (4). In addition, cooling of the air-conditioning air or cooling of the radiator is performed by the cold heat of the adsorption evaporator.

この発明によれば、吸着式冷凍装置(6)に冷凍サイクル装置(15)を連携させて、冷却媒体回路(2)の温度が所定温度より低い場合に、冷却媒体冷媒熱交換器(4)を介して冷媒回路(11)からの熱を冷却媒体回路(2)に伝達する。そして、冷却媒体回路(2)の熱を用いて、吸着式冷凍装置(6)を効率よく作動させることにより、熱源(1)の熱を利用した吸着式空調装置(6)の冷房能力を向上させ、かつ吸着式空調装置(6)が生成した冷熱を用いて全体の冷房効率の向上を達成できる。   According to this invention, when the refrigeration cycle apparatus (15) is linked to the adsorption refrigeration apparatus (6) and the temperature of the cooling medium circuit (2) is lower than the predetermined temperature, the cooling medium refrigerant heat exchanger (4). The heat from the refrigerant circuit (11) is transferred to the cooling medium circuit (2) via the. And the cooling capacity of the adsorption type air conditioner (6) using the heat of the heat source (1) is improved by efficiently operating the adsorption type refrigeration apparatus (6) using the heat of the cooling medium circuit (2). In addition, the cooling efficiency generated by the adsorption type air conditioner (6) can be improved.

なお、特許請求の範囲及び上記各手段に記載の括弧内の符号ないし説明は、後述する実施形態に記載の具体的手段との対応関係を分かり易く示す一例であり、発明の内容を限定するものではない。   In addition, the code | symbol in parentheses as described in a claim and said each means thru | or description is an example which shows the correspondence with the specific means as described in embodiment mentioned later easily, and limits the content of invention is not.

本発明の第1実施形態を示すバス用の車両用空調装置の全体構成図である。1 is an overall configuration diagram of a vehicle air conditioner for a bus showing a first embodiment of the present invention. 上記第1実施形態に用いる吸着式冷凍装置の概要を説明する構成図である。It is a block diagram explaining the outline | summary of the adsorption | suction type freezing apparatus used for the said 1st Embodiment. 上記第1実施形態における吸着式冷凍装置の図2の構成に対して脱離側と吸着側の入れ替えを説明する構成図である。It is a block diagram explaining replacement | exchange of a desorption side and an adsorption | suction side with respect to the structure of FIG. 2 of the adsorption | suction type freezing apparatus in the said 1st Embodiment. 本発明の第2実施形態を示すバス用の車両用空調装置の全体構成図である。It is a whole block diagram of the vehicle air conditioner for buses which shows 2nd Embodiment of this invention. 上記第2実施形態に用いる吸着式冷凍装置の概要を説明する構成図である。It is a block diagram explaining the outline | summary of the adsorption | suction type freezing apparatus used for the said 2nd Embodiment. 図4に示した第2実施形態のバイパス部分の変形例を示すバス用の車両用空調装置の全体構成図である。It is a whole block diagram of the vehicle air conditioner for buses which shows the modification of the bypass part of 2nd Embodiment shown in FIG.

以下に、図面を参照しながら本発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部を説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。   A plurality of modes for carrying out the present invention will be described below with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. In the case where a part of the configuration is described in each form, the other forms described above can be applied to the other parts of the configuration.

各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくても実施形態同士を部分的に組合せることも可能である。   Not only combinations of parts that clearly indicate that the combination is possible in each embodiment, but also the embodiments are partially combined even if they are not clearly specified unless there is a problem with the combination. It is also possible.

(第1実施形態)
以下、本発明の第1実施形態について図1及び図2を用いて詳細に説明する。図1は、本発明の第1実施形態を示すバス用の車両用空調装置を示す。この実施形態では、冷凍サイクル装置15の圧縮機8の吐出ガスをコンデンサにて冷却している点に着眼している。熱をコンデンサで空気放熱するのではなく、エンジン冷却水回路(冷却媒体回路2)へ受け渡すことで、エンジン冷却水の温度を上げ、この温度が上げられたエンジン冷却水を吸着式冷凍装置6へ供給している。こうすることで、燃費を悪化させることなく、冷房能力を向上させ、効率を向上させるものである。上記した従来技術では、予熱器を作動させることで温水温度を上昇させているが、これでは全体の燃費がそれほど改善されず、近年の燃費規制動向から有用であるとは言い難い。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 shows a vehicular air conditioner for buses according to a first embodiment of the present invention. In this embodiment, attention is focused on the fact that the discharge gas of the compressor 8 of the refrigeration cycle apparatus 15 is cooled by a condenser. The heat is not radiated by the condenser but is transferred to the engine cooling water circuit (cooling medium circuit 2) to raise the temperature of the engine cooling water. To supply. By doing so, the cooling capacity is improved and the efficiency is improved without deteriorating the fuel consumption. In the above-described conventional technology, the hot water temperature is raised by operating the preheater, but this does not improve the overall fuel consumption so much, and it is difficult to say that it is useful from the recent trend of fuel consumption regulations.

図1において、作動時に熱を発生する熱源1は、車両を駆動するバスのエンジン(内燃機関)により構成されている。つまり、熱源1は、車両となるバス内に設けられている。この熱源1を冷却する冷却媒体を構成するエンジン冷却水が流れる冷却媒体回路2を有する。図2は、図1の装置に用いる吸着式冷凍装置6の具体的構成図である。   In FIG. 1, a heat source 1 that generates heat during operation is constituted by a bus engine (internal combustion engine) that drives a vehicle. That is, the heat source 1 is provided in a bus serving as a vehicle. A cooling medium circuit 2 through which engine cooling water constituting a cooling medium for cooling the heat source 1 flows is provided. FIG. 2 is a specific configuration diagram of the adsorption refrigeration apparatus 6 used in the apparatus of FIG.

図1の冷却媒体回路2には、熱源1、ウォータポンプ(冷却媒体ポンプでありW/Pとも記す)3、冷却媒体冷媒熱交換器4、バイパス弁5、吸着式冷凍装置6、バスの床下に設けられた複数のヒータコア7、ラジエータ17等が設けられている。ヒータコア7には、エンジン冷却水が流れ、図示しない送風ファンによりバス内を空調する空調風が暖められる。   1 includes a heat source 1, a water pump (a cooling medium pump, also referred to as W / P) 3, a cooling medium refrigerant heat exchanger 4, a bypass valve 5, an adsorption refrigeration apparatus 6, an underfloor of a bath A plurality of heater cores 7, a radiator 17, and the like are provided. Engine cooling water flows through the heater core 7 and warms the conditioned air that air-conditions the interior of the bus by a blower fan (not shown).

また、冷媒を圧縮機8にて圧縮し、この圧縮された冷媒を室外熱交換器9から構成された放熱用熱交換器と冷却用熱交換器10とに流す冷媒回路11と、冷媒を減圧膨張させる減圧手段12(冷房絞り)とを備えた冷凍サイクル装置15を有する。   In addition, the refrigerant is compressed by the compressor 8, and the refrigerant is depressurized by a refrigerant circuit 11 that flows the compressed refrigerant between the heat exchanger for heat radiation composed of the outdoor heat exchanger 9 and the heat exchanger for cooling 10. It has a refrigeration cycle apparatus 15 having a decompression means 12 (cooling throttle) for expansion.

この冷凍サイクル装置15は、車両用空調装置の本体部を構成し、車室内を冷房する冷凍サイクルが実行される。なお、図1の冷凍サイクル装置15は一般的なエアコンサイクルであり、レシーバ等の細かい構成部品は図示を省略している。   The refrigeration cycle apparatus 15 constitutes a main body of a vehicle air conditioner, and a refrigeration cycle for cooling the passenger compartment is executed. The refrigeration cycle apparatus 15 in FIG. 1 is a general air conditioner cycle, and detailed components such as a receiver are not shown.

放熱用熱交換器は、室外熱交換器9にて構成されており、冷媒の熱を車両外部に放熱する。冷却用熱交換器10は、内部の冷媒が蒸発する蒸発器であって、冷媒と室内空気とを熱交換させる天井室内側熱交換器にて構成される。つまり、冷媒と室内空気とを熱交換させる冷却用熱交換器10から構成されたバスの天井室内側熱交換器を通過して空調用空気が流れ、この空調用空気が冷却されて車室内を冷房する。   The heat exchanger for heat dissipation is configured by the outdoor heat exchanger 9, and dissipates the heat of the refrigerant to the outside of the vehicle. The cooling heat exchanger 10 is an evaporator in which an internal refrigerant evaporates, and is constituted by a ceiling indoor heat exchanger that exchanges heat between the refrigerant and room air. That is, the air-conditioning air flows through the heat exchanger 10 in the ceiling of the bus, which is composed of the cooling heat exchanger 10 that exchanges heat between the refrigerant and the room air, and the air-conditioning air is cooled to pass through the vehicle interior. Cool down.

冷却媒体回路2と冷媒回路11との熱交換を行い冷媒回路11からの熱を冷却媒体回路2に伝達する冷却媒体冷媒熱交換器4を有する。この冷却媒体冷媒熱交換器4は、水冷媒熱交換器によって構成され、冷却媒体回路2と冷媒回路11との熱交換を行い冷媒回路11からの熱を冷却媒体回路2に伝達する。   A cooling medium refrigerant heat exchanger 4 is provided that exchanges heat between the cooling medium circuit 2 and the refrigerant circuit 11 and transfers heat from the refrigerant circuit 11 to the cooling medium circuit 2. The cooling medium refrigerant heat exchanger 4 is constituted by a water refrigerant heat exchanger, exchanges heat between the cooling medium circuit 2 and the refrigerant circuit 11, and transfers heat from the refrigerant circuit 11 to the cooling medium circuit 2.

冷却媒体回路2の熱を用いて空調空間60を冷却する吸着式冷凍装置6を備える。この吸着式冷凍装置6の詳細は後述する。制御装置16は、空調制御装置からなり、通常の車両用空調装置としての基本的制御の他に、冷却媒体冷媒熱交換器4をエンジン冷却水がバイパスして流れるようにするバイパス弁5等を制御する。バイパス弁5は電磁弁から構成される。   An adsorption refrigeration apparatus 6 that cools the air-conditioned space 60 using the heat of the cooling medium circuit 2 is provided. Details of the adsorption refrigeration apparatus 6 will be described later. The control device 16 includes an air conditioning control device, and in addition to the basic control as a normal vehicle air conditioning device, the control device 16 includes a bypass valve 5 and the like for allowing the engine coolant to flow through the cooling medium refrigerant heat exchanger 4. Control. The bypass valve 5 is composed of an electromagnetic valve.

冷却媒体冷媒熱交換器4内において、冷却媒体回路2の温度が所定の高温度である場合、制御装置16は、バイパス弁5に制御信号を送信する。その結果、冷却媒体冷媒熱交換器4をバイパスさせてエンジン冷却水を流し、冷却媒体回路2からの熱を冷媒回路11に伝達するのを妨げる。   In the cooling medium refrigerant heat exchanger 4, when the temperature of the cooling medium circuit 2 is a predetermined high temperature, the control device 16 transmits a control signal to the bypass valve 5. As a result, the cooling medium refrigerant heat exchanger 4 is bypassed to flow engine cooling water, and the heat from the cooling medium circuit 2 is prevented from being transferred to the refrigerant circuit 11.

冷却媒体回路2の温度が低い場合に、冷却媒体冷媒熱交換器4を介して、冷媒回路11の圧縮機8の吐出側の冷媒の熱が冷却媒体回路2に伝達される。   When the temperature of the cooling medium circuit 2 is low, the heat of the refrigerant on the discharge side of the compressor 8 of the refrigerant circuit 11 is transmitted to the cooling medium circuit 2 via the cooling medium refrigerant heat exchanger 4.

図2を用いて、吸着式冷凍装置6の概要を説明する。図1及び図2のように、吸着式冷凍装置6は、エンジン冷却水が流れる冷却媒体回路2に接続されて、内部にエンジン冷却水が流れる。また、図1、図2のように、吸着式冷凍装置6の冷却水の熱交換器6E2を通過した空調風F11が、冷却用熱交換器10を構成する蒸発器を通過し、図1の矢印Y11の方向に流れる。なお、吸着式冷凍装置6の冷却水の熱交換器6E2の方が温度が高いため、吸着式冷凍装置6の冷却水の熱交換器6E2を先に空調風が通過し、後で冷凍サイクル装置15の冷却用熱交換器10を構成する蒸発器を通過しないと熱交換しない場合がある。この空調風F11は車室内に吹出される。   The outline of the adsorption refrigeration apparatus 6 will be described with reference to FIG. As shown in FIGS. 1 and 2, the adsorption refrigeration apparatus 6 is connected to a cooling medium circuit 2 through which engine cooling water flows, and the engine cooling water flows inside. Further, as shown in FIGS. 1 and 2, the conditioned air F11 that has passed through the cooling water heat exchanger 6E2 of the adsorption refrigeration apparatus 6 passes through the evaporator constituting the cooling heat exchanger 10, and is shown in FIG. It flows in the direction of arrow Y11. Since the cooling water heat exchanger 6E2 of the adsorption refrigeration apparatus 6 has a higher temperature, the conditioned air first passes through the cooling water heat exchanger 6E2 of the adsorption refrigeration apparatus 6, and later the refrigeration cycle apparatus. The heat exchange may not be performed unless it passes through the evaporator constituting the cooling heat exchanger 10. The conditioned air F11 is blown out into the passenger compartment.

また、図1の矢印Y12、Y13は、エンジン冷却水により構成された冷却媒体の流れ、Y14は、冷凍サイクル装置15の冷媒の流れを示している。   In addition, arrows Y12 and Y13 in FIG. 1 indicate the flow of the cooling medium constituted by the engine cooling water, and Y14 indicates the flow of the refrigerant in the refrigeration cycle apparatus 15.

次に、吸着式冷凍装置6の内部構成について説明する。図1、図2において、吸着式冷凍装置6は、冷媒を吸着する吸着剤を持った一対の吸着コアAD1、AD2を有する。脱離のため熱を加え温度が上がった吸着コアAD1又はAD2を冷却する冷却器(吸着ラジエータ)6Rを有する。かつ、吸着式冷凍装置6は、吸着剤から脱離したガス冷媒を液体冷媒に凝縮させる凝縮器(吸着コンデンサ)6C、液体冷媒となる水を蒸発させ冷熱を作る蒸発器(吸着エバポレータ)6Eを有している。   Next, the internal configuration of the adsorption refrigeration apparatus 6 will be described. 1 and 2, the adsorption refrigeration apparatus 6 includes a pair of adsorption cores AD1 and AD2 having an adsorbent that adsorbs a refrigerant. It has a cooler (adsorption radiator) 6R that cools the adsorption core AD1 or AD2 whose temperature is increased by applying heat for desorption. In addition, the adsorption refrigeration apparatus 6 includes a condenser (adsorption condenser) 6C that condenses the gas refrigerant desorbed from the adsorbent into a liquid refrigerant, and an evaporator (adsorption evaporator) 6E that evaporates the water that becomes the liquid refrigerant and generates cold. Have.

吸着コアAD1、AD2は、脱離するものと吸着するものとでペアの構成になっている。また、吸着コアAD1、AD2では、熱交換器に吸着剤が接している。接しているため、風などで熱交換を行う必要がない。   The adsorbing cores AD1 and AD2 are configured as a pair of one to be detached and one to be adsorbed. In the adsorption cores AD1 and AD2, the adsorbent is in contact with the heat exchanger. Because it is in contact, there is no need to exchange heat with wind.

次に、吸着エバポレータ6Eで直接対象空気を冷却するのではなく、吸着エバポレータ6Eで発生した冷熱を用いて冷却水を生成する。その冷却水をバスの天井にある冷凍サイクル装置15の冷却用熱交換器10(図1)近くまで持ち上げ、そこに配置した冷却水の熱交換器6E2で空気との熱交換を行っている。   Next, the target air is not directly cooled by the adsorption evaporator 6E, but cooling water is generated using the cold heat generated by the adsorption evaporator 6E. The cooling water is lifted to near the cooling heat exchanger 10 (FIG. 1) of the refrigeration cycle device 15 on the ceiling of the bus, and heat exchange with the air is performed by the cooling water heat exchanger 6E2 disposed there.

空気は、冷却水の熱交換器6E2を通過してから、冷凍サイクル装置15の冷却用熱交換器10を通過し、対象空間を冷却する空調風となる。   The air passes through the heat exchanger 6E2 for cooling water and then passes through the heat exchanger 10 for cooling of the refrigeration cycle apparatus 15 and becomes air-conditioned air that cools the target space.

次に脱離側を説明する。   Next, the detachment side will be described.

冷媒蒸気を吸着した吸着剤は、これ以上冷媒を吸着できないため、図3のように熱を加えて脱離(再生)する必要がある。これをエンジンの熱及び冷凍サイクル装置15で発生する不要な熱で行なう。冷却媒体回路2を脱離側の吸着コアAD1へ接続する。つまり、図2のとおりの四方弁4D1、4D2の回路が形成される。   Since the adsorbent that has adsorbed the refrigerant vapor cannot adsorb the refrigerant any more, it must be desorbed (regenerated) by applying heat as shown in FIG. This is performed by the heat of the engine and unnecessary heat generated by the refrigeration cycle apparatus 15. The cooling medium circuit 2 is connected to the adsorption core AD1 on the desorption side. That is, the circuits of the four-way valves 4D1 and 4D2 as shown in FIG. 2 are formed.

熱源1の熱及び冷凍サイクル装置15で発生する不要な熱で脱離された水蒸気から構成された冷媒は、吸着コンデンサ6Cで凝縮され、液体となって連通した回路を通り吸着エバポレータ6Eへ矢印Y21のように移動する。図2の脱離側の吸着コアAD2は吸着コンデンサ6Cと繋がるよう逆止弁6g2の作動が切り替えられる。   The refrigerant composed of the heat of the heat source 1 and the water vapor desorbed by unnecessary heat generated in the refrigeration cycle apparatus 15 is condensed by the adsorption capacitor 6C, passes through a circuit communicating as a liquid to the adsorption evaporator 6E, and the arrow Y21. Move like. The operation of the check valve 6g2 is switched so that the adsorption core AD2 on the desorption side in FIG. 2 is connected to the adsorption capacitor 6C.

図2及び図3の吸着コンデンサ6Cは、水の回路がわかりやすいように箱状に描いているが、熱交換器である。   The adsorption capacitor 6C in FIGS. 2 and 3 is a heat exchanger, although it is drawn in a box shape so that the water circuit can be easily understood.

次に吸着側を説明する。   Next, the adsorption side will be described.

図2の吸着側の吸着コアAD1は、図2のように逆止弁6g3が開いて吸着エバポレータ6Eと連通する。吸着コアAD1が冷媒蒸気を吸着することで圧力が下がり、吸着エバポレータ6Eの周りに存在する液体冷媒が蒸発する。吸着エバポレータ6Eには、天井の冷却水の熱交換器6E2に冷熱を運ぶ冷却水が流れており、液体冷媒となる水が吸着エバポレータ6Eで蒸発することによって冷却水が冷やされる。また吸着コアAD1は、吸着により発熱するため、吸着コアAD1に流れる冷却水を吸着ラジエータ6Rへ導いて冷却している。吸着ラジエータ6Rは、空気中に熱を放散させる。   The suction-side suction core AD1 in FIG. 2 communicates with the suction evaporator 6E with the check valve 6g3 opened as shown in FIG. As the adsorption core AD1 adsorbs the refrigerant vapor, the pressure decreases, and the liquid refrigerant present around the adsorption evaporator 6E evaporates. In the adsorption evaporator 6E, cooling water that carries cold heat flows to the heat exchanger 6E2 on the ceiling cooling water, and the cooling water is cooled by evaporating the water that becomes the liquid refrigerant in the adsorption evaporator 6E. Further, since the adsorption core AD1 generates heat due to adsorption, the cooling water flowing through the adsorption core AD1 is led to the adsorption radiator 6R to be cooled. The adsorption radiator 6R dissipates heat into the air.

それぞれが脱離又は吸着が終了したら、図2から図3のように回路を切り替え、吸着コアAD1、AD2の脱離又は吸着の役割を入れ替える。つまりペアで構成された吸着コアの脱離又は吸着作用が入れ替わる。エンジン冷却水が流れる冷却媒体回路2に四方弁4D1、4D2を使用して図3の脱離側の吸着コアAD1へ熱源1となるエンジンからの温水が行くように切り替える。吸着コアAD2は、吸着ラジエータ6Rの回路へ接続されて放熱する。また、図3の吸着側のコアAD2と吸着コンデンサ6Cとは弁で遮断されている。吸着コアAD2と吸着エバポレータ6Eとは逆止弁6g4が開いて連通している。また、図3の脱離側の吸着コアAD1と吸着エバポレータ6Eとの連通は、逆止弁の圧力差で遮断されている。   When each desorption or adsorption is completed, the circuit is switched as shown in FIGS. 2 to 3, and the desorption or adsorption roles of the adsorption cores AD1 and AD2 are switched. That is, the desorption or adsorption action of the adsorption core composed of a pair is switched. Using the four-way valves 4D1 and 4D2 in the cooling medium circuit 2 through which the engine cooling water flows, the hot water from the engine serving as the heat source 1 is switched to the adsorption core AD1 on the desorption side in FIG. The suction core AD2 is connected to the circuit of the suction radiator 6R to radiate heat. Further, the core AD2 on the suction side and the suction capacitor 6C in FIG. 3 are blocked by a valve. The suction core AD2 and the suction evaporator 6E communicate with each other with a check valve 6g4 opened. Further, the communication between the adsorption core AD1 on the desorption side and the adsorption evaporator 6E in FIG. 3 is blocked by the pressure difference of the check valve.

吸着エバポレータ6Eで冷やされた冷却水を供給することで連続的に冷熱を冷却水の熱交換器6E2に送ることができる。   By supplying the cooling water cooled by the adsorption evaporator 6E, the cold energy can be continuously sent to the cooling water heat exchanger 6E2.

また、吸着コンデンサ6Cで発生した温熱を利用して温風も送ることは原理的には可能であるが、それは熱源1となるエンジンの熱を単に吸着コアAD1又はAD2で放出しているだけであり、蓄熱して時間軸をずらせる程度の効果はあるが、あまり意味が無い。つまり、吸着コアAD1又はAD2を脱離するために熱を投入して、その熱を吸着時に放出しているだけなので基本的に暖房時において吸着システムは空調に関与させていない。   Although it is possible in principle to send warm air using the heat generated by the adsorption capacitor 6C, it simply releases the heat of the engine as the heat source 1 by the adsorption core AD1 or AD2. Yes, there is an effect of storing heat and shifting the time axis, but it does not make much sense. That is, heat is input to desorb the adsorption core AD1 or AD2, and the heat is only released during adsorption, so the adsorption system is basically not involved in air conditioning during heating.

このようにして、吸着式冷凍装置6で創出された冷熱が、車室内を冷却するために利用される。なお吸着による暖房は行わない。   In this way, the cold generated by the adsorption refrigeration apparatus 6 is used to cool the passenger compartment. Heating by adsorption is not performed.

なお、図1の冷却媒体冷媒熱交換器4は、複数のヒータコア7を通過して冷却された後のヒータコア7の後流側で熱源1(エンジン)の上流側である矢印Y42で示す二点鎖線部の位置に設けても良い。こうすれば、ヒータコア7で冷却された分、エンジン冷却水の温度が低下し、冷却媒体冷媒熱交換器4を介して冷媒からの熱を冷却媒体となるエンジン冷却水が受け易くなる。   The cooling medium refrigerant heat exchanger 4 in FIG. 1 has two points indicated by arrows Y42 on the upstream side of the heat source 1 (engine) on the downstream side of the heater core 7 after passing through the plurality of heater cores 7 and being cooled. You may provide in the position of a chain line part. If it carries out like this, the temperature of engine cooling water will fall by the part cooled by the heater core 7, and it becomes easy to receive the engine cooling water used as a cooling medium for the heat from a refrigerant | coolant via the cooling medium refrigerant | coolant heat exchanger 4. FIG.

この第1実施形態の装置は、基本的に、冷凍サイクル装置15側からエンジン冷却水側に一方通行で熱を移動させるものである。しかし、エンジンを出た冷却水は非常に高温である。冷却媒体冷媒熱交換器4は、この高温のエンジン冷却水と圧縮機8から出た高温の冷媒との熱交換を行う。   The apparatus of the first embodiment basically transfers heat in one way from the refrigeration cycle apparatus 15 side to the engine cooling water side. However, the cooling water leaving the engine is very hot. The cooling medium refrigerant heat exchanger 4 exchanges heat between the high-temperature engine cooling water and the high-temperature refrigerant discharged from the compressor 8.

エンジンの温度が高い場合に冷媒側からエンジン冷却水に熱を与えると、ラジエータ17での放熱量を増やさなければならない。こうなると図示しないラジエータファンの動力が増す。よって、これを防止するために、エンジン冷却水の温度が充分に高い場合は、冷却媒体冷媒熱交換器4をバイパスさせてエンジン冷却水を流すバイパス回路35(図1)が用いられる。このバイパス回路35のバイパス弁5の制御は、エンジン冷却水の温度と圧縮機8の高圧側の冷媒温度を検出してバイパス弁5に制御装置16から制御信号を送ることで行われる。   If the engine coolant is heated from the refrigerant side when the engine temperature is high, the amount of heat released from the radiator 17 must be increased. This increases the power of a radiator fan (not shown). Therefore, in order to prevent this, when the temperature of the engine coolant is sufficiently high, a bypass circuit 35 (FIG. 1) is used in which the coolant coolant heat exchanger 4 is bypassed to flow the engine coolant. The bypass valve 5 of the bypass circuit 35 is controlled by detecting the temperature of the engine coolant and the refrigerant temperature on the high pressure side of the compressor 8 and sending a control signal from the control device 16 to the bypass valve 5.

冷凍サイクル装置15は、車両となるバスの冷房を室内の冷却用熱交換器10(蒸発器)で行う。圧縮機8で加圧された高温の冷媒は、冷却媒体冷媒熱交換器4を通過し、室外熱交換器9を構成するコンデンサ(凝縮器)に流れる。エンジン冷却水の温度が低い場合には、吸着式冷凍装置6を効率よく稼働させるため、エンジン冷却水の温度を上昇させる必要がある。   The refrigeration cycle apparatus 15 performs cooling of a bus serving as a vehicle by an indoor cooling heat exchanger 10 (evaporator). The high-temperature refrigerant pressurized by the compressor 8 passes through the cooling medium refrigerant heat exchanger 4 and flows to a condenser (condenser) constituting the outdoor heat exchanger 9. When the temperature of the engine cooling water is low, it is necessary to raise the temperature of the engine cooling water in order to operate the adsorption refrigeration apparatus 6 efficiently.

そのために、圧縮機8から出た高温の冷媒の熱が、冷却媒体冷媒熱交換器4を経由してエンジン冷却水に与えられる。冷却媒体冷媒熱交換器4を通過した後の冷媒は、コンデンサとして作用する室外熱交換器9を通過して車外の空気に放熱する。   For this purpose, the heat of the high-temperature refrigerant coming out of the compressor 8 is given to the engine cooling water via the cooling medium refrigerant heat exchanger 4. The refrigerant after passing through the cooling medium refrigerant heat exchanger 4 passes through the outdoor heat exchanger 9 acting as a condenser and radiates heat to the air outside the vehicle.

なお、上記のように、冷房時は、車室内に流れる空調風を室内の冷却用熱交換器10(蒸発器)と吸着式冷凍装置の冷房用の冷却水の熱交換器6E2とで冷却することができる。なお、熱交換器6E2は、吸着エバポレータ6Eで吸熱された冷却水が流れる天井配置の熱交換器である。   As described above, during cooling, the conditioned air flowing in the passenger compartment is cooled by the indoor cooling heat exchanger 10 (evaporator) and the cooling water heat exchanger 6E2 for cooling of the adsorption refrigeration apparatus. be able to. The heat exchanger 6E2 is a ceiling-mounted heat exchanger through which cooling water absorbed by the adsorption evaporator 6E flows.

以上のようにして、冷凍サイクル装置15と吸着式冷凍装置6とを連携させ、熱の授受を行うことで冷房効率を約10%向上させことができる。これは、冷凍サイクル装置15の圧縮機8の吐出ガス(冷媒)とエンジン冷却水が流れる冷却媒体回路2との間で熱交換することで、エンジン冷却水の温度を上げ、吸着式冷凍装置6の能力を上げるからである。また、冷凍サイクル装置15からみると、吐出ガスの温度を低下させることで放熱用熱交換器(コンデンサ)の負荷を低減することができ、圧縮機8の吐出側の高圧が低下し、圧縮機8の動力が減少し、その結果、COP(成績係数)が向上するからである。   As described above, the cooling efficiency can be improved by about 10% by linking the refrigeration cycle apparatus 15 and the adsorption refrigeration apparatus 6 and transferring heat. This is because heat is exchanged between the discharge gas (refrigerant) of the compressor 8 of the refrigeration cycle apparatus 15 and the cooling medium circuit 2 through which the engine cooling water flows, thereby raising the temperature of the engine cooling water and the adsorption refrigeration apparatus 6. Because it raises the ability. Further, when viewed from the refrigeration cycle apparatus 15, it is possible to reduce the load on the heat exchanger (condenser) for radiating heat by reducing the temperature of the discharge gas, the high pressure on the discharge side of the compressor 8 is reduced, and the compressor This is because the power of No. 8 is reduced, and as a result, COP (coefficient of performance) is improved.

(第1実施形態の作用効果)
上記第1実施形態の空調装置においては、空調装置は、作動時に熱を発生する熱源1と、熱源1を冷却する冷却媒体が流れる冷却媒体回路2と、冷媒を圧縮機8にて圧縮する。空調装置は、この圧縮された冷媒を室外熱交換器9と冷却用熱交換器10とに流す冷媒回路11と、冷媒を減圧膨張させる減圧手段12とを備えた冷凍サイクル装置15と、を有する。
(Operational effects of the first embodiment)
In the air conditioner of the first embodiment, the air conditioner compresses the refrigerant by the heat source 1 that generates heat during operation, the cooling medium circuit 2 through which the cooling medium that cools the heat source 1 flows, and the refrigerant. The air conditioner includes a refrigerant circuit 11 that flows the compressed refrigerant to the outdoor heat exchanger 9 and the cooling heat exchanger 10, and a refrigeration cycle apparatus 15 that includes a decompression unit 12 that decompresses and expands the refrigerant. .

また空調装置は、冷却媒体回路2と冷媒回路11との熱交換を行い冷媒回路11からの熱を冷却媒体回路2に伝達する冷却媒体冷媒熱交換器4を有する。
また空調装置は、吸着剤を有する一対の吸着コアAD1、AD2と、この吸着コアAD1、AD2が水蒸気を吸着することによって圧力が下がり水が蒸発して冷熱を作り出す吸着エバポレータ6Eを有する。また空調装置は、吸着コアから脱離した水蒸気を凝縮させる吸着コンデンサ6Cと、吸着した吸着コアを冷却する吸着ラジエータ6Rとを備える吸着式冷凍装置6を備える。
The air conditioner also includes a cooling medium refrigerant heat exchanger 4 that exchanges heat between the cooling medium circuit 2 and the refrigerant circuit 11 and transmits heat from the refrigerant circuit 11 to the cooling medium circuit 2.
The air conditioner also includes a pair of adsorption cores AD1 and AD2 each having an adsorbent, and an adsorption evaporator 6E that creates cold by reducing the pressure when the adsorption cores AD1 and AD2 adsorb water vapor to evaporate water. The air conditioner also includes an adsorption refrigeration apparatus 6 that includes an adsorption condenser 6C that condenses water vapor desorbed from the adsorption core and an adsorption radiator 6R that cools the adsorbed adsorption core.

冷却媒体回路2の温度があらかじめ定めた所定温度より低い場合に冷却媒体冷媒熱交換器4を介して冷媒回路11からの熱を冷却媒体回路2に伝達する。そして、吸着エバポレータ6Eの冷熱水が流れる吸着冷却水回路を構成する冷却配管54と冷却水の熱交換器6E2とを介して空調風の冷却を行う。   When the temperature of the cooling medium circuit 2 is lower than a predetermined temperature, heat from the refrigerant circuit 11 is transmitted to the cooling medium circuit 2 via the cooling medium refrigerant heat exchanger 4. Then, the conditioned air is cooled through the cooling pipe 54 and the cooling water heat exchanger 6E2 constituting the adsorption cooling water circuit through which the cold water of the adsorption evaporator 6E flows.

これによれば、上記したように冷凍サイクル装置15と吸着式冷凍装置6とを連携させ、熱の授受を行うことで冷房効率を向上させことができる。これは、冷凍サイクル装置15の圧縮機8の吐出ガス冷媒とエンジン冷却水が流れる冷却媒体回路2との間で熱交換することで、エンジン冷却水の温度を上げ、吸着式冷凍装置6の能力を上げるからである。また、冷凍サイクル装置15からみると、吐出ガスの温度を低下させることで放熱用熱交換器コンデンサの負荷を低減することができ、圧縮機8の吐出側の高圧が低下し、圧縮機8の動力が減少し、その結果、成績係数が向上するからである。   According to this, the cooling efficiency can be improved by linking the refrigeration cycle apparatus 15 and the adsorption refrigeration apparatus 6 and transferring heat as described above. This is because the temperature of the engine cooling water is raised by exchanging heat between the refrigerant gas discharged from the compressor 8 of the compressor 8 of the refrigeration cycle apparatus 15 and the cooling medium circuit 2 through which the engine cooling water flows. Because it raises. Further, when viewed from the refrigeration cycle device 15, it is possible to reduce the load of the heat exchanger capacitor for heat dissipation by lowering the temperature of the discharge gas, the high pressure on the discharge side of the compressor 8 is lowered, and the compressor 8 This is because the power decreases, and as a result, the coefficient of performance improves.

また空調装置の熱源1はエンジンによって構成され、
冷却媒体回路2は、冷却媒体となるエンジン冷却水が流れる冷却水回路で構成され、
冷却媒体冷媒熱交換器4は、エンジン冷却水に冷媒回路11からの熱を伝達する水冷媒熱交換器から構成され、
冷却媒体回路2の温度が低い場合に冷却媒体冷媒熱交換器4を介して冷媒回路11からの熱を冷却媒体回路2に伝達する。
The heat source 1 of the air conditioner is constituted by an engine,
The cooling medium circuit 2 is composed of a cooling water circuit through which engine cooling water serving as a cooling medium flows.
The cooling medium refrigerant heat exchanger 4 is composed of a water refrigerant heat exchanger that transfers heat from the refrigerant circuit 11 to the engine cooling water,
When the temperature of the cooling medium circuit 2 is low, heat from the refrigerant circuit 11 is transmitted to the cooling medium circuit 2 via the cooling medium refrigerant heat exchanger 4.

これによれば、冷却媒体回路2の温度が低い場合に冷却媒体冷媒熱交換器4を介して冷媒回路11からの熱を冷却媒体回路2に伝達するから、エンジン冷却水の温度を上げ、吸着式冷凍装置6の能力を上げることができる。   According to this, when the temperature of the cooling medium circuit 2 is low, the heat from the refrigerant circuit 11 is transferred to the cooling medium circuit 2 via the cooling medium refrigerant heat exchanger 4, so the temperature of the engine cooling water is raised and adsorbed The capacity of the refrigeration unit 6 can be increased.

また、熱源1は、車両となるバス内に設けられ、
冷却用熱交換器10は、冷媒と室内空気とを熱交換させる天井室内側熱交換器にて構成される。
In addition, the heat source 1 is provided in a bus serving as a vehicle,
The cooling heat exchanger 10 is configured by a ceiling indoor heat exchanger that exchanges heat between the refrigerant and room air.

これによれば、バスの空調効率を上げることができる。また、バスは大型であるため、吸着式冷凍装置6の搭載が容易である。   According to this, the air conditioning efficiency of the bus can be increased. Moreover, since the bus is large, the adsorption refrigeration apparatus 6 can be easily mounted.

次に冷凍サイクル装置15は、放熱器を構成する室外熱交換器9を放熱用熱交換器で構成し、冷却用熱交換器10を蒸発器で構成して、この蒸発器で空調空間60を冷却する冷凍サイクルで作動し、
冷凍サイクル装置15は、室外熱交換器9を放熱用熱交換器として構成する。
Next, in the refrigeration cycle apparatus 15, the outdoor heat exchanger 9 that constitutes the radiator is constituted by a heat radiation heat exchanger, the cooling heat exchanger 10 is constituted by an evaporator, and the conditioned space 60 is formed by this evaporator. Operates in a refrigeration cycle to cool,
The refrigeration cycle apparatus 15 configures the outdoor heat exchanger 9 as a heat dissipation heat exchanger.

これによれば、冷凍サイクル装置15は一般的な冷凍サイクル装置で容易に構成できる。   According to this, the refrigeration cycle apparatus 15 can be easily configured with a general refrigeration cycle apparatus.

次に、吸着式冷凍装置6は、それぞれ吸着剤を保持する第1吸着コアAD1と第2吸着コアAD2とを備え、第1吸着コアAD1と第2吸着コアAD2とは交互に吸着側と脱離側として作動し、
冷却媒体回路の第1吸着コアAD1と第2吸着コアAD2への流路を弁で切り替えて冷却媒体回路の熱で、脱離側の吸着コアでの吸着剤からの水蒸気の蒸発を促す。
Next, the adsorption refrigeration apparatus 6 includes a first adsorption core AD1 and a second adsorption core AD2 each holding an adsorbent, and the first adsorption core AD1 and the second adsorption core AD2 are alternately separated from the adsorption side. Act as a remote side,
The flow path to the first adsorption core AD1 and the second adsorption core AD2 of the cooling medium circuit is switched by a valve, and the evaporation of water vapor from the adsorbent in the adsorption core on the desorption side is promoted by the heat of the cooling medium circuit.

これによれば、冷却媒体回路の第1吸着コアAD1と第2吸着コアAD2への流路を弁で切り替えて、容易に第1吸着コアAD1と第2吸着コアAD2とを交互に吸着側と脱離側として作動させることができる。そして、連続的に吸着式冷凍装置から冷熱を取り出すことができる。   According to this, the flow path to the first adsorption core AD1 and the second adsorption core AD2 of the cooling medium circuit is switched by the valve so that the first adsorption core AD1 and the second adsorption core AD2 can be easily alternately arranged on the adsorption side. It can be operated as the detachment side. And cold heat can be continuously taken out from the adsorption refrigeration apparatus.

更に、冷却媒体回路2の温度が所定の高温度である場合、冷却媒体冷媒熱交換器4を流れる冷却媒体又は冷媒をバイパスさせ、冷却媒体回路2と冷媒回路11との熱交換を抑制するバイパス弁5を備える。   Further, when the temperature of the cooling medium circuit 2 is a predetermined high temperature, a bypass that suppresses heat exchange between the cooling medium circuit 2 and the refrigerant circuit 11 by bypassing the cooling medium or the refrigerant flowing through the cooling medium refrigerant heat exchanger 4. A valve 5 is provided.

これによれば、冷却媒体冷媒熱交換器4をバイパスさせてエンジン冷却水を流し、冷却媒体回路2からの熱を冷媒回路11に伝達するのを妨げることができる。   According to this, it is possible to bypass the cooling medium refrigerant heat exchanger 4 to flow engine cooling water and prevent the heat from the cooling medium circuit 2 from being transmitted to the refrigerant circuit 11.

なお、吸収式に比べ吸着式は、低温での作動が可能なため、吸着式冷凍装置6を採用することで、エンジン停止時(アイドルストップ時)に、エンジン冷却水に残っている残熱で冷房することも可能である。   Since the adsorption type can be operated at a lower temperature than the absorption type, by adopting the adsorption type refrigeration device 6, the residual heat remaining in the engine cooling water when the engine is stopped (during idle stop). It is also possible to cool.

特に、車両がバスの場合では、エンジンの廃熱が多いことと、吸着式冷凍装置をバスの床下に配置できるスペースが有るため、吸着式冷凍装置6の配置に適している。また、現在、重心を低く保つため、バスではカウンターウェイトを車両下部に配置している。そのカウンターウェイトの重量の代わりとして吸着式冷凍装置6を搭載することが可能である。   In particular, when the vehicle is a bus, the waste heat of the engine is large, and there is a space where the adsorption refrigeration apparatus can be arranged under the floor of the bus. Currently, counterweights are placed on the lower part of the vehicle to keep the center of gravity low. As an alternative to the weight of the counterweight, the adsorption refrigeration apparatus 6 can be mounted.

特許文献1では、夏場に予熱器を用いて温水温度を上げ、その熱で吸収式冷凍装置を作動させて冷房を行う。しかし、この第1実施形態では、吸着式冷凍装置6と冷凍サイクル装置15とを組み合わせている。このことにより、冷凍サイクル装置15でエンジン冷却水の温度を上げ、吸着式冷凍装置6の能力を上げることで冷房性能を向上させ、冷房効率を約10%向上させることができる。   In patent document 1, a warm water temperature is raised using a preheater in summer, and an absorption refrigerating apparatus is operated with the heat to perform cooling. However, in the first embodiment, the adsorption refrigeration apparatus 6 and the refrigeration cycle apparatus 15 are combined. Thus, the cooling performance can be improved by increasing the temperature of the engine cooling water in the refrigeration cycle apparatus 15 and the capacity of the adsorption refrigeration apparatus 6, and the cooling efficiency can be improved by about 10%.

(第2実施形態)
次に、本発明の第2実施形態について説明する。上記した実施形態と異なる部分を説明する。図4は、本発明の第2実施形態を示すバス用の車両用空調装置を示す。図5は、図4に示した第2実施形態において過冷却用熱交換器に吸着冷凍装置から冷熱を送る状態を説明する構成図である。図4及び図5において、第1実施形態と異なる点は、室外熱交換器9で放熱した冷媒が、室外熱交換器(9)の過冷却部となる過冷却用熱交換器36を構成し過冷却を行う吸着冷熱交換器に流れ込む点である。つまり、この実施形態は、過冷却用熱交換器36を吸着冷熱交換器として構成し、吸着式冷凍装置6の冷熱で適度な過冷却とる。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. A different part from above-described embodiment is demonstrated. FIG. 4 shows a vehicular air conditioner for buses according to a second embodiment of the present invention. FIG. 5 is a configuration diagram illustrating a state in which cold heat is sent from the adsorption refrigeration apparatus to the supercooling heat exchanger in the second embodiment illustrated in FIG. 4. 4 and 5, the difference from the first embodiment is that the refrigerant that has dissipated heat in the outdoor heat exchanger 9 constitutes a supercooling heat exchanger 36 that serves as a supercooling section of the outdoor heat exchanger (9). It is the point which flows into the adsorption cold heat exchanger which performs supercooling. That is, in this embodiment, the supercooling heat exchanger 36 is configured as an adsorption cold heat exchanger, and moderate supercooling is achieved by the cold heat of the adsorption refrigeration apparatus 6.

図5は、この第2実施形態における吸着式冷凍装置6の構成を示す。この第2実施形態の吸着式冷凍装置6の第1実施形態と異なる点は、過冷却用熱交換器36を吸着式冷凍装置6の冷熱で適度な過冷却を行う点である。このために、図5の第1過冷却用熱交換器36aと第2過冷却用熱交換器36bから構成された過冷却用熱交換器36を備える。   FIG. 5 shows a configuration of the adsorption refrigeration apparatus 6 in the second embodiment. The difference of the adsorption refrigeration apparatus 6 of the second embodiment from the first embodiment is that the supercooling heat exchanger 36 is appropriately subcooled by the cold heat of the adsorption refrigeration apparatus 6. For this purpose, a supercooling heat exchanger 36 is provided which includes the first supercooling heat exchanger 36a and the second supercooling heat exchanger 36b shown in FIG.

過冷却用熱交換器36を流れる液冷媒となる水は、吸着エバポレータ6Eから図4の第1冷却配管53と第2冷却配管54とを介して第1過冷却用熱交換器36aに、過冷却用ポンプ55によって流される。   Water serving as the liquid refrigerant flowing through the supercooling heat exchanger 36 is passed from the adsorption evaporator 6E to the first supercooling heat exchanger 36a via the first cooling pipe 53 and the second cooling pipe 54 in FIG. Flowed by the cooling pump 55.

それにより、吸着エバポレータ6Eからの冷熱が、第1冷却配管53と第2冷却配管54とを介して過冷却用熱交換器36に伝えられて、室外熱交換器9で放熱した冷媒の過冷却が行なわれる。   Thereby, the cold heat from the adsorption evaporator 6E is transmitted to the supercooling heat exchanger 36 via the first cooling pipe 53 and the second cooling pipe 54, and the supercooling of the refrigerant radiated by the outdoor heat exchanger 9 is performed. Is done.

このようにして、図5の過冷却用熱交換器36は、室外熱交換器9を通過した冷媒と吸着式冷凍装置6の中の吸着エバポレータ6Eの冷水と熱交換することにより冷媒を過冷却する。   In this way, the supercooling heat exchanger 36 in FIG. 5 supercools the refrigerant by exchanging heat with the refrigerant that has passed through the outdoor heat exchanger 9 and the cold water of the adsorption evaporator 6E in the adsorption refrigeration apparatus 6. To do.

(第2実施形態の作用効果)
上記第2実施形態においては、冷凍サイクル装置15は、室外熱交換器9を放熱用熱交換器として構成し、冷却用熱交換器10を室内の蒸発器で構成する冷凍サイクルを有する。
(Operational effect of the second embodiment)
In the second embodiment, the refrigeration cycle apparatus 15 has a refrigeration cycle in which the outdoor heat exchanger 9 is configured as a heat dissipation heat exchanger and the cooling heat exchanger 10 is configured by an indoor evaporator.

これによれば、吸着式冷凍装置6に冷凍サイクル装置15を連携させて、冷却媒体回路2の温度が低い場合に冷却媒体冷媒熱交換器4を介して冷媒回路11からの熱を冷却媒体回路2に伝達できる。故に、吸着式冷凍装置6の効率を上げることにより、熱源1の熱を利用した空調装置全体の空調効率を上げることができる。   According to this, the refrigeration cycle device 15 is linked to the adsorption refrigeration device 6 so that when the temperature of the cooling medium circuit 2 is low, the heat from the refrigerant circuit 11 is transferred to the cooling medium circuit via the cooling medium refrigerant heat exchanger 4. 2 can be transmitted. Therefore, by increasing the efficiency of the adsorption refrigeration apparatus 6, the air conditioning efficiency of the entire air conditioner using the heat of the heat source 1 can be increased.

また、冷凍サイクル装置15は、室外熱交換器9を通過した冷媒が流れる過冷却用熱交換器36を備える。一方、吸着式冷凍装置6は、吸着エバポレータ6Eを備え、冷熱を発生することができる。   In addition, the refrigeration cycle apparatus 15 includes a supercooling heat exchanger 36 through which the refrigerant that has passed through the outdoor heat exchanger 9 flows. On the other hand, the adsorption refrigeration apparatus 6 includes an adsorption evaporator 6E and can generate cold.

そして、冷却媒体回路2の熱で、吸着式冷凍装置6を作動させる。これによれば、冷却媒体回路2の熱で吸着式冷凍装置6を効率よく作動させることができる。かつ、過冷却用熱交換器36は、冷媒と吸着式冷凍装置6の中の冷熱とを熱交換するにより、冷媒の過冷却度を制御できる。故に、液冷媒を適度な過冷却の状態まで冷却することでシステム効率の向上を図ることができる。   Then, the adsorption refrigeration apparatus 6 is operated by the heat of the cooling medium circuit 2. According to this, the adsorption refrigeration apparatus 6 can be efficiently operated by the heat of the cooling medium circuit 2. In addition, the supercooling heat exchanger 36 can control the degree of supercooling of the refrigerant by exchanging heat between the refrigerant and the cold heat in the adsorption refrigeration apparatus 6. Therefore, the system efficiency can be improved by cooling the liquid refrigerant to an appropriate supercooled state.

上記第2実施形態においては、吸着剤を有する一対の吸着コアAD1、AD2と、この吸着コアAD1、AD2が水蒸気を吸着することによって圧力が下がり水が蒸発して冷熱を作り出す吸着エバポレータ6Eとを有する。かつ、吸着コアAD1又はAD2から脱離した水蒸気を凝縮させる吸着コンデンサ6Cと、吸着した吸着コアAD1又はAD2を冷却する吸着ラジエータ6Rとを備える吸着式冷凍装置6を備える。そして冷却媒体回路2の温度が所定温度より低い場合に冷却媒体冷媒熱交換器4を介して冷媒回路11からの熱を冷却媒体回路2に伝達する。かつ、吸着エバポレータ6Eの冷熱を水が流れる冷却配管53、54と、を介して冷凍サイクル装置の過冷却用熱交換器36の過冷却を行う。   In the second embodiment, a pair of adsorption cores AD1 and AD2 having an adsorbent, and an adsorption evaporator 6E that creates cold by reducing the pressure when the adsorption cores AD1 and AD2 adsorb water vapor to evaporate water. Have. In addition, an adsorption refrigeration apparatus 6 including an adsorption capacitor 6C for condensing water vapor desorbed from the adsorption core AD1 or AD2 and an adsorption radiator 6R for cooling the adsorbed adsorption core AD1 or AD2 is provided. When the temperature of the cooling medium circuit 2 is lower than a predetermined temperature, the heat from the refrigerant circuit 11 is transmitted to the cooling medium circuit 2 via the cooling medium refrigerant heat exchanger 4. In addition, the supercooling heat exchanger 36 of the refrigeration cycle apparatus is supercooled through the cooling pipes 53 and 54 through which water flows through the cold heat of the adsorption evaporator 6E.

これによれば、吸着エバポレータ6Eの冷熱を水が流れる吸着冷却水回路を構成する冷却配管53、54と第1過冷却用熱交換器36aとを介して冷凍サイクル装置の過冷却用熱交換器36の過冷却を行うことができる。そのため、過冷却度を適度に制御することにより冷凍サイクル装置15の冷凍効率を上げることができる。   According to this, the supercooling heat exchanger of the refrigeration cycle apparatus via the cooling pipes 53 and 54 and the first supercooling heat exchanger 36a constituting the adsorption cooling water circuit through which water flows through the cold heat of the adsorption evaporator 6E. 36 supercooling can be performed. Therefore, the refrigeration efficiency of the refrigeration cycle apparatus 15 can be increased by appropriately controlling the degree of supercooling.

(他の実施形態)
上記の実施形態では、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において種々変形して実施することが可能である。上記実施形態の構造は、あくまで例示であって、本発明の範囲はこれらの記載の範囲に限定されるものではない。本発明の範囲は、特許請求の範囲の記載によって示され、更に、特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものである。
(Other embodiments)
In the above embodiment, the preferred embodiment of the present invention has been described. However, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention. It is. The structure of the said embodiment is an illustration to the last, Comprising: The scope of the present invention is not limited to the range of these description. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

上記第1実施形態では、熱源1を車両用のエンジンとしたが、その他のエンジンや燃料電池等であっても良い。また、上記第1実施形態では、吸着式冷凍装置6内において、エンジン冷却水の流れは4方弁で切替えたが、複数の電磁弁の組み合わせで切替えても良い。これにより、エンジン冷却水の熱で水蒸気を吸着した吸着剤から水分を脱離させることができる。上記実施形態では、吸着剤としてシリカゲルやゼオライトを用いていたが、活性炭や活性アルミナ等を用いてもよい。   In the first embodiment, the heat source 1 is a vehicle engine, but other engines, fuel cells, and the like may be used. Moreover, in the said 1st Embodiment, although the flow of engine cooling water was switched by the 4-way valve in the adsorption | suction type freezing apparatus 6, you may switch by the combination of a some solenoid valve. Thereby, moisture can be desorbed from the adsorbent that has adsorbed water vapor with the heat of engine cooling water. In the above embodiment, silica gel or zeolite is used as the adsorbent, but activated carbon, activated alumina, or the like may be used.

また、圧縮機8は電動式に限らず、圧縮機8がエンジンにて駆動されるエンジン駆動式空調装置を構成しても良い。この場合、圧縮機8は、電磁クラッチが通電されると、エンジンの回転動力がベルトを介して伝達され、吸入した冷媒を圧縮して吐出する。   In addition, the compressor 8 is not limited to an electric type, and an engine-driven air conditioner in which the compressor 8 is driven by an engine may be configured. In this case, when the electromagnetic clutch is energized, the compressor 8 transmits the rotational power of the engine via the belt, and compresses and discharges the sucked refrigerant.

なお、吸着式冷凍装置6は、一例を示したが、熱源1からの熱を第1吸着コアAD1と第2吸着コアAD2とに交互に与える方式の装置であれば、種々の吸着式冷凍装置6を使用することができる。   In addition, although the adsorption-type refrigeration apparatus 6 showed an example, if it is an apparatus of the system which gives the heat from the heat source 1 to 1st adsorption core AD1 and 2nd adsorption core AD2 alternately, various adsorption-type refrigeration apparatuses will be shown. 6 can be used.

また、車両用空調装置でなく家庭用やビル用の空調装置にも応用できる。熱源1は、インバータや発電機の熱、燃料電池の熱、太陽熱温水器の熱等を利用することもできる。   Further, it can be applied not only to vehicle air conditioners but also to home and building air conditioners. The heat source 1 can also use the heat of an inverter or generator, the heat of a fuel cell, the heat of a solar water heater, or the like.

上記実施形態では、エンジン冷却水の温度が充分に高い場合は、冷却媒体冷媒熱交換器4をバイパスさせてエンジン冷却水を流すバイパス弁5とバイパス回路35とが用いられたが、バイパス回路35にバイパス三方弁50を図6のように使用しても良い。   In the above embodiment, when the temperature of the engine cooling water is sufficiently high, the bypass valve 5 and the bypass circuit 35 that flow the engine cooling water by bypassing the cooling medium refrigerant heat exchanger 4 are used. Alternatively, the bypass three-way valve 50 may be used as shown in FIG.

図6は第2実施形態の変形例を示す。エンジン側と冷媒との熱交換を一時的に抑制するために、冷媒が冷却媒体冷媒熱交換器4を通過しないようにバイパスさせる図6の冷媒バイパス弁57又は冷媒バイパス三方弁58を設けても良い。これらのバイパス弁5、バイパス三方弁50、冷媒バイパス弁57、及び冷媒バイパス三方弁58は、バイパス弁手段を構成している。   FIG. 6 shows a modification of the second embodiment. In order to temporarily suppress heat exchange between the engine side and the refrigerant, the refrigerant bypass valve 57 or the refrigerant bypass three-way valve 58 of FIG. 6 that bypasses the refrigerant so as not to pass through the cooling medium refrigerant heat exchanger 4 may be provided. good. These bypass valve 5, bypass three-way valve 50, refrigerant bypass valve 57, and refrigerant bypass three-way valve 58 constitute bypass valve means.

1 熱源
2 冷却媒体回路
4 冷却媒体冷媒熱交換器
6 吸着式冷凍装置
8 圧縮機
9 室外熱交換器
10 冷却用熱交換器
11 冷媒回路
15 冷凍サイクル装置
60 空調空間
DESCRIPTION OF SYMBOLS 1 Heat source 2 Cooling medium circuit 4 Cooling medium refrigerant | coolant heat exchanger 6 Adsorption-type refrigeration apparatus 8 Compressor 9 Outdoor heat exchanger 10 Heat exchanger for cooling 11 Refrigerant circuit 15 Refrigeration cycle apparatus 60 Air-conditioning space

Claims (6)

作動時に熱を発生する熱源(1)と、
前記熱源(1)を冷却する冷却媒体が流れる冷却媒体回路(2)と、
冷媒を圧縮機(8)にて圧縮し、この圧縮された冷媒を、放熱器を構成する室外熱交換器(9)と空調風を冷却する冷却用熱交換器(10)とに流す冷媒回路(11)と、冷媒を減圧膨張させる減圧手段(12)とを備えた冷凍サイクル装置(15)と、
前記冷却媒体回路(2)と前記冷媒回路(11)との熱交換を行い前記冷媒回路(11)からの熱を前記冷却媒体回路(2)に伝達する冷却媒体冷媒熱交換器(4)と、
吸着剤を有する一対の吸着コア(AD1、AD2)と、前記吸着コア(AD1、AD2)が冷媒の蒸気を吸着することによって圧力が下がり冷媒が蒸発して冷熱を作り出す吸着エバポレータ(6E)と、前記吸着コア(AD1、AD2)から脱離した冷媒蒸気を凝縮させる吸着コンデンサ(6C)と、吸着した前記吸着コア(AD1、AD2)を冷却する吸着ラジエータ(6R)とを備える吸着式冷凍装置(6)と、を備え、
前記冷却媒体回路(2)の温度が所定温度より低い場合に、前記冷却媒体冷媒熱交換器(4)を介して前記冷媒回路(11)からの熱を前記冷却媒体回路(2)に伝達し、前記吸着エバポレータ(6E)の冷熱にて前記空調風の冷却又は前記放熱器の過冷却を行うことを特徴とする空調装置。
A heat source (1) that generates heat during operation;
A cooling medium circuit (2) through which a cooling medium for cooling the heat source (1) flows;
A refrigerant circuit that compresses the refrigerant by the compressor (8) and flows the compressed refrigerant to the outdoor heat exchanger (9) that constitutes the radiator and the cooling heat exchanger (10) that cools the conditioned air. (11) and a refrigeration cycle apparatus (15) comprising a decompression means (12) for decompressing and expanding the refrigerant;
A cooling medium refrigerant heat exchanger (4) for exchanging heat between the cooling medium circuit (2) and the refrigerant circuit (11) and transferring heat from the refrigerant circuit (11) to the cooling medium circuit (2); ,
A pair of adsorption cores (AD1, AD2) having an adsorbent, and an adsorption evaporator (6E) that creates a cold by reducing the pressure when the adsorption cores (AD1, AD2) adsorb the refrigerant vapor to evaporate the refrigerant; An adsorption refrigeration apparatus comprising an adsorption condenser (6C) for condensing refrigerant vapor desorbed from the adsorption cores (AD1, AD2) and an adsorption radiator (6R) for cooling the adsorbed adsorption cores (AD1, AD2). 6)
When the temperature of the cooling medium circuit (2) is lower than a predetermined temperature, heat from the refrigerant circuit (11) is transferred to the cooling medium circuit (2) via the cooling medium refrigerant heat exchanger (4). The air conditioner is characterized in that the air conditioning air is cooled or the radiator is supercooled by the cold heat of the adsorption evaporator (6E).
前記熱源(1)はエンジンによって構成され、
前記冷却媒体回路(2)は、前記冷却媒体となるエンジン冷却水が流れる冷却水回路で構成され、
前記冷却媒体冷媒熱交換器(4)は、前記エンジン冷却水に前記冷媒回路(11)からの熱を伝達する水冷媒熱交換器から構成され、
前記冷却媒体回路(2)の温度があらかじめ定めた所定温度より低い場合に前記冷却媒体冷媒熱交換器(4)を介して前記冷媒回路(11)からの熱を前記冷却媒体回路(2)に伝達することを特徴とする請求項1に記載の空調装置。
The heat source (1) is constituted by an engine,
The cooling medium circuit (2) includes a cooling water circuit through which engine cooling water serving as the cooling medium flows.
The cooling medium refrigerant heat exchanger (4) is composed of a water refrigerant heat exchanger that transfers heat from the refrigerant circuit (11) to the engine cooling water,
When the temperature of the cooling medium circuit (2) is lower than a predetermined temperature, heat from the refrigerant circuit (11) is transferred to the cooling medium circuit (2) via the cooling medium refrigerant heat exchanger (4). The air conditioner according to claim 1, wherein the air conditioner is transmitted.
前記熱源(1)は、車両となるバス内に設けられ、
前記冷却用熱交換器は、冷媒と室内空気とを熱交換させる天井室内側熱交換器にて構成されることを特徴とする請求項1から2のいずれか一項に記載の空調装置。
The heat source (1) is provided in a bus serving as a vehicle,
3. The air conditioner according to claim 1, wherein the cooling heat exchanger includes a ceiling indoor heat exchanger that exchanges heat between the refrigerant and room air. 4.
前記冷凍サイクル装置(15)は、前記室外熱交換器(9)が過冷却部を持った前記放熱器で構成され、前記冷却用熱交換器(10)が蒸発器で構成されて、この蒸発器で前記空調風を冷却する冷凍サイクルで作動することを特徴とする請求項1から3のいずれか一項に記載の空調装置。   In the refrigeration cycle device (15), the outdoor heat exchanger (9) is constituted by the radiator having a supercooling section, and the cooling heat exchanger (10) is constituted by an evaporator. The air conditioner according to any one of claims 1 to 3, wherein the air conditioner is operated in a refrigeration cycle that cools the conditioned air with a cooler. 前記吸着式冷凍装置(6)は、それぞれ前記吸着剤を保持する第1の前記吸着コア(AD1)と第2の前記吸着コア(AD2)とを備え、第1の前記吸着コア(AD1)と第2の前記吸着コア(AD2)とは、交互に吸着側と脱離側として作動し、
前記冷却媒体回路の第1の前記吸着コア(AD1)と第2の前記吸着コア(AD2)への流路を弁で切り替えて前記冷却媒体回路の熱で、脱離側の前記吸着コア(AD1又はAD2)での前記吸着剤からの冷媒の蒸発を促すことを特徴とする請求項1から4のいずれか一項に記載の空調装置。
The adsorption refrigeration apparatus (6) includes a first adsorption core (AD1) and a second adsorption core (AD2) each holding the adsorbent, and the first adsorption core (AD1) The second adsorption core (AD2) operates alternately as an adsorption side and a desorption side,
The flow path to the first adsorption core (AD1) and the second adsorption core (AD2) of the cooling medium circuit is switched by a valve, and the adsorption core (AD1) on the desorption side is heated by the heat of the cooling medium circuit. The air conditioner according to any one of claims 1 to 4, wherein evaporation of the refrigerant from the adsorbent in AD2) is promoted.
更に、前記冷却媒体回路(2)の温度が所定の高温度である場合、前記冷却媒体冷媒熱交換器(4)を流れる冷却媒体又は冷媒をバイパスさせ、前記冷却媒体回路(2)と前記冷媒回路(11)との熱交換を抑制するバイパス弁手段(5、50、57、58)を備えたことを特徴とする請求項1から5のいずれか一項に記載の空調装置。   Further, when the temperature of the cooling medium circuit (2) is a predetermined high temperature, the cooling medium or the refrigerant flowing through the cooling medium refrigerant heat exchanger (4) is bypassed, and the cooling medium circuit (2) and the refrigerant are bypassed. 6. The air conditioner according to claim 1, further comprising bypass valve means (5, 50, 57, 58) for suppressing heat exchange with the circuit (11).
JP2014028869A 2014-02-18 2014-02-18 Air conditioner Pending JP2015151093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014028869A JP2015151093A (en) 2014-02-18 2014-02-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014028869A JP2015151093A (en) 2014-02-18 2014-02-18 Air conditioner

Publications (1)

Publication Number Publication Date
JP2015151093A true JP2015151093A (en) 2015-08-24

Family

ID=53893782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014028869A Pending JP2015151093A (en) 2014-02-18 2014-02-18 Air conditioner

Country Status (1)

Country Link
JP (1) JP2015151093A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107328136A (en) * 2017-07-06 2017-11-07 青岛大学 A kind of accumulating type air-conditioning refrigeration device for automobile based on tail gas waste heat
CN113465136A (en) * 2021-04-26 2021-10-01 青岛海尔空调器有限总公司 Control method and control device for refrigeration system and intelligent air conditioner
CN114932844A (en) * 2022-07-20 2022-08-23 北京福田欧辉新能源汽车有限公司 Vehicle thermal management system, control method thereof and vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183235A (en) * 1997-07-09 1999-03-26 Denso Corp Refrigerating equipment and air conditioner
JP2000046437A (en) * 1998-07-29 2000-02-18 Denso Corp Refrigerating apparatus and air conditioning apparatus for vehicle
JP2003072362A (en) * 2001-09-04 2003-03-12 Denso Corp Adsorption type refrigerator
JP2004217087A (en) * 2003-01-15 2004-08-05 Calsonic Kansei Corp Vehicular air conditioner
JP2007302031A (en) * 2006-05-09 2007-11-22 Mitsubishi Heavy Ind Ltd Vehicular air conditioner
JP2010107156A (en) * 2008-10-31 2010-05-13 Yanmar Co Ltd Engine-driven heat pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183235A (en) * 1997-07-09 1999-03-26 Denso Corp Refrigerating equipment and air conditioner
JP2000046437A (en) * 1998-07-29 2000-02-18 Denso Corp Refrigerating apparatus and air conditioning apparatus for vehicle
JP2003072362A (en) * 2001-09-04 2003-03-12 Denso Corp Adsorption type refrigerator
JP2004217087A (en) * 2003-01-15 2004-08-05 Calsonic Kansei Corp Vehicular air conditioner
JP2007302031A (en) * 2006-05-09 2007-11-22 Mitsubishi Heavy Ind Ltd Vehicular air conditioner
JP2010107156A (en) * 2008-10-31 2010-05-13 Yanmar Co Ltd Engine-driven heat pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107328136A (en) * 2017-07-06 2017-11-07 青岛大学 A kind of accumulating type air-conditioning refrigeration device for automobile based on tail gas waste heat
CN113465136A (en) * 2021-04-26 2021-10-01 青岛海尔空调器有限总公司 Control method and control device for refrigeration system and intelligent air conditioner
CN114932844A (en) * 2022-07-20 2022-08-23 北京福田欧辉新能源汽车有限公司 Vehicle thermal management system, control method thereof and vehicle

Similar Documents

Publication Publication Date Title
JP5373841B2 (en) Cooling system
WO2011142352A1 (en) Air conditioning device for vehicle
WO2003021166A1 (en) Exhaust heat utilizing refrigeration system
WO2015046194A1 (en) Vehicular air-conditioning device, electric compressor, and vehicle air-conditioning method
US12065016B2 (en) Heat pump system
JP2016080310A (en) Cooling system
WO2019029218A9 (en) Automotive air conditioning system
JP2015151093A (en) Air conditioner
JP5039293B2 (en) Carbon dioxide removal equipment
JP4430363B2 (en) Combined air conditioner
JP5974541B2 (en) Air conditioning system
JP2014001876A (en) Adsorptive refrigeration device and engine-driven air conditioner
JP4086011B2 (en) Refrigeration equipment
EP3390927B1 (en) Heating, ventilation, air conditioning and refrigeration system, and method of operating such a system
KR101651981B1 (en) Absorption type air conditioning system for automotive vehicles
JP2014118007A (en) Absorption-type air conditioner
JP2018070027A (en) Heat storage device
JP4069691B2 (en) Air conditioner for vehicles
JP2011110951A (en) Air conditioner for vehicle
JP3481818B2 (en) Absorption cooling and heating system and cooling and heating system
US20170158025A1 (en) Heating, ventilation, air conditioning and refrigeration system with dehumidification
JP2019060515A (en) Cooling system of movable body
JP2018070038A (en) Air conditioner for vehicle having adsorption-type heat pump
JP2002130738A (en) Air conditioner
JP5362618B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170822