JP2015140994A - Air conditioner, and refrigerator oil - Google Patents
Air conditioner, and refrigerator oil Download PDFInfo
- Publication number
- JP2015140994A JP2015140994A JP2014015046A JP2014015046A JP2015140994A JP 2015140994 A JP2015140994 A JP 2015140994A JP 2014015046 A JP2014015046 A JP 2014015046A JP 2014015046 A JP2014015046 A JP 2014015046A JP 2015140994 A JP2015140994 A JP 2015140994A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- refrigerating machine
- machine oil
- difluoromethane
- tetrafluoropropene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lubricants (AREA)
Abstract
Description
本発明は、空気調和機及び冷凍機油に関する。 The present invention relates to an air conditioner and a refrigerating machine oil.
空気調和機では、冷媒としてR410Aが使用されている。しかし、地球環境に及ぼす影響を低減するために、地球温暖化係数がR410Aよりも低い冷媒への移行が検討されている。候補としては、ハイドロフルオロオレフィン系冷媒であるテトラフルオロプロペン(R1234yfやR1234ze)と、R410Aと同じくハイドロフルオロカーボン系冷媒であるジフルオロメタン(R32)の混合冷媒などがある。 In the air conditioner, R410A is used as a refrigerant. However, in order to reduce the influence on the global environment, the transition to a refrigerant having a global warming potential lower than that of R410A has been studied. Candidates include a mixed refrigerant of tetrafluoropropene (R1234yf or R1234ze), which is a hydrofluoroolefin refrigerant, and difluoromethane (R32), which is a hydrofluorocarbon refrigerant similar to R410A.
ところで、冷媒の種類によって、相溶する冷凍機油は異なる。相溶性とは冷媒と冷凍機油がどの程度溶けあうかを示す値であり、相溶性が高いほど冷媒と冷凍機油はよく溶けあい、相溶性が低いほど溶けあいにくくなる。 By the way, the refrigerating machine oil to be compatible varies depending on the type of refrigerant. The compatibility is a value indicating how much the refrigerant and the refrigerating machine oil are melted. The higher the compatibility, the better the refrigerant and the refrigerating machine oil are melted, and the lower the compatibility is, the harder it is to melt.
従来、圧縮機から吐出されてしまった油の油戻り性を考慮し、冷媒との相溶性が高い冷凍機油を選ぶ傾向にあった。 Conventionally, there has been a tendency to select refrigerating machine oil having high compatibility with the refrigerant in consideration of the oil return property of the oil discharged from the compressor.
特許文献1には、不飽和フッ化炭化水素冷媒あるいは不飽和フッ化炭化水素と飽和ハイドロフルオロカーボン、炭素数3〜5の飽和炭化水素、ジメチルエーテル、二酸化炭素、ビス(トリフルオロメチル)サルファイドあるいは3フッ化ヨウ化メタンとの混合冷媒と共に使用可能な冷凍機油としては、鉱油、アルキルベンゼン類、ポリアルファオレフィン類、ポリアルキレングリコール類、モノエステル類、ジエステル類、ポリオールエステル類、フタル酸エステル類、アルキルエーテル類、ケトン類、炭酸エステル類、ポリビニルエーテル類などが記載されている。 Patent Document 1 discloses an unsaturated fluorinated hydrocarbon refrigerant or an unsaturated fluorinated hydrocarbon and a saturated hydrofluorocarbon, a saturated hydrocarbon having 3 to 5 carbon atoms, dimethyl ether, carbon dioxide, bis (trifluoromethyl) sulfide, or 3 fluorine. Refrigerating machine oils that can be used with a mixed refrigerant with iodomethane include mineral oil, alkylbenzenes, polyalphaolefins, polyalkylene glycols, monoesters, diesters, polyol esters, phthalate esters, alkyl ethers , Ketones, carbonates, polyvinyl ethers and the like are described.
しかしながら、特許文献1に記載の冷凍機油は、テトラフルオロプロペンとの相溶性が高いため、冷媒の冷凍機油への溶け込み量が多く、冷凍機油の粘度が低く、又、冷媒と一緒に圧縮機の外へ吐出される冷凍機油の量が多い課題があった。そのため、特許文献1に記載の冷凍機油では、このような現象に対応しつつ、且つ、高い潤滑性や安定性を維持することが困難であった。 However, since the refrigerating machine oil described in Patent Document 1 is highly compatible with tetrafluoropropene, the refrigerant has a large amount of penetration into the refrigerating machine oil, and the viscosity of the refrigerating machine oil is low. There was a problem that the amount of refrigerating machine oil discharged to the outside was large. Therefore, it is difficult for the refrigerating machine oil described in Patent Document 1 to maintain such high lubricity and stability while dealing with such a phenomenon.
そこで、本発明は、冷媒としてジフルオロメタンとテトラフルオロプロペンの混合冷媒を用いた場合において、冷凍機油の粘度を保ち、圧縮機の外への油吐出量を抑えた空気調和機を提供することを目的とする。 Therefore, the present invention provides an air conditioner that maintains the viscosity of refrigeration oil and suppresses the amount of oil discharged outside the compressor when a mixed refrigerant of difluoromethane and tetrafluoropropene is used as the refrigerant. Objective.
本発明の空気調和機は、圧縮機、室外熱交換器、膨張機構及び室内熱交換器と、少なくともジフルオロメタンとテトラフルオロプロペンが含まれている混合冷媒と、ジフルオロメタンとの低温側臨界溶解温度が20℃以上であってテトラフルオロプロペンとの低温側臨界溶解温度が20℃未満である第1の冷凍機油成分と、ジフルオロメタンとの低温側臨界溶解温度が20℃未満であってテトラフルオロプロペンとの低温側臨界溶解温度が20℃以上である第2の冷凍機油成分とを有する冷凍機油とを備えた。 The air conditioner of the present invention includes a compressor, an outdoor heat exchanger, an expansion mechanism, an indoor heat exchanger, a mixed refrigerant containing at least difluoromethane and tetrafluoropropene, and a low-temperature critical solution temperature of difluoromethane. Of the first refrigerating machine oil component having a low temperature side critical dissolution temperature with tetrafluoropropene of less than 20 ° C. and a low temperature side critical dissolution temperature with difluoromethane of less than 20 ° C. and tetrafluoropropene And a refrigerating machine oil having a second refrigerating machine oil component having a low-temperature side critical dissolution temperature of 20 ° C. or higher.
本発明によれば、冷媒としてジフルオロメタンとテトラフルオロプロペンの混合冷媒を用いた場合において、冷凍機油の粘度を保ち、圧縮機の外への油吐出量を抑えた空気調和機を提供することができる。 According to the present invention, when a mixed refrigerant of difluoromethane and tetrafluoropropene is used as a refrigerant, it is possible to provide an air conditioner that maintains the viscosity of refrigeration oil and suppresses the amount of oil discharged outside the compressor. it can.
以下、本発明の実施例に係る空気調和機について説明する。 Hereinafter, an air conditioner according to an embodiment of the present invention will be described.
図1は冷暖房兼用の空気調和機の概略図である。本実施例の空気調和機は、圧縮機1、室外熱交換器3、膨張機構4、室内熱交換器5を配管で接続し、冷媒が循環する。 FIG. 1 is a schematic view of an air conditioner that is also used for air conditioning. In the air conditioner of the present embodiment, the compressor 1, the outdoor heat exchanger 3, the expansion mechanism 4, and the indoor heat exchanger 5 are connected by piping, and the refrigerant circulates.
冷房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は、四方弁2を介して室外熱交換器3に流れる。高温高圧のガス冷媒は、凝縮器として機能する室外熱交換器3で冷却され、高圧の液冷媒となる。高圧の液冷媒は、膨張機構4で膨張され、僅かにガスを含む低温低圧の液冷媒となって、室内熱交換器6に流れる。低温低圧の液冷媒は、蒸発器として機能する室内熱交換器6で加熱され、低温のガス冷媒となり、再び四方弁2を介して圧縮機1に戻る。暖房運転の場合、四方弁2によって冷媒の流れが変えられ、冷媒は冷房運転と逆方向に流れる。 In the case of the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows to the outdoor heat exchanger 3 via the four-way valve 2. The high-temperature and high-pressure gas refrigerant is cooled by the outdoor heat exchanger 3 functioning as a condenser, and becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is expanded by the expansion mechanism 4 and becomes a low-temperature and low-pressure liquid refrigerant containing a slight amount of gas and flows to the indoor heat exchanger 6. The low-temperature and low-pressure liquid refrigerant is heated by the indoor heat exchanger 6 functioning as an evaporator, becomes a low-temperature gas refrigerant, and returns to the compressor 1 through the four-way valve 2 again. In the heating operation, the refrigerant flow is changed by the four-way valve 2, and the refrigerant flows in the opposite direction to the cooling operation.
なお、四方弁2を用いずに、冷房あるいは暖房のいずれか一方のみの機能を有するように構成してもよい。また、膨張機構4として、電子膨張弁、キャピラリーチューブや温度式膨張機構などを用いることができる。 In addition, you may comprise so that it may have only the function of either cooling or heating, without using the four-way valve 2. As the expansion mechanism 4, an electronic expansion valve, a capillary tube, a temperature type expansion mechanism, or the like can be used.
図2は圧縮機の概略図である。圧縮機1は、端板7と渦巻状ラップ8を有する固定スクロール部材6と、ラップ10を有する旋回スクロール部材9をお互いにラップ8とラップ10とを向い合わせにして噛み合わせて圧縮機構部を形成し、旋回スクロール部材9をクランクシャフト11によって旋回運動させる。固定スクロール部材6及び旋回スクロール部材9によって形成される圧縮室12(12a、12b・・・)のうち、最も外側に位置している圧縮室は、旋回運動にともなって容積が次第に縮小しながら、固定スクロール部材6及び旋回スクロール部材9の中心に向かって移動していく。圧縮室12が固定スクロール部材6及び旋回スクロール部材9の中心近傍に達したとき、圧縮室12が吐出口13と連通して、圧縮室12で圧縮されたガス冷媒が吐出パイプ16を通じて圧縮機1の外に吐出される。 FIG. 2 is a schematic view of the compressor. The compressor 1 engages a fixed scroll member 6 having an end plate 7 and a spiral wrap 8 and a orbiting scroll member 9 having a wrap 10 with the wrap 8 and the wrap 10 facing each other to engage the compression mechanism portion. Then, the orbiting scroll member 9 is orbited by the crankshaft 11. Of the compression chambers 12 (12a, 12b...) Formed by the fixed scroll member 6 and the orbiting scroll member 9, the outermost compression chamber is gradually reduced in volume with the orbiting motion. The fixed scroll member 6 and the orbiting scroll member 9 move toward the center. When the compression chamber 12 reaches the vicinity of the center of the fixed scroll member 6 and the orbiting scroll member 9, the compression chamber 12 communicates with the discharge port 13, and the gas refrigerant compressed in the compression chamber 12 passes through the discharge pipe 16. It is discharged outside.
圧縮機1は、圧力容器15内に電動モータ17を内蔵しており、圧縮機1は一定速あるいは図示しないインバータによって制御された電圧に応じた回転速度でクランクシャフト11が回転し、圧縮動作を行う。電動モータ17は冷媒および冷凍機油の雰囲気中で作動する。モータ17の図示しないコイルの相間や積層鋼鈑の間には、その絶縁を保持するために絶縁フィルムが配置されている。 The compressor 1 has a built-in electric motor 17 in the pressure vessel 15, and the compressor 1 performs a compression operation by rotating the crankshaft 11 at a constant speed or at a rotational speed corresponding to a voltage controlled by an inverter (not shown). Do. The electric motor 17 operates in an atmosphere of refrigerant and refrigeration oil. An insulating film is arranged between the phases of coils (not shown) of the motor 17 and between the laminated steel plates in order to maintain the insulation.
また、電動モータ17の下部に油溜め部が設けられており、油溜め部に溜まっている冷凍機油は圧力差によってクランクシャフト11に設けられた油孔19を通って、旋回スクロール部材9とクランクシャフト11との摺動部や滑り軸受け18等の潤滑に供される。 Further, an oil sump is provided at the lower part of the electric motor 17, and the refrigerating machine oil accumulated in the oil sump passes through the oil hole 19 provided in the crankshaft 11 due to a pressure difference, and the orbiting scroll member 9 and the crank. It is used for lubrication of the sliding portion with the shaft 11, the sliding bearing 18, and the like.
本実施例において、冷媒はハイドロフルオロオレフィンとハイドロフルオロカーボンの混合冷媒を用いている。ハイドロフルオロオレフィンとしては、テトラフルオロプロペン(HFO1234yfまたはHFO1234ze)を用い、ハイドロフルオロカーボンとしては、ジフルオロメタン(R32)を用いている。 In this embodiment, the refrigerant is a mixed refrigerant of hydrofluoroolefin and hydrofluorocarbon. Tetrafluoropropene (HFO1234yf or HFO1234ze) is used as the hydrofluoroolefin, and difluoromethane (R32) is used as the hydrofluorocarbon.
次に、本実施例の冷媒圧縮機に用いる冷凍機油と、ハイドロフルオロオレフィン(HFO1234ze)とハイドロフルオロカーボン(R32)との混合冷媒との相溶性評価を行った結果について説明する。表1は、ジフルオロメタンおよびテトラフルオロプロペンの混合冷媒に対する冷凍機油の実験結果である。実験は、ハイドロフルオロオレフィン(HFO1234ze)が30%、ハイドロフルオロカーボン(R32)が70%の混合冷媒を用いて行った。 Next, a description will be given of the results of a compatibility evaluation between the refrigerating machine oil used in the refrigerant compressor of the present example and a mixed refrigerant of hydrofluoroolefin (HFO1234ze) and hydrofluorocarbon (R32). Table 1 shows the experimental results of the refrigerating machine oil for the mixed refrigerant of difluoromethane and tetrafluoropropene. The experiment was performed using a mixed refrigerant of 30% hydrofluoroolefin (HFO1234ze) and 70% hydrofluorocarbon (R32).
実験結果として、冷媒と冷凍機油の相溶性、圧縮機外への油吐出量、圧縮機外へ吐出された冷凍機油の圧縮機への油戻り、運転時における冷媒が溶解した場合の冷凍機油の粘度(表中の溶解粘度)、冷凍機油単体(冷媒が溶解していない状態)での潤滑性、冷凍機油の熱安定性を示している。相溶性評価はJIS K2211に準じ、耐圧ガラス容器に任意の油濃度において冷媒を封入し、温度を変化させた状態での内容物の観察を行ない、内容物が白濁していれば二層分離、透明であれば溶解と判定した。この二層に分離する温度の油濃度依存性は一般に極大値(以下「低温側臨界溶解温度」という。)を有する曲線となる。 As a result of the experiment, the compatibility of refrigerant and refrigerating machine oil, the amount of oil discharged to the outside of the compressor, the return of the refrigerating machine oil discharged to the outside of the compressor to the compressor, the refrigerating machine oil when the refrigerant melts during operation It shows the viscosity (dissolved viscosity in the table), the lubricity of the refrigerator oil alone (the refrigerant is not dissolved), and the thermal stability of the refrigerator oil. The compatibility evaluation is in accordance with JIS K2211, in which a refrigerant is sealed in a pressure-resistant glass container at an arbitrary oil concentration, and the contents are observed while the temperature is changed. If the contents are cloudy, two layers are separated. If it was transparent, it was determined to be dissolved. The oil concentration dependency of the temperature at which the two layers are separated is generally a curve having a maximum value (hereinafter referred to as “low temperature side critical dissolution temperature”).
冷媒と冷凍機油の相溶性は、完全溶解した場合に◎、二層分離曲線が発現し低温側臨界溶解温度が20℃未満の場合に◎、二層分離曲線が発現し低温側臨界溶解温度が20℃以上の場合に△とした。運転時における冷媒が溶解した場合の冷凍機油の粘度(表中の溶解粘度)は、40mm2/s以上の場合に○、40mm2/s未満の場合に△とした。 The compatibility between the refrigerant and the refrigerating machine oil is ◎ when completely dissolved, ◎ when the two-layer separation curve is expressed and the low-temperature side critical dissolution temperature is less than 20 ° C, ◎, when the two-layer separation curve is expressed and the low-temperature side critical dissolution temperature is It was set as Δ when the temperature was 20 ° C. or higher. The viscosity of the refrigerating machine oil (dissolved viscosity in the table) when the refrigerant was dissolved during operation was evaluated as ◯ when it was 40 mm 2 / s or more and Δ when it was less than 40 mm 2 / s.
比較例1はポリオールエステル油(POE)、比較例2はポリビニルエーテル油(PVE)、実施例1はポリオールエステル油(POE)とポリビニルエーテル油(PVE)の混合油である。実施例1の混合油は、ポリオールエステル油(POE)が70%、ポリビニルエーテル油(PVE)が30%である。 Comparative Example 1 is a polyol ester oil (POE), Comparative Example 2 is a polyvinyl ether oil (PVE), and Example 1 is a mixed oil of a polyol ester oil (POE) and a polyvinyl ether oil (PVE). The mixed oil of Example 1 is 70% polyol ester oil (POE) and 30% polyvinyl ether oil (PVE).
比較例1のポリオールエステル油(POE)と、比較例2のポリビニルエーテル油(PVE)はジフルオロメタンおよびテトラフルオロプロペンと相溶性に優れるため、油戻り量は確保できる結果となった。 Since the polyol ester oil (POE) of Comparative Example 1 and the polyvinyl ether oil (PVE) of Comparative Example 2 were excellent in compatibility with difluoromethane and tetrafluoropropene, the oil return amount could be secured.
しかしながら、圧縮機1の外への油吐出量も多い結果となり、圧縮機1内での油が枯渇するおそれがある。 However, the amount of oil discharged to the outside of the compressor 1 is also increased, and the oil in the compressor 1 may be depleted.
また、比較例1のポリオールエステル油(POE)はテトラフルオロプロペンとの相溶性に優れ、テトラフルオロプロペンとの溶解量が多いため、冷媒溶解時の油粘度(溶解粘度)が低い結果となった。 Moreover, since the polyol ester oil (POE) of Comparative Example 1 was excellent in compatibility with tetrafluoropropene and had a large amount of dissolution with tetrafluoropropene, the result was a low oil viscosity (dissolution viscosity) when dissolving the refrigerant. .
また、比較例2のポリビニルエーテル油(PVE)はジフルオロメタンと相溶性に優れ、ジフルオロメタンとの冷媒溶解量が多いため、冷媒溶解時の油粘度(溶解粘度)が低い結果となった。 Moreover, since the polyvinyl ether oil (PVE) of the comparative example 2 was excellent in compatibility with difluoromethane and the refrigerant | coolant dissolution amount with difluoromethane was large, it resulted in the low oil viscosity (dissolution viscosity) at the time of refrigerant | coolant melt | dissolution.
すなわち、比較例1及び比較例2では、溶解粘度が低く、摺動部の潤滑を行うのに必要な粘性を維持することができないおそれがある。 That is, in Comparative Example 1 and Comparative Example 2, the melt viscosity is low, and there is a possibility that the viscosity necessary for lubricating the sliding portion cannot be maintained.
また、比較例1のポリオールエステル油(POE)は、加水分解性を有するため、安定性が悪い結果となった。 Moreover, since the polyol ester oil (POE) of the comparative example 1 has hydrolyzability, it resulted in poor stability.
比較例2のポリビニルエーテル油(PVE)は基油の潤滑性が低い結果となった。 The polyvinyl ether oil (PVE) of Comparative Example 2 resulted in low lubricity of the base oil.
これに対し、ポリオールエステル油(POE)とポリビニルエーテル油(PVE)の混合油である実施例1は、比較例1に比べてテトラフルオロプロペンとの相溶性が低く、比較例2に比べてジフルオロメタンとの相溶性が低い。そして、表1に示すように、実施例1の冷凍機油は、比較例1及び2の冷凍機油に比べて油吐出量が低く、又、溶解粘度も維持することができる結果が得られた。 On the other hand, Example 1, which is a mixed oil of polyol ester oil (POE) and polyvinyl ether oil (PVE), has lower compatibility with tetrafluoropropene than Comparative Example 1, and is difluoro compared with Comparative Example 2. Low compatibility with methane. And as shown in Table 1, the refrigerating machine oil of Example 1 had a lower oil discharge amount than the refrigerating machine oils of Comparative Examples 1 and 2, and a result capable of maintaining the dissolved viscosity was obtained.
本実施例1の冷凍機油は油戻り量も確保することができる結果となった。上述した通り、ポリオールエステル油(POE)はテトラフルオロプロペンとの相溶性に優れ、ポリビニルエーテル油(PVE)はジフルオロメタンとの相溶性に優れる。そのため、これらの混合である本実施例1の冷凍機油が圧縮機1の外に吐出された場合にも、何れかの冷媒に溶解し、圧縮機1に戻るからである。 The refrigerating machine oil of Example 1 was able to ensure the amount of oil return. As described above, polyol ester oil (POE) is excellent in compatibility with tetrafluoropropene, and polyvinyl ether oil (PVE) is excellent in compatibility with difluoromethane. Therefore, even when the refrigerating machine oil according to the first embodiment, which is a mixture of these, is discharged outside the compressor 1, it is dissolved in any refrigerant and returned to the compressor 1.
さらに、本実施例1によれば、ポリオールエステル油(POE)の欠点であった安定性についても、ポリビニルエーテル油(PVE)を添加することにより、加水分解が抑制されるため、安定性を維持することが可能となった。 Furthermore, according to the present Example 1, also about the stability which was the fault of a polyol ester oil (POE), since a hydrolysis is suppressed by adding polyvinyl ether oil (PVE), stability is maintained. It became possible to do.
また、本実施例1によれば、ポリビニルエーテル油(PVE)の欠点であった潤滑性は、ポリオールエステル油(POE)の潤滑性向上効果により極圧添加剤を添加することなく、高い潤滑性を保つことが可能となった。 Moreover, according to the present Example 1, the lubricity which was the fault of polyvinyl ether oil (PVE) is high lubricity, without adding an extreme pressure additive by the lubricity improvement effect of a polyol ester oil (POE). It became possible to keep.
従来の冷凍サイクルでは、圧縮機1から冷凍機油が吐出された場合に圧縮機1内に戻りやすくするために、冷媒と相溶性が良い冷凍機油を使用することが重要視されていた。 In the conventional refrigeration cycle, in order to facilitate return to the compressor 1 when the refrigeration oil is discharged from the compressor 1, it is important to use the refrigeration oil having good compatibility with the refrigerant.
しかし、圧縮機1から吐出される冷凍機油は、冷媒と相溶して吐出されるものと、冷媒との相溶性に関わらずポンプの圧力により吐出されてしまうものがあり、冷媒と冷凍機油の相溶性が良すぎると、冷媒と相溶して圧縮機から吐出される冷凍機油の量が多くなり、圧縮機内の油枯渇の可能性がある。 However, the refrigerating machine oil discharged from the compressor 1 includes those that are discharged after being compatible with the refrigerant and those that are discharged due to the pressure of the pump regardless of the compatibility with the refrigerant. If the compatibility is too good, the amount of refrigerating machine oil that is compatible with the refrigerant and discharged from the compressor increases, and there is a possibility of oil exhaustion in the compressor.
そこで、本実施例に係る空気調和機は、圧縮機1、室外熱交換器3、膨張機構4及び室内熱交換器5と、少なくともジフルオロメタンとテトラフルオロプロペンが含まれている混合冷媒と、ジフルオロメタンとの低温側臨界溶解温度が20℃以上でありテトラフルオロプロペンとの低温側臨界溶解温度が20℃未満である第1の冷凍機油成分Aと、ジフルオロメタンとの低温側臨界溶解温度が20℃未満でありテトラフルオロプロペンとの低温側臨界溶解温度が20℃以上である第2の冷凍機油成分Bからなる冷凍機油とを備えている。 Therefore, the air conditioner according to the present embodiment includes the compressor 1, the outdoor heat exchanger 3, the expansion mechanism 4, the indoor heat exchanger 5, a mixed refrigerant containing at least difluoromethane and tetrafluoropropene, and difluoro The low temperature side critical dissolution temperature of difluoromethane with the first refrigerating machine oil component A having a low temperature side critical dissolution temperature with methane of 20 ° C. or more and a low temperature side critical dissolution temperature with tetrafluoropropene of less than 20 ° C. is 20 And a refrigerating machine oil composed of a second refrigerating machine oil component B having a low-temperature side critical dissolution temperature with tetrafluoropropene of 20 ° C. or higher.
第1の冷凍機油成分Aは、テトラフルオロプロペンに対しては低温側臨界溶解温度が20℃未満である。すなわち、テトラフルオロプロペンとの相溶性が優れていると言える。 The first refrigerating machine oil component A has a low-temperature side critical dissolution temperature of less than 20 ° C. with respect to tetrafluoropropene. That is, it can be said that the compatibility with tetrafluoropropene is excellent.
一方、第1の冷凍機油成分Aは、ジフルオロメタンに対しては低温側臨界溶解温度が20℃以上となっている。低温側臨界溶解温度が20℃以上であると、溶解する温度領域が極端に狭くなり、空気調和機のサイクル中ではジフルオロメタンとはほとんど相溶しない。 On the other hand, the first refrigerating machine oil component A has a low critical melting temperature of 20 ° C. or higher for difluoromethane. When the low temperature side critical dissolution temperature is 20 ° C. or higher, the temperature range for dissolution becomes extremely narrow, and it is hardly compatible with difluoromethane during the cycle of the air conditioner.
又、第2の冷凍機油成分Bは、テトラフルオロプロペンに対しては低温側臨界温度が20℃未満であるため、空気調和機の実使用低温領域ではテトラフルオロプロペンとはほとんど相溶しない。 Moreover, since the 2nd refrigerator oil component B has the low temperature side critical temperature of less than 20 degreeC with respect to tetrafluoropropene, it is hardly compatible with tetrafluoropropene in the practical use low temperature range of an air conditioner.
一方、第2の冷凍機油成分Bはジフルオロメタンに対しては低温側臨界溶解温度が20℃未満である。すなわち、ジフルオロメタンとの相溶性が優れていると言える。 On the other hand, the second refrigerating machine oil component B has a low-temperature critical solution temperature of less than 20 ° C. with respect to difluoromethane. That is, it can be said that the compatibility with difluoromethane is excellent.
すなわち、本実施例によれば、上記2種類の冷凍機油成分を混合することにより、混合冷媒に対する冷凍機油の溶解量を低減することができ、粘度の低下や圧縮機1の外への油吐出による油枯渇を抑制することができる。 That is, according to the present embodiment, by mixing the two types of refrigerating machine oil components, the amount of refrigerating machine oil dissolved in the mixed refrigerant can be reduced, and the viscosity is lowered and the oil is discharged out of the compressor 1. Oil depletion due to can be suppressed.
さらに、第1の冷凍機油成分Aはテトラフルオロプロペン、第2の冷凍機油成分Bはジフルオロメタンと相溶性を有するため、圧縮機外に吐出された油は何れかの冷媒に相溶して圧縮機1に戻ることができる。つまり、2種類の冷凍機油を混合して使用することにより油戻り性も確保することも可能となる。 Furthermore, since the first refrigerating machine oil component A is compatible with tetrafluoropropene and the second refrigerating machine oil component B is compatible with difluoromethane, the oil discharged outside the compressor is compatible with any refrigerant and compressed. You can return to machine 1. That is, it is possible to ensure oil return by using a mixture of two types of refrigerating machine oil.
さらに、本実施例に係る空気調和機は、第1の冷凍機油成分Aがポリオールエステル油であって第2の冷凍機油成分Bがポリビニルエーテル油であり、又は、第1の冷凍機油成分Aがポリビニルエーテル油であって第2の冷凍機油成分Bがポリオールエステル油である。 Furthermore, in the air conditioner according to the present embodiment, the first refrigerating machine oil component A is polyol ester oil and the second refrigerating machine oil component B is polyvinyl ether oil, or the first refrigerating machine oil component A is Polyvinyl ether oil and the second refrigerator oil component B is a polyol ester oil.
このような構成によれば、ポリオールエステル油は、エステル結合を有するためサイクル内の水分により加水分解を起こし劣化する可能性が考えられる。そこで、加水分解性を持たないポリビニルエーテル油を混合することにより、分子構造内のエステル結合の数が減少するためポリオールエステル油の加水分解を抑制することができる。 According to such a configuration, since the polyol ester oil has an ester bond, it is considered that the polyol ester oil may be hydrolyzed and deteriorated by moisture in the cycle. Therefore, by mixing polyvinyl ether oil having no hydrolyzability, the number of ester bonds in the molecular structure is reduced, so that hydrolysis of the polyol ester oil can be suppressed.
また、ポリビニルエーテル油は基油の潤滑性が低いため、単体で使用するには何らかの潤滑性向上剤の添加が必須となる。そこで、本発明ではポリオールエステル油を添加している。ポリオールエステル油は分子中に金属に吸着し易い極性基を持つため潤滑性向上剤の添加をしなくても潤滑性が優れる。このようなポリオールエステル油を添加することにより、ポリビニルエーテル油の潤滑性を向上させることができる。 In addition, since polyvinyl ether oil has low lubricity of base oil, it is essential to add some lubricity improver to use it alone. Therefore, polyol ester oil is added in the present invention. Since the polyol ester oil has a polar group that is easily adsorbed to a metal in the molecule, the lubricity is excellent without adding a lubricity improver. By adding such a polyol ester oil, the lubricity of the polyvinyl ether oil can be improved.
特に、ジフルオロメタンが50重量%よりも多く含まれている混合冷媒に対しては、第1の冷凍機油成分Aがポリオールエステル油であって第2の冷凍機油成分Bがポリビニルエーテル油であることが好ましい。 In particular, for a mixed refrigerant containing more than 50% by weight of difluoromethane, the first refrigerator oil component A is a polyol ester oil and the second refrigerator oil component B is a polyvinyl ether oil. Is preferred.
ジフルオロメタンに対する低温側臨界溶解温度が20℃以上である第1の冷凍機油成分Aはジフルオロメタンと相溶しにくいため、ジフルオロメタンの比率が多い混合冷媒を使用した場合、第1の冷凍機油成分Aが圧縮機から持ち出される量が少なくなる。ここで、第1の冷凍機油成分Aにポリオールエステル油を使用することにより、潤滑性の高いポリオールエステル油を圧縮機に残存させることができる。よって、摺動部の潤滑不良による損傷が起こりにくくなり、長期に渡り信頼性を保つことが可能となる。 The first refrigerating machine oil component A having a low temperature side critical dissolution temperature in difluoromethane of 20 ° C. or higher is not compatible with difluoromethane. Therefore, when a mixed refrigerant having a high ratio of difluoromethane is used, the first refrigerating machine oil component A The amount of A taken out of the compressor is reduced. Here, by using the polyol ester oil for the first refrigerating machine oil component A, the polyol ester oil having high lubricity can be left in the compressor. Therefore, damage due to poor lubrication of the sliding portion is less likely to occur, and reliability can be maintained over a long period of time.
なお、上述し通り、第2の冷凍機油成分Bは、テトラフルオロプロペンとの低温側臨界溶解温度を20℃以上とすることが好ましい。但し、圧縮機1から吐出される冷凍機油において、冷媒と相溶し吐出されるものは、低温側臨界溶解温度が0℃を下回ると上昇する傾向がある。そのため、冷凍機油Aおよび冷凍機油Bからなる本実施例に係る冷凍機油のテトラフルオロプロペンとの低温側臨界溶解温度が0℃〜20℃の範囲内であれば、第2の冷凍機油成分B単体のテトラフルオロプロペンとの低温側臨界溶解温度が20℃未満であってもよい。 In addition, as above-mentioned, it is preferable that the 2nd refrigerating machine oil component B shall be 20 degreeC or more with the low temperature side critical solution temperature with tetrafluoropropene. However, in the refrigerating machine oil discharged from the compressor 1, what is discharged after being compatible with the refrigerant tends to increase when the low-temperature side critical dissolution temperature falls below 0 ° C. Therefore, if the low temperature side critical solution temperature with the tetrafluoropropene of the refrigerating machine oil which consists of refrigerating machine oil A and the refrigerating machine oil B is in the range of 0 degreeC-20 degreeC, 2nd refrigerating machine oil component B single-piece | unit The low-temperature critical solution temperature with tetrafluoropropene may be less than 20 ° C.
1…圧縮機、2…四方弁、3…室外熱交換器、4…膨張機構、5…室内熱交換器 DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Expansion mechanism, 5 ... Indoor heat exchanger
Claims (4)
少なくともジフルオロメタンとテトラフルオロプロペンが含まれている混合冷媒と、
前記ジフルオロメタンとの低温側臨界溶解温度が20℃以上であって前記テトラフルオロプロペンとの低温側臨界溶解温度が20℃未満である第1の冷凍機油成分と、前記ジフルオロメタンとの低温側臨界溶解温度が20℃未満であって前記テトラフルオロプロペンとの低温側臨界溶解温度が20℃以上である第2の冷凍機油成分とを有する冷凍機油とを備えた空気調和機。 A compressor, an outdoor heat exchanger, an expansion mechanism, and an indoor heat exchanger;
A mixed refrigerant containing at least difluoromethane and tetrafluoropropene; and
A first refrigerating machine oil component having a low temperature side critical dissolution temperature with the difluoromethane of 20 ° C. or more and a low temperature side critical dissolution temperature with the tetrafluoropropene of less than 20 ° C., and the low temperature side criticality with the difluoromethane An air conditioner comprising: a refrigerating machine oil having a second refrigerating machine oil component having a melting temperature of less than 20 ° C and a low temperature side critical melting temperature with the tetrafluoropropene of 20 ° C or higher.
前記第1の冷凍機油成分がポリオールエステル油であって前記第2の冷凍機油成分がポリビニルエーテル油であることを特徴とする請求項1に記載の空気調和機。 The mixed refrigerant contains more than 50% by weight of difluoromethane,
The air conditioner according to claim 1, wherein the first refrigerating machine oil component is a polyol ester oil and the second refrigerating machine oil component is a polyvinyl ether oil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014015046A JP2015140994A (en) | 2014-01-30 | 2014-01-30 | Air conditioner, and refrigerator oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014015046A JP2015140994A (en) | 2014-01-30 | 2014-01-30 | Air conditioner, and refrigerator oil |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015140994A true JP2015140994A (en) | 2015-08-03 |
Family
ID=53771455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014015046A Pending JP2015140994A (en) | 2014-01-30 | 2014-01-30 | Air conditioner, and refrigerator oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015140994A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180097740A (en) * | 2016-01-20 | 2018-08-31 | 니치유 가부시키가이샤 | R32 refrigerator oil for refrigerant and composition comprising same |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02158693A (en) * | 1988-12-13 | 1990-06-19 | Idemitsu Kosan Co Ltd | Refrigerating machine oil composition for fluorinated alkane refrigerants |
JPH02276894A (en) * | 1989-01-10 | 1990-11-13 | Dow Chem Co:The | Lubricant for cooling compressor |
JPH10168479A (en) * | 1996-12-11 | 1998-06-23 | Kao Corp | Refrigerator oil and refrigerator working fluid composition |
JP2009138957A (en) * | 2007-12-04 | 2009-06-25 | Hitachi Appliances Inc | Refrigerant compressor and refrigerating cycle |
JP2010243148A (en) * | 2009-03-17 | 2010-10-28 | Panasonic Corp | Refrigeration cycle equipment |
JP2011052032A (en) * | 2009-08-31 | 2011-03-17 | Hitachi Appliances Inc | Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene |
JP2011513538A (en) * | 2008-02-29 | 2011-04-28 | アーケマ・インコーポレイテッド | Block copolymer oil return agent |
JP2011094039A (en) * | 2009-10-30 | 2011-05-12 | Hitachi Appliances Inc | Refrigerant compressor, refrigeration cycle apparatus |
JP2011190319A (en) * | 2010-03-12 | 2011-09-29 | Jx Nippon Oil & Energy Corp | Working fluid composition for refrigerating machine |
JP2012031239A (en) * | 2010-07-29 | 2012-02-16 | Hitachi Appliances Inc | Compressor for refrigeration and air-conditioning, and refrigeration and air-conditioning apparatus |
JP2012057812A (en) * | 2010-09-06 | 2012-03-22 | Hitachi Appliances Inc | Refrigerant compressor and freezing cycle |
JP2012062468A (en) * | 2010-09-20 | 2012-03-29 | Arkema France | Compostion based on 2,3,3,3-tetrafluoropropene |
JP2012062469A (en) * | 2010-09-20 | 2012-03-29 | Arkema France | Composition based on 1,3,3,3-tetrafluoropropene |
JP2012087959A (en) * | 2010-10-18 | 2012-05-10 | Panasonic Corp | Refrigeration apparatus |
WO2012086518A1 (en) * | 2010-12-20 | 2012-06-28 | 日立アプライアンス株式会社 | Compressor for refrigeration and air-conditioning, and refrigerating and air-conditioning apparatus |
JP2013501820A (en) * | 2010-01-27 | 2013-01-17 | ダイキン工業株式会社 | A refrigerant composition comprising difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HFO1234yf) |
JP2013032527A (en) * | 2010-02-16 | 2013-02-14 | Mexichem Amanco Holding Sa De Cv | Heat transfer composition |
WO2013021174A1 (en) * | 2011-08-05 | 2013-02-14 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
JP2013076533A (en) * | 2011-09-30 | 2013-04-25 | Hitachi Appliances Inc | Compressor for refrigeration and air conditioning, and refrigeration and air conditioning device |
WO2013062058A1 (en) * | 2011-10-26 | 2013-05-02 | Jx日鉱日石エネルギー株式会社 | Refrigerating machine working fluid composition and refrigerant oil |
JP2013120029A (en) * | 2011-12-08 | 2013-06-17 | Panasonic Corp | Air conditioner |
JP2013203953A (en) * | 2012-03-29 | 2013-10-07 | Jx Nippon Oil & Energy Corp | Working fluid composition for refrigerator |
JP2013539475A (en) * | 2010-07-06 | 2013-10-24 | アーケマ・インコーポレイテッド | Tetrafluoropropene and polyol ester lubricant composition |
-
2014
- 2014-01-30 JP JP2014015046A patent/JP2015140994A/en active Pending
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02158693A (en) * | 1988-12-13 | 1990-06-19 | Idemitsu Kosan Co Ltd | Refrigerating machine oil composition for fluorinated alkane refrigerants |
JPH02276894A (en) * | 1989-01-10 | 1990-11-13 | Dow Chem Co:The | Lubricant for cooling compressor |
JPH10168479A (en) * | 1996-12-11 | 1998-06-23 | Kao Corp | Refrigerator oil and refrigerator working fluid composition |
JP2009138957A (en) * | 2007-12-04 | 2009-06-25 | Hitachi Appliances Inc | Refrigerant compressor and refrigerating cycle |
JP2011513538A (en) * | 2008-02-29 | 2011-04-28 | アーケマ・インコーポレイテッド | Block copolymer oil return agent |
JP2010243148A (en) * | 2009-03-17 | 2010-10-28 | Panasonic Corp | Refrigeration cycle equipment |
JP2011052032A (en) * | 2009-08-31 | 2011-03-17 | Hitachi Appliances Inc | Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene |
JP2011094039A (en) * | 2009-10-30 | 2011-05-12 | Hitachi Appliances Inc | Refrigerant compressor, refrigeration cycle apparatus |
JP2013501820A (en) * | 2010-01-27 | 2013-01-17 | ダイキン工業株式会社 | A refrigerant composition comprising difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HFO1234yf) |
JP2013032527A (en) * | 2010-02-16 | 2013-02-14 | Mexichem Amanco Holding Sa De Cv | Heat transfer composition |
JP2011190319A (en) * | 2010-03-12 | 2011-09-29 | Jx Nippon Oil & Energy Corp | Working fluid composition for refrigerating machine |
JP2013539475A (en) * | 2010-07-06 | 2013-10-24 | アーケマ・インコーポレイテッド | Tetrafluoropropene and polyol ester lubricant composition |
JP2012031239A (en) * | 2010-07-29 | 2012-02-16 | Hitachi Appliances Inc | Compressor for refrigeration and air-conditioning, and refrigeration and air-conditioning apparatus |
JP2012057812A (en) * | 2010-09-06 | 2012-03-22 | Hitachi Appliances Inc | Refrigerant compressor and freezing cycle |
JP2012062469A (en) * | 2010-09-20 | 2012-03-29 | Arkema France | Composition based on 1,3,3,3-tetrafluoropropene |
JP2012062468A (en) * | 2010-09-20 | 2012-03-29 | Arkema France | Compostion based on 2,3,3,3-tetrafluoropropene |
JP2012087959A (en) * | 2010-10-18 | 2012-05-10 | Panasonic Corp | Refrigeration apparatus |
WO2012086518A1 (en) * | 2010-12-20 | 2012-06-28 | 日立アプライアンス株式会社 | Compressor for refrigeration and air-conditioning, and refrigerating and air-conditioning apparatus |
WO2013021174A1 (en) * | 2011-08-05 | 2013-02-14 | Mexichem Amanco Holding S.A. De C.V. | Heat transfer compositions |
JP2013076533A (en) * | 2011-09-30 | 2013-04-25 | Hitachi Appliances Inc | Compressor for refrigeration and air conditioning, and refrigeration and air conditioning device |
WO2013062058A1 (en) * | 2011-10-26 | 2013-05-02 | Jx日鉱日石エネルギー株式会社 | Refrigerating machine working fluid composition and refrigerant oil |
JP2013120029A (en) * | 2011-12-08 | 2013-06-17 | Panasonic Corp | Air conditioner |
JP2013203953A (en) * | 2012-03-29 | 2013-10-07 | Jx Nippon Oil & Energy Corp | Working fluid composition for refrigerator |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180097740A (en) * | 2016-01-20 | 2018-08-31 | 니치유 가부시키가이샤 | R32 refrigerator oil for refrigerant and composition comprising same |
EP3406693A4 (en) * | 2016-01-20 | 2019-06-12 | NOF Corporation | REFRIGERANT FREEZER OIL R32 AND COMPOSITION COMPRISING SAME |
KR102737589B1 (en) | 2016-01-20 | 2024-12-03 | 니치유 가부시키가이샤 | Refrigerating oil for R32 refrigerant and composition containing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7029095B2 (en) | Refrigeration equipment | |
JP5466772B2 (en) | Compressor for refrigeration and air-conditioning equipment | |
JP6545337B1 (en) | Refrigeration cycle device | |
ES2697529T3 (en) | Refrigeration appliance | |
JP2012031239A (en) | Compressor for refrigeration and air-conditioning, and refrigeration and air-conditioning apparatus | |
JP5339788B2 (en) | Compressor and refrigeration cycle equipment | |
JP2011052032A (en) | Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene | |
CN114659288B (en) | Refrigeration cycle device | |
JP6450896B1 (en) | Refrigerant composition and refrigeration cycle apparatus using the same | |
CN109072895B (en) | Electric compressor and refrigerating and air-conditioning device | |
CN111895672B (en) | Refrigerator, working fluid for refrigerating machine and refrigerating machine oil | |
JP2015014395A (en) | Air conditioner | |
JP6522345B2 (en) | Refrigerating apparatus and sealed electric compressor | |
JP2015117923A (en) | Air conditioner | |
JP2015140994A (en) | Air conditioner, and refrigerator oil | |
JP2000129275A (en) | Working fluid composition for refrigerating/air- conditioning machine and refrigerating/air-conditioning apparatus using same | |
JP2014228154A (en) | Air conditioner | |
JP2016023902A (en) | Air conditioner | |
WO2020050022A1 (en) | Electric compressor, and refrigeration and air conditioning device using same | |
JP7053938B1 (en) | Refrigeration cycle device | |
JP2005248773A (en) | Refrigerating device and refrigerant compressor | |
JP2015017730A (en) | Air conditioner | |
JP2017089982A (en) | Freezer | |
JP2017150753A (en) | Refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20150818 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150903 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150904 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20160407 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160427 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170628 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20171011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171205 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180605 |