Nothing Special   »   [go: up one dir, main page]

JP2015031665A - Particle counter and particle counting method - Google Patents

Particle counter and particle counting method Download PDF

Info

Publication number
JP2015031665A
JP2015031665A JP2013163578A JP2013163578A JP2015031665A JP 2015031665 A JP2015031665 A JP 2015031665A JP 2013163578 A JP2013163578 A JP 2013163578A JP 2013163578 A JP2013163578 A JP 2013163578A JP 2015031665 A JP2015031665 A JP 2015031665A
Authority
JP
Japan
Prior art keywords
particle
particles
light
scattered
measured values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013163578A
Other languages
Japanese (ja)
Inventor
川畑 雅彦
Masahiko Kawabata
雅彦 川畑
吉田 直樹
Naoki Yoshida
直樹 吉田
聡 井原
Satoshi Ihara
聡 井原
皓然 崔
Ho-Yin Choi
皓然 崔
真吾 長門
Shingo Nagato
真吾 長門
淳司 類家
Atsushi Ruike
淳司 類家
泰 安部田
Yasushi Abeta
泰 安部田
耕祐 伊藤
Kousuke Ito
耕祐 伊藤
亮 大橋
Ryo Ohashi
亮 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORIBOTEX CO Ltd
Original Assignee
TORIBOTEX CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TORIBOTEX CO Ltd filed Critical TORIBOTEX CO Ltd
Priority to JP2013163578A priority Critical patent/JP2015031665A/en
Publication of JP2015031665A publication Critical patent/JP2015031665A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particle counter capable of counting the number of particles while identifying the shape, material, size of particles in a liquid in detail.SOLUTION: A particle counter 3 counts the number of particles according to their size on the basis of a measurement value of breaking light and a plurality of scattering light when light is radiated on the particles in a liquid (lubrication oil). The particle counter 3 includes material identification means (step S3) for identifying the material of the particles on the basis of the measurement value of the breaking light and the plurality of scattering light and shape identification means for identifying the shape of the particles on the basis of the measurement value of the breaking light and the plurality of scattering light.

Description

本発明は、粒子計数装置及び粒子計数方法に関し、さらに詳しくは、液体中の粒子の性状を詳細に識別しつつ粒子の個数を計数することができる粒子計数装置及び粒子計数方法に関する。   The present invention relates to a particle counting device and a particle counting method, and more particularly to a particle counting device and a particle counting method capable of counting the number of particles while identifying in detail the properties of particles in a liquid.

近年、機械システム等の状態診断において、粒子計数装置(「パーティクルカウンター」とも称される。)を用いて潤滑油中の摩耗粒子の粒度分布をオンラインで監視することが行われている。この粒子計数装置としては、潤滑油中の粒子に光を照射したときの遮断光及び複数の散乱光の測定値に基づいて粒子の大きさ毎に個数を計数するものが知られている(例えば、特許文献1参照)。   In recent years, in a state diagnosis of a mechanical system or the like, a particle size distribution of wear particles in lubricating oil is monitored online using a particle counter (also referred to as “particle counter”). As this particle counting device, a device that counts the number of particles for each size based on the measured values of the blocking light and the plurality of scattered light when the particles in the lubricating oil are irradiated with light is known (for example, , See Patent Document 1).

特開2007−225335号公報JP 2007-225335 A

しかし、上記特許文献1の粒子計数装置では、遮断光及び散乱光を用いているため、フェログラフィ法やSOAP法のように粒子の性状を詳細に識別することができない。その結果、上記粒子計数装置を用いても、機械システム等のオンラインでの状態診断の精度を飛躍的に高めることができていない。   However, since the particle counter of Patent Document 1 uses blocking light and scattered light, it cannot identify the properties of the particles in detail like the ferrography method or the SOAP method. As a result, even if the particle counter is used, the accuracy of online state diagnosis of a mechanical system or the like cannot be dramatically improved.

なお、上記特許文献1には、複数の散乱光の測定値を用いて粒子の材質を識別することが記載されている(段落〔0020〕等参照)。しかし、複数の散乱光の測定値のみからでは粒子の性状を詳細に識別することが困難である。   Note that Patent Document 1 describes that a particle material is identified using a plurality of measured values of scattered light (see paragraph [0020] and the like). However, it is difficult to identify the properties of particles in detail from only the measured values of a plurality of scattered lights.

以上より本発明は、上記現状に鑑みてなされたものであり、液体中の粒子の性状を詳細に識別しつつ粒子の個数を計数することができる粒子計数装置及び粒子計数方法を提供することを目的とする。   As described above, the present invention has been made in view of the above-described present situation, and provides a particle counting apparatus and a particle counting method capable of counting the number of particles while identifying in detail the properties of particles in a liquid. Objective.

本発明者らは、遮断光及び複数の散乱光の測定値を利用すれば粒子の性状を詳細に識別することができることを知見し、本発明を完成させるに至った。なお、上記粒子の性状としては、例えば、材質、形状、サイズ等を挙げることができる。
上記問題を解決するために、請求項1に記載の発明は、液体中の粒子に光を照射したときの遮断光及び複数の散乱光の測定値に基づいて前記粒子の大きさ毎に個数を計数する粒子計数装置であって、前記遮断光及び前記複数の散乱光の測定値に基づいて前記粒子の材質を識別する材質識別手段を備えることを要旨とする。
請求項2に記載の発明は、請求項1記載において、前記遮断光及び前記複数の散乱光の測定値に基づいて前記粒子の形状を識別する形状識別手段を備えることを要旨とする。
上記問題を解決するために、請求項3に記載の発明は、液体中の粒子に光を照射したときの遮断光及び複数の散乱光の測定値に基づいて前記粒子の大きさ毎に個数を計数する粒子計数方法であって、前記遮断光及び前記複数の散乱光の測定値を多次元グラフ上に示すこと、もしくは前記複数の散乱光の強度分布を用いることで前記粒子の材質を識別し、前記遮断光及び前記複数の散乱光の測定値に基づいて前記粒子の大きさ及び材質毎に個数を計数することを要旨とする。
上記問題を解決するために、請求項4に記載の発明は、液体中の粒子に光を照射したときの遮断光及び複数の散乱光の測定値に基づいて前記粒子の大きさ毎に個数を計数する粒子計数方法であって、前記遮断光及び前記複数の散乱光の測定値を多次元グラフ上に示すこと、もしくは前記複数の散乱光の強度分布を用いることで前記粒子の形状を識別し、前記遮断光及び前記複数の散乱光の測定値に基づいて前記粒子の大きさ及び形状毎に個数を計数することを要旨とする。
The present inventors have found that the properties of particles can be identified in detail by using measured values of blocking light and a plurality of scattered light, and have completed the present invention. In addition, as a property of the said particle | grain, a material, a shape, size, etc. can be mentioned, for example.
In order to solve the above problem, the invention according to claim 1 is characterized in that the number of particles is determined for each particle size based on the measured values of the blocking light and the plurality of scattered lights when the particles in the liquid are irradiated with light. It is a particle counting device for counting, and includes a material identifying means for identifying the material of the particles based on the measured values of the blocking light and the plurality of scattered lights.
The gist of a second aspect of the present invention is that, in the first aspect of the present invention, the apparatus further comprises shape identifying means for identifying the shape of the particle based on the measured values of the blocking light and the plurality of scattered light.
In order to solve the above-mentioned problem, the invention according to claim 3 is characterized in that the number is determined for each size of the particles based on the measured values of the blocking light and the plurality of scattered lights when the particles in the liquid are irradiated with light. A particle counting method for counting, wherein the measured values of the blocking light and the plurality of scattered lights are indicated on a multidimensional graph, or the material of the particles is identified by using the intensity distribution of the plurality of scattered lights. The gist is to count the number for each size and material of the particles based on the measured values of the blocking light and the plurality of scattered lights.
In order to solve the above problem, the invention according to claim 4 is characterized in that the number of particles for each size of the particles is determined based on measured values of the blocking light and the plurality of scattered lights when the particles in the liquid are irradiated with light. A particle counting method for counting, wherein the measured values of the blocking light and the plurality of scattered lights are indicated on a multidimensional graph, or the shape of the particles is identified by using the intensity distribution of the plurality of scattered lights. The gist is to count the number for each size and shape of the particles based on the measured values of the blocking light and the plurality of scattered lights.

本発明の粒子計数装置によると、材質識別手段により遮断光及び複数の散乱光の測定値に基づいて粒子の材質が識別される。これにより、液体中の粒子の性状を詳細に識別しつつ粒子の個数を計数することができる。
また、前記遮断光及び前記複数の散乱光の値に基づいて前記粒子の形状を識別する形状識別手段を備える場合は、液体中の粒子の性状を更に詳細に識別しつつ粒子の個数を計数することができる。
According to the particle counting apparatus of the present invention, the material of the particle is identified by the material identifying means based on the measured values of the blocking light and the plurality of scattered lights. Thereby, the number of particles can be counted while identifying the properties of the particles in the liquid in detail.
In addition, in the case where shape identifying means for identifying the shape of the particles based on the values of the blocking light and the plurality of scattered lights is provided, the number of particles is counted while further identifying the properties of the particles in the liquid. be able to.

本発明の粒子計数方法によると、遮断光及び複数の散乱光の測定値を多次元グラフ上に示すこと、もしくは複数の散乱光の強度分布を用いることで粒子の材質が識別され、遮断光及び複数の散乱光の測定値に基づいて粒子の大きさ及び材質毎に個数が計数される。これにより、液体中の粒子の性状を詳細に識別しつつ粒子の個数を計数することができる。
他の本発明の粒子計数方法によると、前記遮断光及び前記複数の散乱光の測定値を多次元グラフ上に示すこと、もしくは前記複数の散乱光の強度分布を用いることで前記粒子の形状を識別し、前記遮断光及び前記複数の散乱光の測定値に基づいて前記粒子の大きさ及び形状毎に個数を計数する場合は、液体中の粒子の性状を詳細に識別しつつ粒子の個数を計数することができる。
According to the particle counting method of the present invention, the measured values of the blocking light and the plurality of scattered lights are shown on the multidimensional graph, or the particle material is identified by using the intensity distribution of the plurality of scattered lights, The number is counted for each particle size and material based on the measured values of the plurality of scattered light. Thereby, the number of particles can be counted while identifying the properties of the particles in the liquid in detail.
According to another particle counting method of the present invention, the measured values of the blocking light and the plurality of scattered lights are shown on a multidimensional graph, or the shape of the particles is changed by using the intensity distribution of the plurality of scattered lights. When identifying and counting the number of particles for each size and shape based on the measured values of the blocking light and the plurality of scattered light, the number of particles can be determined while identifying the properties of the particles in the liquid in detail. Can be counted.

本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明するが、同様の参照符号は図面のいくつかの図を通して同様の部品を示す。
実施例1に係る粒子計数装置を備える診断システムの模式図である。 上記粒子計数装置の模式図である。 上記粒子計数装置による計数処理を説明するためのフローチャート図である。 上記診断システムによる診断処理を説明するためのフローチャート図である。 上記粒子計数装置の作用説明図であり、(a)は気泡を計数する状態を示し、(b)は金属粉を計数する状態を示す。 上記粒子計数装置の作用説明図であり、(a)は粒子がケイ砂である場合を示し、(b)は粒子が水である場合を示す。 上記粒子計数装置の作用説明図であり、(a)は粒子が金属粉である場合を示し、(b)は粒子が気泡である場合を示す。 上記診断システムによる診断処理を説明するための説明図であり、(a)は粒径分布を示し、(b)は粒径分布比を示し、(c)その他の形態の粒径分布比を示す。 実施例2に係る粒子計数装置を示す模式図である。 上記粒子計数装置による計数処理を説明するためのフローチャート図である。 上記粒子計数装置の作用説明図である。 上記粒子計数装置の作用説明図である。 その他の形態の粒子計数装置(複数の散乱光受光体の円形状配置)を説明するための説明図である。 更にその他の形態の粒子計数装置(複数の散乱光受光体のドーム状配置)を説明するための説明図であり、(a)は、粒子計数装置の縦断面図を示し、(b)は、(a)のb−b線断面図を示す。
The present invention will be further described in the following detailed description with reference to the drawings referred to, with reference to non-limiting examples of exemplary embodiments according to the present invention. Similar parts are shown throughout the several figures.
1 is a schematic diagram of a diagnostic system including a particle counter according to Example 1. FIG. It is a schematic diagram of the said particle | grain counter. It is a flowchart figure for demonstrating the counting process by the said particle | grain counter. It is a flowchart figure for demonstrating the diagnostic process by the said diagnostic system. It is operation | movement explanatory drawing of the said particle | grain counter, (a) shows the state which counts a bubble, (b) shows the state which counts metal powder. It is operation | movement explanatory drawing of the said particle | grain counter, (a) shows the case where particle | grains are silica sand, (b) shows the case where particle | grains are water. It is operation | movement explanatory drawing of the said particle | grain counter, (a) shows the case where a particle is a metal powder, (b) shows the case where a particle is a bubble. It is explanatory drawing for demonstrating the diagnostic process by the said diagnostic system, (a) shows a particle size distribution, (b) shows a particle size distribution ratio, (c) Shows the particle size distribution ratio of another form. . FIG. 4 is a schematic diagram illustrating a particle counting device according to a second embodiment. It is a flowchart figure for demonstrating the counting process by the said particle | grain counter. It is operation | movement explanatory drawing of the said particle | grain counter. It is operation | movement explanatory drawing of the said particle | grain counter. It is explanatory drawing for demonstrating the particle | grain counter of another form (circular arrangement | positioning of the some scattered light photoreceptor). Furthermore, it is explanatory drawing for demonstrating the particle counter of other forms (dome shape arrangement | positioning of a some scattered light photoreceptor), (a) shows the longitudinal cross-sectional view of a particle counter, (b), The bb sectional view taken on the line of (a) is shown.

ここで示される事項は例示的なものおよび本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。   The items shown here are exemplary and illustrative of the embodiments of the present invention, and are the most effective and easy-to-understand explanations of the principles and conceptual features of the present invention. It is stated for the purpose of providing what seems to be. In this respect, it is not intended to illustrate the structural details of the present invention beyond what is necessary for a fundamental understanding of the present invention. It will be clear to those skilled in the art how it is actually implemented.

<粒子計数装置>
本実施形態に係る粒子計数装置は、液体中の粒子に光を照射したときの遮断光及び複数の散乱光の測定値に基づいて粒子の大きさ毎に個数を計数する粒子計数装置(3、33)であって、遮断光及び複数の散乱光の測定値に基づいて粒子の材質を識別する材質識別手段(ステップS3)を備える(例えば、図3及び図10等参照)。
<Particle counter>
The particle counter according to the present embodiment is a particle counter (3, 3) that counts the number of particles for each size based on the measured values of the blocking light and the plurality of scattered light when the particles in the liquid are irradiated with light. 33) provided with material identification means (step S3) for identifying the material of the particles based on the measured values of the blocking light and the plurality of scattered lights (see, for example, FIGS. 3 and 10).

なお、上記「液体」としては、例えば、潤滑油、洗浄液、水、薬液等を挙げることができる。また、上記「粒子」としては、例えば、金属粉、ガラス、砂、その他の固形物、水、気泡等を挙げることができる。また、上記「遮断光」とは、液体中の粒子により遮断された光を意味する。さらに、上記「散乱光」とは、液体中の粒子により散乱された光を意味する。   Examples of the “liquid” include lubricating oil, cleaning liquid, water, and chemical liquid. Examples of the “particles” include metal powder, glass, sand, other solid materials, water, and bubbles. The “blocking light” means light blocked by particles in the liquid. Further, the “scattered light” means light scattered by particles in the liquid.

本実施形態に係る粒子計数装置としては、例えば、遮断光及び複数の散乱光の測定値に基づいて粒子の形状を識別する形状識別手段(ステップSS1)を備える形態(例えば、図10等参照)を挙げることができる。なお、上記「形状」とは、2次元形状又は3次元形状を意図する。   As a particle counter according to the present embodiment, for example, a form including shape identifying means (step SS1) for identifying the shape of a particle based on measured values of blocking light and a plurality of scattered light (see, for example, FIG. 10). Can be mentioned. The “shape” means a two-dimensional shape or a three-dimensional shape.

上述の形態の場合、例えば、上記粒子の形状に応じて摩耗形態を識別する摩耗形態識別手段(ステップSS2)を備えることができる(例えば、図10等参照)。これにより、液体中の粒子の性状を更に詳細に識別しつつ粒子の個数を計数することができる。   In the case of the above-mentioned form, for example, a wear form identifying means (step SS2) for identifying the wear form according to the shape of the particles can be provided (see, for example, FIG. 10). Thereby, the number of particles can be counted while identifying the properties of the particles in the liquid in more detail.

ここで、上記材質識別手段は、例えば、遮断光及び複数の散乱光の測定値を多次元グラフ上に示すこと、もしくは複数の散乱光の強度分布を用いることで粒子の材質を識別することができる(例えば、図6、図7及び図11等参照)。上記形状識別手段は、例えば、遮断光及び複数の散乱光の測定値を多次元グラフ上に示すこと、もしくは複数の散乱光の強度分布を用いることで粒子の形状を識別することができる(例えば、図6、図7及び図11等参照)。   Here, the material identification means can identify the material of the particle by, for example, showing the measured values of the blocking light and the plurality of scattered lights on a multidimensional graph, or using the intensity distribution of the plurality of scattered lights. (See, for example, FIG. 6, FIG. 7 and FIG. 11). The shape identification means can identify the shape of the particle by, for example, showing the measured values of the blocking light and the plurality of scattered lights on a multidimensional graph, or using the intensity distribution of the plurality of scattered lights (for example, FIG. 6, FIG. 7 and FIG. 11 etc.).

<粒子計数方法A>
本実施形態に係る粒子計数方法Aは、液体中の粒子に光を照射したときの遮断光及び複数の散乱光の測定値に基づいて粒子の大きさ毎に個数を計数する粒子計数方法であって、遮断光及び複数の散乱光の測定値を多次元グラフ上に示すこと、もしくは複数の散乱光の強度分布を用いることで粒子の材質を識別し、遮断光及び複数の散乱光の測定値に基づいて粒子の大きさ及び材質毎に個数を計数する(例えば、図6、図7及び図11等参照)。なお、本実施形態に係る粒子計数方法Aは、例えば、上述の実施形態に係る粒子計数装置を用いることができる。
<Particle counting method A>
The particle counting method A according to the present embodiment is a particle counting method in which the number is counted for each particle size based on the measured values of the blocking light and the plurality of scattered lights when the particles in the liquid are irradiated with light. The measured values of the blocking light and the plurality of scattered lights are indicated on the multidimensional graph, or the particle material is identified by using the intensity distribution of the plurality of scattered lights, and the measured values of the blocking light and the plurality of scattered lights are measured. Based on the above, the number of particles is counted for each size and material (see, for example, FIG. 6, FIG. 7 and FIG. 11). The particle counting method A according to the present embodiment can use, for example, the particle counting device according to the above-described embodiment.

<粒子計数方法B>
本実施形態に係る粒子計数方法Bは、液体中の粒子に光を照射したときの遮断光及び複数の散乱光の測定値に基づいて前記粒子の大きさ毎に個数を計数する粒子計数方法であって、遮断光及び複数の散乱光の測定値を多次元グラフ上に示すこと、もしくは複数の散乱光の強度分布を用いることで粒子の形状を識別し、遮断光及び複数の散乱光の測定値に基づいて粒子の大きさ及び形状毎に個数を計数する(例えば、図6、図7及び図11等参照)。なお、本実施形態に係る粒子計数方法Bは、例えば、上述の実施形態に係る粒子計数装置を用いることができる。さらに、上記粒子計数方法A、Bを併用することができる。
<Particle counting method B>
The particle counting method B according to the present embodiment is a particle counting method that counts the number of particles for each size based on the measured values of the blocking light and the plurality of scattered light when the particles in the liquid are irradiated with light. The measured values of blocking light and multiple scattered light are shown on a multidimensional graph, or the shape of the particle is identified by using the intensity distribution of multiple scattered light, and the blocking light and multiple scattered light are measured. The number is counted for each particle size and shape based on the value (see, for example, FIG. 6, FIG. 7 and FIG. 11). The particle counting method B according to the present embodiment can use, for example, the particle counting device according to the above-described embodiment. Furthermore, the particle counting methods A and B can be used in combination.

なお、上記実施形態で記載した各構成の括弧内の符号は、後述する実施例に記載の具体的構成との対応関係を示すものである。   In addition, the code | symbol in the parenthesis of each structure described in the said embodiment shows the correspondence with the specific structure as described in the Example mentioned later.

以下、図面を用いて実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to the drawings.

<実施例1>
(1)診断システムの構成
本実施例に係る診断システム1は、図1に示すように、粒子計数装置3と、この粒子計数装置3にネットワーク4を介して接続されるコンピュータ5と、を備えている。なお、本実施例では、機械システム(例えば、発電機、原動機、航空機、船舶、車両等)の潤滑対象部(例えば、軸受部、ギヤー部、摺動部等)の状態診断を行う診断システム1を例示するとともに、本発明に係る「粒子計数装置」として潤滑対象部で使用される潤滑油中の粒子を計数する粒子計数装置3を例示する。
<Example 1>
(1) Configuration of Diagnostic System The diagnostic system 1 according to the present embodiment includes a particle counting device 3 and a computer 5 connected to the particle counting device 3 via a network 4 as shown in FIG. ing. In the present embodiment, a diagnosis system 1 that performs state diagnosis of a lubrication target portion (for example, a bearing portion, a gear portion, a sliding portion, etc.) of a mechanical system (for example, a generator, a prime mover, an aircraft, a ship, a vehicle, or the like). In addition, as an example of the “particle counting device” according to the present invention, a particle counting device 3 that counts particles in the lubricating oil used in the lubrication target portion is illustrated.

上記粒子計数装置3は、図2に示すように、潤滑油が流れる測定部8(「セル」とも称される。)と、半導体レーザ等からなる発光体9と、フォトダイオード等からなる遮断光受光体10と、フォトダイオード等からなる第1散乱光受光体11及び第2散乱光受光体12と、後述する粒子計数処理を司る制御部13(図1参照)と、を備えている。   As shown in FIG. 2, the particle counting device 3 includes a measuring unit 8 (also referred to as “cell”) through which lubricating oil flows, a light emitter 9 made of a semiconductor laser, etc., and a blocking light made up of a photodiode or the like. A light receiving body 10, a first scattered light receiving body 11 and a second scattered light receiving body 12 made of a photodiode or the like, and a control unit 13 (see FIG. 1) for performing particle counting processing to be described later are provided.

上記測定部8は、透光性を有する管状に形成されている。この測定部8の上流端側及び下流端側のそれぞれには、図1に示すように、機械システムの潤滑対象部に連なる配管15、16が連絡されている。この配管15には、潤滑油を測定部に圧送するポンプ17が設けられている。なお、上記測定部8には、図2の紙面と略直交する方向に向かって潤滑油が流れるものとする。   The measurement unit 8 is formed in a translucent tubular shape. As shown in FIG. 1, pipes 15 and 16 connected to the lubrication target portion of the mechanical system are communicated with the upstream end side and the downstream end side of the measurement unit 8, respectively. The pipe 15 is provided with a pump 17 that pumps the lubricating oil to the measuring unit. It is assumed that lubricating oil flows through the measuring unit 8 in a direction substantially orthogonal to the paper surface of FIG.

上記発光体9は、図2に示すように、測定部8を流れる潤滑油に光(例えば、レーザ光)を照射する。また、上記遮断光受光体10は、発光体9からの照射光の光軸上で測定部8を介して発光体9と反対側に配設されている。この遮断光受光体10は、潤滑油中の粒子pにより遮断された遮断光を受光して、所定の遮断光パルス信号(すなわち、測定値)に変換する。この遮断光パルス信号のパルス高さは、粒子pの大きさ(例えば、粒径等)に比例した値を示す。さらに、上記第1及び第2散乱光受光体11、12のそれぞれは、発光体9からの照射光の光軸の外周側に配設されている。これら第1及び第2散乱光受光体11、12は、潤滑油中の粒子pにより散乱された散乱光を受光して、所定の散乱光パルス信号(すなわち、測定値)に変換する。   As shown in FIG. 2, the light emitter 9 irradiates the lubricating oil flowing through the measuring unit 8 with light (for example, laser light). The blocking light receiver 10 is disposed on the opposite side of the light emitter 9 via the measuring unit 8 on the optical axis of the light emitted from the light emitter 9. The blocking light receiver 10 receives the blocking light blocked by the particles p in the lubricating oil and converts it into a predetermined blocking light pulse signal (that is, a measured value). The pulse height of the blocking light pulse signal indicates a value proportional to the size (for example, particle size) of the particle p. Further, each of the first and second scattered light receivers 11 and 12 is disposed on the outer peripheral side of the optical axis of the irradiation light from the light emitter 9. The first and second scattered light receivers 11 and 12 receive the scattered light scattered by the particles p in the lubricating oil and convert it into a predetermined scattered light pulse signal (that is, a measured value).

上記制御部13には、上記ポンプ17、発光体9、及び各受光体10、11、12等が電気的に接続されている。この制御部13は、図3に示すように、以下に述べる粒子計数処理を実行する。   The control unit 13 is electrically connected to the pump 17, the light emitter 9, the light receivers 10, 11, and 12. As shown in FIG. 3, the control unit 13 executes a particle counting process described below.

上記制御部13は、潤滑油に関する情報(例えば、流量等)を取得するとともに、構成部品に関する情報(例えば、発光体の駆動時間等)を把握する(ステップS1)。次に、各受光体10、11、12からの測定値を取得する(ステップS2)。次いで、測定値に基づいて粒子の材質を識別し(ステップS3)、粒子の大きさ及び材質毎に個数をカウントする(ステップS4)。その後、所定の測定時間が経過して測定終了となったか否かが判定される(ステップS5)。その結果、測定終了でない場合(ステップS5でNO判定)には、上述のステップS2〜S5が繰り返される。一方、測定終了である場合(ステップS5でYES判定)には、潤滑油を測定部8に流すことで測定部8を洗浄する洗浄指令を出力する(ステップS6)。   The control unit 13 acquires information on the lubricating oil (for example, flow rate) and grasps information on the component (for example, driving time of the light emitter) (step S1). Next, the measured value from each photoreceptor 10, 11, 12 is acquired (step S2). Next, the particle material is identified based on the measured value (step S3), and the number is counted for each particle size and material (step S4). Thereafter, it is determined whether or not the measurement is finished after a predetermined measurement time has elapsed (step S5). As a result, when the measurement is not finished (NO in step S5), the above steps S2 to S5 are repeated. On the other hand, when the measurement is finished (YES in step S5), a cleaning command for cleaning the measuring unit 8 is output by flowing lubricating oil to the measuring unit 8 (step S6).

ここで、上記粒子の材質識別処理(図3のステップS3)では、各測定値を多次元グラフ上にプロットすることで粒子の材質を識別する。具体的には、例えば、図6及び図7に示すように、遮断光受光体10の測定値をX軸に示し、第1散乱光受光体11の測定値をY軸に示し、第2散乱光受光体12の測定値をZ軸に示すこと等で粒子の材質を識別する。   Here, in the particle material identification process (step S3 in FIG. 3), the particle material is identified by plotting each measured value on a multidimensional graph. Specifically, for example, as shown in FIGS. 6 and 7, the measured value of the blocking light receiver 10 is shown on the X axis, the measured value of the first scattered light receiver 11 is shown on the Y axis, and the second scattered light is shown. The material of the particle is identified by indicating the measured value of the light receiver 12 on the Z axis.

例えば、上記粒子pがガラス(ケイ砂)である場合には、図6(a)に示すように、散乱光が殆ど無いためX軸の近傍にプロット点が集中する。また、粒子pが水である場合には、図6(b)に示すように、第1及び第2散乱光受光体11、12に対する散乱光が略均等で比較的小さいためX軸からY軸方向及びZ軸方向に僅かに離間した箇所にプロット点が集中する。また、粒子pが金属粉である場合には、金属粉が異形状であるため乱反射が生じる(図5(b)参照)。そして、図7(a)に示すように、第1及び第2散乱光受光体11、12に対する散乱光が異なり、その強度差が比較的大きいためX軸からY軸方向及びZ軸方向のうちの一方の軸方向に大きく離間した箇所にプロット点が集中する。さらに、粒子pが気泡である場合、気泡が略球形であるため第1及び第2散乱光受光体11、12に対する散乱光が略均等となる(図5(a)参照)。そして、図7(b)に示すように、XYZ軸の交点を頂点とする円錐領域S内にプロット点が集中する。したがって、粒子の材質に応じて多次元グラフ上の座標領域を予め複数設定しておけば、多次元グラフ上の測定値の座標位置に基づいて粒子の材質を識別することができる。   For example, when the particle p is glass (silica sand), as shown in FIG. 6A, since there is almost no scattered light, plot points are concentrated in the vicinity of the X axis. Further, when the particle p is water, as shown in FIG. 6B, the scattered light with respect to the first and second scattered light photoreceptors 11 and 12 is substantially uniform and relatively small, so the X axis to the Y axis. The plot points are concentrated at locations slightly separated in the direction and the Z-axis direction. When the particles p are metal powder, irregular reflection occurs because the metal powder has an irregular shape (see FIG. 5B). And as shown to Fig.7 (a), since the scattered light with respect to the 1st and 2nd scattered light light-receiving bodies 11 and 12 differs, and the intensity difference is comparatively large, it is out of the X-axis from the Y-axis direction and the Z-axis direction. Plot points are concentrated at locations that are greatly separated in one of the axial directions. Further, when the particle p is a bubble, since the bubble is substantially spherical, the scattered light with respect to the first and second scattered light receivers 11 and 12 becomes substantially equal (see FIG. 5A). Then, as shown in FIG. 7B, the plot points are concentrated in the conical region S whose vertex is the intersection of the XYZ axes. Therefore, if a plurality of coordinate areas on the multidimensional graph are set in advance according to the material of the particle, the material of the particle can be identified based on the coordinate position of the measurement value on the multidimensional graph.

なお、上記制御部13の制御処理は、ハードウェア、ソフトウェアのいずれによって実現されてもよく、好適にはCPU、メモリ(ROM、RAM等)、入出力回路等を備えるマイクロコントローラ(マイクロコンピュータ)を中心に、入出力インターフェース等周辺回路を備えることにより構成することができる。   The control process of the control unit 13 may be realized by either hardware or software, and preferably includes a microcontroller (microcomputer) including a CPU, a memory (ROM, RAM, etc.), an input / output circuit, and the like. A peripheral circuit such as an input / output interface can be provided at the center.

上記コンピュータ5は、図4に示すように、以下に述べる診断処理を実行する。すなわち、コンピュータ5は、制御部13の測定結果(すなわち、粒子の大きさ及び材質毎の個数情報)に基づいて粒径分布A(図8(a)参照)を算出する(ステップST1)。次に、算出された粒径分布Aと記憶された過去の粒径分布Aとに基づいて粒径分布比B(図8(b)参照)等を算出する(ステップST2)。この粒径分布比Bは、注目している所定サイズの粒径(図8(b)中でAμm及びBμm)の時間経過に伴う変化の比率を示している。   As shown in FIG. 4, the computer 5 executes a diagnostic process described below. That is, the computer 5 calculates the particle size distribution A (see FIG. 8A) based on the measurement result of the control unit 13 (that is, the particle size and the number information for each material) (step ST1). Next, the particle size distribution ratio B (see FIG. 8B) and the like are calculated based on the calculated particle size distribution A and the stored past particle size distribution A (step ST2). This particle size distribution ratio B indicates the ratio of change with time of the particle size of a predetermined size of interest (A μm and B μm in FIG. 8B).

なお、本実施例では、所定サイズの粒子の粒径分布比B(図8(b)参照)を採用したが、これに限定されず、例えば、図8(c)に示すように、粒径分布全体の時間経過に伴う変化の比率を表す粒径分布比B’を採用してもよい。   In the present embodiment, the particle size distribution ratio B (see FIG. 8B) of particles having a predetermined size is adopted, but the present invention is not limited to this. For example, as shown in FIG. You may employ | adopt particle size distribution ratio B 'showing the ratio of the change with time progress of the whole distribution.

次に、例えば、粒径分布比B等と予め設定されたしきい値とを比較すること等で異常であるか否かを判定する(ステップST3)。その結果、異常であると判定された場合(ステップST3でYES判定)には、アラーム等により異常を報知する(ステップST4)。一方、異常でないと判定された場合(ステップST3でNO判定)には、診断処理を終了する。   Next, for example, it is determined whether or not it is abnormal by comparing the particle size distribution ratio B and the like with a preset threshold value (step ST3). As a result, when it is determined that there is an abnormality (YES determination in step ST3), the abnormality is notified by an alarm or the like (step ST4). On the other hand, if it is determined that there is no abnormality (NO determination in step ST3), the diagnosis process is terminated.

(2)診断システムの作用
次に、上記構成の診断システム1の作用について説明する。上記粒子計数装置3では、図3に示すように、潤滑油情報及び構成部品情報が取得され(ステップS1)、その後、測定が開始されて各受光体からの各測定値が取得される(ステップS2)。
(2) Operation of Diagnostic System Next, the operation of the diagnostic system 1 having the above configuration will be described. In the particle counting device 3, as shown in FIG. 3, lubricating oil information and component information are acquired (step S1), and then measurement is started and each measured value from each photoreceptor is acquired (step S1). S2).

次いで、各測定値を多次元グラフ上にプロットすることで粒子の材質が識別され(ステップS3)、粒子の大きさ及び材質毎に個数がカウントされる(ステップS4)。以後、所定の測定時間の間で上記ステップS2〜S4を繰り返して測定が終了されると(ステップS5でYES判定)、潤滑油を流すことで測定部8が洗浄される(ステップS6)。   Next, each measured value is plotted on a multidimensional graph to identify the particle material (step S3), and the number is counted for each particle size and material (step S4). Thereafter, when the measurement is completed by repeating the above steps S2 to S4 during a predetermined measurement time (YES determination in step S5), the measurement unit 8 is washed by flowing lubricating oil (step S6).

一方、コンピュータ5では、図4に示すように、粒子の大きさ及び材質毎の総個数に基づいて粒径分布A及び粒径分布比Bが算出される(ステップST1、ST2)。次いで、粒径分布比B等に基づいて異常であると判定された場合(ステップST3でYES判定)、アラーム等で異常報知が行われる(ステップST4)。   On the other hand, as shown in FIG. 4, the computer 5 calculates the particle size distribution A and the particle size distribution ratio B based on the size of particles and the total number of materials (steps ST1 and ST2). Next, when it is determined that there is an abnormality based on the particle size distribution ratio B or the like (YES determination in step ST3), an abnormality notification is performed by an alarm or the like (step ST4).

(3)実施例の効果
本実施例の粒子計数装置3によると、材質識別手段(図3のステップS3)により遮断光及び複数の散乱光の測定値に基づいて粒子の材質が識別される。これにより、潤滑油中の粒子の性状を詳細に識別しつつ粒子の個数を計数することができる。
(3) Effects of the Example According to the particle counting device 3 of the present example, the material of the particles is identified based on the measured values of the blocking light and the plurality of scattered lights by the material identifying means (step S3 in FIG. 3). Thereby, the number of particles can be counted while identifying the properties of the particles in the lubricating oil in detail.

また、本実施例では、遮断光及び複数の散乱光の測定値を多次元グラフ上に示すことで粒子の材質を識別する。これにより、潤滑油中の粒子の性状を更に詳細に識別しつつ粒子の個数を計数することができる。   In the present embodiment, the material of the particle is identified by showing the measured values of the blocking light and the plurality of scattered lights on a multidimensional graph. Thereby, the number of particles can be counted while further identifying the properties of the particles in the lubricating oil.

さらに、本実施例では、粒子計数装置2と、粒子計数装置2にネットワーク4を介して接続されるコンピュータ5と、を備えて診断システム1を構成したので、オンラインでの遠隔診断を好適に実施することができる。   Furthermore, in this embodiment, since the diagnostic system 1 is configured by including the particle counting device 2 and the computer 5 connected to the particle counting device 2 via the network 4, online remote diagnosis is preferably performed. can do.

<実施例2>
次に、本実施例2に係る診断システムの構成について説明する。なお、本実施例2に診断システムにおいて、上記実施例に係る診断システム1と略同じ構成部位には同符号を付けて詳説を省略し、主に相違点である粒子計数装置について詳説する。
<Example 2>
Next, the configuration of the diagnostic system according to the second embodiment will be described. In the diagnostic system of the second embodiment, the same components as those of the diagnostic system 1 according to the above-described embodiment are denoted by the same reference numerals and detailed description thereof is omitted, and the particle counting apparatus that is mainly the difference will be described in detail.

(1)診断システムの構成
本実施例に係る診断システム31は、粒子計数装置33及びコンピュータ5を備えている。この粒子計数装置33は、図9に示すように、測定部8と、発光体9と、遮断光受光体10と、複数の第1散乱光受光体11a〜11g及び第2散乱光受光体12a〜12gと、制御部13と、を備えている。
(1) Configuration of Diagnostic System A diagnostic system 31 according to this embodiment includes a particle counter 33 and a computer 5. As shown in FIG. 9, the particle counter 33 includes a measuring unit 8, a light emitter 9, a blocking light receiver 10, a plurality of first scattered light receivers 11a to 11g, and a second scattered light receiver 12a. To 12 g and the control unit 13.

上記第1及び第2散乱光受光体11a〜11g、12a〜12gのそれぞれは、発光体9からの照射光の光軸に対して略平行な軸線上に並ぶように配設されている。これら第1及び第2散乱光受光体11a〜11g、12a〜12gは、潤滑油中の粒子pにより散乱された散乱光を受光して、所定の散乱光パルス信号(すなわち、測定値)に変換する。   Each of the first and second scattered light receivers 11a to 11g and 12a to 12g is arranged so as to be aligned on an axis substantially parallel to the optical axis of the irradiation light from the light emitter 9. These first and second scattered light receivers 11a to 11g and 12a to 12g receive scattered light scattered by the particles p in the lubricating oil and convert them into predetermined scattered light pulse signals (that is, measured values). To do.

上記制御部13は、図10に示すように、以下に述べる粒子計数処理を実行する。この制御部13は、上記実施例の診断システム1と略同様な各種処理(ステップS1〜S6)を実行することに加えて、粒子の形状識別処理(ステップSS1)及び粒子の摩耗形態識別処理(ステップSS2)を実行する。   As shown in FIG. 10, the control unit 13 executes a particle counting process described below. In addition to executing various processes (steps S1 to S6) substantially similar to the diagnostic system 1 of the above embodiment, the control unit 13 performs a particle shape identification process (step SS1) and a particle wear form identification process (step S1). Step SS2) is executed.

上記粒子の形状識別処理(図10のステップSS1)では、図11に示すように、遮断光受光体10の測定値と、複数の第1散乱光受光体11a〜11gの各測定値より得られる第1散乱パターンP1a〜P4aの強度分布と、複数の第2散乱光受光体12a〜12gの各測定値より得られる第2散乱パターンP1b〜P4bの強度分布と、に基づいて粒子の形状を識別する。なお、上記散乱パターンP1a〜P4a、P1b〜P4bは、横軸に、照射光の光軸方向に対する各散乱光受光体11a〜11g(12a〜12g)の配設位置をとり、縦軸に、各散乱光受光体の散乱光パルス信号のパルス高さの値(すなわち、測定値)をとり、さらに各パルス高さの値を補間してなる線状のパターン(すなわち、複数の散乱光の強度分布)である。   In the particle shape identification process (step SS1 in FIG. 10), as shown in FIG. 11, it is obtained from the measured values of the blocking light receiver 10 and the measured values of the plurality of first scattered light receivers 11a to 11g. The shape of the particles is identified based on the intensity distribution of the first scattering patterns P1a to P4a and the intensity distribution of the second scattering patterns P1b to P4b obtained from the measured values of the plurality of second scattered light receivers 12a to 12g. To do. The scattering patterns P1a to P4a and P1b to P4b are arranged with the positions of the scattered light receivers 11a to 11g (12a to 12g) in the optical axis direction of the irradiation light on the horizontal axis, A linear pattern (that is, intensity distribution of a plurality of scattered lights) obtained by taking the value of the pulse height (that is, the measured value) of the scattered light pulse signal of the scattered light receiver and further interpolating the value of each pulse height. ).

例えば、遮断光受光体10の測定値が比較的小さな値であり、且つ第1及び第2散乱パターンP1a、P1bが異なる場合には、薄片状金属粉M1(図12(a)参照)であると識別される。また、遮断光受光体10の測定値が比較的大きな値であり、且つ第1及び第2散乱パターンP2a、P2bが異なる場合には、カール状金属粉M2(図12(b)参照)であると識別される。さらに、遮断光受光体10の測定値が比較的小さな値であり、且つ第1及び第2散乱パターンP3a、P3bが略均等である場合には、ボール状金属粉M3(図12(c)参照)であると識別される。   For example, when the measured value of the blocking light receiver 10 is a relatively small value and the first and second scattering patterns P1a and P1b are different, the flaky metal powder M1 (see FIG. 12A). Identified. Further, when the measured value of the blocking light receiver 10 is a relatively large value and the first and second scattering patterns P2a and P2b are different, the curled metal powder M2 (see FIG. 12B). Identified. Further, when the measured value of the blocking light receiver 10 is relatively small and the first and second scattering patterns P3a and P3b are substantially equal, the ball-shaped metal powder M3 (see FIG. 12C). ).

上記粒子の摩耗形態識別処理(図10のステップSS2)では、粒子の形状識別処理で識別された粒子の形状に応じて摩耗形態を識別する。ここで、上記薄片状金属粉M1は、機械の正常なすべり摩耗により発生する正常摩耗粒子であることが知られている。また、上記カール状金属粉M2は、砂等の混入により金属表面が削られて発生する切削摩耗粒子であることが知られている。さらに、上記ボール状金属粉M3は、軸受疲労により発生する疲労摩耗粒子であることが知られている。したがって、粒子の形状が薄片状金属粉M1である場合には、正常摩耗であると識別される。また、粒子の形状がカール状金属粉M2である場合には、切削摩耗であると識別される。さらに、粒子の形状がボール状金属粉M3である場合には、疲労摩耗であると識別される。   In the particle wear form identifying process (step SS2 in FIG. 10), the wear form is identified according to the particle shape identified in the particle shape identifying process. Here, it is known that the flaky metal powder M1 is normal wear particles generated by normal sliding wear of the machine. Further, it is known that the curled metal powder M2 is cutting wear particles that are generated when the metal surface is cut by mixing sand or the like. Furthermore, it is known that the ball-shaped metal powder M3 is fatigue wear particles generated by bearing fatigue. Therefore, when the particle shape is the flaky metal powder M1, it is identified as normal wear. Further, when the shape of the particle is the curled metal powder M2, it is identified as cutting wear. Further, when the particle shape is the ball-shaped metal powder M3, it is identified as fatigue wear.

なお、本実施例における粒子の材質識別処理(図10のステップS3)では、上記実施例の診断システム1と略同様にして、遮断光受光体10の測定値、複数の第1散乱光受光体11a〜11gのうちの1つの受光体の測定値、及び複数の第2散乱光受光体12a〜12bのうちの1つの受光体の測定値を多次元グラフ上にプロットすることで粒子の材質を識別する(図6及び図7参照)。ただし、第1及び第2散乱光受光体11a〜11g、12a〜12gの個数に応じて複数の多次元グラフを形成したり、特定の多次元グラフ(例えば、4軸以上の多軸グラフやxyz軸に加えて時間軸を備えるグラフ等)を形成したりすれば、粒子の材質を更に正確に識別することができる。さらに、上述のような複数の散乱光の強度分布を用いて粒子の材質を識別するようにしてもよい。   In the particle material identification process (step S3 in FIG. 10) in the present embodiment, the measurement value of the blocking light receiver 10 and the plurality of first scattered light receivers are substantially the same as in the diagnosis system 1 of the above embodiment. By plotting the measured value of one photoreceptor among 11a to 11g and the measured value of one photoreceptor among the plurality of second scattered light photoreceptors 12a to 12b on a multidimensional graph, the material of the particles can be determined. Identify (see FIGS. 6 and 7). However, a plurality of multidimensional graphs may be formed according to the number of the first and second scattered light photoreceptors 11a to 11g and 12a to 12g, or a specific multidimensional graph (for example, a multiaxial graph having four or more axes or an xyz) If a graph having a time axis in addition to the axis is formed, the material of the particles can be identified more accurately. Furthermore, the material of the particles may be identified using the intensity distribution of the plurality of scattered lights as described above.

また、上記実施例では、複数の散乱光の測定値の強度分布に基づいて粒子の形状を識別する(図10のステップSS1)ようにしたが、これに限定されず、例えば、遮断光及び複数の散乱光の測定値の測定値を多次元グラフ上に示すことで粒子の形状を識別するようにしてもよい。この場合、例えば、複数の散乱光受光体の個数に応じて複数の多次元グラフを形成したり、特定の多次元グラフ(例えば、4軸以上の多軸グラフやxyz軸に加えて時間軸を備えるグラフ等)を形成したりすることができる。   Moreover, in the said Example, although the shape of particle | grains was identified based on the intensity distribution of the measured value of several scattered light (step SS1 of FIG. 10), it is not limited to this, For example, blocking light and several The shape of the particle may be identified by showing the measured value of the scattered light on a multidimensional graph. In this case, for example, a plurality of multidimensional graphs can be formed according to the number of the plurality of scattered light photoreceptors, or a specific multidimensional graph (for example, a multiaxis graph having four or more axes or an xyz axis can be set with a time axis). Or the like).

(2)診断システムの作用
次に、上記構成の診断システム31の作用について説明する。診断システム31では、上記実施例の診断システム1と略同様の作用を奏することに加えて、図10に示すように、遮断光発光体10の測定値と第1及び第2散乱パターンP1a〜P4a、P1b〜P4bとに基づいて粒子の形状が識別される(ステップSS1)。次いで、粒子の形状に基づいて摩耗形態が識別される(ステップSS2)。この摩耗形態は、表示モニタ等の表示手段により表示される。
(2) Operation of Diagnostic System Next, the operation of the diagnostic system 31 having the above configuration will be described. In the diagnostic system 31, in addition to performing substantially the same operation as the diagnostic system 1 of the above embodiment, as shown in FIG. 10, the measured values of the blocking light emitter 10 and the first and second scattering patterns P1a to P4a. The shape of the particles is identified based on P1b to P4b (step SS1). Next, the wear form is identified based on the shape of the particles (step SS2). This wear form is displayed by display means such as a display monitor.

(3)実施例の効果
本実施例の粒子計数装置33によると、上記実施例の粒子計数装置3と略同様の効果を奏することに加えて以下の効果を奏する。すなわち、本実施例では、遮断光及び複数の散乱光の値に基づいて粒子の形状を識別する形状識別手段(図10のステップSS1)を備える。これにより、潤滑油中の粒子の性状を更に詳細に識別しつつ粒子の個数を計数することができる。
(3) Effects of the Example According to the particle counting device 33 of the present example, in addition to the effects similar to those of the particle counting device 3 of the above example, the following effects can be obtained. That is, in the present embodiment, a shape identifying means (step SS1 in FIG. 10) for identifying the shape of the particle based on the values of the blocking light and the plurality of scattered lights is provided. Thereby, the number of particles can be counted while further identifying the properties of the particles in the lubricating oil.

また、本実施例では、複数の散乱光の強度分布を用いることで粒子の形状を識別する。これにより、潤滑油中の粒子の性状を更に詳細に識別しつつ粒子の個数を計数することができる。   In this embodiment, the shape of the particle is identified by using the intensity distribution of a plurality of scattered lights. Thereby, the number of particles can be counted while further identifying the properties of the particles in the lubricating oil.

さらに、本実施例では、粒子の形状に応じて摩耗形態を識別する摩耗形態識別手段(図10のステップSS2)を備える。これにより、潤滑油中の粒子の性状を更に詳細に識別しつつ粒子の個数を計数することができる。   Furthermore, in this embodiment, a wear form identifying means (step SS2 in FIG. 10) for identifying the wear form according to the shape of the particle is provided. Thereby, the number of particles can be counted while further identifying the properties of the particles in the lubricating oil.

尚、本発明においては、上記実施例に限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。すなわち、上記実施例では、複数の散乱光受光体11a〜11g、12a〜12gを直線上に並設するようにしたが、これに限定されず、複数の散乱光受光体を曲線上に並設するようにしてもよい。また、例えば、図13に示すように、複数の散乱光受光体11a〜11i、12a〜12iを光の光軸と測定部との交点を中心とする円弧上に並設するようにしてもよい。さらに、例えば、図14に示すように、複数の散乱光受光体をドーム状に立体的に並設するようにしてもよい。さらに、複数の散乱光受光体を筒状に立体的に並設するようにしてもよい。   In the present invention, the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention depending on the purpose and application. That is, in the above embodiment, the plurality of scattered light receivers 11a to 11g and 12a to 12g are arranged side by side on a straight line. However, the present invention is not limited to this, and a plurality of scattered light receivers are arranged side by side on a curve. You may make it do. Further, for example, as shown in FIG. 13, a plurality of scattered light receivers 11a to 11i and 12a to 12i may be arranged side by side on an arc centered on the intersection of the optical axis of light and the measurement unit. . Furthermore, for example, as shown in FIG. 14, a plurality of scattered light receivers may be arranged in a three-dimensional shape in a dome shape. Further, a plurality of scattered light receivers may be arranged in a three-dimensional shape in a cylindrical shape.

また、上記実施例では、各測定値を多次元グラフ上にプロットして粒子の材質や形状を識別する形態を例示したが、これに限定されず、例えば、各測定値と所定の相関関係となるパラメータに基づいて粒子の材質や形状を識別するようにしてもよい。   Further, in the above embodiment, the form in which each measurement value is plotted on a multidimensional graph to identify the material and shape of the particle is exemplified, but the present invention is not limited to this. For example, each measurement value and a predetermined correlation The material and shape of the particles may be identified based on the following parameters.

また、上記実施例では、粒子の形状として、薄片状金属粉M1、カール状金属粉M2、ボール状金属粉M3等を識別するようにしたが、これに限定されず、例えば、これらに加えて、平板状金属粉、直線状エッジを有する平板金属粉等を識別するようにしてもよい。   In the above embodiment, the flaky metal powder M1, the curled metal powder M2, the ball-shaped metal powder M3, etc. are identified as the shape of the particles. However, the present invention is not limited to this. Further, a flat metal powder, a flat metal powder having a straight edge, or the like may be identified.

また、上記実施例では、粒子の摩耗形態として、正常摩耗、切削摩耗、疲労摩耗等を識別するようにしたが、これに限定されず、例えば、これらに加えて、異常すべり摩耗、腐食摩耗、凝着摩耗、溶融摩耗等を識別するようにしてもよい。   Further, in the above embodiment, normal wear, cutting wear, fatigue wear, and the like are identified as the form of particle wear. However, the present invention is not limited to this, for example, in addition to these, abnormal sliding wear, corrosion wear, Adhesive wear, melt wear, etc. may be identified.

また、上記実施例において、測定部8に、機械システムで使用中の潤滑油をリアルタイムで流して測定したり、機械システムで予め採取された潤滑油をバッチ式で流して測定したりしてもよい。   Further, in the above-described embodiment, the measurement unit 8 may be measured by flowing the lubricating oil being used in the mechanical system in real time, or may be measured by flowing the lubricating oil previously collected by the mechanical system in a batch manner. Good.

また、上記実施例において、粒径分布比Bに基づく状態診断により機械システムに運転停止信号を出力したり、粒径分布比に基づく潤滑対象部の摩耗状態、その発生原因、摩耗対策、その実施時期等のうちの1種又は2種以上の組み合わせを表示したりしてもよい。   Further, in the above embodiment, an operation stop signal is output to the mechanical system by the state diagnosis based on the particle size distribution ratio B, the wear state of the lubrication target portion based on the particle size distribution ratio, the cause of the occurrence, the wear countermeasure, and the implementation One type or a combination of two or more types of times may be displayed.

また、上記実施例において、遠隔から粒子計数装置3、33の測定開始、停止、潤滑油の逆洗等の操作を実施可能に構成してもよい。   Moreover, in the said Example, you may comprise so that operation, such as a measurement start and stop of the particle | grain counters 3 and 33, a backwash of lubricating oil, can be implemented from remote.

また、上記実施例において、構成部品に関する情報(例えば、発光体の駆動時間等)に応じて構成部品の交換期限等を報知するようにしてもよい。   Further, in the above embodiment, the replacement period of the component part may be notified according to information on the component part (for example, the driving time of the light emitter).

さらに、上記実施例では、粒子計数装置3、33とは別物のコンピュータ5によって診断処理を行うようにしたが、これに限定されず、例えば、粒子計数装置3、33の制御部13により診断処理を行うようにしてもよい。   Further, in the above embodiment, the diagnostic processing is performed by the computer 5 that is separate from the particle counting devices 3 and 33. However, the present invention is not limited to this. May be performed.

前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述および図示において使用された文言は、限定的な文言ではなく説明的および例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲または精神から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料および実施例を参照したが、本発明をここにおける開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。   The foregoing examples are for illustrative purposes only and are not to be construed as limiting the invention. Although the invention has been described with reference to exemplary embodiments, it is to be understood that the language used in the description and illustration of the invention is illustrative and exemplary rather than limiting. As detailed herein, changes may be made in its form within the scope of the appended claims without departing from the scope or spirit of the invention. Although specific structures, materials and examples have been referred to in the detailed description of the invention herein, it is not intended to limit the invention to the disclosure herein, but rather, the invention is claimed. It covers all functionally equivalent structures, methods and uses within the scope.

本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形または変更が可能である。   The present invention is not limited to the embodiments described in detail above, and various modifications or changes can be made within the scope of the claims of the present invention.

機械システム等の潤滑油、洗浄液、冷却水、排水等の液体中に含まれる粒子の個数を計数する技術として広く利用される。   It is widely used as a technique for counting the number of particles contained in a liquid such as a lubricating oil, a cleaning liquid, a cooling water, and a drainage of a mechanical system.

1,31;診断システム、3,33;粒子計数装置、10;遮断光受光体、11,11a〜11g;第1散乱光受光体、12a,12a〜12g;第2散乱光受光体。   DESCRIPTION OF SYMBOLS 1,31; Diagnostic system 3,33; Particle counter 10; Blocking light receiver 11, 11a-11g; First scattered light receiver 12a, 12a-12g; Second scattered light receiver.

Claims (4)

液体中の粒子に光を照射したときの遮断光及び複数の散乱光の測定値に基づいて前記粒子の大きさ毎に個数を計数する粒子計数装置であって、
前記遮断光及び前記複数の散乱光の測定値に基づいて前記粒子の材質を識別する材質識別手段を備えることを特徴とする粒子計数装置。
A particle counting device that counts the number of each particle size based on the measured values of the blocking light and the plurality of scattered light when the particles in the liquid are irradiated with light,
A particle counter comprising: a material identification unit that identifies a material of the particle based on the measured values of the blocking light and the plurality of scattered light.
前記遮断光及び前記複数の散乱光の測定値に基づいて前記粒子の形状を識別する形状識別手段を備える請求項1記載の粒子計数装置。   The particle counter according to claim 1, further comprising a shape identification unit that identifies the shape of the particle based on the measurement values of the blocking light and the plurality of scattered light. 液体中の粒子に光を照射したときの遮断光及び複数の散乱光の測定値に基づいて前記粒子の大きさ毎に個数を計数する粒子計数方法であって、
前記遮断光及び前記複数の散乱光の測定値を多次元グラフ上に示すこと、もしくは前記複数の散乱光の強度分布を用いることで前記粒子の材質を識別し、
前記遮断光及び前記複数の散乱光の測定値に基づいて前記粒子の大きさ及び材質毎に個数を計数することを特徴とする粒子計数方法。
A particle counting method for counting the number of particles for each size based on measured values of blocking light and a plurality of scattered light when irradiating particles in a liquid,
Showing the measured values of the blocking light and the plurality of scattered light on a multidimensional graph, or identifying the material of the particles by using the intensity distribution of the plurality of scattered light,
A particle counting method, wherein the number is counted for each size and material of the particles based on measured values of the blocking light and the plurality of scattered lights.
液体中の粒子に光を照射したときの遮断光及び複数の散乱光の測定値に基づいて前記粒子の大きさ毎に個数を計数する粒子計数方法であって、
前記遮断光及び前記複数の散乱光の測定値を多次元グラフ上に示すこと、もしくは前記複数の散乱光の強度分布を用いることで前記粒子の形状を識別し、
前記遮断光及び前記複数の散乱光の測定値に基づいて前記粒子の大きさ及び形状毎に個数を計数することを特徴とする粒子計数方法。
A particle counting method for counting the number of particles for each size based on measured values of blocking light and a plurality of scattered light when irradiating particles in a liquid,
The measured values of the blocking light and the plurality of scattered lights are shown on a multidimensional graph, or the shape of the particles is identified by using the intensity distribution of the plurality of scattered lights,
A particle counting method, wherein the number is counted for each size and shape of the particles based on measured values of the blocking light and the plurality of scattered lights.
JP2013163578A 2013-08-06 2013-08-06 Particle counter and particle counting method Pending JP2015031665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013163578A JP2015031665A (en) 2013-08-06 2013-08-06 Particle counter and particle counting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013163578A JP2015031665A (en) 2013-08-06 2013-08-06 Particle counter and particle counting method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017077142A Division JP6467579B2 (en) 2017-04-07 2017-04-07 Particle counting apparatus and particle counting method

Publications (1)

Publication Number Publication Date
JP2015031665A true JP2015031665A (en) 2015-02-16

Family

ID=52517085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013163578A Pending JP2015031665A (en) 2013-08-06 2013-08-06 Particle counter and particle counting method

Country Status (1)

Country Link
JP (1) JP2015031665A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211892A (en) * 2015-04-30 2016-12-15 トライボテックス株式会社 Particle counter
CN117470948A (en) * 2023-10-18 2024-01-30 苏州仁正智探科技有限公司 Induction type oil dust signal monitoring and identifying system and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159776A (en) * 1974-06-13 1975-12-24
JPS5424683A (en) * 1977-07-26 1979-02-24 Kanebo Ltd Method of counting fine particles in solution
JPS62239289A (en) * 1986-04-04 1987-10-20 テクニコン インストルメンツ コ−ポレ−シヨン Method and apparatus for determining number of particles perunit capacity
JPS63139231A (en) * 1986-07-18 1988-06-11 Akira Mizuno Method for measuring fine particles in liquid
JPH01314944A (en) * 1988-06-15 1989-12-20 Fuji Electric Co Ltd Apparatus for measuring fine particle in liquid
WO2005103642A1 (en) * 2004-04-23 2005-11-03 The Furukawa Electric Co., Ltd. Methods of separating, identifying and dispensing specimen and device therefor, and analyzing device method
JP2006017497A (en) * 2004-06-30 2006-01-19 Sysmex Corp Analyzing apparatus, analysis program, and analysis method
JP2007225335A (en) * 2006-02-21 2007-09-06 Toribo Tex Kk Fine particle counter, fine particle counting method using the same, lubrication objective part diagnostic system provided therewith
JP2008164293A (en) * 2006-12-26 2008-07-17 Toribotex Co Ltd Evaluation data forming method
WO2009157385A1 (en) * 2008-06-27 2009-12-30 古河電気工業株式会社 Method for distinguishing and sorting cells and device therefor
JP2011145162A (en) * 2010-01-14 2011-07-28 Japan Atomic Energy Agency X-ray detection method of fine particles in fluid

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159776A (en) * 1974-06-13 1975-12-24
JPS5424683A (en) * 1977-07-26 1979-02-24 Kanebo Ltd Method of counting fine particles in solution
JPS62239289A (en) * 1986-04-04 1987-10-20 テクニコン インストルメンツ コ−ポレ−シヨン Method and apparatus for determining number of particles perunit capacity
JPS63139231A (en) * 1986-07-18 1988-06-11 Akira Mizuno Method for measuring fine particles in liquid
JPH01314944A (en) * 1988-06-15 1989-12-20 Fuji Electric Co Ltd Apparatus for measuring fine particle in liquid
WO2005103642A1 (en) * 2004-04-23 2005-11-03 The Furukawa Electric Co., Ltd. Methods of separating, identifying and dispensing specimen and device therefor, and analyzing device method
JP2006017497A (en) * 2004-06-30 2006-01-19 Sysmex Corp Analyzing apparatus, analysis program, and analysis method
JP2007225335A (en) * 2006-02-21 2007-09-06 Toribo Tex Kk Fine particle counter, fine particle counting method using the same, lubrication objective part diagnostic system provided therewith
JP2008164293A (en) * 2006-12-26 2008-07-17 Toribotex Co Ltd Evaluation data forming method
WO2009157385A1 (en) * 2008-06-27 2009-12-30 古河電気工業株式会社 Method for distinguishing and sorting cells and device therefor
JP2011145162A (en) * 2010-01-14 2011-07-28 Japan Atomic Energy Agency X-ray detection method of fine particles in fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211892A (en) * 2015-04-30 2016-12-15 トライボテックス株式会社 Particle counter
CN117470948A (en) * 2023-10-18 2024-01-30 苏州仁正智探科技有限公司 Induction type oil dust signal monitoring and identifying system and method
CN117470948B (en) * 2023-10-18 2024-06-07 苏州仁正智探科技有限公司 Induction type oil dust signal monitoring and identifying system and method

Similar Documents

Publication Publication Date Title
EP3168808B1 (en) System for automated shaped cooling hole measurement
CN104121985B (en) Selective decimation and analysis of oversampled data
Belden et al. Three-dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet
US9791422B2 (en) Analysis of periodic information in a signal
KR101748559B1 (en) Apparatus for inspecting rotating device and method thereof
JP6136018B2 (en) Flow velocity measurement method and flow velocity measurement system for visualization fluid
DE102018214936B4 (en) Portable optical particle sensor device and corresponding particle measurement method
JP2007225335A (en) Fine particle counter, fine particle counting method using the same, lubrication objective part diagnostic system provided therewith
US20190228636A1 (en) Vibrational analysis systems and methods
JP2015031665A (en) Particle counter and particle counting method
CN110582753A (en) Propagating alarm trigger states
JPWO2018020681A1 (en) Setting method, inspection method, defect evaluation apparatus and manufacturing method of structure
JP2017533421A (en) Method and system for inspecting wafers for electronics, optics or optoelectronics
JP6467579B2 (en) Particle counting apparatus and particle counting method
Hashmi et al. Understanding the mechanism of abrasive-based finishing processes using mathematical modeling and numerical simulation
Weiß et al. Measuring the 3D resolution of a micro-focus X-ray CT setup
Fleßner et al. Determination of metrological structural resolution of a CT system using the frequency response on surface structures
Zagórski et al. Influence of tool holder types on vibration in rough milling of AZ91D magnesium alloy
JP6439543B2 (en) Through flow measurement method
JP2010101653A (en) Apparatus and program for measuring particle size distribution
Cernuschi et al. Accurate particle speed prediction by improved particle speed measurement and 3-dimensional particle size and shape characterization technique
JP6731481B2 (en) Method and apparatus for classifying at least one eye opening data of a vehicle occupant, and method and apparatus for detecting drowsiness and/or microsleep of a vehicle occupant
JP4836772B2 (en) Evaluation data creation method
Madison et al. Acquisition of real-time operation analytics for an automated serial sectioning system
US10914709B2 (en) Internal/external discrimination of metal loss defects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110