Nothing Special   »   [go: up one dir, main page]

JP2015025174A - Porous conductive member for water electrolysis, and functional water generator using the same - Google Patents

Porous conductive member for water electrolysis, and functional water generator using the same Download PDF

Info

Publication number
JP2015025174A
JP2015025174A JP2013155728A JP2013155728A JP2015025174A JP 2015025174 A JP2015025174 A JP 2015025174A JP 2013155728 A JP2013155728 A JP 2013155728A JP 2013155728 A JP2013155728 A JP 2013155728A JP 2015025174 A JP2015025174 A JP 2015025174A
Authority
JP
Japan
Prior art keywords
porous
water electrolysis
conductive member
water
binder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013155728A
Other languages
Japanese (ja)
Inventor
加藤 康昭
Yasuaki Kato
康昭 加藤
寺島 健太郎
Kentaro Terajima
健太郎 寺島
矢野 裕嗣
Hirotsugu Yano
裕嗣 矢野
勇人 砂子
Isato Sunago
勇人 砂子
翔子 橋爪
Shoko Hashizume
翔子 橋爪
輝男 内堀
Teruo Uchibori
輝男 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynic Corp
Sharp Corp
Original Assignee
Dynic Corp
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynic Corp, Sharp Corp filed Critical Dynic Corp
Priority to JP2013155728A priority Critical patent/JP2015025174A/en
Priority to PCT/JP2014/068290 priority patent/WO2015012106A1/en
Priority to CN201480041197.1A priority patent/CN105392926A/en
Publication of JP2015025174A publication Critical patent/JP2015025174A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/005Systems or processes based on supernatural or anthroposophic principles, cosmic or terrestrial radiation, geomancy or rhabdomancy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • C02F2001/46161Porous electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous conductive member for water electrolysis which is obtained by using hydrophobic binder material having been considered unsuitable for water electrolysis, and nonetheless achieves improved electrolytic efficiency.SOLUTION: The porous conductive member for water electrolysis includes a porous conductor part 2 containing hydrophilized electrode active material 4 and binder material 5, and a collector part 3 which is abutted on or included in a surface of the porous conductor part. The binder material is composed of hydrophobic material. A functional water generator includes the porous conductive member for water electrolysis as an electrode performing absorption and desorption of metal ions in a diaphragmless electrolytic cell of one cell type.

Description

本発明は、親水化処理された電極活物質とバインダ材とを含む多孔質導電体部と、前記多孔質導電体部の表面に当接又は内包された集電体部とを備える水電解用の多孔質導電部材であって、前記バインダ材は疎水性材料から構成されることを特徴とする水電解用の多孔質導電部材、ならびに、前記水電解用導電部材を用いて無隔膜1槽式の電解槽で水道水などの原水を電気分解することにより、食器洗浄用途、理美容用途、加湿用途、又は、飲用用途に用いる機能水を生成する、機能水生成器に関する。   The present invention is for water electrolysis comprising a porous conductor portion including a hydrophilized electrode active material and a binder material, and a current collector portion in contact with or included in the surface of the porous conductor portion. A porous electroconductive member for water electrolysis, wherein the binder material is composed of a hydrophobic material, and a one-tank membrane type using the electroconductive member for water electrolysis It is related with the functional water generator which produces | generates the functional water used for tableware washing | cleaning use, a hairdressing cosmetic use, a humidification use, or a drinking use by electrolyzing raw | natural water, such as a tap water, in an electrolysis tank.

従来、電気二重層コンデンサの電極材料としては通常、電極活物質として活性炭等を用い、フッ素系の疎水性バインダ材を用いて成形を行うのが一般的であった。しかしながら、水道水などを原水とした電気分解において、疎水性バインダ材としてポリテトラフルロエチレンなどのフッ素樹脂系バインダ材を用いた場合、バインダ材が撥水性を有するため、電極内部への電解液の含浸性が悪く、電気分解などにおいて所定の電気的特性を得られないという問題があった。   Conventionally, as an electrode material of an electric double layer capacitor, it is common to use activated carbon or the like as an electrode active material and to perform molding using a fluorine-based hydrophobic binder material. However, in electrolysis using tap water or the like as raw water, when a fluororesin binder material such as polytetrafluoroethylene is used as the hydrophobic binder material, the binder material has water repellency. There is a problem that the impregnation property is poor and predetermined electrical characteristics cannot be obtained in electrolysis or the like.

かかる課題に対し、カルボキシメチルセルロース、ポリビニルアルコールなどの親水性バインダ材を用いる方策が提案されている(たとえば、特開昭60−171714号公報(特許文献1)を参照。)。このような親水性バインダ材を用いた場合、バインダ材が親水性を有することで吸着電極の濡れ性がよく、電極内部への電解液の含浸性は向上するため、電極が比較的厚手であったとしても、電極内部まで含浸が可能であった。このように親水性のバインダ材を用いることで、水系の電解質に対し電気分解等において一定の性能向上をさせることが可能であった。   In order to deal with this problem, a method using a hydrophilic binder material such as carboxymethyl cellulose and polyvinyl alcohol has been proposed (see, for example, Japanese Patent Laid-Open No. 60-171714 (Patent Document 1)). When such a hydrophilic binder material is used, since the binder material has hydrophilicity, the wettability of the adsorption electrode is good, and the impregnation property of the electrolytic solution into the electrode is improved, so that the electrode is relatively thick. Even so, the impregnation into the electrode was possible. Thus, by using the hydrophilic binder material, it was possible to improve the performance of the aqueous electrolyte in electrolysis or the like.

特開昭60−171714号公報JP-A-60-171714

しかしながら、電極活物質として活性炭を用い、かつ、親水性バインダ材を用いた場合、バインダ材、活性炭が共に親水性であるため、バインダ材と活性炭間の親和性が高くなってしまう。このため、活性炭が欠落しないように、電極における親水性バインダ材の含有率を高めると、親水性バインダ材が活性炭表面を覆いやすくなり、活性炭の有効イオン吸着孔が減り、吸着性能が大幅に低下し、電解効率の最大化を図ることができない、という問題があった。   However, when activated carbon is used as the electrode active material and a hydrophilic binder material is used, the affinity between the binder material and the activated carbon increases because both the binder material and the activated carbon are hydrophilic. For this reason, if the content of the hydrophilic binder material in the electrode is increased so that the activated carbon is not lost, it becomes easier for the hydrophilic binder material to cover the activated carbon surface, reducing the effective ion adsorption pores of the activated carbon and greatly reducing the adsorption performance. However, there has been a problem that the electrolytic efficiency cannot be maximized.

さらに、親水性バインダ材の種類によっては、活性炭の結着力が充分に得られず、電極が脆くなり、電極形状が維持できない、という問題もあった。   Further, depending on the type of the hydrophilic binder material, there is a problem that the binding force of the activated carbon cannot be sufficiently obtained, the electrode becomes brittle, and the electrode shape cannot be maintained.

本発明は、上記課題を解決するためになされたものであって、その目的とするところは、水電解用としては従来不適と考えられていた疎水性のバインダ材を用いつつ、電解効率が高められた水電解用の多孔質導電部材を提供することである。   The present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is to improve the electrolysis efficiency while using a hydrophobic binder material which has been conventionally considered unsuitable for water electrolysis. It is to provide a porous conductive member for water electrolysis.

本発明の水電解用の多孔質導電部材は、親水化処理された電極活物質とバインダ材とを含む多孔質導電体部と、前記多孔質導電体部の表面に当接又は内包された集電体部とを備える水電解用の多孔質導電部材であって、前記バインダ材は疎水性材料から構成されることを特徴とする。   The porous electroconductive member for water electrolysis according to the present invention includes a porous conductor portion containing a hydrophilized electrode active material and a binder material, and a collection in contact with or included in the surface of the porous conductor portion. A porous electroconductive member for water electrolysis comprising an electric body portion, wherein the binder material is made of a hydrophobic material.

本発明の水電解用の多孔質導電部材において、前記電極活物質は前記多孔質導電体部に70wt%以上、92wt%以下含まれることが好ましい。   In the porous electroconductive member for water electrolysis according to the present invention, it is preferable that the electrode active material is contained in the porous conductor portion by 70 wt% or more and 92 wt% or less.

本発明の水電解用の多孔質導電部材において、前記バインダ材はフッ素系の材料であることが好ましい。   In the porous conductive member for water electrolysis according to the present invention, the binder material is preferably a fluorine-based material.

本発明の水電解用の多孔質導電部材において、前記多孔質導電体部がさらに5wt%以上の導電助剤を含むことが好ましい。   In the porous electroconductive member for water electrolysis according to the present invention, it is preferable that the porous conductor portion further contains 5 wt% or more of a conductive additive.

本発明の水電解用の多孔質導電部材において、前記多孔質導電体部は、最厚部の厚みが0.5mm以上、1.5mm以下であることが好ましい。   In the porous electroconductive member for water electrolysis according to the present invention, it is preferable that the thickness of the thickest portion of the porous conductor portion is 0.5 mm or more and 1.5 mm or less.

本発明の水電解用の多孔質導電部材において、前記多孔質導電体部は、最厚部の厚みが略1.0mmであることが好ましい。   In the porous electroconductive member for water electrolysis according to the present invention, the thickness of the thickest portion of the porous conductor portion is preferably about 1.0 mm.

本発明の水電解用の多孔質導電部材において、前記多孔質導電体部に対し前記集電体部を複数設けることが好ましい。   In the porous electroconductive member for water electrolysis according to the present invention, it is preferable to provide a plurality of the current collector portions with respect to the porous conductor portion.

本発明の水電解用の多孔質導電部材において、前記集電体部は貴金属コートのない金属部材であることが好ましい。   In the porous electroconductive member for water electrolysis of the present invention, the current collector portion is preferably a metal member without a noble metal coat.

本発明の水電解用の多孔質導電部材において、ロール圧延後に表面処理を行い、親水化することによって製造されたものであることが好ましい。   The porous electroconductive member for water electrolysis according to the present invention is preferably manufactured by performing a surface treatment after roll rolling to make it hydrophilic.

本発明はまた、上述した本発明の水電解用の多孔質導電部材を、無隔膜1槽式の電解槽において金属イオンの吸脱着を行う電極として備える機能水生成器についても提供する。   The present invention also provides a functional water generator provided with the above-described porous electroconductive member for water electrolysis according to the present invention as an electrode for adsorbing and desorbing metal ions in an electrolyzer having a single diaphragm.

本発明の機能水生成器は、食器洗浄用途、理美容用途、加湿用途又は飲用用途に用いることが好ましい。   The functional water generator of the present invention is preferably used for dishwashing applications, barber / beauty applications, humidification applications or drinking applications.

以上のように、本発明の水電解用の多孔質導電部材によれば、親水化処理された電極活物質とバインダ材とを含む多孔質導電体部と、前記多孔質導電体部の表面に当接又は内包された集電体部とを備える水電解用の多孔質導電部材であって、前記バインダ材は疎水性材料から構成されていることにより、電極活物質の吸着性能を最大化できる。また、本発明の水電解用の多孔質導電部材によれば、好ましくは、多孔質導電体部の最厚部の厚み(吸着電極の最大厚み)を0.5mm以上、1.5mm以下とすることで、イオン処理効率を最適化することが可能である。さらに、本発明は、本発明の水電解用導電部材を好適に適用した、食器洗浄用途、理美容用途、加湿用途、又は、飲用用途に用いる機能水を生成する、機能水生成器についても提供することができる。   As described above, according to the porous electroconductive member for water electrolysis of the present invention, the porous conductor part including the electrode active material and the binder material subjected to the hydrophilic treatment, and the surface of the porous conductor part are provided. A porous electroconductive member for water electrolysis comprising an abutting or enclosing current collector portion, wherein the binder material is made of a hydrophobic material, so that the adsorption performance of the electrode active material can be maximized . Moreover, according to the porous electroconductive member for water electrolysis of the present invention, preferably, the thickness of the thickest portion of the porous conductor portion (maximum thickness of the adsorption electrode) is 0.5 mm or more and 1.5 mm or less. This makes it possible to optimize the ion processing efficiency. Furthermore, the present invention also provides a functional water generator that generates functional water for use in dishwashing, hairdressing, humidification, or drinking, to which the conductive member for water electrolysis of the present invention is suitably applied. can do.

図1(a)は、本発明の好ましい一例の水電解用の多孔質導電部材1を模式的に示す図であり、図1(b)は図1(a)の一部を拡大して示す写真である。FIG. 1 (a) is a diagram schematically showing a porous electroconductive member 1 for water electrolysis as a preferred example of the present invention, and FIG. 1 (b) is an enlarged view of a part of FIG. 1 (a). It is a photograph. 親水性のバインダ材を用いた多孔質導電体部と、疎水性のバインダ材を用いた多孔質導電体部とでイオン吸着特性を比較した結果を示すグラフである。It is a graph which shows the result of having compared the ion adsorption characteristic with the porous conductor part using a hydrophilic binder material, and the porous conductor part using a hydrophobic binder material. 疎水性のバインダ材と親水性の電極活物質を用いた場合の多孔質導電体部を示す写真である。It is a photograph which shows the porous conductor part at the time of using a hydrophobic binder material and a hydrophilic electrode active material. 電極活物質として活性炭を用いた場合の、その含有率とイオン処理効率との関係を示すグラフである。It is a graph which shows the relationship between the content rate and ion treatment efficiency at the time of using activated carbon as an electrode active material. 導電助剤としてカーボンブラックを用いた場合の、導電助剤の含有率とイオン処理効率との関係を示すグラフである。It is a graph which shows the relationship between the content rate of a conductive support agent, and ion processing efficiency at the time of using carbon black as a conductive support agent. 多孔質導電体部の最厚部の厚みとイオン処理効率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the thickest part of a porous conductor part, and ion processing efficiency. 本発明の好ましい様々な例の水電解用の多孔質導電部材1,11,21,31を模式的に示す図である。It is a figure which shows typically the porous electroconductive member 1,11,21,31 for water electrolysis of the preferable various examples of this invention. 本発明の水電解用の多孔質導電部材を用いた、好ましい一例の機能水生成器を模式的に示す図である。It is a figure which shows typically the functional water generator of a preferable example using the porous electroconductive member for water electrolysis of this invention.

以下、図面に基づいて本発明の実施の形態を説明する。図1(a)は、本発明の好ましい一例の水電解用の多孔質導電部材1を模式的に示す図であり、図1(b)は図1(a)の一部を拡大して示す写真(走査型電子顕微鏡による3000倍拡大写真)である。本発明の水電解用の多孔質導電部材1は、親水化処理された電極活物質4とバインダ材5とを含む多孔質導電体部2と、前記多孔質導電体部2の表面に当接又は内包された集電体部3とを備える(この図1(a)に示す態様を「実施の態様1」とする)。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 (a) is a diagram schematically showing a porous electroconductive member 1 for water electrolysis as a preferred example of the present invention, and FIG. 1 (b) is an enlarged view of a part of FIG. 1 (a). It is a photograph (3000 times magnified photograph by a scanning electron microscope). The porous electroconductive member 1 for water electrolysis according to the present invention is in contact with a porous conductor portion 2 including a hydrophilized electrode active material 4 and a binder material 5, and the surface of the porous conductor portion 2. Alternatively, the current collector section 3 is included (the embodiment shown in FIG. 1A is referred to as “embodiment 1”).

ここで、図2は、実際に、親水性のバインダ材を用いた多孔質導電体部と、疎水性のバインダ材を用いた多孔質導電体部とでイオン吸着特性を比較した結果を示すグラフであり、縦軸はイオン処理効率(%)、横軸はイオン処理時間(分)である。図2から、疎水性のバインダ材を用いた多孔質導電体部の方が、親水性のバインダ材を用いた多孔質導電体部よりもイオン処理効率が高いことが分かる。なお、ここでいうイオン処理効率とは、多孔質導電体部において所定以上のイオン吸着を行った後、脱着を行う場合のイオン脱着効率を意味している。   Here, FIG. 2 is a graph showing the result of actually comparing the ion adsorption characteristics between the porous conductor portion using the hydrophilic binder material and the porous conductor portion using the hydrophobic binder material. The vertical axis represents ion treatment efficiency (%), and the horizontal axis represents ion treatment time (minutes). From FIG. 2, it can be seen that the porous conductor portion using the hydrophobic binder material has higher ion treatment efficiency than the porous conductor portion using the hydrophilic binder material. In addition, the ion treatment efficiency here means the ion desorption efficiency when desorption is performed after performing ion adsorption at a predetermined level or more in the porous conductor portion.

従来、疎水性のバインダ材は水道水などを原水とした電気分解には従来不適と考えられていた。ここで、図3は、疎水性のバインダ材と親水性の電極活物質を用いた場合の多孔質導電体部を示す写真(走査型電子顕微鏡による3000倍拡大写真)である。図3から明らかなように、親水性の電極活物質と疎水性のバインダ材は親和性が低いため、バインダ材が電極活物質を包摂せず、電極活物質が露出しやすく、このため電極活物質の細孔構造、及び、電極活物質の間隙が維持しやすい。したがって、有効イオン吸着孔の減少を抑え、電解効率の最大化を図ることが可能となる。   Conventionally, hydrophobic binder materials have been conventionally considered unsuitable for electrolysis using tap water or the like as raw water. Here, FIG. 3 is a photograph (3000 times magnified photograph taken with a scanning electron microscope) showing the porous conductor portion when a hydrophobic binder material and a hydrophilic electrode active material are used. As is clear from FIG. 3, since the hydrophilic electrode active material and the hydrophobic binder material have low affinity, the binder material does not include the electrode active material and the electrode active material is easily exposed. It is easy to maintain the pore structure of the substance and the gap between the electrode active materials. Therefore, it is possible to suppress the reduction of effective ion adsorption holes and maximize the electrolysis efficiency.

本発明における電極活物質4としては、当分野において従来より用いられている電極活物質を特に制限なく用いることができるが、粒子状の活性炭が好適である。活性炭は電極のエネルギー密度向上において重要な役割を果たし、その種類としては特に限定されるものではなく、フェノール系、レーヨン系、アクリル系、ピッチ系、ヤシガラ系等が使用でき、比表面積が好ましくは300〜3500m/g、より好ましくは1500〜2500m/gのものが使用できる。電極活物質の比表面積が300m/g未満である場合には、イオン吸着性能が悪くなるという傾向にある。電極活物質の比表面積が3500m/gを超える場合にも、イオン吸着性能が低下すると考えられ、また、多孔質導電体部に占める電極活物質の比率が増えることにより、多孔質導電体部の成形性が低下し、それにより、加工性も低下する傾向にある。電極活物質の比表面積が1500〜2500m/gである場合に、特に、イオン吸着性能を好適に向上できる。 As the electrode active material 4 in the present invention, any electrode active material conventionally used in this field can be used without particular limitation, but particulate activated carbon is preferable. Activated carbon plays an important role in improving the energy density of the electrode, and the type thereof is not particularly limited, and phenolic, rayon-based, acrylic-based, pitch-based, coconut shell-based, etc. can be used, and the specific surface area is preferably The thing of 300-3500m < 2 > / g, More preferably, the thing of 1500-2500m < 2 > / g can be used. When the specific surface area of the electrode active material is less than 300 m 2 / g, the ion adsorption performance tends to deteriorate. Even when the specific surface area of the electrode active material exceeds 3500 m 2 / g, it is considered that the ion adsorption performance is reduced, and the ratio of the electrode active material to the porous conductor portion increases, so that the porous conductor portion There is a tendency for the formability of the resin to be lowered and the workability to be lowered. In particular, when the specific surface area of the electrode active material is 1500 to 2500 m 2 / g, the ion adsorption performance can be suitably improved.

本発明における電極活物質4の平均粒子径は、特に制限されるものではないが、薄膜成形がしやすく、容量密度を高くすることができるという理由から、1〜45μmの範囲内であることが好ましく、2〜40μmの範囲内であることがより好ましく、3〜20μmの範囲内であることが特に好ましい。   The average particle diameter of the electrode active material 4 in the present invention is not particularly limited, but it is within the range of 1 to 45 μm because it is easy to form a thin film and the capacity density can be increased. Preferably, it is in the range of 2-40 μm, more preferably in the range of 3-20 μm.

本発明における電極活物質4は親水化処理されたものであるが、この親水化処理は、例えば、水酸化ナトリウム又は水蒸気の高温賦活といった方法によって行われる。電極活物質4は賦活による親水化処理により、水に対する濡れ性能が向上し、賦活により多孔質化された電極活物質表面で効果的にイオン吸着を行うことが可能となる。   The electrode active material 4 in the present invention is subjected to a hydrophilic treatment, and this hydrophilic treatment is performed by a method such as high-temperature activation of sodium hydroxide or water vapor, for example. The electrode active material 4 is improved in wettability with respect to water by the hydrophilic treatment by activation, and can effectively perform ion adsorption on the surface of the electrode active material made porous by activation.

また、集電体部3は多孔質導電体部2に当接していても、内包(挟みこみ/挿入)されていても良い。なお、当接する場合は、集電体で電気分解が起こるのを防ぐため、ポリイミドテープなどを貼り付けで絶縁するのが望ましい。   Further, the current collector part 3 may be in contact with the porous conductor part 2 or may be enclosed (inserted / inserted). In the case of contact, in order to prevent electrolysis from occurring in the current collector, it is desirable to insulate by attaching a polyimide tape or the like.

本発明の水電解用の多孔質導電部材1における、バインダ材3を構成する疎水性材料は、フッ素系の材料であることが好ましい。ここで、フッ素系材料としては例えばポチテトラフルオロエチレン(PTFE)などが挙げられるが、フッ素系材料は疎水性とともに、加熱成形時にシェア(剪断力)をかけることにより樹脂の繊維化(フィブリル化)が起こるため、ネットワーク化により多孔質導電体部の成形性を向上させ、多孔質導電体部から電極活物質が溶出するのを抑えることができる。   The hydrophobic material constituting the binder material 3 in the porous electroconductive member 1 for water electrolysis of the present invention is preferably a fluorine-based material. Here, examples of the fluorine-based material include pothitetrafluoroethylene (PTFE). The fluorine-based material is hydrophobic and is made into fiber (fibrillation) by applying a shear (shearing force) during heat molding. Therefore, networkability can improve the moldability of the porous conductor portion and suppress the elution of the electrode active material from the porous conductor portion.

バインダ材3を構成する疎水性材料としてPTFEを用いる場合、テトラフルオロエチレンの単独重合体だけではなく、テトラフルオロエチレンに対して他の単量体を0.5mol%以下加えて共重合させて得られる共重合体であってもよい。これら他の単量体としては、トリフルオロエチレン、(パーフルオロアルキル)エチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)等が挙げられる。   When PTFE is used as the hydrophobic material constituting the binder material 3, it is obtained not only by homopolymer of tetrafluoroethylene but also by copolymerization with addition of 0.5 mol% or less of other monomers to tetrafluoroethylene. It may be a copolymer. Examples of these other monomers include trifluoroethylene, (perfluoroalkyl) ethylene, chlorotrifluoroethylene, hexafluoropropylene, and perfluoro (alkyl vinyl ether).

また、本発明の水電解用の多孔質導電部材1において、電極活物質4は多孔質導電体部2に70wt%以上、92wt%以下含まれることが好ましく、80wt%以上、92wt%以下含まれることがより好ましい。ここで、図4は、電極活物質として活性炭を用いた場合の、その含有率とイオン処理効率との関係を示すグラフであり、縦軸はイオン処理効率(%)、横軸は活性炭の含有率(wt%)を示している。図4に示すように、電極活物質(図4の例では活性炭)の含有率を上述の範囲内とすることで、例えば、多孔質導電体部における電極活物質の含有率が70wt%、バインダ材の含有率が27wt%(導電助剤:3wt%)の場合、多孔質導電体部から電極活物質が溶出するのを抑えることが可能であり、この場合、イオン処理効率として80%程度を保持することができる。また、電極活物質の含有率が91.5wt%、バインダの含有率が5.5wt%(導電助剤:3wt%)の場合であっても、多孔質導電体部2から電極活物質4が溶出するのをほぼ抑えることが可能であり、この場合、イオン処理効率としてほぼ100%を保持することができる。   In the porous electroconductive member 1 for water electrolysis of the present invention, the electrode active material 4 is preferably contained in the porous conductor portion 2 in an amount of 70 wt% or more and 92 wt% or less, and is contained in an amount of 80 wt% or more and 92 wt% or less. It is more preferable. Here, FIG. 4 is a graph showing the relationship between the content rate and ion treatment efficiency when activated carbon is used as the electrode active material, the vertical axis represents the ion treatment efficiency (%), and the horizontal axis represents the activated carbon content. The rate (wt%) is shown. As shown in FIG. 4, by setting the content ratio of the electrode active material (activated carbon in the example of FIG. 4) within the above range, for example, the content ratio of the electrode active material in the porous conductor portion is 70 wt%, the binder When the content of the material is 27 wt% (conducting aid: 3 wt%), it is possible to suppress the elution of the electrode active material from the porous conductor portion. In this case, the ion treatment efficiency is about 80%. Can be held. Further, even when the electrode active material content is 91.5 wt% and the binder content is 5.5 wt% (conducting aid: 3 wt%), the electrode active material 4 is removed from the porous conductor portion 2. It is possible to substantially suppress the elution, and in this case, it is possible to maintain almost 100% as the ion processing efficiency.

すなわち、バインダ材5をPTFEのような疎水性材料で構成することでバインダ材5の配合比率を極力少なくし、電極活物質の含有率を70wt%以上、92wt%以下と極力増加させることができるので、イオン処理効率の点から好適である。   That is, by forming the binder material 5 with a hydrophobic material such as PTFE, the blending ratio of the binder material 5 can be reduced as much as possible, and the content ratio of the electrode active material can be increased as high as 70 wt% or more and 92 wt% or less. Therefore, it is preferable from the viewpoint of ion processing efficiency.

また、本発明では、多孔質導電体部2において、更に5wt%以上の導電助剤を含むことが望ましい。導電助剤の添加により隣接する電極活物質間の電子伝達性が向上するため、イオン処理効率の点から好適である。   In the present invention, it is desirable that the porous conductor portion 2 further contains 5 wt% or more of a conductive additive. The addition of a conductive additive improves electron transfer between adjacent electrode active materials, which is preferable from the viewpoint of ion treatment efficiency.

導電助剤としては例えばカーボンブラック等の電気伝導度の高い素材を用いることができる。カーボンブラックは電極に導電性を付与し、内部抵抗の低減に寄与するものであるため、アセチレンブラックやケッチェンブラック等の導電性に優れたものであれば良く、その粒子径としては、0.01〜1μmが好ましい。   As the conductive assistant, a material having high electrical conductivity such as carbon black can be used. Since carbon black imparts conductivity to the electrode and contributes to a reduction in internal resistance, it is sufficient that the carbon black has excellent conductivity, such as acetylene black or ketjen black. 01-1 micrometer is preferable.

図5は、電極活物質4として活性炭を70wt%の含有率で固定し、導電助剤としてカーボンブラックを用いた場合の、導電助剤の含有率とイオン処理効率との関係を示すグラフであり、縦軸はイオン処理効率(%)、横軸は導電助剤の含有率(wt%)を示している。図5より、イオン処理効率は導電助剤の含有率が5wt%まではほぼ一定値であるが、導電助剤の含有率5wt%から増加し、導電助剤の含有率10wt%ではイオン処理効率が10%以上増加する。従って、導電助剤の含有率としては5wt%以上が好ましく、10wt%以上がより好ましい。   FIG. 5 is a graph showing the relationship between the content of the conductive assistant and the ion treatment efficiency when activated carbon is fixed as the electrode active material 4 at a content of 70 wt% and carbon black is used as the conductive assistant. The vertical axis represents ion treatment efficiency (%), and the horizontal axis represents the content (wt%) of the conductive additive. As shown in FIG. 5, the ion treatment efficiency is almost constant until the content of the conductive auxiliary is 5 wt%, but increases from the content of the conductive auxiliary of 5 wt%, and the ion treatment efficiency is increased when the content of the conductive auxiliary is 10 wt%. Increases by more than 10%. Accordingly, the content of the conductive assistant is preferably 5 wt% or more, and more preferably 10 wt% or more.

また、本発明の水電解用の多孔質導電部材1は、疎水性バインダ材を用いた場合に問題となる吸着電極内部にまで水が染み込まなくなる問題を解消する観点からは、多孔質導電体部2の最厚部の厚みは0.5mm以上、1.5mm以下であることが好ましい。ここで、多孔質導電体部2の「最厚部の厚み」とは、多孔質導電体部2の集電体部3に平行な平面に対し垂直な方向(厚み方向)における多孔質導電体部2の端部と集電体部3との間の直線距離を指す。図6は、電解時間が4分間、6分間、8分間の場合それぞれについての多孔質導電体部の最厚部の厚みとイオン処理効率との関係を示すグラフであり、縦軸はイオン処理効率(%)、横軸は多孔質導電体部の最厚部の厚み(mm)を示している。図6から分かるように、多孔質導電体部の最厚部の厚みが0.5mm以上、1.5mm以下の範囲内ではいずれの電解時間の場合でもイオン処理効率は高いが、この範囲外ではイオン処理効率が悪くなる。これは、ある程度の厚みまでは、多孔質導電体部の厚みが大きくなるほどイオン処理性能は増加し、イオン処理効率は向上するが、限度を超えて厚みが大きくなると、電気二重層を形成する領域と集電体との距離が離れることにより、イオン処理効率が悪くなると考えられる。この影響を回避するため、本発明の水電解用の多孔質導電部材1は、好ましくは、多孔質導電体部の最厚部を0.5mm以上、1.5mm以下とすることにより、イオン処理効率を向上させることが可能である。   Moreover, the porous electroconductive member 1 for water electrolysis of the present invention has a porous conductor part from the viewpoint of solving the problem that water does not permeate into the adsorption electrode, which is a problem when a hydrophobic binder material is used. The thickness of the thickest part 2 is preferably 0.5 mm or more and 1.5 mm or less. Here, “the thickness of the thickest portion” of the porous conductor portion 2 is a porous conductor in a direction (thickness direction) perpendicular to a plane parallel to the current collector portion 3 of the porous conductor portion 2. The straight line distance between the end of the part 2 and the current collector part 3 is indicated. FIG. 6 is a graph showing the relationship between the thickness of the thickest portion of the porous conductor portion and the ion treatment efficiency when the electrolysis time is 4 minutes, 6 minutes, and 8 minutes, and the vertical axis represents the ion treatment efficiency. (%), The horizontal axis indicates the thickness (mm) of the thickest portion of the porous conductor portion. As can be seen from FIG. 6, the ion treatment efficiency is high in any electrolysis time within the range where the thickness of the thickest part of the porous conductor portion is 0.5 mm or more and 1.5 mm or less, but outside this range, Ion processing efficiency becomes worse. This is because up to a certain thickness, as the thickness of the porous conductor portion increases, the ion treatment performance increases and the ion treatment efficiency improves, but when the thickness exceeds the limit, the electric double layer is formed. It is considered that the ion processing efficiency deteriorates when the distance between the electrode and the current collector is increased. In order to avoid this influence, the porous electroconductive member 1 for water electrolysis according to the present invention is preferably ion-treated by setting the thickest portion of the porous conductor portion to 0.5 mm or more and 1.5 mm or less. Efficiency can be improved.

なお、上述の図2及び図4〜6の測定条件および使用部材は以下の通りである。
水道水の容量:80mL、90mAで定電流駆動、
白金電極:ダイソーエンジニアリング社製、サイズ:60×60mm(t=1)、
多孔質導電部材:活性炭(関西熱化学社製MSP−20)、カーボンブラック(ライオン社製ECP−600JD)、バインダ材(ダイキン工業社製F−201(F))、サイズ:50×50mm。
In addition, the measurement conditions and members used in FIG. 2 and FIGS. 4 to 6 described above are as follows.
Capacity of tap water: 80mL, 90mA constant current drive,
Platinum electrode: manufactured by Daiso Engineering, size: 60 × 60 mm (t = 1),
Porous conductive member: activated carbon (MSP-20 manufactured by Kansai Thermochemical Co., Ltd.), carbon black (ECP-600JD manufactured by Lion Corporation), binder material (F-201 (F) manufactured by Daikin Industries, Ltd.), size: 50 × 50 mm.

電気分解は、先ず、金属電極を陽極、イオン吸着電極を陰極として所定時間(吸着時間=脱着時間)のイオン吸着を行った後、極性を反転させた電流を流して電気分解を実行することで吸着した金属イオンの脱着量を測定する。即ち、下記式(1)及び式(2)に基づき、pH変動より金属イオンの脱着量を計算し、また、ファラデーの第二法則(下記式(3))に基づく理論的吸着量との比=イオン処理効率として計算した。   Electrolysis is performed by first performing ion adsorption for a predetermined time (adsorption time = desorption time) using a metal electrode as an anode and an ion adsorption electrode as a cathode, and then performing an electrolysis by passing a current whose polarity is reversed. The amount of desorbed metal ions is measured. That is, based on the following formulas (1) and (2), the desorption amount of the metal ions is calculated from the pH fluctuation, and the ratio to the theoretical adsorption amount based on Faraday's second law (the following formula (3)). = Calculated as ion treatment efficiency.

M → M2+ + 2e- ・・・式(1)
2H2O+2e- → H2 + 2OH- ・・・式(2)
Q=I×t=z×n×F ・・・式(3)
ここで、Qは電気量(C)、Iは電流量(A)、tは時間(sec)、zはイオン価数(=2)、nは金属イオンのモル量、Fはファラデー定数(=9.65×104C/mol)である。
M → M 2+ + 2e (1)
2H 2 O + 2e → H 2 + 2OH (2)
Q = I × t = z × n × F (3)
Here, Q is the amount of electricity (C), I is the amount of current (A), t is the time (sec), z is the ionic valence (= 2), n is the molar amount of the metal ion, and F is the Faraday constant (= 9.65 × 10 4 C / mol).

さらに、本発明の水電解用の多孔質導電部材は、最厚部の厚みを略1.0mm、すなわち、0.8mm以上、1.2mm以下の範囲内とすることで、イオン処理効率を最大化することが可能である。   Furthermore, the porous electroconductive member for water electrolysis of the present invention has the maximum ion treatment efficiency by setting the thickness of the thickest part to approximately 1.0 mm, that is, within the range of 0.8 mm to 1.2 mm. It is possible to

ここで、図7は、本発明の好ましい様々な例の水電解用の多孔質導電部材1,11,21,31を模式的に示す図である。ここで、図7(a)には、図1(a)に示したのと同様の実施の態様1(水電解用の多孔質導電部材1)、図7(b)には、実施の態様2(水電解用の多孔質導電部材11)、図7(c)には、実施の態様3(水電解用の多孔質導電部材21)、図7(d)には、実施の態様4(水電解用の多孔質導電部材31)をそれぞれ示している。なお、図7は、いずれも、紙面に関して上下方向が、多孔質導電部材の厚み方向(集電体部3に平行な平面に対し垂直な方向)を示している。   Here, FIG. 7 is a diagram schematically showing porous electroconductive members 1, 11, 21, 31 for water electrolysis of various preferred examples of the present invention. Here, FIG. 7A shows an embodiment 1 similar to that shown in FIG. 1A (porous electroconductive member 1 for water electrolysis), and FIG. 7B shows an embodiment. 2 (porous electroconductive member 11 for water electrolysis), FIG. 7 (c) shows Embodiment 3 (porous electroconductive member 21 for water electrolysis), and FIG. 7 (d) shows Embodiment 4 ( A porous conductive member 31) for water electrolysis is shown. FIG. 7 shows the thickness direction of the porous conductive member (the direction perpendicular to the plane parallel to the current collector portion 3) in the vertical direction with respect to the paper surface.

図7(a)には、多孔質導電体部2の表面に集電体部3を当接させた場合を示しており、図7(b)には、多孔質導電体部12の内部に集電体部13を内包(挟みこみ/挿入)した例を示している。また、本発明の水電解用の多孔質導電部材は、図7(c)、(d)に示す例のように、集電体部を複数設けた構成であってもよい。図7(c)には、多孔質導電体部22の内部に2本の集電体部23,24を距離(図7(c)中、2d)をあけるようにして内包(挟みこみ/挿入)した例を示しており、また、図7(d)には、多孔質導電体部32の内部に、互いに距離(図7(d)中、2d)をあけるようにして3本の集電体部33が内包(挟みこみ/挿入)され、当該集電体部33は、成形性を考慮し、多孔質導電体部32から突出した領域で1本に結束(連結)されている例を示している。図7中、距離dは、上述した「最厚部の厚み」と同義であり、好ましくは0.5mm以上、1.5mm以下の範囲内であり、この範囲内とすることで、イオン処理効率を最適化することが可能である。なお、図7(c)、図7(d)に示す例のように、集電体部を複数設けた場合には、集電体間の距離は、2d(すなわち、最厚部の厚みの2倍)とすることが好ましい。   FIG. 7A shows a case where the current collector portion 3 is brought into contact with the surface of the porous conductor portion 2, and FIG. 7B shows the inside of the porous conductor portion 12. An example in which the current collector portion 13 is included (pinched / inserted) is shown. Further, the porous electroconductive member for water electrolysis of the present invention may have a configuration in which a plurality of current collector portions are provided as in the examples shown in FIGS. 7 (c) and 7 (d). In FIG. 7 (c), the two current collector parts 23, 24 are placed inside the porous conductor part 22 so as to be spaced apart (2d in FIG. 7 (c)). 7 (d), and FIG. 7 (d) shows three current collectors that are spaced from each other (2d in FIG. 7 (d)) inside the porous conductor portion 32. An example in which the body part 33 is included (sandwiched / inserted), and the current collector part 33 is bundled (connected) in a region protruding from the porous conductor part 32 in consideration of formability. Show. In FIG. 7, the distance d is synonymous with the above-mentioned “thickness of the thickest portion”, and is preferably in the range of 0.5 mm or more and 1.5 mm or less. Can be optimized. 7C and 7D, when a plurality of current collector portions are provided, the distance between the current collectors is 2d (that is, the thickness of the thickest portion). 2 times) is preferable.

なお、図1、図7(a)に示す例のように、多孔質導電体部2の表面に集電体部3を当接させた場合、集電体部で電気分解が起こるのを防ぐため、集電体部3の多孔質導電体部2に当接する側とは反対側にポリイミドテープなどを貼り付けて絶縁するのが望ましい。   As shown in FIGS. 1 and 7A, when the current collector part 3 is brought into contact with the surface of the porous conductor part 2, electrolysis is prevented from occurring in the current collector part. Therefore, it is desirable to insulate the current collector part 3 by attaching a polyimide tape or the like on the side opposite to the side in contact with the porous conductor part 2.

本発明の水電解用の多孔質導電部材では、疎水性のバインダ材を用いているため、電解液が活性炭電極内部まで染み込みにくい。したがって、集電体は必ずしも白金コートのような貴金属コートが必要ない。このため、本発明の水電解用の多孔質導電部材においては、集電体部は貴金属コートのない金属部材であってよく、電解液により溶出しやすいステンレスや金属チタン等の金属をそのまま用いることができ、電極コストの削減を図ることができる。   In the porous electroconductive member for water electrolysis of the present invention, since the hydrophobic binder material is used, the electrolytic solution hardly penetrates into the activated carbon electrode. Therefore, the current collector does not necessarily need a noble metal coat such as a platinum coat. For this reason, in the porous electroconductive member for water electrolysis of the present invention, the current collector portion may be a metal member without a noble metal coat, and a metal such as stainless steel or titanium metal that is easily eluted by the electrolytic solution is used as it is. Therefore, the electrode cost can be reduced.

また本発明の水電解用の多孔質導電部材は、ロール圧延後に表面処理を行い、親水化することによって製造されたものであることが、好ましい。本発明の水電解用の多孔質導電部材は、電極活物質と疎水性のバインダ材とを含む多孔質導電体部の前駆体をロール圧延し、得られたシート状物(多孔質導電シート)に、表面処理として親水化処理を施すことで、好適に製造することができる。多孔質導電シートの親水化処理方法としては、金属ナトリウム溶液処理、EB照射処理、プラズマ処理、エキシマレーザー処理、紫外レーザー処理、コロナ処理、スルフォン化処理、などを挙げることができる。このように多孔質導電シートを親水化処理して、本発明の水電解用の多孔質導電部材を得ることで、電極内部まで吸着が可能である。   Moreover, it is preferable that the porous electroconductive member for water electrolysis of this invention is manufactured by performing surface treatment after roll rolling, and making it hydrophilic. The porous electroconductive member for water electrolysis of the present invention is obtained by rolling a precursor of a porous electroconductive portion containing an electrode active material and a hydrophobic binder material, and obtaining the sheet-like material (porous electroconductive sheet) Moreover, it can manufacture suitably by performing a hydrophilic treatment as surface treatment. Examples of the hydrophilic treatment method for the porous conductive sheet include metal sodium solution treatment, EB irradiation treatment, plasma treatment, excimer laser treatment, ultraviolet laser treatment, corona treatment, and sulfonation treatment. Thus, the inside of an electrode can be adsorbed by hydrophilizing the porous conductive sheet to obtain the porous electroconductive member for water electrolysis of the present invention.

ここで、図8は、本発明の水電解用の多孔質導電部材を用いた、好ましい一例の機能水生成器51を模式的に示す図である。本発明は、上述した本発明の水電解用の多孔質導電部材を、無隔膜1槽式の電解槽において金属イオンの吸脱着を行う電極として備える、機能水生成器についても提供する。図8に示す例の機能水生成器51は、上述した本発明の多孔質導電部材1,11,21,31と、白金電極54とを備える無隔膜1槽式の電解槽52を備える。図8に示す例の機能水生成器51は、この電解槽52における多孔質導電部材1,11,21,31および白金電極54に電気的に接続された、電流を供給するための定電流発生源55、多孔質導電部材および白金電極に供給する電流を適宜切り換えるためのスイッチング回路56、ならびに、定電流発生源55とスイッチング回路56との間に介され、電解槽における水電解を制御するための制御装置57を備える。これら定電流発生源55、スイッチング回路56および制御装置57は、それぞれ従来公知の適宜のものを組み合わせて用いればよく、特に制限されるものではない。   Here, FIG. 8 is a diagram schematically showing a preferred example of the functional water generator 51 using the porous electroconductive member for water electrolysis of the present invention. The present invention also provides a functional water generator provided with the above-described porous electroconductive member for water electrolysis according to the present invention as an electrode for adsorbing and desorbing metal ions in an electrolyzer having a single diaphragm. The functional water generator 51 of the example shown in FIG. 8 includes an electrolyzer 52 of a non-diaphragm 1 tank type including the porous conductive members 1, 11, 21, 31 of the present invention described above and a platinum electrode 54. The functional water generator 51 of the example shown in FIG. 8 is a constant current generator for supplying a current that is electrically connected to the porous conductive members 1, 11, 21, 31 and the platinum electrode 54 in the electrolytic cell 52. A source 55, a switching circuit 56 for appropriately switching the current supplied to the porous conductive member and the platinum electrode, and a constant current source 55 and the switching circuit 56 to control water electrolysis in the electrolytic cell. The control device 57 is provided. The constant current generation source 55, the switching circuit 56, and the control device 57 may be used in combination with appropriate ones known in the art, and are not particularly limited.

図8に示すような機能水生成器を用いることで、電解容器内に供給された原水(たとえば水道水)に対し、白金電極を陽極/陰極に、水電解用の多孔質導電部材を陰極/陽極にして電気分解することにより酸性水/アルカリ水を生成することができる。本発明でいう「機能水」は、この酸性水、アルカリ水の総称であるものとする。   By using a functional water generator as shown in FIG. 8, the platinum electrode is used as the anode / cathode and the porous conductive member for water electrolysis is used as the cathode / cathode with respect to the raw water (for example, tap water) supplied into the electrolytic vessel. Acidic / alkaline water can be generated by electrolysis using the anode. “Functional water” as used in the present invention is a generic term for this acidic water and alkaline water.

このように本発明の水電解用の多孔質導電部材を無隔膜1槽式の電解槽において用いることで、電極槽を簡素化することができ、更に、原理的に捨て水を発生せずに酸性水/アルカリ水などの水を生成することが可能である。   Thus, by using the porous electroconductive member for water electrolysis according to the present invention in an electrolyzer having one diaphragm, the electrode tank can be simplified, and in principle, no waste water is generated. It is possible to produce water such as acidic / alkaline water.

また、本発明の機能水生成器は、食器洗浄用途、理美容用途、加湿用途、又は、飲用用途に用いることを特徴とする。本発明の水電解用の多孔質導電部材を用いることで、バインダ材の成形性が強く、多孔質導電体部から電極活物質が溶出するのをほぼ抑えることが可能である。したがって、上述のような食器洗浄用途、理美容用途、加湿用途、又は、飲用用途といった不純物混入が問題となる用途に対しても溶出の問題発生が少なく、好適である。   In addition, the functional water generator of the present invention is characterized in that it is used for dishwashing, hairdressing, humidification, or drinking. By using the porous electroconductive member for water electrolysis according to the present invention, the moldability of the binder material is strong, and it is possible to substantially suppress the elution of the electrode active material from the porous conductor portion. Therefore, there is little problem of elution even in applications where contamination with impurities such as dishwashing use, barber / beauty use, humidification use, or drinking use is a problem.

1,11,21,31,53 水電解用の多孔質導電部材、2,12,22,32 多孔質導電体部、3,13,23,33 集電体部、4 電極活物質、5 バインダ材、51 機能水生成器、52 電解槽、54 白金電極、55 定電流発生源、56 スイッチング回路、57 制御回路。   1,11,21,31,53 Porous conductive member for water electrolysis, 2,12,22,32 Porous conductor part, 3,13,23,33 Current collector part, 4 Electrode active material, 5 Binder Material, 51 functional water generator, 52 electrolytic cell, 54 platinum electrode, 55 constant current source, 56 switching circuit, 57 control circuit.

従来、電気二重層コンデンサの電極材料としては通常、電極活物質として活性炭等を用い、フッ素系の疎水性バインダ材を用いて成形を行うのが一般的であった。しかしながら、水道水などを原水とした電気分解において、疎水性バインダ材としてポリテトラフルオロエチレンなどのフッ素樹脂系バインダ材を用いた場合、バインダ材が撥水性を有するため、電極内部への電解液の含浸性が悪く、電気分解などにおいて所定の電気的特性を得られないという問題があった。 Conventionally, as an electrode material of an electric double layer capacitor, it is common to use activated carbon or the like as an electrode active material and to perform molding using a fluorine-based hydrophobic binder material. However, in electrolysis using tap water or the like as raw water, when a fluororesin binder material such as polytetrafluoroethylene is used as the hydrophobic binder material, the binder material has water repellency. There was a problem that the impregnation property was poor and predetermined electrical characteristics could not be obtained in electrolysis or the like.

本発明の水電解用の多孔質導電部材1における、バインダ材3を構成する疎水性材料は、フッ素系の材料であることが好ましい。ここで、フッ素系材料としては例えばポリテトラフルオロエチレン(PTFE)などが挙げられるが、フッ素系材料は疎水性とともに、加熱成形時にシェア(剪断力)をかけることにより樹脂の繊維化(フィブリル化)が起こるため、ネットワーク化により多孔質導電体部の成形性を向上させ、多孔質導電体部から電極活物質が溶出するのを抑えることができる。 The hydrophobic material constituting the binder material 3 in the porous electroconductive member 1 for water electrolysis of the present invention is preferably a fluorine-based material. Here, examples of the fluorine-based material include polytetrafluoroethylene (PTFE), and the fluorine-based material is hydrophobic and is made into a fiber (fibrillation) by applying a shear (shearing force) during heat molding. Therefore, networkability can improve the moldability of the porous conductor portion and suppress the elution of the electrode active material from the porous conductor portion.

なお、上述の図2及び図4〜6の測定条件および使用部材は以下の通りである。
水道水の容量:80mL、90mAで定電流駆動、
白金電極:ダイソーエンジニアリング社製、サイズ:60×60mm(t=1)、
多孔質導電部材:活性炭(関西熱化学社製MSP−20)、カーボンブラック(ライオン社製ECP−600JD)、バインダ材(ダイキン工業社製ポリフロン(登録商標)PTFE F−201)、サイズ:50×50mm。
In addition, the measurement conditions and members used in FIG. 2 and FIGS. 4 to 6 described above are as follows.
Capacity of tap water: 80mL, 90mA constant current drive,
Platinum electrode: manufactured by Daiso Engineering, size: 60 × 60 mm (t = 1),
Porous conductive member: activated carbon (MSP-20 manufactured by Kansai Thermochemical Co., Ltd.), carbon black (ECP-600JD manufactured by Lion Corporation), binder material ( Polyflon (registered trademark) PTFE F-201 manufactured by Daikin Industries, Ltd.), size: 50 × 50 mm.

Claims (11)

親水化処理された電極活物質とバインダ材とを含む多孔質導電体部と、前記多孔質導電体部の表面に当接又は内包された集電体部とを備える水電解用の多孔質導電部材であって、前記バインダ材は疎水性材料から構成されることを特徴とする、水電解用の多孔質導電部材。   Porous conductive material for water electrolysis comprising a porous conductor part including a hydrophilized electrode active material and a binder material, and a current collector part in contact with or included in the surface of the porous conductor part A porous conductive member for water electrolysis, wherein the binder material is made of a hydrophobic material. 前記電極活物質は前記多孔質導電体部に70wt%以上、92wt%以下含まれることを特徴とする、請求項1記載の水電解用の多孔質導電部材。   2. The porous conductive member for water electrolysis according to claim 1, wherein the electrode active material is contained in the porous conductor portion at 70 wt% or more and 92 wt% or less. 前記バインダ材はフッ素系の材料であることを特徴とする、請求項1または2に記載の水電解用の多孔質導電部材。   The porous conductive member for water electrolysis according to claim 1 or 2, wherein the binder material is a fluorine-based material. 前記多孔質導電体部がさらに5wt%以上の導電助剤を含むことを特徴とする、請求項1〜3のいずれか1項に記載の水電解用の多孔質導電部材。   The porous conductive member for water electrolysis according to any one of claims 1 to 3, wherein the porous conductor portion further contains 5 wt% or more of a conductive additive. 前記多孔質導電体部は、最厚部の厚みが0.5mm以上、1.5mm以下であることを特徴とする、請求項1〜4のいずれか1項に記載の水電解用の多孔質導電部材。   The porous body for water electrolysis according to any one of claims 1 to 4, wherein the porous conductor portion has a thickness of a thickest portion of 0.5 mm or more and 1.5 mm or less. Conductive member. 前記多孔質導電体部は、最厚部の厚みが略1.0mmであることを特徴とする、請求項1〜4のいずれか1項に記載の水電解用の多孔質導電部材。   The porous conductive member for water electrolysis according to any one of claims 1 to 4, wherein the thickness of the thickest portion of the porous conductor portion is approximately 1.0 mm. 前記多孔質導電体部に対し前記集電体部を複数設けることを特徴とする、請求項1〜6のいずれか1項に記載の水電解用の多孔質導電部材。   The porous conductive member for water electrolysis according to any one of claims 1 to 6, wherein a plurality of the current collector portions are provided with respect to the porous conductor portion. 前記集電体部は貴金属コートのない金属部材であることを特徴とする、請求項1〜7のいずれか1項に記載の水電解用の多孔質導電部材。   The porous conductive member for water electrolysis according to any one of claims 1 to 7, wherein the current collector portion is a metal member without a noble metal coat. ロール圧延後に表面処理を行い、親水化することによって製造されたものであることを特徴とする、請求項1〜8のいずれか1項に記載の水電解用の多孔質導電部材。   The porous conductive member for water electrolysis according to any one of claims 1 to 8, wherein the porous conductive member is manufactured by performing a surface treatment after roll rolling to make it hydrophilic. 請求項1〜9のいずれか1項に記載の水電解用の多孔質導電部材を、無隔膜1槽式の電解槽において金属イオンの吸脱着を行う電極として備える、機能水生成器。   A functional water generator, comprising the porous electroconductive member for water electrolysis according to any one of claims 1 to 9 as an electrode for adsorbing and desorbing metal ions in an electrolyzer having a single diaphragm. 食器洗浄用途、理美容用途、加湿用途又は飲用用途に用いることを特徴とする、請求項10に記載の機能水生成器。   The functional water generator according to claim 10, wherein the functional water generator is used for dishwashing, hairdressing, humidification, or drinking.
JP2013155728A 2013-07-26 2013-07-26 Porous conductive member for water electrolysis, and functional water generator using the same Pending JP2015025174A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013155728A JP2015025174A (en) 2013-07-26 2013-07-26 Porous conductive member for water electrolysis, and functional water generator using the same
PCT/JP2014/068290 WO2015012106A1 (en) 2013-07-26 2014-07-09 Porous electrically conductive member for use in water electrolysis, and functional water generator equipped with same
CN201480041197.1A CN105392926A (en) 2013-07-26 2014-07-09 Porous electrically conductive member for use in water electrolysis, and functional water generator equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155728A JP2015025174A (en) 2013-07-26 2013-07-26 Porous conductive member for water electrolysis, and functional water generator using the same

Publications (1)

Publication Number Publication Date
JP2015025174A true JP2015025174A (en) 2015-02-05

Family

ID=52393154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155728A Pending JP2015025174A (en) 2013-07-26 2013-07-26 Porous conductive member for water electrolysis, and functional water generator using the same

Country Status (3)

Country Link
JP (1) JP2015025174A (en)
CN (1) CN105392926A (en)
WO (1) WO2015012106A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070863A (en) * 2019-11-01 2021-05-06 東洋アルミニウム株式会社 Electrode for alkaline water electrolysis

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647841C2 (en) * 2016-08-11 2018-03-21 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва (ПАО "РКК "Энергия") Water electrolyser and operation method thereof
CN109631651B (en) * 2018-12-06 2020-07-07 华北电力大学 Local self-adaptive controllable wettability coupling microstructure enhanced boiling heat exchange method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075593A (en) * 1983-06-22 1985-04-27 アトケム Material comprising electroconductive fiber mainly, manufacture and particularly use for manufacturing cathode element
JP2005505692A (en) * 2001-10-02 2005-02-24 バイエル マテエリアルサイエンス アーゲー Manufacturing method of gas diffusion electrode
JP2006051457A (en) * 2004-08-13 2006-02-23 Fuji Photo Film Co Ltd Silver-supported catalyst and its production method, and silver catalyst support type gas diffusion electrode, and electrolytic oxidation method and electrolytic oxidation system using it,
JP2006219694A (en) * 2005-02-08 2006-08-24 Permelec Electrode Ltd Gas diffusion electrode
WO2011013578A1 (en) * 2009-07-31 2011-02-03 旭硝子株式会社 Electrolyte material, liquid composition, and membrane -electrode assembly for polymer electrolyte fuel cell
JP2013108104A (en) * 2011-11-17 2013-06-06 Permelec Electrode Ltd Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157720A (en) * 1996-11-07 1999-03-02 Honda Motor Co Ltd Electrolytic functional water, its production method and device
CN1162929C (en) * 1999-06-30 2004-08-18 古屋长一 Method for manufacturing gaseous diffusion electrode material
AU2003266386A1 (en) * 2002-09-27 2004-04-23 Bayer Materialscience Ag Method for producing a gas diffusion electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075593A (en) * 1983-06-22 1985-04-27 アトケム Material comprising electroconductive fiber mainly, manufacture and particularly use for manufacturing cathode element
JP2005505692A (en) * 2001-10-02 2005-02-24 バイエル マテエリアルサイエンス アーゲー Manufacturing method of gas diffusion electrode
JP2006051457A (en) * 2004-08-13 2006-02-23 Fuji Photo Film Co Ltd Silver-supported catalyst and its production method, and silver catalyst support type gas diffusion electrode, and electrolytic oxidation method and electrolytic oxidation system using it,
JP2006219694A (en) * 2005-02-08 2006-08-24 Permelec Electrode Ltd Gas diffusion electrode
WO2011013578A1 (en) * 2009-07-31 2011-02-03 旭硝子株式会社 Electrolyte material, liquid composition, and membrane -electrode assembly for polymer electrolyte fuel cell
JP2013108104A (en) * 2011-11-17 2013-06-06 Permelec Electrode Ltd Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070863A (en) * 2019-11-01 2021-05-06 東洋アルミニウム株式会社 Electrode for alkaline water electrolysis

Also Published As

Publication number Publication date
CN105392926A (en) 2016-03-09
WO2015012106A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
EP3591095B1 (en) Cathode, method of producing same, electrolyzer using same
JP6819531B2 (en) Metal film forming method and metal film forming device
WO2019176141A1 (en) Carbon dioxide electrolysis cell and electrolysis device
JP6487418B2 (en) Organic hydride production equipment
KR101584725B1 (en) Alkaline anion exchange membrane water electrolyzer using Ni electrodeposited hydrophilic porous carbon material and method for preparing the same
JP2008148452A (en) Actuator
JPWO2020153022A1 (en) Electrochemical hydrogen pump
WO2015012106A1 (en) Porous electrically conductive member for use in water electrolysis, and functional water generator equipped with same
Chen et al. Cationic fluorinated polymer binders for microbial fuel cell cathodes
JP2009209379A (en) Water electrolysis apparatus
JP6782796B2 (en) Multi-pole electrolytic cell, multi-pole electrolytic cell, hydrogen production method
JP2023042896A (en) Carbon dioxide electrolytic apparatus
JP2007066750A (en) Gas diffuser for fuel cell, separator for fuel cell and the fuel cell
JP6837130B2 (en) Anode, multi-pole electrolytic cell, hydrogen production method
JP5298358B2 (en) Fuel cell
JP7524118B2 (en) Carbon Dioxide Electrolysis Device
JP2007128908A (en) Cell unit of solid polymer electrolyte fuel cell
JP2015224392A (en) Oxygen-consuming electrode and method for its production
JP6306879B2 (en) Manifold unit and electrolytic cell
JP2021075745A (en) Hydrogen generating apparatus
WO2023145914A1 (en) Negative electrode for hydrogen generation, negative electrode for alkaline water electrolysis, method for producing negative electrode, bipolar electrolytic cell, electrolysis cell for alkaline water electrolysis, and method for producing hydrogen
JP2009187891A (en) Membrane-electrode assembly and fuel cell
KR100735416B1 (en) Electrode for fuel cell
JP2023056398A (en) Electrolytic tank and water electrolysis system
JP2001064417A (en) Ion conducting membrane and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307