Nothing Special   »   [go: up one dir, main page]

JP2015021733A - アイリスユニット、寸法測定装置、及び寸法測定方法 - Google Patents

アイリスユニット、寸法測定装置、及び寸法測定方法 Download PDF

Info

Publication number
JP2015021733A
JP2015021733A JP2013147487A JP2013147487A JP2015021733A JP 2015021733 A JP2015021733 A JP 2015021733A JP 2013147487 A JP2013147487 A JP 2013147487A JP 2013147487 A JP2013147487 A JP 2013147487A JP 2015021733 A JP2015021733 A JP 2015021733A
Authority
JP
Japan
Prior art keywords
iris
slit
optical system
width
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013147487A
Other languages
English (en)
Other versions
JP6155924B2 (ja
Inventor
星児 笹田
Seiji Sasada
星児 笹田
文継 前田
Fumitsugu Maeda
文継 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013147487A priority Critical patent/JP6155924B2/ja
Publication of JP2015021733A publication Critical patent/JP2015021733A/ja
Application granted granted Critical
Publication of JP6155924B2 publication Critical patent/JP6155924B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diaphragms For Cameras (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】絞りの位置を高速で移動可能なアイリスユニットを提供する。
【解決手段】アイリスユニットは、光学系の光軸方向に開口511を有する固定絞り部51と、軸を中心に回転し、かつ、周方向における位置及び前記軸からの距離が互いに異なる複数のスリット523を含むスリット群522が形成されるアイリス盤52と、アイリス盤52を回転させる駆動手段とを備える。アイリス盤52の周方向において各スリット523の長さは開口の長さよりも長く、各スリット523は、アイリス盤52の回転時に光軸方向において少なくとも一部が開口511と重なるように配置され、スリット523及び開口511が重なった部分が光学系の絞りを形成する。
【選択図】図2

Description

本発明は、光学系の絞りを提供するアイリスユニット、並びに、当該アイリスユニットを用いた寸法測定装置及び寸法測定方法に関する。
従来、レンズの焦点位置に小さな開口の絞りが配置され、レンズ主軸に対して平行な主光線を選択的に結像することが可能なテレセントリック光学系が知られている。このようなテレセントリックレンズ光学系では、主光線がレンズ主軸に対して平行であるため、物体の位置が移動しても像の大きさは変わらない。この性質を利用して、奥行きのある物体の寸法測定にはテレセントリック光学系が利用されている。
通常、テレセントリック光学系を利用した寸法測定は、レンズ主軸に対して直交する方向の寸法を測定する。この寸法測定を行う際には、レンズ主軸に奥行方向が平行になるように被測定物が正しく配置されることが前提となる。例えば被測定物が傾いて配置された場合、像として捉えられる形状が異なってしまい、正確な寸法測定は不可能となる。この場合、被測定物の傾きを直すか、または被測定物の傾きに対してレンズの角度を物理的に一致させるか等の補正操作が必要になる。特に、工業製品の測定工程では、上記補正操作を行うために、装置が煩雑になったり、測定サイクル時間が長くなったりといった問題が顕著になる。
そこで、特許文献1に記載の寸法測定システムでは、テレセントリック光学系において第1レンズの焦点位置に配置された小さな開口の絞りが、レンズ主軸に直交する平面上で移動可能なように構成されている。この寸法測定システムでは、絞りに入射する光線のレンズ主軸に対する傾きを選択することにより、像の角度が補正された画像を取得することができる。これによって、レンズ、被測定物、及び撮像手段を動かすことなく、傾斜した被測定物の正確な寸法測定が可能になる。
特開2009−92596号公報
しかしながら、特許文献1に記載の寸法測定システムでは、撮像毎に絞りの位置を移動させる操作が必要であり、当該操作に時間がかかるため、測定サイクル時間が長くなってしまう。
本発明は、このような点に鑑みて創作されたものであり、その目的は、光軸に直交する平面上において絞りの位置を高速で移動可能なアイリスユニットを提供することにある。また、別の目的は、傾いた被測定物であっても、本発明のアイリスユニットを用いて正確な寸法を高速で測定できる寸法測定装置及び寸法測定方法を提供することにある。
本発明に係るアイリスユニットは、光学系の移動可能な絞りを提供するアイリスユニットであって、光学系の光軸方向に開口を有する固定絞り部と、回転軸を中心に回転し、かつ、周方向における位置及び前記回転軸からの距離が互いに異なる複数のスリットを含むスリット群が形成されるアイリス盤と、アイリス盤を回転させる駆動手段と、を備える。アイリス盤の周方向において各スリットの長さは開口の長さよりも長く、各スリットは、アイリス盤の回転時に光軸方向において少なくとも一部が開口と重なるように配置される。
上記構成によれば、駆動手段がアイリス盤を回転させることによって、スリット群に含まれる複数のスリットは、固定絞り部の開口と順に重なる。アイリス盤の各スリットと固定絞り部の開口とが重なった部分が光学系の絞りとして機能する。したがって、本発明に係るアイリスユニットは、光軸に直交する平面上において絞りの位置を高速で移動可能である。
また、本発明に係る寸法測定装置は、長さ及び幅を観念可能な形状の被測定物に光を照射する照射手段と、被測定物の像を形成するテレセントリック光学系と、テレセントリック光学系の移動可能な絞りを提供する本発明のアイリスユニットと、アイリス盤の各スリットと固定絞り部の開口とを通過した光によってそれぞれ形成される複数の像をそれぞれ撮像する撮像手段と、撮像手段が撮像した複数の像に基づいて撮像画像を取得し、当該撮像画像における像の最小の幅を被測定物の幅として測定する画像処理手段と、を備える。
上記構成によれば、被測定物がテレセントリック光学系に対して傾いて配置された場合であっても、取得された撮像画像における像の最小の幅を測定することによって、テレセントリック光学系に正しく配置された場合と同様の測定値を得ることができる。したがって、本発明に係る寸法測定装置によれば、傾いた被測定物であっても、本発明のアイリスユニットを用いて正確な寸法を高速で測定することができる。本発明に係る寸法測定方法も同様の効果を得ることができる。
本実施形態に係る寸法測定装置を示す模式的な構成説明図である。 本実施形態に係るアイリス盤を像側から視た平面図である。 本実施形態に係るアイリス盤を物体側から視た斜視図である。 図3に示すアイリス盤をIV−IV線で切断した部分断面図である。 本実施形態に係る寸法測定方法を説明するフローチャートである。 バックライトに対して垂直にセットされた被測定物と、得られる撮像画像とを示す模式図である。 バックライトに対して斜めにセットされた被測定物と、得られる撮像画像とを示す模式図である。 被測定物としての熱交換器を模式的に示す断面図である。 本実施形態の変形例に係るアイリス盤の像側を示す平面図である。
以下、本発明の実施形態による寸法測定装置1を図面に基づいて説明する。
図1に示すように、本実施形態の寸法測定装置1は、バックライト2、テレセントリック光学系3、銅鏡4、アイリスユニット5、CCDカメラ6、フォトインタラプタ7及び画像処理部8を備える。
バックライト2は、例えば測定台に設置された面光源である。バックライト2上には被測定物10が配置される。本実施形態では、寸法測定を簡便に行うために被測定物10を影絵として結像させる。また本実施形態では、説明の便宜のために、被測定物10が略直方体であると仮定し、バックライト2上に垂直に配置される。
テレセントリック光学系3は、両側テレセントリックを実現する複数のレンズから構成され、略円錐形に形成された鏡筒4に収容される。本実施形態では、テレセントリック光学系3は、模式的に、バックライト2に対向する比較的大口径の第1レンズ31と、第1レンズに比較して小口径の第2レンズ32とを有する。第1レンズ31と第2レンズ32とは互いの光軸が一致し、この一致する光軸をレンズ主軸Zとする。
以下、説明の便宜のため、レンズ主軸Zの方向をz方向と称する。z方向は、図1の上下方向に相当する。また、z方向に直交し、図1の左右方向に相当する方向をx方向と称し、図1の紙面に直交する方向をy方向と称する。
また、第1レンズ31の像側焦点と第2レンズ32の物体側焦点とは一致する。z方向において、第1レンズ31の像側焦点と第2レンズ32の物体側焦点とが一致する位置を焦点位置9とする。
アイリスユニット5は、後述にて詳細に説明するように、固定絞り部51と、アイリス盤52と、駆動手段としてのサーボモータ53とを備えており、テレセントリック光学系3において焦点位置9を通過する光を調整する。固定絞り部51は焦点位置9に配置され、アイリス盤52は固定絞り部51よりも物体側に設けられる。アイリス盤52は、円板状であり、サーボモータ53によって一定の速度で中心を軸として回転可能である。アイリス盤52の回転軸521はレンズ主軸Zと平行である。
撮像手段としてのCCDカメラ6は、CCDイメージセンサを備えるラインセンサカメラである。CCDイメージセンサは、結像位置においてx方向に沿って配置され、その中心はレンズ主軸Zに一致する。これによって、CCDカメラ6は、x方向における明るさの違いを認識する。また、CCDカメラ6は、被測定物10を撮像し、その撮像情報を画像処理部8に出力する。
バックライト2から発射した光は、第1レンズ31を通過する時に集光され、アイリスユニット5の固定絞り部51及びアイリス盤52を通過し、第2レンズ31を通過して平行光となり、CCDカメラ6に投影される。
フォトインタラプタ7は、アイリス盤52の外周側の一部を挟むように対向して配置された発光部71と受光部72とを備えている。フォトインタラプタ7は、発光部71からの光を受光部72が検出したタイミングを、タイミング情報として画像処理部8に出力する。
画像処理部8は、周知のデスクトップパソコンを用いることが可能である。画像処理部8は、フォトインタラプタ7及びCCDカメラ6にそれぞれ電気的に接続されており、フォトインタラプタ7から取得したタイミング情報に基づいて、CCDカメラ6の撮像タイミングを制御する。また、画像処理部8は、CCDカメラ6から出力された撮像情報に基づいて撮像画像を取得し、取得した撮像画像から被測定物10の寸法を測定する。また、画像処理部8は撮像画像をディスプレイに表示可能であり、ユーザが表示された画像を確認することも可能である。
なお、図1における画像処理部8の図示は、フォトインタラプタ7及びCCDカメラ6との電気的接続を示しているにすぎず、寸法測定装置1における他の構成要素との物理的な位置関係を示すものではない。
次に、アイリスユニット5の固定絞り部51及びアイリス盤52について図2を参照して説明する。
図2に示すように、固定絞り部51は、z方向に開口した矩形の開口511を有する。開口511の長辺はx方向に延びており、短辺はy方向に延びている。開口511の中心はレンズ主軸Zに一致する。
アイリス盤52は、z方向に延びる回転軸521を中心に回転可能な円盤であり、像側の面が固定絞り部51に対向するように配置される。回転軸521は、y方向における位置が固定絞り部51の開口511の中心と一致する。
アイリス盤52には、複数のスリット523から構成されたスリット群522が形成される。本実施形態のアイリス盤52には、13個のスリット523から構成された4個のスリット群522が形成されている。
アイリス盤52の像側を回転軸521方向から見たとき、各スリット523の形状は、アイリス盤52の径方向に短辺を有し、かつ周方向に弧を描く長辺を有する略矩形である。具体的には、アイリス盤52の径方向において、各スリット523の幅Wsは、固定絞り部51の開口511の長辺の長さDpxよりも短い。また、アイリス盤51の周方向において、各スリット523の長さLsは、固定絞り部51の開口511の短辺の長さDpyよりも長い。
本実施形態において、4個のスリット群522は周方向に並んでおり、各スリット群522はアイリス盤52の中心角90°の範囲にそれぞれ形成されている。各スリット群522における13個のスリット523は、アイリス盤52の周方向に連続的に並んで形成されている。
また、各スリット群522における13個のスリット523は、回転軸521からの距離が段階的に異なるように形成されている。例えば、各スリット群522において、中心軸521から見て反時計回り側端部のスリット523と回転軸521との距離R01が最も短く、時計回り方向のスリット523である程回転軸521との距離が長くなり、時計回り側端部のスリット523と回転軸521との距離R13が最も長い。ここで、スリット523と回転軸521との最短距離である距離R01は、固定絞り部51の開口511と回転軸521との最短距離Rminよりも長い。また、スリット523と回転軸521との最長距離である距離R13は、固定絞り部51の開口511と回転軸521との最長距離Rmax よりも短い。
以上の構成によって、アイリス盤52に形成された全てのスリット523は、アイリス盤52の回転に伴って、1個ずつ順に、z方向において開口511と部分的に重なることが可能である。スリット523と開口511とが重なって形成されるz方向の開口が、テレセントリック光学系3の絞り55となる。
また、各スリット523と開口511とにより形成される絞り55のx方向の位置は、アイリス盤52の回転に伴って変化する。ここで、1つの位置を「1水準」とすると、本実施形態では、絞り55のx方向の位置は13水準で変化する。このため、絞り55に入射する光線のz方向に対する傾きは13水準で変化する。なお、本実施形態では、各スリット群522における13個のスリット523のうち中央(7番目)のスリット523が開口511と重なったとき、絞り55がレンズ主軸Zに一致する。
次に、各スリット523の形状について、図3及び図4を参照して詳細に説明する。
図3に示すように、アイリス盤52の半径方向における各スリット523の幅は、テレセントリック光学系3の出射側である像側から、入射側である物体側に向かって広がっている。具体的には、図4に示すように、各スリット523の幅を形成する壁部525のz方向に対する角度α1は、絞り55に入射する光線がz方向に対して最大に傾く角度α2よりも大きくなるように設定されている。
なお、絞り55に入射する光線のz方向に対する角度は、スリット群522のうちいずれのスリット523が開口511と共に絞り55を形成しているのかによって決定される。レンズ主軸Zから最もずれた位置で開口511と重なるスリット523が絞り55を形成する際、絞り55に入射する光線がz方向に対して最大に傾く。
アイリス盤52の外周側の端部には、フォトインタラプタ7の光が通過するためのトリガ穴524が形成されている。トリガ穴524は、各スリット523に対応して形成され、撮像タイミングを提供する。各トリガ穴524は、対応するスリット523とはアイリス盤52の回転軸を挟んで反対側に形成される。
(寸法測定装置1による寸法測定方法)
次に、図1に示す寸法測定装置1による被測定物10の寸法測定方法について、図5に示すフローチャートを参照しながら説明する。フローチャートの説明において記号「S」はステップを示す。
まず、略直方体状の被測定物10がバックライト2上に垂直にセットされる。ここで、図6(b)に示すように、被測定物10は、高さ方向の中心軸がレンズ主軸Zに一致するようにセットされると仮定する。本実施形態において、被測定物10のx方向の寸法を「幅」と称する。寸法測定装置1は被測定物10の「幅」を測定する。
被測定物10のセットの後、バックライト2が照射を開始し(S1)、サーボモータ6がアイリス盤52を一定の速度で回転させる(S2)。S1及びS2の前後は逆であってもよい。S1及びS2の後、フォトインタラプタ7は、発光部71からトリガ穴513を介して受光部72に入射した光を検出し、タイミング情報を映像処理部8に出力する。映像処理部8は、入力されたタイミング情報に基づいて、CCDカメラ6にトリガ情報を出力する。
CCDカメラ6は、入力されたトリガ情報に基づいて、被測定物10の撮像を行う(S3)。ここで、アイリス盤52の回転によって、1つのスリット群522に属する13個全てのスリット523が固定絞り部51の開口511を通過する間を1サイクルとする。S3において、CCDカメラ6は1サイクルの間に13回の撮像を行う。1回の撮像は、1つのスリット523と開口511とが重なっている間に行われる。なお、スリット群522のうちの中央に位置するスリット523と開口511が重なっているとき、被測定物10の幅に対応する平行光線21による像が撮像される。
画像処理部8は、CCDカメラ6から出力された1サイクル分(13回分)の撮像情報に基づいて、図6(a)に示すような撮像画像81を取得する(S4)。図6(a)において、撮像画像81のうち点線で囲った部分は1回の撮像に対応する単位画像である。各撮像により得られる単位画像は画角がそれぞれ異なっているため、得られる撮像画像81では、像82の長さ方向における幅が異なる。
撮像画像81の像82のうち最小の幅Wは、被測定物10の真の幅に最も近い値に相当する。そこで、画像処理部8は、最小幅Wを被測定物10の幅寸法として測定する(S5)。
一方、図7(b)に示すように、被測定物10の高さ方向の中心軸がレンズ主軸Zに対して傾斜してセットされる場合を仮定する。この場合、被測定物10の両傾斜端面に沿って傾斜した平行光線22は、スリット群522のうち中央以外のいずれかのスリット523と開口511とを通過し、CCDカメラ6に結像する。よって、S4において、画像処理部8は、図7(a)に示すような撮像画像83を取得する。S5において、画像処理部8は、上述の場合と同様に、取得した撮像画像83の像84のうち、最小の幅Wを被測定物10の幅寸法として測定する。
寸法測定装置1は、S2からS5までのステップを繰り返すことによって、複数回の測定を連続的に行うことができる。本実施形態では、アイリス盤52が1回転する間に、4つのスリット群522を用いて4回の測定を行うことができる。
(効果)
上述したように、本実施形態の寸法測定装置1によれば、被測定物10がテレセントリック光学系3に対して傾いている場合であっても、補正操作等を行わずに正確な測定を行うことができる。また、アイリス盤52の回転によって連続的に多水準の撮像を行うことが可能であるため、特許文献1の従来技術に比べて、測定を短時間で行うことができる。
また、本実施形態のアイリス盤52では、上述したように、各スリット523が円周方向に一定の長さを有しているため、各スリット523は開口511と一定の時間重なることができる。よって、撮像を高速で行う場合でも、撮像タイミングのズレをある程度許容することができる。
また、本実施形態のアイリス盤52は、一般的な絞り部よりも大きな形状を有しており、剛性を確保するために、ある程度の厚みを必要とする。板厚が大きくなると、傾いて入射された光の一部がスリットの内壁に干渉し、視野が妨げられる可能性がある。しかし、本実施形態では、上述したように、スリット523の幅が像側から物体側に向かって広がっているため、絞り55に入射する光線がレンズ主軸Zに対して傾いている場合であっても、スリット523の壁部に妨げられない。よって、撮像画像81の視野範囲が狭窄化するのを防ぐことができる。
(寸法測定方法の変形例)
上述にて説明した寸法測定方法では、バックライト2上の固定位置に被測定物10をセットしているが、本発明はこれに限られない。すなわち、寸法測定装置1は、被測定物10がテレセントリック光学系3の下をy方向に移動する間に、寸法測定を行ってもよい。
例えば、図8に示すように、フィン・チューブ式熱交換器100の扁平チューブ110の幅Tを測定する場合を例にして説明する。
まず、扁平チューブ110の高さ方向をz方向に合わせ、x方向において幅Tの中心をレンズ主軸Zに合わせる。また、後の測定工程の間、扁平チューブ110がテレセントリック光学系3の下をy方向に一定の速度で移動するように、扁平チューブ110の移動を開始する。次に、バックライト2が照射を開始し、アイリス盤52が回転を開始する。
次に、CCDカメラ6は、扁平チューブ110のy方向に異なる13箇所を、1サイクルの間に角度を変えながら撮像する。次に、画像処理部8は、上述の場合と同様に、13回分の撮像情報に基づいて撮像画像81を取得し、撮像画像81のうち最も狭い幅Wを幅寸法として測定する。なお、得られた撮像画像81において、各撮像に対応する単位画像は、扁平チューブ110のy方向に異なる箇所を撮像したものである。
本変形例では、扁平チューブ110がテレセントリック光学系3の下をy方向に一定の速度で移動する間、撮像と測定を繰り返すことにより、扁平チューブ110の幅Tをy方向において一定の間隔で測定することができる。ここで、一定の間隔は、扁平チューブ110が1サイクルの間に移動する距離に対応する。
また、本変形例では、扁平チューブ110が傾いている場合であっても幅Tを正確に測定することができる。よって、画像処理部8は、測定した値が所定範囲に含まれているか否かを判定することによって、扁平チューブ110が規格に適合するものであるかを検査することができる。
また、本変形例は、y方向の位置決めを必要としないため、複数の寸法測定をより高速で行うことを可能にする。例えば、サーボモータ53がアイリス盤52を3000rpmで回転させる場合、アイリス盤52は20msで一回転する。よって、被測定物10の1サイクル分の撮像は5msで行われる。
(その他の構成等)
アイリス盤52に形成するスリット群522及びスリット523の各々の数は、本実施形態で示すものに限られない。被測定物10の規格、移動速度、及び測定間隔、サーボモータ7の回転数、CCDカメラ6のシャッタ速度、並びに全体のタクトタイム等に基づいて適宜設定可能である。例えば、1回転の間に1サイクルの撮像を行う場合、図9に示すようなアイリス盤54を用いることができる。アイリス盤54には、13個のスリット543を含む1つのスリット群542が形成されている。
1つのスリット群522が含むスリット523の数は、測定の水準数に対応し、少なくとも2つ以上であればよい。1つのスリット群522におけるスリット523の数が多くなれば、より精度の高い測定を行うことができる。
以上、本発明はこのような実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の形態で実施することができる。
1 ・・・寸法測定装置
2 ・・・バックライト(照射手段)
3 ・・・テレセントリック光学系
5 ・・・アイリスユニット
51 ・・・固定絞り部
52 ・・・アイリス盤
521・・・回転軸
522・・・スリット群
523・・・スリット
53 ・・・サーボモータ(駆動手段)
55 ・・・絞り
6 ・・・CCDカメラ
8 ・・・画像処理部

Claims (5)

  1. 光学系の移動可能な絞りを提供するアイリスユニット(5)であって、
    前記光学系の光軸方向に開口(511)を有する固定絞り部(51)と、
    回転軸(521)を中心に回転し、かつ、周方向における位置及び前記回転軸からの距離が互いに異なる複数のスリット(523)を含むスリット群(522)が形成されるアイリス盤(52)と、
    前記アイリス盤を回転させる駆動手段(53)と、を備え、
    前記アイリス盤の周方向において前記スリットの長さ(Ls)は前記開口の長さ(Dpy)よりも長く、
    前記スリットは、前記アイリス盤の回転時に前記光軸方向において少なくとも一部が前記開口と重なるように配置されることを特徴とするアイリスユニット。
  2. 前記アイリス盤は、径方向における前記スリットの幅が前記光学系の出射側から入射側に向けて広がっていることを特徴とする請求項1に記載のアイリスユニット。
  3. 前記アイリス盤は、前記スリットの周方向の長さ(Ls)が、前記スリットの径方向の幅(Ws)よりも長いことを特徴とする請求項1または2に記載のアイリスユニット。
  4. 長さ及び幅を観念可能な形状の被測定物(10)に光を照射する照射手段(2)と、
    前記被測定物の像を形成するテレセントリック光学系(3)と、
    前記テレセントリック光学系の移動可能な絞りを提供する請求項1から3のいずれか1項に記載のアイリスユニットと、
    前記アイリス盤の前記スリットと前記固定絞り部の前記開口とを通過した光によって形成される複数の像をそれぞれ撮像する撮像手段(6)と、
    前記撮像手段が撮像した複数の像に基づいて撮像画像を取得し、当該撮像画像における像の最小の幅を前記被測定物の幅として測定する画像処理手段(8)と、を備える寸法測定装置。
  5. テレセントリック光学系と、当該テレセントリック光学系の移動可能な絞りを提供する請求項1から3のいずれか1項に記載のアイリスユニットとを用いて、長さ及び幅を観念可能な形状の被測定物の幅寸法を測定する寸法測定方法であって、
    前記テレセントリック光学系によって前記被測定物の像が形成されるように、前記被測定物に光を照射する照射工程(S1)と、
    前記アイリス盤を回転させる回転工程(S2)と、
    前記アイリス盤の回転中に、前記アイリス盤の前記スリットと前記固定絞り部の前記開口とを通過した光によって形成される複数の像をそれぞれ撮像する撮像工程(S3)と、
    前記撮像工程において撮像された複数の像に基づいて撮像画像を取得する画像取得工程(S4)と、
    前記撮像画像における像の最小の幅を、前記対被測定物の幅として測定する測定工程(S5)と、を含むことを特徴とする寸法測定方法。
JP2013147487A 2013-07-16 2013-07-16 寸法測定装置、及び寸法測定方法 Active JP6155924B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013147487A JP6155924B2 (ja) 2013-07-16 2013-07-16 寸法測定装置、及び寸法測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147487A JP6155924B2 (ja) 2013-07-16 2013-07-16 寸法測定装置、及び寸法測定方法

Publications (2)

Publication Number Publication Date
JP2015021733A true JP2015021733A (ja) 2015-02-02
JP6155924B2 JP6155924B2 (ja) 2017-07-05

Family

ID=52486333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147487A Active JP6155924B2 (ja) 2013-07-16 2013-07-16 寸法測定装置、及び寸法測定方法

Country Status (1)

Country Link
JP (1) JP6155924B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058299A (ja) * 2015-09-18 2017-03-23 株式会社デンソー 絞り装置、及び、寸法測定装置
CN114355091A (zh) * 2022-01-17 2022-04-15 厦门巨帮自动化科技有限公司 一种器件检测系统及其方法
CN117968532A (zh) * 2024-04-01 2024-05-03 江苏荣旭机械有限公司 一种电机轴尺寸检测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642149U (ja) * 1987-06-24 1989-01-09
JPH0513297A (ja) * 1991-07-09 1993-01-22 Nikon Corp 位置合わせ装置
JP2003270092A (ja) * 2002-03-15 2003-09-25 Canon Inc レンズ性能測定装置
JP2009092596A (ja) * 2007-10-11 2009-04-30 Denso Corp 寸法検査システムおよび寸法検査方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642149U (ja) * 1987-06-24 1989-01-09
JPH0513297A (ja) * 1991-07-09 1993-01-22 Nikon Corp 位置合わせ装置
US5568257A (en) * 1991-07-09 1996-10-22 Nikon Corporation Adjusting device for an alignment apparatus
JP2003270092A (ja) * 2002-03-15 2003-09-25 Canon Inc レンズ性能測定装置
JP2009092596A (ja) * 2007-10-11 2009-04-30 Denso Corp 寸法検査システムおよび寸法検査方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058299A (ja) * 2015-09-18 2017-03-23 株式会社デンソー 絞り装置、及び、寸法測定装置
CN114355091A (zh) * 2022-01-17 2022-04-15 厦门巨帮自动化科技有限公司 一种器件检测系统及其方法
CN117968532A (zh) * 2024-04-01 2024-05-03 江苏荣旭机械有限公司 一种电机轴尺寸检测装置
CN117968532B (zh) * 2024-04-01 2024-06-07 江苏荣旭机械有限公司 一种电机轴尺寸检测装置

Also Published As

Publication number Publication date
JP6155924B2 (ja) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6561327B2 (ja) 光学検査装置、鏡筒の製造方法、および光学検査方法
JP5944850B2 (ja) 欠陥検査方法及びこれを用いた装置
JP5322722B2 (ja) レンズ調芯装置およびレンズ調芯装置の制御方法
WO2013081072A1 (ja) 測定装置、測定方法および半導体デバイス製造方法
JP5854680B2 (ja) 撮像装置
EP3425437B1 (en) Patterned light irradiation apparatus and method
WO2009090871A1 (ja) 被検査体の検査装置
CN108120676B (zh) 使用针孔阵列的物体共焦成像装置和方法
JP5951793B2 (ja) 撮像素子位置検出装置
JP2018163136A (ja) 三次元検出装置及び三次元検出方法
JP6155924B2 (ja) 寸法測定装置、及び寸法測定方法
JP2015108582A (ja) 3次元計測方法と装置
JP2007010393A (ja) ねじ形状測定装置
JP2014235066A (ja) 表面形状測定装置
JP2024104297A (ja) 固有パラメータ較正システム
TW201140042A (en) Pattern inspecting method, pattern inspecting device and imaging head for pattern inspecting device
WO2023089788A1 (ja) 三次元計測装置
WO2018123639A1 (ja) 撮像装置および撮像方法
JP5482411B2 (ja) 立体形状測定装置、検査装置及び立体形状測定用調整方法
JP5708501B2 (ja) 検出方法および検出装置
JP4788968B2 (ja) 焦点面傾斜型共焦点表面形状計測装置
JP2019007845A (ja) Mtf測定用チャート、画像処理方法および画像処理装置
JP2008170209A (ja) 形状測定方法
TW202232933A (zh) 測試圖卡、相機製造裝置、相機的製造方法以及焦點檢測程序
JP2006071410A (ja) レンズユニット光軸調整装置及びレンズユニット光軸調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6155924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250