Nothing Special   »   [go: up one dir, main page]

JP2015098661A - Combined filament entangled yarn, method for producing the same, and woven or knitted fabric including combined filament entangled yarn - Google Patents

Combined filament entangled yarn, method for producing the same, and woven or knitted fabric including combined filament entangled yarn Download PDF

Info

Publication number
JP2015098661A
JP2015098661A JP2013238923A JP2013238923A JP2015098661A JP 2015098661 A JP2015098661 A JP 2015098661A JP 2013238923 A JP2013238923 A JP 2013238923A JP 2013238923 A JP2013238923 A JP 2013238923A JP 2015098661 A JP2015098661 A JP 2015098661A
Authority
JP
Japan
Prior art keywords
yarn
woven
polyester
knitted fabric
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013238923A
Other languages
Japanese (ja)
Other versions
JP6174464B2 (en
Inventor
大林 徹治
Tetsuharu Obayashi
徹治 大林
眞矢 樋口
Shinya Higuchi
眞矢 樋口
田中 潤
Jun Tanaka
潤 田中
宗政 大久保
Munemasa Okubo
宗政 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Trading Co Ltd
Original Assignee
Unitika Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Trading Co Ltd filed Critical Unitika Trading Co Ltd
Priority to JP2013238923A priority Critical patent/JP6174464B2/en
Publication of JP2015098661A publication Critical patent/JP2015098661A/en
Application granted granted Critical
Publication of JP6174464B2 publication Critical patent/JP6174464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combined filament entangled yarn capable of imparting a high water-repellent performance to a woven or knitted fabric by using a conventionally well-known low cost fluorine-based water repellent without particularly devising a structure of the woven or knitted fabric.SOLUTION: The combined filament entangled yarn is composed of a polyester fiber A having a single fiber fineness of 0.2-0.9 dtex and a polyester fiber B having a single fiber fineness of 1.0-5.0 dtex. The combined filament entangled yarn has a false-twist crimp as a whole and a mass ratio (A/B) of the polyester fiber A to the polyester fiber B is in a range of 20/80-80/20, and a projection is formed by the polyester fiber A on a surface part of the combined filament entangled yarn.

Description

本発明は、糸条表面に微細な凸部を有し、織編物に高い撥水性能を付与しうる混繊交絡糸、その好ましい製造方法、及び当該混繊交絡糸を用いた織編物に関する。   The present invention relates to a mixed entangled yarn having fine convex portions on the surface of a yarn and capable of imparting high water repellency to a woven or knitted fabric, a preferred production method thereof, and a woven or knitted fabric using the mixed tangled yarn.

従来、撥水性能を有する織編物が、ユニフォーム衣料、スポーツ衣料などの分野で要望されており、これまでに多くの撥水性織編物が提案されている。昨今では、織編物に付加価値を持たせる観点から、より安価で高い撥水性能が要望され、単に織編物を撥水加工するだけでは、かかる要望には応えられないのが実情である。   Conventionally, a woven or knitted fabric having water repellency has been demanded in the field of uniform clothing, sports clothing, and the like, and many water-repellent woven and knitted fabrics have been proposed so far. In recent years, from the viewpoint of adding added value to a woven or knitted fabric, a cheaper and higher water-repellent performance is demanded, and it is the actual situation that simply satisfying the water-repellent processing of the woven or knitted fabric cannot meet such a demand.

織編物に高い撥水性能を付与するには、第一に撥水剤の組成を工夫すること、第二に基材たる織編物の構造を工夫して撥水剤の特性が一層発現し易くなるようにすることが有効とされている。   In order to impart high water repellency to the woven or knitted fabric, firstly devise the composition of the water repellant, and secondly devise the structure of the woven or knitted fabric that is the base material to make the characteristics of the water repellant easier to express. It is effective to be.

例えば、特許文献1及び特許文献2には、撥水剤を工夫する技術が提案されている。これらの技術を利用すれば、高い撥水性能を織編物に付与できることが記載されている。   For example, Patent Literature 1 and Patent Literature 2 propose a technique for devising a water repellent. It is described that if these techniques are used, high water repellency can be imparted to the woven or knitted fabric.

一方、織編物の構造を工夫する技術として、例えば、特許文献3及び特許文献4には、織編物表面に微細な凹凸構造を設け、これにより水滴を点で支えるロータス効果を発現させ、撥水性能を向上させる技術が提案されている。   On the other hand, as a technique for devising the structure of the woven or knitted fabric, for example, Patent Document 3 and Patent Document 4 provide a fine concavo-convex structure on the surface of the woven or knitted fabric, thereby expressing a lotus effect that supports water droplets with dots, Technologies that improve performance have been proposed.

特開2007−231442号公報JP 2007-231442 A 特許2002−201463号公報Japanese Patent No. 2002-201443 特公平5−83666号公報Japanese Patent Publication No. 5-83666 特公平4−5786号公報Japanese Examined Patent Publication No. 4-5786

例えば特許文献1及び特許文献2に開示されたような、撥水剤の組成を工夫して所望の撥水性能を得る手段は、織編物の設計によらずに一律に優れた撥水性能を付与できる点で有効である。しかしながら、これらの撥水剤は、従来広く使用されているフッ素系撥水剤などと比べて高価であること、限られた加工条件下でしか所定の撥水性能を発現させることができないこと、撥水加工には専用設備が必要であることなど、これらの撥水剤により撥水性が高められた織編物を商業的生産するにあたり、障害となる点が多いという問題がある。   For example, the means for obtaining the desired water repellency by devising the composition of the water repellant, as disclosed in Patent Document 1 and Patent Document 2, has uniformly excellent water repellency regardless of the design of the woven or knitted fabric. It is effective in that it can be granted. However, these water repellents are expensive compared to fluorine-based water repellents that have been widely used in the past, and can exhibit predetermined water repellent performance only under limited processing conditions. There is a problem that there are many obstacles in the commercial production of woven and knitted fabrics whose water repellency is enhanced by these water repellents, such as the necessity of dedicated equipment for water repellent finishing.

一方、例えば特許文献3及び特許文献4に開示されたような、織編物としての表面構造を工夫して所望の撥水性能を発揮させる手段は、フッ素系撥水剤などの従来公知の安価な撥水剤を使用し、既存条件下で加工さえすれば、織編物に高撥水性能を発揮させることができるという利点がある。しかしながら、織編物の構造を工夫する技術の場合、一定の撥水性能向上は認められるものの、上記の撥水剤の組成を工夫する方法と比べると、未だ満足できるレベルにはないという問題がある。さらに、織編物としては、特定の表面構造を有する特異なものに限定されるため、商業展開を行う際に異なる表面構造を採用することはできず、用途が限られるという問題もある。   On the other hand, as disclosed in, for example, Patent Document 3 and Patent Document 4, a means for devising the surface structure as a woven or knitted fabric to exhibit a desired water-repellent performance is a conventionally known inexpensive method such as a fluorine-based water repellent. If a water repellent is used and processed under existing conditions, there is an advantage that the woven or knitted fabric can exhibit high water repellency. However, in the case of the technique for devising the structure of the woven or knitted fabric, although a certain improvement in water repellency is recognized, there is a problem that it is not yet at a satisfactory level as compared with the method of devising the composition of the water repellent. . Furthermore, since the woven or knitted fabric is limited to a specific one having a specific surface structure, a different surface structure cannot be adopted when performing commercial development, and there is a problem that applications are limited.

このような状況下、織編物の構造を特段工夫せずとも、従来公知の安価なフッ素系撥水剤などを使用して高い撥水性能を付与する技術が望まれるが、このような技術はこれまでに提案されていない。本発明は、これらの従来技術の欠点を解消するものである。すなわち、本発明は、織編物の構造を特段工夫せずとも、従来公知の安価なフッ素系撥水剤などを使用することにより、織編物に高い撥水性能を付与できる混繊交絡糸を提供することを主な目的とする。   Under such circumstances, a technique for imparting high water repellency using a conventionally known inexpensive fluorine-based water repellent is desired without specially devising the structure of the woven or knitted fabric. So far it has not been proposed. The present invention eliminates these disadvantages of the prior art. That is, the present invention provides a mixed entangled yarn that can impart high water repellency to a woven or knitted fabric by using a conventionally known inexpensive fluorine-based water repellent without specially devising the structure of the woven or knitted fabric. The main purpose is to do.

本発明者は、織編物表面に微細な凹凸構造を設けることで撥水性能を得る従来技術が、所望の撥水性能が得られない原因について鋭意検討を行った。その結果、当該凹凸構造が十分に緻密でなく、大きな水滴は支えることはできるが、小さな水滴は当該凹凸の溝に落ちる傾向にあることを見出した。さらに、水滴の表面張力を十分に作用させることがロータス効果を発現させるうえで有効であることを突き止め、それには、単に凹凸構造で水滴を支えるだけでは足りず、繊維または糸条を伝って水滴が織編物内部へ移行することを抑制する何らかの工夫も必要であると考えた。   The present inventor has intensively studied the reason why the conventional technology for obtaining water repellency by providing a fine concavo-convex structure on the surface of a woven or knitted fabric does not provide the desired water repellency. As a result, it was found that the uneven structure is not sufficiently dense and can support large water droplets, but small water droplets tend to fall into the uneven grooves. Furthermore, it has been found that sufficient surface tension of the water droplets is effective in producing the lotus effect, and it is not sufficient to simply support the water droplets with a concavo-convex structure. It was thought that some kind of contrivance was necessary to suppress the movement of the fabric into the woven or knitted fabric.

本発明者は、織編物表面に微細な凹凸構造を設ける従来技術が、専ら、織編物の組織、密度、目付けなど織編物の設計を工夫することで同構造を具現している点に鑑み、もはやそのような工夫では撥水性能をさらに向上させるための根本的な解決には至らないと考えた。すなわち、織編物を構成する糸条自身の構造を工夫することにより、織編物の設計が如何なるものでも所望の撥水性能を得ることができ、織編物の用途に制約もなくなるであろうと考えた。本発明者は、このような知見に基づき、糸条の構造について鋭意検討を重ねた結果、糸条の表面部分において比較的細繊度の繊維を突出させることにより、糸条の表面部分における水滴との接触面積を減らし、水滴の表面張力を発現し易くできることを見出した。さらに、糸条の内部を比較的太繊度の繊維で構成することにより、糸条の表面部分において前記の突出部が表面部分において保持され、突出部が潰れ難くなることを見出した。さらに、このような糸条の表面部分においては、前記の細い繊維による突出部は、当該繊維が緩やかに絡み合って形成された部分から突出しており、この細い繊維が絡み合った部分は、糸条の表面部分に多くの空気を保持できる層(空気保持層)を形成しており、糸条を織編物とした際に、この空気保持層が織編物の表面において水滴を遮断し、織編物の内部に水滴が移行することを効果的に抑制することを見出した。   In view of the fact that the conventional technology for providing a fine concavo-convex structure on the surface of the woven or knitted fabric embodies the structure exclusively by devising the design of the woven or knitted fabric such as the structure, density, and weight of the woven or knitted fabric, I thought that such a device would no longer provide a fundamental solution to further improve the water repellency. In other words, by devising the structure of the yarn itself constituting the knitted or knitted fabric, it was thought that whatever the design of the woven or knitted fabric could obtain the desired water-repellent performance, there would be no restrictions on the use of the woven or knitted fabric. . Based on such knowledge, the present inventor has conducted extensive studies on the structure of the yarn, and as a result, the fibers on the surface portion of the yarn can It has been found that the contact area can be reduced and the surface tension of water droplets can be easily developed. Furthermore, it has been found that by forming the inside of the yarn with fibers having a relatively large fineness, the protruding portion is held in the surface portion in the surface portion of the yarn, and the protruding portion is hardly crushed. Further, in the surface portion of such a yarn, the protruding portion due to the thin fibers protrudes from a portion formed by gently entwining the fibers, and the portion where the thin fibers are entangled is the portion of the yarn. A layer that can hold a lot of air (air retention layer) is formed on the surface, and when the yarn is made into a woven or knitted fabric, this air retaining layer blocks water droplets on the surface of the woven or knitted fabric, It has been found that water droplets can be effectively suppressed.

このように、本発明者は、上記のような特定の糸条を用いることにより、織編物設計を特段工夫せずとも、従来公知の安価なフッ素系撥水剤などを使用するだけで、織編物に高い撥水性能を発揮させることができることを見出した。本発明は、これらの知見に基づいて、さらに検討を重ねることにより完成された発明である。   As described above, the present inventor can use a specific yarn as described above to use only a conventionally known inexpensive fluorine-based water repellent, without specially designing a woven or knitted fabric. It was found that the knitted fabric can exhibit high water repellency. The present invention has been completed by further studies based on these findings.

すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. 単糸繊度が0.2〜0.9dtexのポリエステル繊維Aと、単糸繊度が1.0〜5.0dtexのポリエステル繊維Bとから構成される混繊交絡糸であって、
前記混繊交絡糸は、全体として仮撚捲縮を有し、かつ、前記ポリエステル繊維Aと前記ポリエステル繊維Bとの質量比率(A/B)が20/80〜80/20の範囲にあり、
前記混繊交絡糸の表面部分において、ポリエステル繊維Aによる突出部が形成されている、混繊交絡糸。
項2. 捲縮率が10〜45%の範囲にあり、交絡数が90〜150個/mの範囲にある、項1に記載の混繊交絡糸。
項3. 前記ポリエステル繊維Bが、太陽光遮蔽物質を含む、項1または2に記載の混繊交絡糸。
項4. 前記ポリエステル繊維Bが、赤外線吸収物質を含む、項1または2に記載の混繊交絡糸。
項5. 項1〜4のいずれかに記載の混繊交絡糸の製造方法であって、
単糸繊度が1.5〜6.5dtex、伸度が100〜160%のポリエステル高配向未延伸糸Bを延伸倍率1.1〜1.4倍で延伸する延伸工程と、
前記延伸工程で延伸された前記ポリエステル高配向延伸糸Bと、単糸繊度が0.4〜1.3dtex、伸度が80〜110%のポリエステル高配向未延伸糸Aとを、加工速度100〜700m/分、延伸倍率1.10〜1.30倍の条件で複合仮撚りする複合仮撚り工程と、
前記複合仮撚り工程で得られた複合仮撚糸を、流体ノズルを用いて、エアー圧0.1〜0.6Mpa、オーバーフィード率1〜4%の条件で混繊交絡する混繊交絡工程と、
を備える、混繊交絡糸の製造方法。
項6. 項1〜4のいずれかに記載の混繊交絡糸が織編された織編物であって、
KES−Fシステムによる織編物表面粗さの平均偏差(SMD)が3.0〜8.0μmの範囲にあり、かつ、撥水加工されてなる、織編物。
項7. カバーファクター(CF)が1500〜3000の範囲にあり、かつ、水滴転がり角度が15度以下である、項6に記載の織編物。
That is, this invention provides the invention of the aspect hung up below.
Item 1. A mixed entangled yarn composed of a polyester fiber A having a single yarn fineness of 0.2 to 0.9 dtex and a polyester fiber B having a single yarn fineness of 1.0 to 5.0 dtex,
The mixed fiber entangled yarn has a false twist crimp as a whole, and the mass ratio (A / B) of the polyester fiber A and the polyester fiber B is in the range of 20/80 to 80/20,
A mixed fiber entangled yarn in which a protruding portion of the polyester fiber A is formed on a surface portion of the mixed fiber entangled yarn.
Item 2. Item 2. The mixed tangled yarn according to Item 1, wherein the crimp rate is in the range of 10 to 45% and the entanglement number is in the range of 90 to 150 pieces / m.
Item 3. Item 3. The mixed fiber entangled yarn according to Item 1 or 2, wherein the polyester fiber B contains a sunlight shielding substance.
Item 4. Item 3. The mixed fiber entangled yarn according to Item 1 or 2, wherein the polyester fiber B contains an infrared absorbing substance.
Item 5. The method for producing a mixed fiber entangled yarn according to any one of Items 1 to 4,
A drawing step of drawing a polyester highly oriented undrawn yarn B having a single yarn fineness of 1.5 to 6.5 dtex and an elongation of 100 to 160% at a draw ratio of 1.1 to 1.4 times;
The polyester highly oriented stretched yarn B stretched in the stretching step and the polyester highly oriented unstretched yarn A having a single yarn fineness of 0.4 to 1.3 dtex and an elongation of 80 to 110% are processed at a processing speed of 100 to 100%. A composite false twisting step of composite false twisting under conditions of 700 m / min and a draw ratio of 1.10 to 1.30 times;
A mixed fiber entanglement step in which the composite false twisted yarn obtained in the composite false twisting step is mixed and entangled under conditions of an air pressure of 0.1 to 0.6 Mpa and an overfeed rate of 1 to 4% using a fluid nozzle;
A method for producing a mixed fiber entangled yarn.
Item 6. A woven or knitted fabric in which the mixed fiber entangled yarn according to any one of Items 1 to 4 is woven and knitted,
A woven or knitted fabric having a mean deviation (SMD) of the surface roughness of the woven or knitted fabric by the KES-F system in the range of 3.0 to 8.0 μm and water-repellent.
Item 7. Item 7. The woven or knitted fabric according to Item 6, wherein the cover factor (CF) is in the range of 1500 to 3000, and the water droplet rolling angle is 15 degrees or less.

本発明によれば、織編物の構造を特段工夫せずとも、従来公知の安価なフッ素系撥水剤などを使用することにより、織編物に高い撥水性能を付与できる混繊交絡糸を提供することができる。すなわち、本発明の混繊交絡糸においては、混繊交絡糸の表面部分において、混繊交絡糸を構成する繊維の細い繊維が突出している。この細い繊維の突出部に水滴が接触すると、水の表面張力が十分に発揮される。このため、当該混繊交絡糸を織編物に用いた場合、当該織編物に優れた撥水特性(具体的には、水滴をのせた織編物に角度を付けると水滴がころがり落ちるロータス効果)を付与することができる。したがって、当該混繊交絡糸を用いた本発明の織編物は、織編物の構造を特段工夫せずとも、従来公知の安価なフッ素系撥水剤などを使用することにより、高い撥水性能を発揮する。さらに、本発明によれば、このように優れた高い撥水性能を発揮する当該混繊交絡糸及び当該織編物の製造方法を提供することができる。   According to the present invention, there is provided a mixed fiber entangled yarn that can impart high water repellency to a woven or knitted fabric by using a conventionally known inexpensive fluorine-based water repellent without specially devising the structure of the woven or knitted fabric. can do. That is, in the mixed fiber entangled yarn of the present invention, fine fibers constituting the mixed fiber entangled yarn protrude from the surface portion of the mixed fiber entangled yarn. When water droplets come into contact with the protruding portions of the thin fibers, the surface tension of water is sufficiently exerted. For this reason, when the mixed entangled yarn is used in a woven or knitted fabric, the water repellency excellent in the woven or knitted fabric (specifically, a lotus effect in which water drops roll when an angle is applied to a woven or knitted fabric on which water droplets are placed). Can be granted. Therefore, the woven or knitted fabric of the present invention using the mixed fiber entangled yarn has high water repellency by using a conventionally known inexpensive fluorine-based water repellent without specially devising the structure of the woven or knitted fabric. Demonstrate. Furthermore, according to the present invention, it is possible to provide a method for producing the mixed fiber entangled yarn and the woven or knitted fabric that exhibit such excellent water repellency.

本発明の混繊交絡糸の表面部分の光学顕微鏡写真である。It is an optical microscope photograph of the surface part of the mixed fiber entangled yarn of this invention. 本発明の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of this invention.

本発明の混繊交絡糸は、単糸繊度が0.2〜0.9dtexのポリエステル繊維Aと、単糸繊度が1.0〜5.0dtexのポリエステル繊維Bとから構成される混繊交絡糸であって、当該混繊交絡糸は、全体として仮撚捲縮を有し、かつ、ポリエステル繊維Aとポリエステル繊維Bとの質量比率(A/B)が20/80〜80/20の範囲にあり、当該混繊交絡糸の表面部分において、ポリエステル繊維Aによる突出部が形成されていることを特徴とする。以下、本発明の混繊交絡糸、当該混繊交絡糸の製造方法、当該混繊交絡糸を用いた織編物、及び当該織編物の製造方法について詳述する。   The mixed fiber entangled yarn of the present invention is a mixed fiber entangled yarn composed of a polyester fiber A having a single yarn fineness of 0.2 to 0.9 dtex and a polyester fiber B having a single yarn fineness of 1.0 to 5.0 dtex. And the said mixed fiber entangled yarn has a false twist crimp as a whole, and the mass ratio (A / B) of the polyester fiber A and the polyester fiber B is in the range of 20/80 to 80/20. In addition, a protruding portion of the polyester fiber A is formed on the surface portion of the mixed fiber entangled yarn. Hereinafter, the mixed fiber entangled yarn of the present invention, the method for producing the mixed fiber entangled yarn, the knitted fabric using the mixed fiber entangled yarn, and the method for producing the woven / knitted fabric will be described in detail.

1.混繊交絡糸
本発明の混繊交絡糸は、単糸繊度が0.2〜0.9dtexのポリエステル繊維Aと、単糸繊度が1.0〜5.0dtexのポリエステル繊維Bとから構成されている。本発明の混繊交絡糸においては、ポリエステル繊維A及びポリエステル繊維Bの繊度を、それぞれこのような特定の範囲に設定することにより、ポリエステル繊維Aとポリエステル繊維Bとを十分に絡めさせることができる。この絡まりにより、本発明の混繊交絡糸の表面部分において、相対的に細いポリエステル繊維Aによる突出部が形成されやすくなる。なお、本発明において、ポリエステル繊維Aによる突出部とは、混繊交絡糸の表面部分において、ポリエステル繊維Aのループ、たるみなどによって、ポリエステル繊維Aが外側に突出した部分をいう。
1. Mixed fiber entangled yarn The mixed fiber entangled yarn of the present invention comprises a polyester fiber A having a single yarn fineness of 0.2 to 0.9 dtex and a polyester fiber B having a single yarn fineness of 1.0 to 5.0 dtex. Yes. In the mixed fiber entangled yarn of the present invention, the polyester fiber A and the polyester fiber B can be sufficiently entangled by setting the fineness of the polyester fiber A and the polyester fiber B to such specific ranges, respectively. . Due to this entanglement, a relatively thin protruding portion of the polyester fiber A is easily formed on the surface portion of the mixed fiber entangled yarn of the present invention. In the present invention, the protruding portion of the polyester fiber A refers to a portion where the polyester fiber A protrudes to the outside due to a loop or slack of the polyester fiber A in the surface portion of the mixed fiber entangled yarn.

ここで、図1は、本発明の混繊交絡糸の一例の光学顕微鏡写真である。図1を参照しながら、本発明の混繊交絡糸の表面構造について説明する。本発明の混繊交絡糸の表面部分は、ポリエステル繊維Bに比して相対的に細いポリエステル繊維Aによる突出部が形成されている。混繊交絡糸の表面部分における微細な突出部は、相対的に細いポリエステル繊維Aにより形成されているため、突出部の上に水滴がのった場合に、水滴が混繊交絡糸の内側に移行しにくい。したがって、本発明の混繊交絡糸1を用いて織編物とすることにより、当該凸部において所謂ロータス効果を生じ、当該織編物に優れた撥水性能を発揮させることが可能となる。また、後述の通り、本発明の混繊交絡糸においては、特定の単糸繊度を有する2種類のポリエステル繊維A、Bを特定の質量比で混繊したものであるため、当該混繊交絡糸の表面部分には、相対的に細いポリエステル繊維Aが緩やかに絡み合った部分が形成されている。そして、この細い繊維が絡み合った部分は、空気を保持しやすい層(空気保持層)を形成する。本発明の突出部は、ポリエステル繊維Aが絡み合ったこの部分から突出している。すなわち、ポリエステル繊維Aの突出部の内側(混繊交絡糸の内側)には、細いポリエステル繊維Aが緩やかに絡み合って形成された上記の空気保持層が形成されているため、本発明の混繊交絡糸の内側に水分が移行しにくい。なお、本発明の混繊交絡糸において、当該空気保持層のさらに内側では、ポリエステル繊維A、Bとが絡み合っている。   Here, FIG. 1 is an optical micrograph of an example of the mixed fiber entangled yarn of the present invention. The surface structure of the mixed fiber entangled yarn of the present invention will be described with reference to FIG. The surface portion of the mixed fiber entangled yarn of the present invention is formed with a protruding portion made of a relatively thin polyester fiber A as compared with the polyester fiber B. Since the fine protrusions on the surface portion of the mixed fiber entangled yarn are formed by relatively thin polyester fibers A, when water drops are placed on the protruding parts, the water drops are inside the mixed fiber entangled yarn. Difficult to migrate. Therefore, by using the mixed entangled yarn 1 of the present invention to form a woven or knitted fabric, a so-called lotus effect is produced at the convex portion, and the woven or knitted fabric can exhibit excellent water repellency. In addition, as described later, in the mixed fiber entangled yarn of the present invention, two types of polyester fibers A and B having a specific single yarn fineness are mixed at a specific mass ratio. In the surface portion, a portion in which relatively thin polyester fibers A are gently entangled is formed. And the part in which this fine fiber was entangled forms the layer (air holding layer) which is easy to hold | maintain air. The protruding portion of the present invention protrudes from this portion where the polyester fibers A are intertwined. That is, since the air retention layer formed by gently entwining the thin polyester fiber A is formed inside the protruding portion of the polyester fiber A (inside the mixed entangled yarn), the mixed fiber of the present invention It is difficult for moisture to move inside the entangled yarn. In the mixed fiber entangled yarn of the present invention, the polyester fibers A and B are intertwined inside the air retaining layer.

織編物に対して高い撥水性能を付与できる混繊交絡糸とする観点から、ポリエステル繊維Aの単糸繊度としては、好ましくは0.3〜0.7dtex程度が挙げられる。なお、ポリエステル繊維Aの単糸繊度が0.2dtex未満になると、繊維が細過ぎて開繊効果が乏しくなり、ポリエステル繊維Bとの絡み効果が小さくなって、交絡不良が発生しやすくなる。一方、ポリエステル繊維Aの単糸繊度が0.9dtexを超えると、繊維が剛直となり、ポリエステル繊維Bとの混繊が不十分となって、交絡不良が生じやすくなる。また、ポリエステル繊維Aが太くなると、織編物としたときの水滴との接触面積が大きくなり、さらに、繊維が剛直となるため、上述のような空気保持層が形成され難くなり、結果として所望の撥水性能が得られにくくなる。   From the viewpoint of making a mixed fiber entangled yarn capable of imparting high water repellency to a woven or knitted fabric, the single yarn fineness of the polyester fiber A is preferably about 0.3 to 0.7 dtex. In addition, when the single yarn fineness of the polyester fiber A is less than 0.2 dtex, the fiber is too thin and the opening effect is poor, the entanglement effect with the polyester fiber B is reduced, and entanglement failure is likely to occur. On the other hand, when the single yarn fineness of the polyester fiber A exceeds 0.9 dtex, the fiber becomes stiff and the fiber mixing with the polyester fiber B becomes insufficient, so that entanglement failure tends to occur. Further, when the polyester fiber A is thick, the contact area with the water droplets when the woven or knitted fabric is made becomes large, and further, since the fiber becomes rigid, it becomes difficult to form the air retaining layer as described above, and as a result It becomes difficult to obtain water repellency.

また、ポリエステル繊維Bの単糸繊度が1.0dtex未満になると、ポリエステル繊維Aによって形成された上記の微細な突出部を混繊交絡糸の表面部分において保持することが困難となり、上記のような空気保持層が形成されにくくなる。また、ポリエステル繊維Aとポリエステル繊維Bの単糸繊度とが同程度になると、混繊交絡糸を織編物とした際に、織編物が柔らかくなり過ぎ、張り腰のないくたくたな織編物になりやすくなる。このような織編物は、衣料用織編物として好ましくない。一方、ポリエステル繊維Bの単糸繊度が5.0dtexを超えると、上記範囲の単糸繊度を有するポリエステル繊維Aと混繊した場合にも、織編物全体として硬い風合いのものとなる。このような織編物も、衣料用織編物として好ましくない。さらに、交絡状態が悪くなって、織編物の表面に、上記のような微細な突出部を形成し難くなり、織編物に対して高い撥水性能を付与することが難しくなる。   Moreover, when the single yarn fineness of the polyester fiber B is less than 1.0 dtex, it becomes difficult to hold the fine protrusions formed by the polyester fiber A on the surface portion of the mixed fiber entangled yarn, as described above. It becomes difficult to form an air retaining layer. Further, when the single yarn fineness of the polyester fiber A and the polyester fiber B is approximately the same, when the mixed entangled yarn is used as a woven or knitted fabric, the woven or knitted fabric becomes too soft and easily becomes a loose woven or knitted fabric without tension. Become. Such a woven or knitted fabric is not preferable as a woven or knitted fabric for clothing. On the other hand, when the single yarn fineness of the polyester fiber B exceeds 5.0 dtex, even when mixed with the polyester fiber A having the single yarn fineness in the above range, the entire woven or knitted fabric has a hard texture. Such a woven or knitted fabric is also not preferable as a woven or knitted fabric for clothing. Furthermore, the entangled state becomes worse, and it becomes difficult to form the fine protrusions as described above on the surface of the woven or knitted fabric, and it becomes difficult to impart high water repellency to the woven or knitted fabric.

本発明の混繊交絡糸は、全体として仮撚捲縮を有する。本発明の混繊交絡糸において、仮撚捲縮の度合い、すなわち捲縮率としては好ましくは10〜45%程度、より好ましくは20〜40%程度が挙げられる。混繊交絡糸が適度な捲縮率を有していることにより、混繊交絡糸の表面部分に上記のような微細な突出部を形成し易くなる。なお、混繊交絡糸の捲縮率が10%未満となる場合、捲縮率が低いため、混繊交絡糸の表面部分に上記のような突出部を形成することが難しく、織編物としたときに撥水性能を十分に発揮できなくなる。また、混繊交絡糸の捲縮率が45%を超えると、混繊交絡糸のストレッチ性能が強過ぎるため、高撥水性の織編物には適さない。すなわち、混繊交絡糸が伸びたときに平坦な構造となるため、上記のような突出部が維持されにくくなり、撥水性能が低下する。   The mixed fiber entangled yarn of the present invention has a false twist crimp as a whole. In the mixed fiber entangled yarn of the present invention, the degree of false twist crimp, that is, the crimp rate is preferably about 10 to 45%, more preferably about 20 to 40%. When the mixed entangled yarn has an appropriate crimp rate, it becomes easy to form the fine protrusions as described above on the surface portion of the mixed entangled yarn. When the crimp rate of the mixed fiber entangled yarn is less than 10%, the crimp rate is low, so it is difficult to form the protruding portion as described above on the surface portion of the mixed fiber entangled yarn. Sometimes water repellency cannot be fully exhibited. On the other hand, if the crimp ratio of the mixed entangled yarn exceeds 45%, the stretch performance of the mixed tangled yarn is too strong, so that it is not suitable for a highly water-repellent woven or knitted fabric. That is, since a flat structure is obtained when the mixed fiber entangled yarn is stretched, it is difficult to maintain the protrusions as described above, and the water repellency is lowered.

本発明において、混繊交絡糸の捲縮率は、以下の方法により測定して得られた値である。まず、枠周1.125mの検尺機を用いて巻き数5回で混繊交絡糸をカセ取りした後、カセを室温下フリー状態でスタンドに一昼夜吊り下げる。次に、カセに0.000147cN/dtexの荷重を掛けたまま沸水中に投入し30分間湿熱処理する。その後、カセを取り出し、水分を濾紙で軽く取り、室温下フリー状態で30分間放置する。そして、カセに0.000147cN/dtexの荷重及び0.00177cN/dtex(軽重荷)を掛け、長さXを測定する。続いて、0.000147cN/dtexの荷重は掛けたまま、軽重荷に代えて0.044cN/dtexの荷重(重荷重)を掛け、長さYを測定する。その後、捲縮率(%)=(Y−X)/Y×100なる式に基づき、算出する。捲縮率の測定は、混繊交絡糸の5本について行い、それぞれの平均をその糸の捲縮率とする。   In the present invention, the crimp rate of the mixed fiber entangled yarn is a value obtained by measurement by the following method. First, using a measuring machine with a frame circumference of 1.125 m, the mixed entangled yarn is cut with 5 turns, and then the hook is hung on a stand in a free state at room temperature all day and night. Next, the load is put into boiling water while applying a load of 0.000147 cN / dtex to the casserole and subjected to wet heat treatment for 30 minutes. Thereafter, the casserole is taken out, the moisture is lightly removed with a filter paper, and left in a free state at room temperature for 30 minutes. Then, the load is applied with a load of 0.000147 cN / dtex and 0.00177 cN / dtex (light load), and the length X is measured. Subsequently, while applying a load of 0.000147 cN / dtex, a load (heavy load) of 0.044 cN / dtex is applied instead of a light heavy load, and the length Y is measured. Then, it calculates based on the formula of crimp rate (%) = (Y−X) / Y × 100. The crimp rate is measured for five mixed entangled yarns, and the average of each is taken as the crimp rate of the yarn.

本発明において、ポリエステル繊維Aとポリエステル繊維Bとの質量比率(A/B)は、20/80〜80/20の範囲にある。ポリエステル繊維Aの質量比率(混率)が20%未満の場合、混繊交絡糸におけるポリエステル繊維Aの割合が少なすぎるため、上記のような突出部を混繊交絡糸の表面部分に形成することが困難となり、織編物に高い撥水性能を付与することが難しくなる。一方、ポリエステル繊維Aの混率が80%を超えると、ポリエステル繊維Bの割合が少なすぎて、上記の突出部を表面部分に保持することが難しくなる。このため、微細な突出部が潰れ易くなり、織編物に対して高い撥水性能を付与することが困難となる。ポリエステル繊維Aとポリエステル繊維Bとの質量比率(A/B)としては、好ましくは30/70〜70/30程度が挙げられる。   In the present invention, the mass ratio (A / B) between the polyester fiber A and the polyester fiber B is in the range of 20/80 to 80/20. When the mass ratio (mixing ratio) of the polyester fiber A is less than 20%, since the ratio of the polyester fiber A in the mixed fiber entangled yarn is too small, the above-described protruding portion may be formed on the surface portion of the mixed fiber entangled yarn. It becomes difficult to impart high water repellency to the woven or knitted fabric. On the other hand, when the mixing ratio of the polyester fiber A exceeds 80%, the ratio of the polyester fiber B is too small, and it becomes difficult to hold the protruding portion on the surface portion. For this reason, a fine protrusion part becomes easy to be crushed and it becomes difficult to provide high water-repellent performance to a woven or knitted fabric. The mass ratio (A / B) between the polyester fiber A and the polyester fiber B is preferably about 30/70 to 70/30.

本発明の混繊交絡糸においては、糸全体として混繊交絡されている。混繊交絡糸の交絡数としては、好ましくは90〜150個/m程度が挙げられる。交絡数が90個/m未満である場合、交絡状態が解け易くなり、混繊交絡糸の表面部分において上記のような微細な突出部を形成することが難しくなる場合がある。また、交絡状態が解け易くなると、織編物の製造工程において必然的に受けるガイド摩耗によって、糸条内部にズレが発生し、織編物の欠点を誘発しやすくなる場合がある。一方、交絡数が150個/mを超えると、ポリエステル繊維Aとポリエステル繊維Bとが絡まり過ぎて、捲縮が消失し、上記の突出部も形成されにくくなるため、織編物に高い撥水性能を付与し難くなる。なお、本発明において、混繊交絡糸の交絡数は、JIS L1013 8.15フック法に基づいて測定して得られた値である。   In the mixed fiber entangled yarn of the present invention, the whole yarn is mixed and entangled. The entanglement number of the mixed fiber entangled yarn is preferably about 90 to 150 pieces / m. When the number of entanglements is less than 90 / m, the entangled state is easily unraveled, and it may be difficult to form the fine protrusions as described above in the surface portion of the mixed fiber entangled yarn. In addition, when the entangled state becomes easy to be unraveled, the guide wear that is inevitably received in the manufacturing process of the woven or knitted fabric may cause a deviation in the yarn, which may easily induce a defect of the woven or knitted fabric. On the other hand, if the number of entanglements exceeds 150 / m, the polyester fiber A and the polyester fiber B are too entangled, the crimps disappear, and the above-mentioned protruding portions are hardly formed. It becomes difficult to give. In the present invention, the entanglement number of the mixed entangled yarn is a value obtained by measurement based on the JIS L1013 8.15 hook method.

本発明の混繊交絡糸においては、上述の通り、(1)ポリエステル繊維Aとポリエステル繊維Bの2糸の単糸繊度を上記の特定の範囲に設定すること、(2)当該2糸の混率を上記の特定範囲にする設定すること、(3)当該2糸を混繊すること、及び(4)混繊交絡糸が全体として仮撚捲縮を有していることを特徴としている。本発明においては、これら構成の相乗効果として、混繊交絡糸の表面部分において、ポリエステル繊維Aによる微細な突出部が形成されている。そして、混繊交絡糸の表面部分に形成されたこのような突出部によって、当該混繊交絡糸を用いた織編物に対して高い撥水性能を付与することができる。さらに、上述のような空気保持層によって、撥水性能が高められる。すなわち、本発明の混繊交絡糸を用いることにより、織編物設計を特段工夫せずとも、従来公知の安価なフッ素系撥水剤などを使用するだけで、織編物に高い撥水性能を発揮させることができる。   In the mixed fiber entangled yarn of the present invention, as described above, (1) the single yarn fineness of the two yarns of the polyester fiber A and the polyester fiber B is set in the specific range, and (2) the mixing ratio of the two yarns. Is set to the above specific range, (3) the two yarns are mixed, and (4) the mixed entangled yarn as a whole has false twist crimps. In the present invention, as a synergistic effect of these configurations, a fine protruding portion of the polyester fiber A is formed on the surface portion of the mixed fiber entangled yarn. And by such a protrusion part formed in the surface part of the mixed fiber entangled yarn, high water-repellent performance can be imparted to the woven or knitted fabric using the mixed fiber entangled yarn. Further, the water repellent performance is enhanced by the air retaining layer as described above. In other words, by using the mixed fiber entangled yarn of the present invention, the knitted or knitted fabric exhibits high water repellency only by using a conventionally known inexpensive fluorine-based water repellent, without specially designing the woven or knitted fabric. Can be made.

さらに、本発明の混繊交絡糸においては、ポリエステル繊維A及びポリエステル繊維Bの少なくとも一方に対して、適宜の添加剤を含有させることにより、混繊交絡糸に対して副次的な機能を付与することができる。なお、添加剤の使用により付与される機能果は、通常、添加剤の使用量(絶対量)が増えるほど増大するが、単糸繊度の大きなポリエステル繊維Bに添加する方が、ポリエステル繊維Aよりも多くの添加剤を含有させることができるため、添加剤はポリエステル繊維Bに含有させることが好ましい。このような添加剤としては、例えば、太陽光遮断物質、赤外線吸収物質などが挙げられる。添加剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。   Furthermore, in the mixed fiber entangled yarn of the present invention, by adding an appropriate additive to at least one of the polyester fiber A and the polyester fiber B, a secondary function is imparted to the mixed fiber entangled yarn. can do. In addition, although the functional fruit provided by use of an additive usually increases, so that the usage-amount (absolute amount) of an additive increases, the direction added to the polyester fiber B with a large single yarn fineness is rather than the polyester fiber A. Since many additives can be contained in the polyester fiber B, the additive is preferably contained in the polyester fiber B. Examples of such additives include sunlight blocking substances and infrared absorbing substances. An additive may be used individually by 1 type and may be used in combination of 2 or more types.

本発明の混繊交絡糸が太陽光遮蔽物質を含む場合、織編物の涼感性を高めることができる。上述の観点から、本発明の混繊交絡糸においては、ポリエステル繊維Bが太陽光遮蔽物質を含むことが好ましい。なお、本発明において、太陽光遮蔽物質とは、例えば、太陽光の可視光線や赤外線を透過させないセラミックの微粒子であり、かつ、ポリエステル中に分散させることができるものであれば、特に制限されず、公知のものが使用できる。織編物に対して良好な涼感性を付与する観点から、好ましい太陽光遮蔽物質の具体例としては、酸化チタン、チタン酸カリウム、酸化亜鉛、インジウムチンオキサイド等の単体及びこれらの混合物などの可視光線や赤外線の吸収が少なく、反射率の高いものが挙げられる。また、太陽光遮蔽物質としては、これらの単体や混合物などを適宜の粒子の表面に被覆したものを用いてもよい。太陽光遮蔽物質は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。   When the mixed fiber entangled yarn of the present invention contains a sunlight shielding material, the cool feeling of the woven or knitted fabric can be enhanced. From the above viewpoint, in the mixed fiber entangled yarn of the present invention, it is preferable that the polyester fiber B includes a sunlight shielding substance. In the present invention, the sunlight shielding substance is not particularly limited as long as it is ceramic fine particles that do not transmit visible light or infrared rays of sunlight and can be dispersed in polyester. Well-known ones can be used. From the viewpoint of imparting a good cool feeling to the woven or knitted fabric, specific examples of preferable sunscreen materials include visible light such as simple substances such as titanium oxide, potassium titanate, zinc oxide, indium tin oxide, and mixtures thereof. And those that have low infrared absorption and high reflectivity. Moreover, as a sunlight shielding substance, you may use what coat | covered the surface of the appropriate particle | grains of these single-piece | units or a mixture. One type of sunlight shielding substance may be used alone, or two or more types may be used in combination.

ポリエステル繊維Aまたはポリエステル繊維Bにおいて、繊維中の太陽光遮蔽物質の含有量としては、それぞれ、好ましくは3〜10質量%程度、より好ましくは3〜7質量%程度が挙げられる。なお、繊維中の太陽光遮蔽物質の含有量が3質量%未満の場合、所望の涼感性を得られ難い。また、繊維中の含有量が10質量%を超えると、繊維の紡糸性が低下する傾向にある。また、繊維断面を同心芯鞘型とし、芯部及び鞘部に含まれる添加剤の量に差を設けてもよい。例えば、上記の太陽光遮蔽物質の場合では、鞘部に含まれる太陽光遮蔽物質の量を0.8質量%以下とすると同時に、繊維全体では太陽光遮蔽物質が3〜10質量%程度含まれるようにするとよい。鞘部の含有量を減らすことにより、後述の複合仮撚工程や、織編物を製造する工程においてガイド摩耗を受けにくくなり、糸切れや毛羽が発生しにくくなる。   In the polyester fiber A or the polyester fiber B, the content of the sunlight shielding substance in the fiber is preferably about 3 to 10% by mass, more preferably about 3 to 7% by mass, respectively. In addition, when content of the sunlight shielding substance in a fiber is less than 3 mass%, it is difficult to obtain desired cool feeling. Moreover, when content in a fiber exceeds 10 mass%, it exists in the tendency for the spinnability of a fiber to fall. Moreover, a fiber cross section may be made into a concentric core-sheath type, and a difference may be provided in the quantity of the additive contained in a core part and a sheath part. For example, in the case of the above-described sunlight shielding material, the amount of the sunlight shielding material contained in the sheath is set to 0.8 mass% or less, and at the same time, the entire fiber contains about 3 to 10 mass% of the sunlight shielding material. It is good to do. By reducing the content of the sheath portion, it becomes difficult to receive guide wear in the composite false twisting process and the process of manufacturing the woven or knitted fabric, which will be described later, and yarn breakage and fluff are less likely to occur.

また、本発明の混繊交絡糸が赤外線吸収物質を含む場合、織編物の保温性を高めることができる。上述の観点から、本発明の混繊交絡糸においては、ポリエステル繊維Bが赤外線吸収物質を含むことが好ましい。本発明において、赤外線吸収物質とは、吸収した赤外線を熱に変換できる微粒子であり、かつ、ポリエステル中に分散させることができるものであれば、特に制限されず、公知のものが使用できる。織編物に対して良好な保温性を付与する観点から、好ましい赤外線吸収物質の具体例としては、炭化ジルコニウム、炭化ケイ素、アンチモンドープ酸化スズ、スズドープ酸化インジュームなどが挙げられる。赤外線吸収物質は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。   Moreover, when the mixed fiber entangled yarn of the present invention contains an infrared absorbing material, the heat retention of the woven or knitted fabric can be improved. From the above viewpoint, in the mixed fiber entangled yarn of the present invention, it is preferable that the polyester fiber B includes an infrared absorbing substance. In the present invention, the infrared absorbing substance is not particularly limited as long as it is fine particles capable of converting absorbed infrared rays into heat and can be dispersed in polyester, and known substances can be used. From the viewpoint of imparting good heat retention to the woven or knitted fabric, specific examples of preferable infrared absorbing materials include zirconium carbide, silicon carbide, antimony-doped tin oxide, tin-doped indium oxide and the like. The infrared absorbing material may be used alone or in combination of two or more.

ポリエステル繊維Aまたはポリエステル繊維Bにおいて、繊維中の赤外線吸収物質の含有量としては、それぞれ、好ましくは0.5〜5質量%程度が挙げられる。なお、繊維中の赤外線吸収物質の含有量が0.5質量%未満の場合、所望の保温性が得られ難い。また、繊維中の含有量が5質量%を超えると、繊維の紡糸性が低下する傾向にある。また、赤外線吸収物質を使用する場合においても、繊維断面を同心芯鞘型とし、芯部及び鞘部における含有量に差を設けてもよい。この場合、芯部に含まれる赤外線吸収物質の量を好ましくは5〜25質量%程度、より好ましくは7〜17質量%程度とし、同時に繊維全体では赤外線吸収物質が0.5〜5質量%程度含まれるようにするとよい。鞘部の含有量を減らすことにより、後述の複合仮撚工程や、織編物を製造する工程においてガイド摩耗を受けにくくなり、糸切れや毛羽が発生しにくくなる。   In the polyester fiber A or the polyester fiber B, the content of the infrared absorbing substance in the fiber is preferably about 0.5 to 5% by mass, respectively. In addition, when content of the infrared rays absorption substance in a fiber is less than 0.5 mass%, desired heat retention is difficult to be obtained. On the other hand, if the content in the fiber exceeds 5% by mass, the spinnability of the fiber tends to decrease. Moreover, also when using an infrared rays absorption substance, a fiber cross section may be made into a concentric core sheath type | mold, and a difference may be provided in content in a core part and a sheath part. In this case, the amount of the infrared absorbing material contained in the core is preferably about 5 to 25% by mass, more preferably about 7 to 17% by mass, and at the same time the infrared absorbing material is about 0.5 to 5% by mass in the entire fiber. It should be included. By reducing the content of the sheath portion, it becomes difficult to receive guide wear in the composite false twisting process and the process of manufacturing the woven or knitted fabric, which will be described later, and yarn breakage and fluff are less likely to occur.

なお、太陽光遮蔽物質または赤外線吸収物質のいずれを用いる場合であっても、繊維断面を同心芯鞘型とするときは、その芯鞘質量比率(芯/鞘)は、10/90〜90/10程度の範囲であることが好ましく、20/80〜80/20程度の範囲であることがより好ましい。   In addition, even if it is a case where either a sunlight shielding substance or an infrared rays absorption substance is used, when a fiber cross section is made into a concentric core-sheath type, the core-sheath mass ratio (core / sheath) is 10 / 90-90 / A range of about 10 is preferable, and a range of about 20/80 to 80/20 is more preferable.

一般に、繊維は太くなれば剛直となり、細ければしなやかになるが、本発明においては、このような繊維の特性を利用し、後述の複合仮撚り工程及び混繊交絡工程において、相対的に太いポリエステル繊維Bの間に生じる大きな空隙に、相対的に細いポリエステル繊維Aを入り込ませることにより、ポリエステル繊維Aを混繊交絡糸の表面部分において突出させる。すなわち、本発明の混繊交絡糸においては、混繊交絡糸を構成する上記のポリエステル繊維A及びポリエステル繊維Bとが上記の特定範囲の単糸緯度を有すること、これら2種類の繊維の混率が上記特定の範囲に設定されていること、さらに繊交絡糸が全体として仮撚捲縮を有していることにより、上記のような特殊な表面構造が形成されており、織編物に対して優れた撥水性能を付与することができる。   In general, the fibers become stiff when they are thick, and they become supple when they are thin, but in the present invention, by utilizing such characteristics of the fibers, they are relatively thick in the composite false twisting process and the mixed fiber entanglement process described later. By allowing the relatively thin polyester fiber A to enter a large gap generated between the polyester fibers B, the polyester fiber A is projected from the surface portion of the mixed entangled yarn. That is, in the mixed fiber entangled yarn of the present invention, the polyester fiber A and the polyester fiber B constituting the mixed fiber entangled yarn have a single yarn latitude in the specific range, and the mixing ratio of these two types of fibers is The special surface structure as described above is formed due to the fact that the above-mentioned specific range is set, and that the interlaced yarn has a false twist crimp as a whole, which is excellent for woven and knitted fabrics. Water repellency can be imparted.

2.混繊交絡糸の製造方法
本発明の混繊交絡糸は、以下の工程を備える製造方法により製造することができる。
単糸繊度が1.5〜6.5dtex、伸度が100〜160%のポリエステル高配向未延伸糸Bを延伸倍率1.1〜1.4倍で延伸する延伸工程
延伸工程で延伸されたポリエステル高配向延伸糸Bと、単糸繊度が0.4〜1.3dtex、伸度が80〜110%のポリエステル高配向未延伸糸Aとを、加工速度100〜700m/分、延伸倍率1.10〜1.30倍の条件で複合仮撚りする複合仮撚り工程
複合仮撚り工程で得られた複合仮撚糸を、流体ノズルを用いて、エアー圧0.1〜0.6Mpa、オーバーフィード率1〜4%の条件で混繊交絡する混繊交絡工程
2. Manufacturing method of mixed fiber entangled yarn The mixed fiber entangled yarn of the present invention can be manufactured by a manufacturing method including the following steps.
Stretching step of stretching a highly oriented polyester yarn B having a single yarn fineness of 1.5 to 6.5 dtex and an elongation of 100 to 160% at a draw ratio of 1.1 to 1.4 times. Polyester stretched in the stretching step A highly oriented drawn yarn B and a polyester highly oriented undrawn yarn A having a single yarn fineness of 0.4 to 1.3 dtex and an elongation of 80 to 110% are processed at a processing speed of 100 to 700 m / min and a draw ratio of 1.10. A composite false twisting process in which a composite false twisting is performed under a condition of ~ 1.30 times. Using a fluid nozzle, the composite false twisting yarn obtained in the composite false twisting process has an air pressure of 0.1 to 0.6 Mpa and an overfeed rate of 1 to 1. Mixed fiber entanglement process in which mixed fiber is entangled under 4% condition

本発明の混繊交絡糸の製造方法においては、ポリエステル高配向未延伸糸B(混繊交絡糸を構成するポリエステル繊維Bとなる)をあらかじめ特定の延伸倍率にて延伸する延伸工程を行う。これにより、ポリエステル高配向未延伸糸A(混繊交絡糸を構成するポリエステル繊維Aとなる)及びポリエステル高配向未延伸糸Bの伸度は、ほぼ同じになるか、ポリエステル高配向未延伸糸Bの方がやや低くなる。なお、伸度の高い方が、後の複合仮撚り工程において、糸長の長いものとなる。その後、延伸工程で延伸されたポリエステル高配向延伸糸Bと、混繊の相手方となるポリエステル高配向未延伸糸Aとを引き揃えて延伸しながら複合仮撚りする複合仮撚り工程を行い、複合仮撚糸を得る。複合仮撚糸においては、ポリエステル高配向延伸糸Aが外側(表面側)に多く配される。そして、引き続き複合仮撚糸を混繊交絡する混繊交絡工程を行うことにより、本発明の混繊交絡糸が得られる。このように製造される本発明の混繊交絡糸では、上述の通り、ポリエステル繊維Aが、混繊交絡糸の表面部分において突出している。以下、本発明の混繊交絡糸の製造方法について詳述する。   In the method for producing the mixed fiber entangled yarn of the present invention, a stretching process is performed in which the polyester highly oriented unstretched yarn B (which becomes the polyester fiber B constituting the mixed fiber entangled yarn) is previously stretched at a specific draw ratio. Thereby, the elongation of the polyester highly oriented undrawn yarn A (which becomes the polyester fiber A constituting the mixed fiber entangled yarn) and the polyester highly oriented undrawn yarn B are substantially the same, or the polyester highly oriented undrawn yarn B Is slightly lower. Note that the higher the elongation, the longer the yarn length in the subsequent composite false twisting process. Thereafter, a composite false twisting step is performed in which the highly false oriented stretched polyester yarn B stretched in the stretch step and the highly oriented polyester yarn A which is the other end of the mixed fiber are stretched together and stretched while being compositely twisted. Get twisted yarn. In the composite false twisted yarn, the polyester highly oriented drawn yarn A is often arranged on the outer side (surface side). And the mixed fiber entanglement thread | yarn of this invention is obtained by performing the mixed fiber entanglement process which carries out the mixed fiber entanglement of the composite false twist yarn continuously. In the mixed fiber entangled yarn of the present invention thus manufactured, as described above, the polyester fiber A protrudes from the surface portion of the mixed fiber entangled yarn. Hereinafter, the manufacturing method of the mixed fiber entangled yarn of this invention is explained in full detail.

本発明の製造方法においては、まず、ポリエステル高配向未延伸糸A及びポリエステル高配向未延伸糸Bを準備する。本発明の製造方法の各工程を経ることにより、ポリエステル高配向未延伸糸Aが、本発明の混繊交絡を構成する上記のポリエステル繊維Aとなり、ポリエステル高配向未延伸糸Bが、本発明の混繊交絡を構成する上記のポリエステル繊維Bとなる。   In the production method of the present invention, first, a polyester highly oriented unstretched yarn A and a polyester highly oriented unstretched yarn B are prepared. By passing through each process of the manufacturing method of this invention, the polyester highly oriented undrawn thread | yarn A becomes said polyester fiber A which comprises the mixed fiber entanglement of this invention, and the polyester highly oriented undrawn thread | yarn B of this invention It becomes said polyester fiber B which comprises mixed fiber entanglement.

ここで、ポリエステル高配向未延伸糸とは、ポリエステルポリマーを2000〜4000m/分程度の速度で紡糸して巻き取られたマルチフィラメント糸をいう。ポリエステルポリマーとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等を単独で用いたり、複数併用することができる。また、ポリエステルポリマーは、共重合ポリエステルであってもよい。共重合成分としては、イソフタル酸、5−アルカリイソフタル酸、3,3’−ジフェニルジカルボン酸などの芳香族ジカルボン酸;アジピン酸、セバシン酸、コハク酸などの脂肪族ジカルボン酸;ジエチレングリコール、1,4−ブタンジオール、1,4−シクロへキサンジオールなどの脂肪族または脂環式ジオール;P−ヒドロキシ安息香酸などの共重合成分が挙げられる。ポリエステルポリマーは、必要に応じて、艶消し剤、安定剤、難燃剤、着色剤等の改質剤を含んでいてもよい。ポリエステル高配向未延伸糸は、複数の高配向未延伸繊維が束になって構成されており、例えば、繊維断面を同心芯鞘型とする場合には、芯部、鞘部それぞれに配されるポリマーの相溶性を考慮して、両者のポリエステルポリマーを同一のものとするのが好ましい。   Here, the polyester highly oriented undrawn yarn refers to a multifilament yarn wound by spinning a polyester polymer at a speed of about 2000 to 4000 m / min. As the polyester polymer, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, or the like can be used alone or in combination. The polyester polymer may be a copolyester. Examples of copolymer components include aromatic dicarboxylic acids such as isophthalic acid, 5-alkaliisophthalic acid, and 3,3′-diphenyldicarboxylic acid; aliphatic dicarboxylic acids such as adipic acid, sebacic acid, and succinic acid; diethylene glycol, 1,4 -Aliphatic or alicyclic diols such as butanediol and 1,4-cyclohexanediol; and copolymer components such as P-hydroxybenzoic acid. The polyester polymer may contain modifiers such as a matting agent, a stabilizer, a flame retardant, and a colorant as necessary. Polyester highly oriented undrawn yarn is composed of a bundle of a plurality of highly oriented unstretched fibers. For example, when the fiber cross section is a concentric core-sheath type, it is arranged in each of the core and sheath. In consideration of the compatibility of the polymers, it is preferable that both polyester polymers are the same.

ポリエステル高配向未延伸糸Aは、単糸繊度が0.4〜1.3dtexで、伸度が80〜110%であることが好ましい。ポリエステル高配向未延伸糸Aの単糸繊度が0.4dtex未満では、単糸が細過ぎて開繊効果が乏しくなり、後述のポリエステル高配向未延伸糸Bとの十分な混繊が難しくなって、交絡不良が生じ易くなる。その結果、上述した微細な突出部が混繊交絡糸の表面部分に形成され難くなる。また、糸切れや毛羽も発生し易くなるため好ましくない。一方、ポリエステル高配向未延伸糸Aの単糸繊度が1.3dtexを超えると、糸条内に大きな空隙ができやすく、ポリエステル高配向未延伸糸Bと十分に混繊し難くなり、交絡不良が生じ易くなる。その結果、上述した微細な突出部が混繊交絡糸の表面部分に形成され難くなる。このように、原料となるポリエステル高配向未延伸糸Aの単糸繊度が所定範囲を外れると、後の工程で混繊が十分に促進されず、上述した微細な突出部が混繊交絡糸の表面部分に形成され難くなって、織編物に所望の撥水性能を付与し難くなる。   The polyester highly oriented undrawn yarn A preferably has a single yarn fineness of 0.4 to 1.3 dtex and an elongation of 80 to 110%. If the single yarn fineness of the polyester highly oriented non-stretched yarn A is less than 0.4 dtex, the single yarn is too thin and the opening effect is poor, and it is difficult to sufficiently mix with the polyester highly oriented unstretched yarn B described later. , Entanglement defects are likely to occur. As a result, the fine protrusions described above are not easily formed on the surface portion of the mixed fiber entangled yarn. Further, yarn breakage and fluff are likely to occur, which is not preferable. On the other hand, if the single yarn fineness of the polyester highly oriented unstretched yarn A exceeds 1.3 dtex, it is easy to form a large gap in the yarn, and it becomes difficult to sufficiently mix with the polyester highly oriented unstretched yarn B, resulting in poor entanglement. It tends to occur. As a result, the fine protrusions described above are not easily formed on the surface portion of the mixed fiber entangled yarn. As described above, when the single yarn fineness of the polyester highly oriented undrawn yarn A that is the raw material is out of the predetermined range, the fiber mixing is not sufficiently promoted in the subsequent process, and the fine protrusions described above are the mixed fiber entangled yarns. It becomes difficult to form on the surface portion, and it becomes difficult to impart desired water repellency to the woven or knitted fabric.

ポリエステル高配向未延伸糸Aの伸度が80%未満である場合、後述の複合仮撚り工程において、糸切れが多発するおそれがある。一方、伸度が110%を超える高配向未延伸糸を得ようとしても、製造時に糸切れや品質低下等が発生して、安定供給が難しくなる。   When the degree of elongation of the polyester highly oriented undrawn yarn A is less than 80%, thread breakage may frequently occur in the composite false twisting step described later. On the other hand, even if it is intended to obtain a highly oriented undrawn yarn having an elongation exceeding 110%, yarn breakage, quality degradation, and the like occur at the time of manufacture, and stable supply becomes difficult.

一方、ポリエステル高配向未延伸糸Bは、単糸繊度が1.5〜6.5dtexで、伸度が100〜160%であることが好ましい。ポリエステル高配向未延伸糸Bの単糸繊度が1.5dtex未満の場合、混繊交絡糸となった後において、ポリエステル繊維Aからなる突出部を強固に保持することができず、突出部が潰れ易くなる。しかも、糸条全体が細くなることで、織編物の風合いが張り腰感に乏しいものとなる。また、単糸繊度が6.5dtexを超えると、交絡状態が悪くなる。さらに、織編物の風合いとして適度なふくらみ感が不足して、硬い風合いのものしか得られず好ましくない。   On the other hand, the polyester highly oriented undrawn yarn B preferably has a single yarn fineness of 1.5 to 6.5 dtex and an elongation of 100 to 160%. When the single yarn fineness of the polyester highly-oriented undrawn yarn B is less than 1.5 dtex, the protruding portion made of the polyester fiber A cannot be firmly held after becoming a mixed fiber entangled yarn, and the protruding portion is crushed. It becomes easy. In addition, since the entire yarn is thinned, the texture of the woven or knitted fabric is stretched and the waist feeling is poor. Moreover, when the single yarn fineness exceeds 6.5 dtex, the entangled state becomes worse. Further, the texture of the woven or knitted fabric is not preferred because it has a lack of appropriate swell and only a hard texture can be obtained.

また、ポリエステル高配向未延伸糸Bの伸度が100%未満になると、混繊交絡糸を構成するポリエステル繊維Aとポリエステル繊維Bの糸長がほぼ同じとなり、上述した突出部が混繊交絡糸の表面部分に形成され難くなる場合がある。本発明における複合仮撚糸では、ポリエステル繊維Aがポリエステル繊維Bよりも長いため、ポリエステル繊維Aが表面側に多く配置される。このため、上述した突出部が混繊交絡糸の表面部分に形成されやすくなる。また、伸度が160%を超えると、交絡糸の伸度が高くなり過ぎて、織編物の寸法が変化し易くなるため、品質安定の観点から好ましくない。   Further, when the elongation of the polyester highly oriented undrawn yarn B is less than 100%, the polyester fiber A and the polyester fiber B constituting the mixed fiber entangled yarn have substantially the same length, and the above-described protrusion is the mixed fiber entangled yarn. It may be difficult to form on the surface portion of. In the composite false twisted yarn in the present invention, since the polyester fiber A is longer than the polyester fiber B, a large amount of the polyester fiber A is arranged on the surface side. For this reason, it becomes easy to form the protrusion part mentioned above in the surface part of a mixed fiber entanglement yarn. On the other hand, when the elongation exceeds 160%, the elongation of the entangled yarn becomes too high and the dimensions of the woven or knitted fabric easily change, which is not preferable from the viewpoint of quality stability.

なお、本発明の混繊交絡糸において、上述の添加剤を添加する場合、ポリエステル高配向未延伸糸Aまたはポリエステル高配向未延伸糸Bに上述の添加剤を含有させる。ただし、添加剤の種類に応じて好ましい紡糸条件は一般に変動するものであるから、それらの好ましい紡糸条件により得られたポリエステル高配向未延伸糸Bの糸質も多少変動することになる。例えば、ポリエステル高配向未延伸糸Bに太陽光遮蔽物質を含有させた場合の伸度は、好ましくは130〜160%程度であり、赤外線吸収物質を含有させた場合は、好ましくは100〜150%程度である。   In addition, when the above-mentioned additive is added to the mixed fiber entangled yarn of the present invention, the above-mentioned additive is contained in the polyester highly oriented unstretched yarn A or the polyester highly oriented unstretched yarn B. However, since the preferred spinning conditions generally vary depending on the type of additive, the yarn quality of the polyester highly oriented undrawn yarn B obtained by these preferred spinning conditions will also vary somewhat. For example, the elongation when the polyester highly-oriented undrawn yarn B contains a sunlight shielding material is preferably about 130 to 160%, and when the infrared absorbing material is contained, preferably 100 to 150%. Degree.

次に、本発明の混繊交絡糸の製造方法を、図2の模式図を参照しながら詳述する。まず、上記のポリエステル高配向未延伸糸A、BのパッケージYA、YBをそれぞれクリールに仕掛ける。次にポリエステル高配向未延伸糸Bを供給ローラ1へ導入する。そして、供給ローラ1と第1引取ローラ2との間でポリエステル高配向未延伸糸Bを延伸する延伸工程を行う。すなわち、単糸繊度が1.5〜6.5dtex、伸度が100〜160%のポリエステル高配向未延伸糸Bを延伸倍率1.1〜1.4倍で延伸する。   Next, a method for producing the mixed fiber entangled yarn of the present invention will be described in detail with reference to the schematic diagram of FIG. First, the packages YA and YB of the polyester highly-oriented undrawn yarns A and B are each set on a creel. Next, the polyester highly oriented undrawn yarn B is introduced into the supply roller 1. And the extending | stretching process of extending | stretching the polyester highly oriented undrawn yarn B between the supply roller 1 and the 1st take-off roller 2 is performed. That is, the polyester highly oriented undrawn yarn B having a single yarn fineness of 1.5 to 6.5 dtex and an elongation of 100 to 160% is drawn at a draw ratio of 1.1 to 1.4.

延伸工程において、延伸倍率としては、好ましくは1.1〜1.4倍程度である。これにより、ポリエステル高配向未延伸糸Aとポリエステル高配向未延伸糸A、Bの伸度は、ほぼ同じになるか、ポリエステル高配向未延伸糸Aの伸度の方がやや高くなる。ここで、延伸工程における延伸倍率とは、供給ローラ1の表面速度と第1引取ローラ2の表面速度との比(延伸倍率=第1引取ローラ2の表面速度/供給ローラ1の表面速度)をいう。伸度の高い方が、後の複合仮撚り工程で糸長が長くなり、後に糸長の長い繊維が混繊交絡糸の外側(表面側)へ配され易くなる。その結果、上述の通り、ポリエステル繊維Aによる突出部を混繊交絡糸の表面に形成しやすくなる。また、当該突出部は、混繊交絡糸の表面部分に形成されたポリエステル繊維Aが緩く絡み合った部分のから突出する。なお、ポリエステル高配向未延伸糸Bを延伸することにより、その単糸繊度をより好ましいものに微調整できると共に、ポリエステル高配向未延伸糸A、Bの混率もより好ましいものに微調整することもできる。ポリエステル高配向未延伸糸Bの延伸は、室温中で行ってもよいし、ヒーターなどを設置して熱を与えながら行ってもよい。   In the stretching step, the stretching ratio is preferably about 1.1 to 1.4 times. Thereby, the elongation of the polyester highly oriented unstretched yarn A and the polyester highly oriented unstretched yarns A and B are substantially the same, or the elongation of the polyester highly oriented unstretched yarn A is slightly higher. Here, the draw ratio in the drawing step is the ratio of the surface speed of the supply roller 1 to the surface speed of the first take-up roller 2 (draw ratio = surface speed of the first take-up roller 2 / surface speed of the supply roller 1). Say. The higher the elongation, the longer the yarn length in the subsequent composite false twisting process, and the longer the fiber length is more likely to be arranged on the outer side (surface side) of the mixed entangled yarn. As a result, as described above, it becomes easy to form the protruding portion of the polyester fiber A on the surface of the mixed fiber entangled yarn. Moreover, the said protrusion part protrudes from the part in which the polyester fiber A formed in the surface part of the mixed fiber entanglement yarn loosely entangled. In addition, by stretching the polyester highly oriented undrawn yarn B, the fineness of the single yarn can be finely adjusted to a more preferable one, and the mixing ratio of the polyester highly oriented undrawn yarns A and B can be finely adjusted to a more preferable one. it can. The highly oriented polyester yarn B may be stretched at room temperature, or may be performed while applying heat by installing a heater or the like.

ポリエステル高配向未延伸糸Bの延伸倍率が1.1倍未満の場合、混繊交絡糸全体の伸度が高くなり、特に織物用として使用した場合、後加工(例えば、製織工程の後に行う、染色加工なども含む一連の加工)において、必然的に付加される張力により混繊交絡糸の物性が変動しやすくなり、織編物の品位品質面でのトラブル発生の要因となり得る。一方、当該延伸倍率が1.4倍を超えると、後の複合仮撚り工程において、ポリエステル繊維Aの糸長がポリエステル繊維Bに比して長くなり過ぎる傾向にあり、複合仮撚り工程において糸切れが多発しやすくなる。   When the draw ratio of the polyester highly oriented unstretched yarn B is less than 1.1 times, the elongation of the entire mixed fiber entangled yarn becomes high, particularly when used for textiles, post-processing (for example, after the weaving step, In a series of processing including dyeing processing), the physical properties of the mixed entangled yarn are likely to fluctuate due to the tension that is inevitably applied, which may cause trouble in terms of quality of the woven or knitted fabric. On the other hand, if the draw ratio exceeds 1.4, the yarn length of the polyester fiber A tends to be too long compared to the polyester fiber B in the subsequent composite false twisting step, and the yarn breakage in the composite false twisting step Is likely to occur frequently.

次に、延伸後のポリステル高配向未延伸糸Bと、上記ポリエステル高配向未延伸糸Aとを、所定条件下で複合仮撚りする複合仮撚り工程を行う。すなわち、延伸工程で延伸された前記ポリエステル高配向延伸糸Bと、単糸繊度が0.4〜1.3dtex、伸度が80〜110%のポリエステル高配向未延伸糸Aとを、加工速度100〜700m/分、延伸倍率1.10〜1.30倍の条件で複合仮撚りする。具体的には、図2に示すように、上記で延伸されたポリエステル高配向延伸糸Bと、ポリエステル高配向未延伸糸Aとを第1引取ローラ2へ同時に導入し、ヒーター3、仮撚具4を経て、第2引取ローラ5から引き出すことで、複合仮撚糸Cを得る。ここで、図2の第1引取ローラ2と第2引取ローラ5との間が複合仮撚域となる。具体的には、第1引取ローラ2と仮撚具4との間が加撚域T1となり、仮撚具4と第2引取ローラ5との間が解撚域T2となる。   Next, a composite false twisting step of composite false twisting the polyester highly oriented undrawn yarn B after stretching and the polyester highly oriented undrawn yarn A described above under a predetermined condition is performed. That is, the polyester highly oriented drawn yarn B drawn in the drawing step and the polyester highly oriented undrawn yarn A having a single yarn fineness of 0.4 to 1.3 dtex and an elongation of 80 to 110% are processed at a processing speed of 100. Composite false twisting is performed under conditions of ˜700 m / min and a draw ratio of 1.10 to 1.30. Specifically, as shown in FIG. 2, the polyester highly oriented stretched yarn B and the polyester highly oriented unstretched yarn A stretched as described above are simultaneously introduced into the first take-up roller 2, and the heater 3, false twisting tool 4, the composite false twisted yarn C is obtained by pulling it out from the second take-up roller 5. Here, a space between the first take-up roller 2 and the second take-up roller 5 in FIG. 2 is a composite false twist region. Specifically, the twisting zone T1 is between the first take-up roller 2 and the false twisting tool 4, and the untwisting zone T2 is between the false twisting tool 4 and the second take-up roller 5.

複合仮撚り工程においては、加工速度及び延伸倍率を各々特定することが好ましい。加工速度とは、第2引取ローラ5から糸を引き出すときの糸速をいい、すなわち、第2引取ローラ5の表面速度をいう。加工速度(糸速)としては、上記のとおり100〜700m/分程度が好ましい。糸速が上記範囲を下回ると、複合仮撚糸Cの捲縮が強くなり過ぎる傾向にある。捲縮が強くなると、ストレッチ性能が強く発現するため、高撥水織編物の製造には適さない。また、複合仮撚糸Cのストレッチ性能が強くなると、後に得られる混繊交絡糸のストレッチ性能も強くなり、混繊交絡糸が容易に伸ばされる。混繊交絡糸が伸びたときに、混繊交絡糸が平坦な形状となり、混繊交絡糸の表面における上記の微細な突出部が失われる。このため、糸速が上記範囲を下回り、捲縮が強くなると、織編物に所望の撥水性能を付与し難くなる。一方、糸速が上記範囲を上回ると、複合仮撚糸Cの捲縮が弱くなる傾向にある。捲縮が弱くなると、ポリエステル繊維に十分なクリンプが付与されなくなり、ポリエステル繊維の形状が平坦に近くなる。したがって、ポリエステル繊維Aが混繊交絡糸の表面部分において、突出部が形成され難くなる。よって、織編物に所望の撥水性能を付与しにくくなる。   In the composite false twisting step, it is preferable to specify the processing speed and the draw ratio. The processing speed refers to the yarn speed when the yarn is pulled out from the second take-up roller 5, that is, the surface speed of the second take-up roller 5. The processing speed (yarn speed) is preferably about 100 to 700 m / min as described above. When the yarn speed is below the above range, the crimp of the composite false twisted yarn C tends to be too strong. If the crimp becomes strong, the stretch performance is strongly expressed, so it is not suitable for producing a highly water-repellent woven fabric. Moreover, when the stretch performance of the composite false twisted yarn C becomes strong, the stretch performance of the mixed fiber entangled yarn obtained later also becomes strong, and the mixed fiber entangled yarn is easily stretched. When the mixed fiber entangled yarn is stretched, the mixed fiber entangled yarn becomes a flat shape, and the fine protrusions on the surface of the mixed fiber entangled yarn are lost. For this reason, when the yarn speed falls below the above range and the crimp becomes strong, it becomes difficult to impart desired water repellency to the woven or knitted fabric. On the other hand, when the yarn speed exceeds the above range, the crimp of the composite false twisted yarn C tends to be weakened. When the crimp is weakened, sufficient crimp is not applied to the polyester fiber, and the shape of the polyester fiber becomes nearly flat. Therefore, it is difficult for the polyester fiber A to be formed on the surface portion of the mixed entangled yarn. Therefore, it becomes difficult to impart desired water repellency to the woven or knitted fabric.

複合仮撚り工程において、延伸倍率は、1.10〜1.30倍程度の範囲とすることが好ましい。複合仮撚り工程における延伸倍率とは、第1引取ローラ2の表面速度と第2引取ローラ5の表面速度との比(延伸倍率=第2引取ローラ5の表面速度/第1引取ローラ2の表面速度)をいう。当該延伸倍率が1.10倍未満では、ポリエステル繊維Aの糸長をポリエステル繊維Bに比して適度に長くすることができず、また複合仮撚糸Cの品質安定化も難しくなる。また、延伸倍率が1.30倍を超えると、複合仮撚り工程において、毛羽や糸切れが多発する要因となるため、好ましくない。本発明では、複合仮撚糸Cにおいて、ポリエステル繊維Aの糸長をポリエステル繊維Bの糸長よりも、5%以下程度長くすることが好ましく、1〜4%程度長くすることがより好ましい。5%を超えてポリエステル繊維Aがポリエステル繊維Bよりも長くなると、複合仮撚糸の嵩高性が増し、ひいては突出部が大きくなり、撥水性能が低下するので好ましくない。   In the composite false twisting step, the draw ratio is preferably in the range of about 1.10 to 1.30 times. The draw ratio in the composite false twisting process is the ratio between the surface speed of the first take-up roller 2 and the surface speed of the second take-up roller 5 (draw ratio = surface speed of the second take-up roller 5 / the surface of the first take-up roller 2). Speed). If the draw ratio is less than 1.10 times, the yarn length of the polyester fiber A cannot be made appropriately longer than that of the polyester fiber B, and the quality stabilization of the composite false twisted yarn C becomes difficult. On the other hand, if the draw ratio exceeds 1.30 times, fluff and yarn breakage frequently occur in the composite false twisting process, which is not preferable. In the present invention, in the composite false twisted yarn C, the yarn length of the polyester fiber A is preferably longer than the yarn length of the polyester fiber B by about 5% or less, more preferably about 1 to 4%. If the polyester fiber A exceeds 5% and the polyester fiber B is longer than 5%, the bulkiness of the composite false twisted yarn is increased, and consequently the protruding portion is enlarged, and the water repellency is lowered, which is not preferable.

複合仮撚り工程においては、上記の延伸後のポリエステル高配向延伸糸Bと、上記のポリエステル高配向未延伸糸Aとを、好ましくは所定加工速度及び所定延伸倍率の下、適宜の仮撚具により複合仮撚りする。仮撚りの方式は、一般に、スピンドル方式とフリクション方式とに大別される。本発明では、これらのいずれの方式も採用できる。一般に、仮撚具4としては、スピンドル方式の場合はピンタイプのものを使用し、フリクション方式の場合はディスクタイプのものを使用する。   In the composite false twisting step, the above-described highly oriented polyester yarn B after stretching and the above highly oriented polyester yarn A are preferably stretched with an appropriate false twisting tool, preferably under a predetermined processing speed and a predetermined draw ratio. Composite false twist. Generally, the false twisting method is roughly classified into a spindle method and a friction method. In the present invention, any of these methods can be adopted. Generally, as the false twisting tool 4, a pin type is used in the case of the spindle method, and a disk type is used in the case of the friction method.

スピンドル方式とフリクション方式とでは、好ましい仮撚条件が若干異なる。例えば、糸速については、スピンドル方式では100〜200m/分程度が好ましく、フリクション方式では200〜700m/分程度が好ましい。   The preferred false twisting conditions differ slightly between the spindle method and the friction method. For example, the yarn speed is preferably about 100 to 200 m / min for the spindle method and about 200 to 700 m / min for the friction method.

また、ヒーター温度は、スピンドル方式では150〜200℃程度が好ましい。一方、フリクション方式では、接触式ヒーターで170〜200℃程度、点接触式ヒーターで200〜300℃程度の範囲がそれぞれ好ましい。ヒーター温度が上記範囲を下回ると、いずれの方式であっても十分な捲縮が付与し難く、また、上記範囲を上回ると、いずれの方式であっても繊維同士が融着し易くなり、繊維が十分開繊しなくなるので、後に混繊し難くなる。   The heater temperature is preferably about 150 to 200 ° C. in the spindle system. On the other hand, in the friction system, the range of about 170 to 200 ° C. for the contact heater and the range of about 200 to 300 ° C. for the point contact heater are preferable. When the heater temperature is lower than the above range, it is difficult to impart sufficient crimps in any method, and when the heater temperature is higher than the above range, fibers are easily fused with each other, Will not open sufficiently, making it difficult to mix later.

さらに、スピンドル方式とフリクション方式とでは、加撚・解撚の機構も若干異なる。スピンドル方式では、スピンドルの回転によってピンタイプの仮撚具4が回転し、糸が加撚される。このときの加撚の度合い、すなわち仮撚係数を20000〜34000とするのが好ましく、22000〜30000とするのがより好ましい。仮撚係数とは、K=T×D1/2なる式で算出されるものである。なお、式中において、Kは仮撚係数、Tは仮撚数(T/M)、Dは複合仮撚糸の総繊度(dtex)である。仮撚数とは、T=スピンドル回転数(rpm)/第2引取ローラ5の表面速度(m/分)で算出されるものである。仮撚係数が20000未満になると、捲縮が弱くなり、複合仮撚糸を構成するポリエステル繊維A及びポリエステル繊維Bに十分なクリンプを付与し難くなる。このため、混繊交絡糸の表面部分における上述の微細な突出部が形成されにくくなる。一方、仮撚係数が30000を超えると、クリンプ形状が緻密になり過ぎて、混繊交絡糸の表面部分における上述の空気保持層が形成されにくくなる。 Furthermore, the twisting and untwisting mechanisms are slightly different between the spindle method and the friction method. In the spindle system, the pin-type false twisting tool 4 is rotated by the rotation of the spindle, and the yarn is twisted. The degree of twisting at this time, that is, the false twisting coefficient is preferably 20000 to 34000, more preferably 22000 to 30000. The false twist coefficient is calculated by the equation K = T × D 1/2 . In the formula, K is a false twist coefficient, T is the number of false twists (T / M), and D is the total fineness (dtex) of the composite false twist yarn. The number of false twists is calculated by T = spindle rotation speed (rpm) / surface speed of the second take-up roller 5 (m / min). When the false twisting coefficient is less than 20000, the crimp becomes weak and it becomes difficult to impart sufficient crimp to the polyester fiber A and the polyester fiber B constituting the composite false twisted yarn. For this reason, it becomes difficult to form the above-mentioned fine protrusion part in the surface part of the mixed fiber entangled yarn. On the other hand, when the false twisting coefficient exceeds 30000, the crimp shape becomes too dense, and the above-described air retention layer on the surface portion of the mixed entangled yarn is hardly formed.

他方、フリクション方式では、一般に、加撚の度合いを仮撚係数で管理するのではなく、K値及びディスク枚数で管理する。これは、両方式の加撚・解撚機構の違いによる。K値とは、解撚張力(F2)と加撚張力(F1)との比(F2/F1)をいい、F2とはディスクを通過した直後の糸張力を、F1とはディスクへ導入される直前の糸張力をいう。フリクション方式では、ディスクの回転により撚りがかかる。したがって、加撚の度合いは、ディスクスピードとディスク枚数とにより決定づけられることになる。ただし、ディスクスピードを直接的に管理することは、工程管理上あまり効率的とはいえないため、ディスクスピードの変動によりK値が変動する点に鑑み、K値を管理することが一般に効率的であるとされている。   On the other hand, in the friction system, generally, the degree of twisting is not managed by the false twisting coefficient, but by the K value and the number of disks. This is due to the difference between both types of twisting and untwisting mechanisms. K value means the ratio (F2 / F1) of untwisting tension (F2) and twisting tension (F1). F2 is the yarn tension immediately after passing through the disk, and F1 is introduced into the disk. The last thread tension. In the friction system, twist is applied by the rotation of the disk. Therefore, the degree of twisting is determined by the disk speed and the number of disks. However, since managing the disk speed directly is not very efficient in process management, it is generally efficient to manage the K value in view of the fact that the K value fluctuates due to fluctuations in the disk speed. It is said that there is.

フリクション方式において、ディスクとしては、一般にポリウレタン製のものが使用される。ディスク枚数としては、一般に5〜7枚が好ましく、ディスクの厚さとしては5〜10mmが好ましい。また、K値としては、0.6〜1.2が好ましい。K値が0.6未満になると、糸切れが増えることに加え、毛羽の多い複合仮撚糸となる場合がある。一方、1.2を超えると、サージングが生じやすくなる。なお、サージングとは、加撚された撚りが解撚域で解かれず撚りが残った状態をいう。   In the friction system, a disk made of polyurethane is generally used. In general, the number of disks is preferably 5 to 7, and the thickness of the disk is preferably 5 to 10 mm. Moreover, as K value, 0.6-1.2 are preferable. When the K value is less than 0.6, in addition to an increase in yarn breakage, there may be a composite false twisted yarn with a lot of fluff. On the other hand, if it exceeds 1.2, surging tends to occur. Surging refers to a state in which the twisted twist is not unwound in the untwisted region and the twist remains.

複合仮撚り工程の後、複合仮撚糸Cは、第2引取ローラ5によって流体ノズル6へ導かれ、流体ノズル6を用いて混繊交絡する。すなわち、複合仮撚り工程で得られた複合仮撚糸を、流体ノズルを用いて、エアー圧0.1〜0.6Mpa、オーバーフィード率1〜4%の条件で混繊交絡する。   After the composite false twisting process, the composite false twisted yarn C is guided to the fluid nozzle 6 by the second take-up roller 5 and is mixed and entangled using the fluid nozzle 6. That is, the composite false twisted yarn obtained in the composite false twisting process is mixed and entangled using a fluid nozzle under the conditions of an air pressure of 0.1 to 0.6 Mpa and an overfeed rate of 1 to 4%.

流体ノズルとしては、特に限定されないが、一般にインターレースノズルが好適である。混繊交絡の条件としては、上記の通り、エアー圧力を好ましくは0.1〜0.6Mpa程度、オーバーフィード率を好ましくは1〜4%程度に設定する。オーバーフィード率とは、流体ノズルへ導入される直前の糸速をV1、流体ノズルを通過した直後の糸速をV2としたとき、オーバーフィード率=(V1−V2)/V2×100(%)なる式で算出される。図2の場合では、オーバーフィード率=(第2引取ローラ5の表面速度−第3引取ローラ7の表面速度)/第3引取ローラ7の表面速度×100(%)なる式で算出される。複合仮撚糸Cの外側にはポリエステル繊維Aが多く配されているので、これを所定条件で混繊交絡することでポリエステル繊維Aによる突出部を伴った上述の空気保持層が形成される。混繊交絡の条件が上記の範囲を外れると、ポリエステル繊維Aによる突出部が適度な大きさのものとならず、混繊交絡糸の表面部分に上述のような空気保持層が形成されにくくなる。   Although it does not specifically limit as a fluid nozzle, Generally an interlace nozzle is suitable. As the conditions for the mixed fiber entanglement, as described above, the air pressure is preferably set to about 0.1 to 0.6 Mpa, and the overfeed rate is preferably set to about 1 to 4%. The overfeed rate is defined as V1 when the yarn speed immediately before being introduced into the fluid nozzle is V1, and V2 when the yarn speed immediately after passing through the fluid nozzle is V2 = 100 (%). It is calculated by the following formula. In the case of FIG. 2, the overfeed rate = (surface speed of the second take-up roller 5−surface speed of the third take-up roller 7) / surface speed of the third take-up roller 7 × 100 (%). Since many polyester fibers A are arranged on the outer side of the composite false twisted yarn C, the above-mentioned air retention layer with a protruding portion of the polyester fibers A is formed by mingling the polyester fibers A under predetermined conditions. When the condition of the mixed fiber entanglement is out of the above range, the protruding portion due to the polyester fiber A does not have an appropriate size, and the air retaining layer as described above is hardly formed on the surface portion of the mixed fiber entangled yarn. .

混繊交絡糸は、第3引取ローラ7を通過した後、巻取ローラ8によりパッケージ9に捲き取られる。本発明の混繊交絡糸においては、目安として、交絡数が90〜150個/m程度の範囲にあると、適度な混繊交絡を有しているといえる。また、交絡数以外にも、適度な混繊交絡の目安として、捲縮変化率が所定範囲を満足していることが好ましい。すなわち、糸を混繊交絡すると、繊維が絡み合うため糸全体の捲縮率は低下するため、どの程度捲縮率が低下したかを知ることで、適度な混繊交絡の目安を知ることができる。本発明では、捲縮変化率が40〜70%の範囲にあることが好ましい。なお、捲縮変化率とは、捲縮変化率=(得られた混繊交絡糸の捲縮率)/(複合仮撚糸Cの捲縮率)×100(%)なる式で算出される。   After passing through the third take-up roller 7, the mixed fiber entangled yarn is wound around the package 9 by the take-up roller 8. In the mixed fiber entangled yarn of the present invention, it can be said that, as a guide, when the number of entanglement is in the range of about 90 to 150 / m, it has an appropriate mixed fiber entanglement. Further, in addition to the number of entanglements, it is preferable that the crimp change rate satisfies a predetermined range as a guide for appropriate mixed fiber entanglement. That is, when the yarn is mixed and entangled, the fibers are entangled and the crimp rate of the entire yarn is reduced. Therefore, by knowing how much the crimp rate is reduced, an appropriate standard for mixed and entangled yarn can be obtained. . In the present invention, the crimp change rate is preferably in the range of 40 to 70%. The crimp change rate is calculated by the following formula: crimp change rate = (crimp rate of the obtained mixed-entangled yarn) / (crimp rate of the composite false twisted yarn C) × 100 (%).

本発明において、捲縮変化率が40%未満では、交絡状態が強くなって、上記の微細な突出部が得られにくくなり、織編物に高い撥水性能を付与し難くなる。また、捲縮変化率が70%を超えると、交絡状態が解け易くなって、糸条内部にズレが発生したり、上記の微細な突出部が得られにくくなる。   In the present invention, when the crimp change rate is less than 40%, the entangled state becomes strong, the above-mentioned fine protrusions are hardly obtained, and it becomes difficult to impart high water repellency to the woven or knitted fabric. Further, when the crimp change rate exceeds 70%, the entangled state is easily unraveled, so that the inside of the yarn is displaced and the above-mentioned fine protrusions are hardly obtained.

3.織編物
本発明の織編物は、上記混繊交絡糸を用いた織編物であり、従来公知の安価なフッ素系撥水剤などを使用することにより、織編物の構造を特段工夫せずとも、高い撥水性能を発揮することができる。以下、本発明の好ましい織編物について詳述する。
3. Woven knitted fabric The woven or knitted fabric of the present invention is a woven or knitted fabric using the above-mentioned mixed fiber entangled yarn, and by using a conventionally known inexpensive fluorine-based water repellent, etc., without specially devising the structure of the woven or knitted fabric, High water repellency can be demonstrated. Hereinafter, a preferred woven or knitted fabric of the present invention will be described in detail.

本発明の織編物を構成する混繊交絡糸は、上述の通り、表面部分において、ポリエステル繊維Aの突出部が形成されているため、これを織編して得られる織編物においても、当該混繊交絡糸の突出部が表面部分に位置している。したがって、本発明の織編物では、大きな水滴は勿論、小さな水滴でも、当該突出部によって支えることができ、さらに上述の空気保持層の存在により水滴が織編物の内部へ移行することを効果的に抑制することができるため、所謂ロータス効果と同様の撥水性能が顕著に向上している。   As described above, the mixed entangled yarn constituting the woven or knitted fabric of the present invention has the protruding portion of the polyester fiber A formed on the surface portion thereof. The protruding portion of the entangled yarn is located on the surface portion. Therefore, in the woven or knitted fabric of the present invention, not only large water droplets but also small water droplets can be supported by the protrusions, and the water droplets are effectively transferred to the inside of the woven or knitted fabric due to the presence of the air retaining layer. Since it can be suppressed, the water repellent performance similar to the so-called Lotus effect is remarkably improved.

本発明の織編物の表面部分に形成された突出部が、どの程度微細であるかを知るには、KES−Fシステムによる織編物表面粗さの平均偏差(SMD)を測定することにより評価できる。本発明の織編物においては、当該KES−Fシステムによる織物表面粗さの平均偏差(SMD)が、3.0〜8.0μmの範囲にあることが好ましい。当該平均偏差(SMD)が3.0μm未満の場合、突出部が微細になり過ぎ、むしろ平坦な形状に近くなる。そうすると、水滴と織編物の表面との接触面積が大きくなり、水滴に十分な表面張力が作用し難くなる。その結果、織編物において、高い撥水性能が発揮され難い。一方、当該平均偏差(SMD)が8.0μmを超えると、突出部が大きくなり過ぎ、突出部の間に落ち易くなる。その結果、水滴が織編物の内部に移行し易くなり、所望の撥水性能が発揮されにくくなる。本発明の織編物においては、当該織編物中に本発明の混繊交絡糸を50質量%以上含ませることにより、平均偏差(SMD)を所定範囲に設定することができる。   In order to know how fine the protrusions formed on the surface portion of the woven or knitted fabric of the present invention can be evaluated by measuring the average deviation (SMD) of the woven or knitted surface roughness by the KES-F system. . In the woven or knitted fabric of the present invention, the average deviation (SMD) of the surface roughness of the fabric by the KES-F system is preferably in the range of 3.0 to 8.0 μm. When the average deviation (SMD) is less than 3.0 μm, the protruding portion becomes too fine, but rather close to a flat shape. If it does so, the contact area of a water droplet and the surface of a woven / knitted fabric will become large, and it will become difficult for sufficient surface tension to act on a water droplet. As a result, high water repellency is hardly exhibited in the woven or knitted fabric. On the other hand, when the average deviation (SMD) exceeds 8.0 μm, the protrusions become too large and easily fall between the protrusions. As a result, water droplets easily move into the woven or knitted fabric, and the desired water-repellent performance is hardly exhibited. In the woven or knitted fabric of the present invention, the average deviation (SMD) can be set within a predetermined range by including 50% by mass or more of the mixed fiber entangled yarn of the present invention in the woven or knitted fabric.

上述の通り、本発明の織編物においては、織編物を構成する混繊交絡糸の表面構造を特定のものとすることにより、織編物の撥水性能を高めることを特徴としており、従来公知の安価なフッ素系撥水剤などを使用することによっても、優れた撥水性能を発揮することができる。したがって、本発明の織編物において、撥水加工に使用される撥水剤の組成は特に制限されない。   As described above, in the woven or knitted fabric of the present invention, the surface structure of the mixed fiber entangled yarn constituting the woven or knitted fabric is characterized by improving the water repellency of the woven or knitted fabric. Excellent water repellency can also be exhibited by using an inexpensive fluorine-based water repellent. Therefore, in the woven or knitted fabric of the present invention, the composition of the water repellent used for the water repellent finish is not particularly limited.

本発明の織編物に使用される撥水剤としては、作業性や価格などの点から、フッ素系撥水剤が好適である。具体的には、化学構造中にポリフルオロアルキル基(Rf基)を有するフッ素系化合物からなるフッ素系撥水剤が好適である。Rf基とは、アルキル基の水素原子の2個以上がフッ素原子に置換された基をいう。Rf基の炭素数は2〜20個が好ましい。Rf基は直鎖構造でも分岐鎖構造でもよい。特に分岐鎖構造の場合、分岐鎖部分がRf基の末端部分に存在し、かつ炭素数1〜8程度の短鎖であることが好ましい。Rf基としては、アルキル基の水素原子が全てフッ素原子に置換された基(パーフルオロアルキル基)が好ましい。   As the water repellent used in the woven or knitted fabric of the present invention, a fluorine-based water repellent is preferable from the viewpoint of workability and price. Specifically, a fluorine-based water repellent composed of a fluorine-based compound having a polyfluoroalkyl group (Rf group) in the chemical structure is suitable. The Rf group refers to a group in which two or more hydrogen atoms of an alkyl group are substituted with fluorine atoms. The Rf group preferably has 2 to 20 carbon atoms. The Rf group may have a straight chain structure or a branched chain structure. Particularly in the case of a branched chain structure, it is preferable that the branched chain portion is present at the terminal portion of the Rf group and is a short chain having about 1 to 8 carbon atoms. The Rf group is preferably a group (perfluoroalkyl group) in which all hydrogen atoms of the alkyl group are substituted with fluorine atoms.

フッ素系化合物としては、上記パーフルオロアルキル基を含有する重合体と、重合可能な他の重合性単量体とを公知の重合方法により重合した共重合体を好ましく使用することができる。他の重合性単量体としては、アクリル酸、メタクリル酸、スチレン、塩化ビニルなどが挙げられる。また、必要に応じて、アクリル系化合物、酢酸ビニル系化合物、メラミン系化合物などを適宜混合してもよい。   As the fluorine-based compound, a copolymer obtained by polymerizing the polymer containing the perfluoroalkyl group and another polymerizable monomer capable of being polymerized by a known polymerization method can be preferably used. Examples of other polymerizable monomers include acrylic acid, methacrylic acid, styrene, and vinyl chloride. Moreover, you may mix suitably an acrylic compound, a vinyl acetate type compound, a melamine type compound etc. as needed.

本発明の織編物においては、フッ素系撥水剤として市販品を用いることができ、市販品としては、例えば、旭硝子株式会社製「アサヒガード(商品名)」、日華化学株式会社製「NKガード(商品名)」などが挙げられる。フッ素系撥水剤としては、特に、環境保護の点からパーフルオロアルキル酸を含まないフッ素系撥水剤が好適である。フッ素系撥水剤は、水性エマルジョンの形態で使用することが好ましい。   In the woven or knitted fabric of the present invention, commercially available products can be used as the fluorine-based water repellent. Examples of commercially available products include “Asahi Guard (trade name)” manufactured by Asahi Glass Co., Ltd. and “NK” manufactured by Nikka Chemical Co., Ltd. Guard (product name) ". As the fluorine-based water repellent, a fluorine-based water repellent containing no perfluoroalkyl acid is particularly preferable from the viewpoint of environmental protection. The fluorinated water repellent is preferably used in the form of an aqueous emulsion.

また、本発明の織編物においては、織編物を構成する混繊交絡糸の表面構造を上記特定のものとすることにより、織編物の撥水性能を高めることを特徴としているため、織編物の設計は、基本的に如何なるものでもよいが、より高い撥水性能を発揮する観点からは、織編物のカバーファクター(CF)を好ましくは1500〜3000程度、より好ましくは1800〜2800程度の範囲に設定する。カバーファクター(CF)が1500を下回ると、組織点の粗い織編物となるので、織編物内に空隙が増える。そうすると、その空隙に水滴が落ちる傾向にあるから、撥水性能の向上が期待できなくなる。一方、カバーファクター(CF)が3000を上回ると、組織点による拘束が強まることによって、上述の混繊交絡糸の表面部分における微細な突出部が失われる傾向にあり、撥水性能の向上が期待できなくなる。   Further, in the woven or knitted fabric of the present invention, the surface structure of the mixed entangled yarn constituting the woven or knitted fabric is characterized by improving the water repellency of the woven or knitted fabric, so that The design may be basically anything, but from the viewpoint of exhibiting higher water repellency, the cover factor (CF) of the woven or knitted fabric is preferably in the range of about 1500 to 3000, more preferably about 1800 to 2800. Set. When the cover factor (CF) is less than 1500, a woven or knitted fabric with a coarse texture point is formed, and voids increase in the woven or knitted fabric. As a result, water droplets tend to fall into the voids, so that improvement in water repellency cannot be expected. On the other hand, when the cover factor (CF) exceeds 3000, the restraint caused by the texture point becomes stronger, so that the fine protrusions on the surface portion of the above-mentioned mixed fiber entangled yarn tend to be lost, and improvement in water repellency is expected. become unable.

ここで、織編物のカバーファクター(CF)とは、織編物の粗密を数値化したものであり、以下の式により算出される。
CF=D1/2×経糸密度(本/2.54cm)+E1/2×緯糸密度(本/2.54cm)
[式中、Dは、経糸のトータル繊度を示す。Eは、緯糸のトータル繊度を示す。]
Here, the cover factor (CF) of the woven / knitted fabric is a numerical value of the density of the woven / knitted fabric, and is calculated by the following equation.
CF = D 1/2 × warp density (w / 2.54cm) + E 1/2 × weft density (w / 2.54cm)
[In formula, D shows the total fineness of a warp. E indicates the total fineness of the weft. ]

また、織編物の組織としては、特に限定されず、適宜の組織を採用してよい。通常は、平織、綾織、朱子織がよく、必要に応じて多重組織を採用してもよい。   Moreover, it does not specifically limit as a structure | tissue of a woven / knitted fabric, You may employ | adopt an appropriate structure | tissue. Usually, plain weave, twill weave, and satin weave are preferred, and a multiple structure may be adopted as necessary.

本発明の織編物は、優れた撥水性能を有するものであるが、具体的には、水滴転がり角度が15度以下であることが好ましい。水滴転がり角度とは、ロータス効果のような撥水性能の優劣を評価する指標であり、本発明における優れた撥水性能とは、高いロータス効果を有することと同義である。水滴転がり角度とは、水平版上に取り付けた水平状の試料(織編物)に、0.2mLの水を静かに滴下し、その後水平版を静かに傾斜させ、水滴が転がり始めるときの角度をいう。水滴転がり角度が15度を超える場合は、実際に織編物を縫製し、製品としたとき、雨水等による水滴を、その水滴形状を崩さずに振り払うことが困難となることがある。例えば、本発明の織編物中に上記の混繊交絡糸を50質量%以上含有させ、かつ、カバーファクター(CF)を上記範囲に設定することにより、水滴転がり角度を15度以下に容易に設定することができる。   Although the woven or knitted fabric of the present invention has excellent water repellency, specifically, the water droplet rolling angle is preferably 15 degrees or less. The water droplet rolling angle is an index for evaluating the superiority or inferiority of water repellency such as the Lotus effect, and the excellent water repellency in the present invention is synonymous with having a high Lotus effect. The water droplet rolling angle is the angle at which 0.2 mL of water is gently dripped onto a horizontal sample (woven or knitted fabric) mounted on the horizontal plate, and then the horizontal plate is gently tilted, and the angle at which the water droplet begins to roll. Say. When the water droplet rolling angle exceeds 15 degrees, when a woven or knitted fabric is actually sewn and used as a product, it may be difficult to shake off water droplets from rainwater or the like without destroying the water droplet shape. For example, when the mixed entangled yarn is contained in the woven or knitted fabric of the present invention in an amount of 50% by mass or more and the cover factor (CF) is set in the above range, the water droplet rolling angle can be easily set to 15 degrees or less. can do.

4.織編物の製造方法
本発明の織編物は、上記の混繊交絡糸を製織編して生機を得た後、これを後加工及び撥水加工することにより得ることができる。製織編は、公知の織機、編機を用いて行えばよく、製織編に先立つ準備工程も公知の設備を使用すればよい。
4). Manufacturing method of woven or knitted fabric The woven or knitted fabric of the present invention can be obtained by weaving and knitting the above mixed fiber entangled yarn to obtain a living machine, and then subjecting it to post-processing and water-repellent processing. Weaving and knitting may be performed using a known loom or knitting machine, and the preparation process prior to weaving and knitting may be performed using known equipment.

また、後加工では、まず、生機を精練・リラックスする。精練・リラックスは、80〜130℃の温度下で連続方式またはバッチ方式により行えばよい。通常は、100℃以下でバッチ方式により行うのが好ましく、特にジェットノズルを備えた高圧液流染色機を用いて行うのが好ましい。   In post-processing, the raw machine is first refined and relaxed. Scouring / relaxing may be performed at a temperature of 80 to 130 ° C. by a continuous method or a batch method. Usually, it is preferably carried out by a batch system at 100 ° C. or less, and particularly preferably carried out using a high-pressure liquid flow dyeing machine equipped with a jet nozzle.

精練・リラックスした後は、織編物をプレセットする。プレセットは、通常、ピンテンターを用いて、170〜200℃で30〜120秒間乾熱処理する。プレセット後は、常法に基づいて染色し、その後、必要に応じてファイナルセットを行う。   After scouring and relaxing, pre-set the woven or knitted fabric. The preset is usually subjected to a dry heat treatment at 170 to 200 ° C. for 30 to 120 seconds using a pin tenter. After pre-setting, dyeing is performed based on a conventional method, and then final setting is performed as necessary.

後加工した後は、織編物を撥水加工する。撥水加工では、まず、撥水剤を含む水溶液を調製する。次に、パディング法、スプレー法、キスロールコータ法、スリットコータ法などに基づき、上記後加工後の織編物に上記水溶液を付与し、105〜190℃で30〜150秒間乾熱処理すればよい。上記水溶液には、必要に応じて架橋剤、柔軟剤、帯電防止剤などを併せて含ませてもよい。撥水加工後は、撥水性能のさらなる向上のため、織編物をカレンダー加工してもよい。   After post-processing, the woven or knitted fabric is water-repellent. In the water repellent process, first, an aqueous solution containing a water repellent is prepared. Next, based on the padding method, spray method, kiss roll coater method, slit coater method or the like, the aqueous solution may be applied to the woven or knitted fabric after the post-processing, and dry heat treatment may be performed at 105 to 190 ° C. for 30 to 150 seconds. The aqueous solution may contain a crosslinking agent, a softening agent, an antistatic agent and the like as necessary. After the water repellent finish, the woven or knitted fabric may be calendered to further improve the water repellent performance.

以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.

実施例及び比較例において、1.混繊交絡糸の表面形状、2.高配向未延伸糸及び混繊交絡糸の単糸緯度、トータル繊度、3.捲縮率、4.高配向未延伸糸の伸度、5.混繊交絡糸の交絡数、6.複合仮撚糸の糸長差、7.織物表面粗さの平均偏差(SMD)、8.織物の撥水性能(水滴転がり角度)、9.織物の涼感性、10.織物の保温性は、それぞれ、以下の方法により測定、評価を行った。実施例及び比較例におけるこれらの測定及び評価結果は、表1に示す。   In Examples and Comparative Examples, 1. 1. Surface shape of mixed entangled yarn 2. single yarn latitude and total fineness of highly oriented undrawn yarn and mixed entangled yarn; 3. Crimp rate, 4. Elongation of highly oriented undrawn yarn, 5. Number of entanglement of mixed tangled yarn, 6. Yarn length difference of composite false twist yarn, 7. Average deviation (SMD) of fabric surface roughness, 8. Water repellency of fabric (waterdrop rolling angle), 10. Cool feeling of the fabric The heat retention of the woven fabric was measured and evaluated by the following methods. These measurements and evaluation results in Examples and Comparative Examples are shown in Table 1.

1.混繊交絡糸の表面形状
光学顕微鏡(株式会社キーエンス製「マイクロスコープVHX−900」)を使用して、フリー状態で混繊交絡糸の表面形状を200倍で観察し、ポリエステル繊維Aによる突出部が形成され、かつ、混繊交絡糸の表面部分においてポリエステル繊維Aが緩やかに絡み合って形成された空気が保持されやすい層状の部分(水滴が混繊交絡糸内部に移行し難くする機能を発揮する空気保持層)が形成されている場合を「良好」、そうでない場合を「不良」と評価した。図1は、実施例1で得られた混繊交絡糸の表面部分の光学顕微鏡写真である。
1. Surface shape of mixed entangled yarn Using a microscope ("Microscope VHX-900" manufactured by Keyence Corporation), the surface shape of the mixed entangled yarn is observed 200 times in a free state, and the protruding portion by polyester fiber A And a layered portion in which the polyester fiber A is gently entangled in the surface portion of the mixed entangled yarn and air is easily retained (the function of making it difficult for water droplets to move inside the mixed tangled yarn) The case where the air retaining layer was formed was evaluated as “good”, and the case where it was not evaluated as “bad”. FIG. 1 is an optical micrograph of the surface portion of the mixed fiber entangled yarn obtained in Example 1.

2.高配向未延伸糸及び混繊交絡糸の単糸緯度、トータル繊度
高配向未延伸糸及び混繊交絡糸の単糸緯度、トータル繊度は、それぞれ、JIS L1013 8.3.1の規定に基づいて測定した。
2. Single yarn latitude and total fineness of highly oriented undrawn yarn and mixed entangled yarn, single yarn latitude and total fineness of highly oriented undrawn yarn and mixed tangled yarn are based on the provisions of JIS L1013 8.3.1, respectively. It was measured.

3.捲縮率
まず、枠周1.125mの検尺機を用いて巻き数5回で試料をカセ取りした後、カセを室温下フリー状態でスタンドに一昼夜吊り下げる。次に、カセに0.000147cN/dtexの荷重を掛けたまま沸水中に投入し30分間湿熱処理する。その後、カセを取り出し、水分を濾紙で軽く取り、室温下フリー状態で30分間放置する。そして、カセに0.000147cN/dtexの荷重及び0.00177cN/dex(軽重荷)を掛け、長さXを測定する。続いて、0.000147cN/dtexの荷重は掛けたまま、軽重荷に代えて0.044cN/dtexの荷重(重荷重)を掛け、長さYを測定する。その後、捲縮率(%)=(Y−X)/Y×100なる式に基づき、算出する。捲縮率の測定は、複合仮撚糸及び混繊交絡糸のそれぞれ5ずつについて行い、それぞれの平均をその糸の捲縮率とする。
3. Crimp rate First, a sample is cut out with 5 turns using a measuring machine with a frame circumference of 1.125 m, and then the hook is hung on a stand in a free state at room temperature all day and night. Next, the load is put into boiling water while applying a load of 0.000147 cN / dtex to the casserole and subjected to wet heat treatment for 30 minutes. Thereafter, the casserole is taken out, the moisture is lightly removed with a filter paper, and left in a free state at room temperature for 30 minutes. Then, the load is applied with a load of 0.000147 cN / dtex and 0.00177 cN / dex (light heavy load), and the length X is measured. Subsequently, while applying a load of 0.000147 cN / dtex, a load (heavy load) of 0.044 cN / dtex is applied instead of a light heavy load, and the length Y is measured. Then, it calculates based on the formula of crimp rate (%) = (Y−X) / Y × 100. The crimp rate is measured for each of the composite false twisted yarn and the mixed fiber entangled yarn, and the average of each is taken as the crimp rate of the yarn.

4.高配向未延伸糸の伸度
高配向未延伸糸の伸度は、JIS L1013 8.5.1に基づいて測定した。
4). Elongation of highly oriented undrawn yarn The elongation of the highly oriented undrawn yarn was measured based on JIS L1013 8.5.1.

5.混繊交絡糸の交絡数
混繊交絡糸の交絡数(個/m)は、JIS L1013 8.15フック法に基づいて測定した。
5. The number of entangled yarns of mixed entangled yarn (number / m) was measured based on the JIS L1013 8.15 hook method.

6.複合仮撚糸の糸長差
混繊交絡糸を得る過程で別途複合仮撚糸を採取し、物差しを備えた垂直台に複合仮撚糸を0.1g/dtexの荷重を掛けながら吊るし、上下1m間に黒マジックで2箇所目印を付ける。次に、上部目印の位置を固定しながら、複合仮撚糸をピンセットで丁寧にポリエステル繊維Aの繊維群とポリエステルBの繊維群とに分ける。その後、ポリエステル繊維A、Bの繊維群それぞれに0.1g/dtexの荷重を掛け、それぞれの繊維群の長さを測定する。その後、糸長差(%)=(ポリエステルAの繊維群の長さ−ポリエステルBの繊維群の長さ)/ポリエステルBの繊維群の長さ×100なる式に基づき、算出する。糸長差の測定は5本の複合仮撚糸について行い、その平均を糸長差とした。
6). In the process of obtaining the mixed tangled yarn, the composite false twist yarn is separately collected in the process of obtaining the composite false twist yarn, and the composite false twist yarn is hung on a vertical table equipped with a ruler while applying a load of 0.1 g / dtex, and the distance between 1 m above and below Mark two places with black magic. Next, while fixing the position of the upper mark, the composite false twisted yarn is carefully divided into a fiber group of polyester fiber A and a fiber group of polyester B with tweezers. Thereafter, a load of 0.1 g / dtex is applied to each of the fiber groups of polyester fibers A and B, and the length of each fiber group is measured. Thereafter, the yarn length difference (%) = (the length of the polyester A fiber group−the length of the polyester B fiber group) / the length of the polyester B fiber group × 100 is calculated. The measurement of the yarn length difference was performed on five composite false twisted yarns, and the average was taken as the yarn length difference.

7.織物表面粗さの平均偏差(SMD)
自動化表面試験機(カトーテック株式会社製「KESFB4−AUTO−A」)を使用してSMDを測定した。まず、20cm四方の試験片を採取し、400gの張力をかけた試験片を上記試験機に設置した。次に、金属摩擦子を含めて50gの垂直方向の荷重を掛け、バネの接触圧により10gの力で摩擦子を接触させ、試験片を前後に30mm移動して、試験片の表面粗さの変動を計測した。測定は、WARP、WEFTの2方向で各3回行い、その平均値をSMDとする。SMDは、表面粗さの変動を示し、値が大きいほど突出部による凹凸があると判定できる。
7). Average deviation of surface roughness of fabric (SMD)
SMD was measured using an automated surface testing machine (“KESFB4-AUTO-A” manufactured by Kato Tech Co., Ltd.). First, a 20 cm square test piece was collected, and a test piece applied with 400 g of tension was placed in the test machine. Next, a vertical load of 50 g including the metal friction element is applied, the friction element is brought into contact with a force of 10 g by the contact pressure of the spring, the test piece is moved back and forth by 30 mm, and the surface roughness of the test piece is measured. Variation was measured. The measurement is performed three times each in two directions of WARP and WEFT, and the average value is taken as SMD. SMD shows the fluctuation | variation of surface roughness, and it can determine with there being an unevenness | corrugation by a protrusion part, so that a value is large.

8.織物の撥水性能(水滴転がり角度)
水滴転がり角度は、水平版上に取り付けた水平状の試料(織物)に、0.2mLの水を静かに滴下し、その後水平版を静かに傾斜させ、水滴が転がり始めるときの角度を測定した。
8). Water repellent performance of fabric (water droplet rolling angle)
As for the water drop rolling angle, 0.2 mL of water was gently dropped onto a horizontal sample (textile) mounted on the horizontal plate, and then the horizontal plate was gently tilted to measure the angle at which the water droplets started to roll. .

9.織物の涼感性
厚さ10mmの発泡ポリスチレン断熱ボードに10cm四方の窓を2つ設け、窓裏側をそれぞれ黒体布で塞ぎ、黒体布裏側中央にそれぞれ温度センサー(温度測定器:アンリン株式会社製「DATA COLLECTOR」)を設ける。その後、一方の窓の表側を測定試料(織物)で塞ぎ、他方の窓の表側を比較試料で塞ぐ。なお、比較試料とは、太陽光遮蔽物質を使用しなかったこと以外、測定試料と同様にして得た試料である。次に、測定試料を上にして断熱ボードを水平に置き、試料上部約25cmの位置にランプ(パナソニック株式会社製、屋内用レフランプ100形 100V90W仕様)を設置する。そして、2分間光照射した時点での黒体布の温度を測定する。測定回数は3回とし、その平均を黒体布温度とする。涼感性は、一般に黒体布温度が37℃を下回る場合に良好と判断できるため、黒体布温度が37℃未満の場合を「○」、37℃以上の場合を「×」と評価した。
9. Two of 10cm square window expanded polystyrene insulation board of coolness of 10mm thick fabric provided close the window back in black body cloth respectively, each temperature sensor blackbody fabric back center (temperature measuring instrument: Anrin Co. “DATA COLLECTOR”). Thereafter, the front side of one window is closed with a measurement sample (textile), and the front side of the other window is closed with a comparative sample. The comparative sample is a sample obtained in the same manner as the measurement sample except that no sunlight shielding material was used. Next, the heat insulation board is placed horizontally with the measurement sample facing up, and a lamp (manufactured by Panasonic Corporation, indoor reflex lamp 100 type 100V90W specification) is installed at a position about 25 cm above the sample. And the temperature of the black body cloth at the time of light irradiation for 2 minutes is measured. The number of measurements is 3 times, and the average is the black body cloth temperature. Coolness is generally judged to be good when the temperature of the black body cloth is below 37 ° C. Therefore, the case where the temperature of the black body cloth is less than 37 ° C. is evaluated as “◯”, and the case where the temperature is 37 ° C. or more is evaluated as “X”.

10.織物の保温性
厚さ10mmの発泡ポリスチレンボードに10cm四方の窓を2つ設け、一方の窓を測定試料(織物)、他方の窓を比較試料で表側からそれぞれ塞ぐ。なお、比較試料とは、赤外線吸収物質を使用しなかったこと以外、測定試料と同様にして得た試料である。そして、照度100000LUX、気温20℃の屋外において、両試料に対し太陽光が直射するようにボードを傾け、ボード裏面からNEC三栄株式会社製、赤外線熱画像装置「サーモトレーサTH7102(商品名)」を用いて両試料の温度が平衡に達するまで温度を測定する。試験は3回行い、その平均平衡温度で保温性を評価する。保温性は、測定試料の平均平衡温度と、比較試料の平均平衡温度との差で評価する。測定試料の温度は、比較試料の温度より3℃以上上回るのが好ましくは、4〜6℃上回るのがより好ましい。
10. Heat retention of woven fabric Two 10 cm square windows are provided on a foamed polystyrene board having a thickness of 10 mm, one window is closed from the front side with a measurement sample (woven fabric), and the other window is covered with a comparative sample. The comparative sample is a sample obtained in the same manner as the measurement sample except that no infrared absorbing material was used. The board was tilted so that sunlight would shine directly on both samples outdoors at an illuminance of 100,000 LUX and an air temperature of 20 ° C., and an infrared thermal imaging device “Thermo Tracer TH7102 (trade name)” manufactured by NEC Sanei Co., Ltd. from the back of the board. Use to measure temperature until the temperature of both samples reaches equilibrium. The test is performed three times, and the heat retention is evaluated at the average equilibrium temperature. The heat retention is evaluated by the difference between the average equilibrium temperature of the measurement sample and the average equilibrium temperature of the comparative sample. The temperature of the measurement sample is preferably 3 ° C. or more higher than the temperature of the comparative sample, and more preferably 4 to 6 ° C.

(実施例1)
伸度92%、単糸繊度0.54dtex、トータル繊度90dtex168fのポリエステル高配向未延伸糸Aを用意した。一方、繊維断面が同心芯鞘型でその質量比率(芯/鞘)が75/25であり、太陽光遮蔽物質として酸化チタンを芯部に5質量%、鞘部に0.3質量部それぞれ含有すると共に、繊維全体で酸化チタンを3.825質量%含む高配向未延伸繊維から構成される、伸度147%、単糸繊度2.7dtex、トータル繊度130dtex48fのポリエステル高配向未延伸糸Bを用意した。そして、ポリエステル高配向未延伸糸A、Bを図2に示すような混繊交絡糸の製造方法に供した。仮撚具4としてディスクタイプのものを使用し、複合仮撚条件及び混繊交絡条件は下記の通りとすることにより、163dtex216fの混繊交絡糸を得た。
Example 1
A polyester highly oriented undrawn yarn A having an elongation of 92%, a single yarn fineness of 0.54 dtex, and a total fineness of 90 dtex168f was prepared. On the other hand, the fiber cross section is a concentric core-sheath type, the mass ratio (core / sheath) is 75/25, and contains 5% by mass of titanium oxide as a solar light shielding substance in the core and 0.3% by mass in the sheath. In addition, a polyester highly oriented unstretched yarn B having a degree of elongation of 147%, a single yarn fineness of 2.7 dtex, and a total fineness of 130 dtex48f, which is composed of highly oriented unstretched fibers containing 3.825% by mass of titanium oxide in the entire fiber is prepared. did. Then, the polyester highly oriented undrawn yarns A and B were subjected to a method for producing a mixed fiber entangled yarn as shown in FIG. A disk type thing was used as the false twisting tool 4, and the mixed false entanglement yarn of 163dtex 216f was obtained by making the composite false twist condition and the mixed fiber entanglement condition as follows.

<複合仮撚条件>
供給ローラ1の表面速度:339m/分
ポリエステル高配向未延伸糸Bの延伸倍率:1.25倍
第1引取ローラ2の表面速度:423.7m/分
ヒーター3の温度:(接触式ヒーター)190℃
撚り方向:Z方向
ディスクの構造:1−6−1
ディスクの厚さ:9mm
K値:1.0
仮撚時の延伸倍率:1.18倍
第2引取ローラ5の表面速度:500m/分
<Composite false twist conditions>
Surface speed of supply roller 1: 339 m / min Stretch ratio of polyester highly oriented undrawn yarn B: 1.25 times Surface speed of first take-up roller 2: 423.7 m / min Temperature of heater 3 (contact heater) 190 ℃
Twisting direction: Z-direction disk structure: 1-6-1
Disc thickness: 9mm
K value: 1.0
Stretch ratio at false twist: 1.18 times Surface speed of second take-up roller 5: 500 m / min

<混繊交絡条件>
流体ノズル6:インターレースノズル
エアー圧力:0.1961MPa
オーバーフィード率:2.5%
第3引取ローラ7の表面速度:487.8m/分
<Mixed fiber entanglement conditions>
Fluid nozzle 6: Interlace nozzle Air pressure: 0.1961 MPa
Overfeed rate: 2.5%
Surface speed of third take-up roller 7: 487.8 m / min

次に、ウォータージェット織機(津田駒工業株式会社製)を使用し、経糸に84dtex36fのポリエステル仮撚加工糸を、緯糸に上記で得られた混繊交絡糸を無撚状態でそれぞれ配して、経糸密度125本/2.54cm、緯糸密度66本/2.54cmの平組織の生機を製織した。そして、BOILOFF精練機(福伸工業株式会社製)を用いて生機を95℃で精練し、続いて、連続リラクサー機(和歌山鉄工株式会社製)を用いてリラックスした。その後、織物を130℃で乾燥し、190℃で30秒間プレセットした。   Next, using a water jet loom (manufactured by Tsudakoma Kogyo Co., Ltd.), the polyester false twisted yarn of 84 dtex36f is used as the warp, and the mixed entangled yarn obtained above is arranged in the untwisted state as the weft. A plain machine with a warp density of 125 / 2.54 cm and a weft density of 66 / 2.54 cm was woven. Then, the raw machine was scoured at 95 ° C. using a BOILOFF scouring machine (Fukushin Kogyo Co., Ltd.), and then relaxed using a continuous relaxer machine (Wakayama Tekko Co., Ltd.). The fabric was then dried at 130 ° C. and preset at 190 ° C. for 30 seconds.

次に、下記処方1に示す組成の染液を調製した後、この染液を用いて織物を130℃で40分間染色した。その後、シュリンクサーファー型乾燥機(株式会社ヒラノテクシード製)を用いて130℃で乾燥した。
<処方1>
染料:ダイスタージャパン株式会社製、分散染料「Dianix Blue UN−SE(商品名)」 2%omf
分散剤:日華化学株式会社製「ニッカサンソルトSN−250E(商品名)」 0.5g/L
酢酸(98%) 0.1mL/L
Next, after preparing the dyeing liquid of the composition shown in the following prescription 1, the textile was dyed at 130 ° C. for 40 minutes using this dyeing liquid. Then, it dried at 130 degreeC using the shrink surfer type dryer (made by Hirano Tech Seed Co., Ltd.).
<Prescription 1>
Dye: manufactured by Dystar Japan, disperse dye "Dianix Blue UN-SE (trade name)" 2% omf
Dispersant: “Nikka Sun Salt SN-250E (trade name)” by Nikka Chemical Co., Ltd. 0.5 g / L
Acetic acid (98%) 0.1 mL / L

さらに、下記処方2に示す組成の水溶液を調製した後、パッター加工機を用いて絞り率80%にて水溶液を織物に付与し、120℃で120秒間乾熱処理した。そして、180℃で30秒間ファイナルセットした後、160℃でカレンダー加工した。得られた織物は、経糸密度143本/2.54cm、緯糸密度74本/2.54cm、カバーファクター(CF)は2255であった。
<処方2>
撥水剤:日華化学株式会社製「NKガードS−07(商品名)固形分20質量%」 50g/L
架橋剤:DIC株式会社製、メラミン樹脂「ベッカミンM−3(商品名)」 3g/L
触媒:DIC株式会社製「キャタリストACX(商品名)固形分35質量%」 3g/L
Furthermore, after preparing the aqueous solution of the composition shown in the following prescription 2, the aqueous solution was applied to the woven fabric at a drawing ratio of 80% using a putter processing machine, and dry heat-treated at 120 ° C. for 120 seconds. Then, after final setting at 180 ° C. for 30 seconds, calendar processing was performed at 160 ° C. The obtained woven fabric had a warp density of 143 pieces / 2.54 cm, a weft density of 74 pieces / 2.54 cm, and a cover factor (CF) of 2255.
<Prescription 2>
Water repellent: “NK Guard S-07 (trade name) 20 mass% solid content” manufactured by Nikka Chemical Co., Ltd. 50 g / L
Crosslinking agent: manufactured by DIC Corporation, melamine resin “Beccamin M-3 (trade name)” 3 g / L
Catalyst: DIC Corporation “Catalyst ACX (trade name) solid content 35% by mass” 3 g / L

(実施例2)
ポリエステル高配向未延伸糸Aとして、伸度92%、単糸繊度0.54dtex、トータル繊度180dtex336fのポリエステル高配向未延伸糸を使用したこと以外は、実施例1の場合と同様にして、245dtex384fの混繊交絡糸を得た。次に、ウォータージェット織機(津田駒工業株式会社製)を使用し、経緯糸に上記混繊交絡糸を無撚状態で配して、経糸密度78本/2.54cm、緯糸密度50本/2.54cmの綾組織の生機を製織した。以降は、実施例1と同様に後加工及び撥水加工し、経糸密度83本/2.54cm、緯糸密度56本/2.54cm、カバーファクター(CF)が2176の織物を得た。
(Example 2)
As in the case of Example 1, 245 dtex 384f was used except that a polyester highly oriented undrawn yarn having an elongation of 92%, a single yarn fineness of 0.54 dtex, and a total fineness of 180 dtex 336f was used as the polyester highly oriented undrawn yarn A. A mixed fiber entangled yarn was obtained. Next, using a water jet loom (manufactured by Tsudakoma Kogyo Co., Ltd.), the above-mentioned mixed fiber entangled yarn is arranged in a non-twisted state on the warp, and the warp density is 78 yarns / 2.54 cm, and the weft yarn density is 50 yarns / 2. A weaving machine with a .54 cm twill structure was woven. Thereafter, post-processing and water-repellent processing were performed in the same manner as in Example 1 to obtain a woven fabric having a warp density of 83 / 2.54 cm, a weft density of 56 / 2.54 cm, and a cover factor (CF) of 2176.

(実施例3)
ウォータージェット織機(津田駒工業株式会社製)を使用し、経糸に110dtex45fのポリエステル仮撚加工糸を、緯糸に実施例1における混繊交絡糸を無撚状態でそれぞれ配して、経糸密度56本/2.54cm、緯糸密度56本/2.54cmの平組織の生機を製織した。以降は、実施例1と同様に後加工及び撥水加工し、経糸密度60本/2.54cm、緯糸密度62本/2.54cm、カバーファクター(CF)が1420の織物を得た。
(Example 3)
Using a water jet loom (manufactured by Tsuda Koma Kogyo Co., Ltd.), arranging a polyester false twisted yarn of 110 dtex 45f as the warp and the mixed entangled yarn of Example 1 in a non-twisted state as the weft, and having a warp density of 56 A plain machine with a /2.54 cm and weft density of 56 / 2.54 cm was woven. Thereafter, post-processing and water-repellent processing were performed in the same manner as in Example 1 to obtain a woven fabric having a warp density of 60 / 2.54 cm, a weft density of 62 / 2.54 cm, and a cover factor (CF) of 1420.

(比較例1)
ポリエステル高配向未延伸糸Aとして、伸度92%、単糸繊度2.5dtex、トータル繊度90dtex36fのポリエステル高配向未延伸糸を使用した以外は、実施例1の場合と同様にして、164dtex84fの混繊交絡糸を得た。以降は、実施例1の場合と同様に製織、後加工及び撥水加工し、経糸密度143本/2.54cm、緯糸密度74本/2.54cm、カバーファクター(CF)が2258の織物を得た。
(Comparative Example 1)
In the same manner as in Example 1, except that a polyester highly oriented undrawn yarn having an elongation of 92%, a single yarn fineness of 2.5 dtex, and a total fineness of 90 dtex36f was used as the polyester highly oriented undrawn yarn A, a mixture of 164 dtex84f was used. A tangled yarn was obtained. Thereafter, weaving, post-processing and water-repellent processing were performed in the same manner as in Example 1 to obtain a woven fabric having a warp density of 143 / 2.54 cm, a weft density of 74 / 2.54 cm, and a cover factor (CF) of 2258. It was.

(比較例2)
ポリエステル高配向未延伸糸Bとして、繊維断面が同心芯鞘型でその質量比率(芯/鞘)が75/25であり、太陽光遮蔽物質として酸化チタンを芯部に5質量%、鞘部に0.3質量部それぞれ含有すると共に、繊維全体で酸化チタンを3.825質量%含んでなる高配向未延伸繊維から構成される、伸度147%、単糸繊度1.2dtex、トータル繊度130dtex110fのポリエステル高配向未延伸糸を使用したこと以外は、実施例1の場合と同様にして、163dtex278fの混繊交絡糸を得た。以降は、実施例1の場合と同様に製織、後加工及び撥水加工し、経糸密度143本/2.54cm、緯糸密度74本/2.54cm、カバーファクター(CF)が2255の織物を得た。
(Comparative Example 2)
As the polyester highly oriented non-drawn yarn B, the fiber cross section is a concentric core-sheath type and the mass ratio (core / sheath) is 75/25. Each of 0.3 parts by mass and composed of highly oriented unstretched fibers containing 3.825% by mass of titanium oxide as a whole, has an elongation of 147%, a single yarn fineness of 1.2 dtex, and a total fineness of 130 dtex110f. A mixed fiber entangled yarn of 163 dtex 278f was obtained in the same manner as in Example 1 except that the polyester highly oriented undrawn yarn was used. Thereafter, weaving, post-processing and water-repellent processing were performed in the same manner as in Example 1 to obtain a woven fabric having a warp density of 143 / 2.54 cm, a weft density of 74 / 2.54 cm, and a cover factor (CF) of 2255. It was.

(比較例3)
ポリエステル高配向未延伸糸Bとして、繊維断面が同心芯鞘型でその質量比率(芯/鞘)が75/25であり、太陽光遮蔽物質として酸化チタンを芯部に5質量%、鞘部に0.3質量部それぞれ含有すると共に、繊維全体で酸化チタンを3.825質量%含んでなる高配向未延伸繊維から構成される、伸度147%、単糸繊度7.8dtex、トータル繊度280dtex36fのポリエステル高配向未延伸糸を使用する以外、実施例1の場合と同様に行い、266dtex204fの混繊交絡糸を得た。次に、ウォータージェット織機(津田駒工業株式会社製)を使用し、経緯糸に上記混繊交絡糸を無撚状態で配して、経糸密度72本/2.54cm、緯糸密度58本/2.54cmの綾組織の生機を製織した。以降は、実施例1と同様に後加工及び撥水加工し、経糸密度79本/2.54cm、緯糸密度67本/2.54cm、カバーファクター(CF)が2380の織物を得た。
(Comparative Example 3)
As the polyester highly oriented non-drawn yarn B, the fiber cross section is a concentric core-sheath type and the mass ratio (core / sheath) is 75/25. Each of 0.3 parts by mass and composed of highly oriented unstretched fibers containing 3.825% by mass of titanium oxide as a whole, has an elongation of 147%, a single yarn fineness of 7.8 dtex, and a total fineness of 280 dtex36f. Except that a polyester highly oriented undrawn yarn was used, the same procedure as in Example 1 was performed to obtain a 266 dtex 204f mixed fiber entangled yarn. Next, using a water jet loom (manufactured by Tsudakoma Kogyo Co., Ltd.), the above-mentioned mixed tangled yarn is arranged in a non-twisted state on the warp and the warp density is 72 yarns / 2.54 cm, and the weft yarn density is 58 yarns / 2. A weaving machine with a .54 cm twill structure was woven. Thereafter, post-processing and water-repellent processing were performed in the same manner as in Example 1 to obtain a woven fabric having a warp density of 79 / 2.54 cm, a weft density of 67 / 2.54 cm, and a cover factor (CF) of 2380.

(実施例4)
ポリエステル高配向未延伸糸Bとして、繊維断面が同心芯鞘型でその質量比率(芯/鞘)が75/25であり、赤外線吸収物質として炭化ジルコニウムを芯部にのみに5質量%含有すると共に、繊維全体で炭化ジルコニウムを3.75質量%含んでなる高配向未延伸繊維から構成される、伸度147%、単糸繊度2.7dtex、トータル繊度130dtex48fのポリエステル高配向未延伸糸を使用したこと以外は、実施例1と同様にして、163dtex216fの混繊交絡糸を得た。以降は、実施例1と同様に製織、後加工及び撥水加工し、経糸密度143本/2.54cm、緯糸密度74本/2.54cm、カバーファクター(CF)が2255の織物を得た。
Example 4
As the polyester highly oriented undrawn yarn B, the fiber cross section is a concentric core-sheath type, the mass ratio (core / sheath) is 75/25, and zirconium carbide is contained only in the core as an infrared absorbing substance. A polyester highly oriented undrawn yarn having a degree of elongation of 147%, a single yarn fineness of 2.7 dtex, and a total fineness of 130 dtex48f, composed of highly oriented undrawn fibers containing 3.75% by mass of zirconium carbide in the entire fiber was used. Except that, a 163 dtex 216f mixed fiber entangled yarn was obtained in the same manner as in Example 1. Thereafter, weaving, post-processing and water-repellent processing were performed in the same manner as in Example 1 to obtain a woven fabric having a warp density of 143 yarns / 2.54 cm, a weft density of 74 yarns / 2.54 cm, and a cover factor (CF) of 2255.

<実施例及び比較例の考察>
実施例にかかる織物は、いずれも優れた撥水性能を有するものであり、繊維中に適宜の添加剤を含有させることで、副次的な効果も得られる点が確認できた。特に実施例1、2、4にかかる織物は、優れた撥水性能(ロータス効果)を具備するものであることが確認できた。実施例3にかかる織物は、カバーファクター(CF)が低いため、他の実施例のものと比べると撥水性能にやや劣っていた。これは、織物の組織点がやや粗くなったことに伴い、織物内に空隙が増え、その空隙に水滴が落ちる傾向にあったためと推察される。
<Consideration of Examples and Comparative Examples>
The fabrics according to the examples all have excellent water repellency, and it has been confirmed that a secondary effect can be obtained by adding an appropriate additive to the fiber. In particular, the fabrics according to Examples 1, 2, and 4 were confirmed to have excellent water repellency (lotus effect). Since the woven fabric according to Example 3 had a low cover factor (CF), it was slightly inferior in water repellency as compared with the other examples. This is presumably because voids increased in the fabric and water drops tended to fall into the voids as the texture point of the fabric became slightly rough.

一方、比較例1では、混繊交絡糸中のポリエステル繊維Aの単糸繊度が太すぎたため、水滴との接触面積が増え、かつ、繊維が剛直となったことにより、混繊交絡糸の表面部分に空気を保持して水滴の移行を抑制する空気保持層があまり形成されておらず、撥水性能が劣っていた。また、比較例2では、混繊交絡糸中のポリエステル繊維Bが細すぎ、逆に比較例3では、太すぎたため、いずれの場合も混繊交絡糸の表面部分の形状が所望のものとならず、織物に所望の撥水性能を付与できなかった。   On the other hand, in Comparative Example 1, since the single yarn fineness of the polyester fiber A in the mixed fiber entangled yarn was too thick, the contact area with water droplets increased and the fiber became rigid, so that the surface of the mixed fiber entangled yarn The air retaining layer that retains air in the portion and suppresses the transfer of water droplets was not formed so much, and the water repellency was poor. Further, in Comparative Example 2, the polyester fiber B in the mixed fiber entangled yarn is too thin, and conversely in Comparative Example 3, the surface part of the mixed fiber entangled yarn has the desired shape. In addition, the desired water-repellent performance could not be imparted to the woven fabric.

1…供給ローラ
2…第1引取ローラ
3…ヒーター
4…仮撚具
5…第2引取ローラ
6…第2デリベリローラ
7…第3引取ローラ
8…巻取ローラ
9…混繊交絡糸のパッケージ
YA…ポリエステル高配向未延伸糸Aのパッケージ
YB…ポリエステル高配向未延伸糸Bのパッケージ
DESCRIPTION OF SYMBOLS 1 ... Supply roller 2 ... 1st take-up roller 3 ... Heater 4 ... False twister 5 ... 2nd take-up roller 6 ... 2nd delivery roller 7 ... 3rd take-up roller 8 ... Winding roller 9 ... Package YA of mixed fiber entanglement yarn ... Package YB of polyester highly oriented undrawn yarn A ... Package of polyester highly oriented undrawn yarn B

Claims (7)

単糸繊度が0.2〜0.9dtexのポリエステル繊維Aと、単糸繊度が1.0〜5.0dtexのポリエステル繊維Bとから構成される混繊交絡糸であって、
前記混繊交絡糸は、全体として仮撚捲縮を有し、かつ、前記ポリエステル繊維Aと前記ポリエステル繊維Bとの質量比率(A/B)が20/80〜80/20の範囲にあり、
前記混繊交絡糸の表面部分において、ポリエステル繊維Aによる突出部が形成されている、混繊交絡糸。
A mixed entangled yarn composed of a polyester fiber A having a single yarn fineness of 0.2 to 0.9 dtex and a polyester fiber B having a single yarn fineness of 1.0 to 5.0 dtex,
The mixed fiber entangled yarn has a false twist crimp as a whole, and the mass ratio (A / B) of the polyester fiber A and the polyester fiber B is in the range of 20/80 to 80/20,
A mixed fiber entangled yarn in which a protruding portion of the polyester fiber A is formed on a surface portion of the mixed fiber entangled yarn.
捲縮率が10〜45%の範囲にあり、交絡数が90〜150個/mの範囲にある、請求項1に記載の混繊交絡糸。   The mixed fiber entangled yarn according to claim 1, wherein the crimp rate is in a range of 10 to 45% and the number of entanglements is in a range of 90 to 150 pieces / m. 前記ポリエステル繊維Bが、太陽光遮蔽物質を含む、請求項1または2に記載の混繊交絡糸。   The mixed fiber entangled yarn according to claim 1 or 2, wherein the polyester fiber B includes a sunlight shielding substance. 前記ポリエステル繊維Bが、赤外線吸収物質を含む、請求項1または2に記載の混繊交絡糸。   The mixed fiber entangled yarn according to claim 1 or 2, wherein the polyester fiber B includes an infrared absorbing material. 請求項1〜4のいずれかに記載の混繊交絡糸の製造方法であって、
単糸繊度が1.5〜6.5dtex、伸度が100〜160%のポリエステル高配向未延伸糸Bを延伸倍率1.1〜1.4倍で延伸する延伸工程と、
前記延伸工程で延伸された前記ポリエステル高配向延伸糸Bと、単糸繊度が0.4〜1.3dtex、伸度が80〜110%のポリエステル高配向未延伸糸Aとを、加工速度100〜700m/分、延伸倍率1.10〜1.30倍の条件で複合仮撚りする複合仮撚り工程と、
前記複合仮撚り工程で得られた複合仮撚糸を、流体ノズルを用いて、エアー圧0.1〜0.6Mpa、オーバーフィード率1〜4%の条件で混繊交絡する混繊交絡工程と、
を備える、混繊交絡糸の製造方法。
A method for producing a mixed fiber entangled yarn according to any one of claims 1 to 4,
A drawing step of drawing a polyester highly oriented undrawn yarn B having a single yarn fineness of 1.5 to 6.5 dtex and an elongation of 100 to 160% at a draw ratio of 1.1 to 1.4 times;
The polyester highly oriented stretched yarn B stretched in the stretching step and the polyester highly oriented unstretched yarn A having a single yarn fineness of 0.4 to 1.3 dtex and an elongation of 80 to 110% are processed at a processing speed of 100 to 100%. A composite false twisting step of composite false twisting under conditions of 700 m / min and a draw ratio of 1.10 to 1.30 times;
A mixed fiber entanglement step in which the composite false twisted yarn obtained in the composite false twisting step is mixed and entangled under conditions of an air pressure of 0.1 to 0.6 Mpa and an overfeed rate of 1 to 4% using a fluid nozzle;
A method for producing a mixed fiber entangled yarn.
請求項1〜4のいずれかに記載の混繊交絡糸が織編された織編物であって、
KES−Fシステムによる織編物表面粗さの平均偏差(SMD)が3.0〜8.0μmの範囲にあり、かつ、撥水加工されてなる、織編物。
A woven or knitted fabric in which the mixed fiber entangled yarn according to any one of claims 1 to 4 is woven and knitted,
A woven or knitted fabric having a mean deviation (SMD) of the surface roughness of the woven or knitted fabric by the KES-F system in the range of 3.0 to 8.0 μm and water-repellent.
カバーファクター(CF)が1500〜3000の範囲にあり、かつ、水滴転がり角度が15度以下である、請求項6に記載の織編物。   The woven or knitted fabric according to claim 6, wherein the cover factor (CF) is in the range of 1500 to 3000, and the water droplet rolling angle is 15 degrees or less.
JP2013238923A 2013-11-19 2013-11-19 Mixed fiber entangled yarn, method for producing the same, and woven / knitted fabric using mixed fiber entangled yarn Active JP6174464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013238923A JP6174464B2 (en) 2013-11-19 2013-11-19 Mixed fiber entangled yarn, method for producing the same, and woven / knitted fabric using mixed fiber entangled yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013238923A JP6174464B2 (en) 2013-11-19 2013-11-19 Mixed fiber entangled yarn, method for producing the same, and woven / knitted fabric using mixed fiber entangled yarn

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017109449A Division JP6242528B2 (en) 2017-06-01 2017-06-01 Mixed fiber entangled yarn, method for producing the same, and woven / knitted fabric using mixed fiber entangled yarn

Publications (2)

Publication Number Publication Date
JP2015098661A true JP2015098661A (en) 2015-05-28
JP6174464B2 JP6174464B2 (en) 2017-08-02

Family

ID=53375464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013238923A Active JP6174464B2 (en) 2013-11-19 2013-11-19 Mixed fiber entangled yarn, method for producing the same, and woven / knitted fabric using mixed fiber entangled yarn

Country Status (1)

Country Link
JP (1) JP6174464B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228718B1 (en) * 2016-06-15 2017-11-08 ユニチカトレーディング株式会社 Water-repellent woven or knitted fabric and method for producing the same
WO2017209062A1 (en) * 2016-06-03 2017-12-07 ユニチカトレーディング株式会社 Laminated fabric and method for manufacturing same
JP6247414B1 (en) * 2017-03-31 2017-12-13 ユニチカトレーディング株式会社 Mixed fiber entangled yarn, method for producing the same, and woven / knitted fabric using mixed fiber entangled yarn
WO2017217484A1 (en) * 2016-06-15 2017-12-21 ユニチカトレーディング株式会社 Water-repellent woven or knitted fabric, and method for producing same
KR20180000074A (en) * 2016-06-22 2018-01-02 (주)인터마루인더스트리 Process Of Manufacturing Safety Mattress Textiles For Cruise·Ferry Ship
JP2018053414A (en) * 2016-09-30 2018-04-05 ユニチカトレーディング株式会社 Combined filament entangled yarn, method for producing the same, and woven or knitted fabric using combined filament entangled yarn
JP2018062714A (en) * 2016-10-11 2018-04-19 ユニチカトレーディング株式会社 Water-absorbing and quick-drying woven or knitted fabric
JP2018150629A (en) * 2017-03-09 2018-09-27 旭化成アドバンス株式会社 Knitted fabric knitted with composite textured yarn
JP2019077973A (en) * 2017-10-27 2019-05-23 ユニチカトレーディング株式会社 Water-absorbing knitted fabric

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047068A (en) * 2009-08-26 2011-03-10 Teijin Fibers Ltd Water-repelling polyester blended yarn
JP2011214203A (en) * 2010-04-01 2011-10-27 Nippon Ester Co Ltd Blended yarn having different shape and different fineness
JP2012122144A (en) * 2010-12-06 2012-06-28 Teijin Fibers Ltd Water-repellent woven fabric and clothing
JP2012211405A (en) * 2011-03-31 2012-11-01 Unitika Trading Co Ltd Cool-feeling knitted fabric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047068A (en) * 2009-08-26 2011-03-10 Teijin Fibers Ltd Water-repelling polyester blended yarn
JP2011214203A (en) * 2010-04-01 2011-10-27 Nippon Ester Co Ltd Blended yarn having different shape and different fineness
JP2012122144A (en) * 2010-12-06 2012-06-28 Teijin Fibers Ltd Water-repellent woven fabric and clothing
JP2012211405A (en) * 2011-03-31 2012-11-01 Unitika Trading Co Ltd Cool-feeling knitted fabric

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3466671A4 (en) * 2016-06-03 2020-03-04 Unitika Trading Co., Ltd. Laminated fabric and method for manufacturing same
WO2017209062A1 (en) * 2016-06-03 2017-12-07 ユニチカトレーディング株式会社 Laminated fabric and method for manufacturing same
JP7132697B2 (en) 2016-06-03 2022-09-07 ユニチカトレーディング株式会社 Laminated fabric and manufacturing method thereof
JP2017217913A (en) * 2016-06-03 2017-12-14 ユニチカトレーディング株式会社 Laminate dough and manufacturing method therefor
KR101944679B1 (en) * 2016-06-15 2019-01-31 유니티카 트레이딩 가부시키가이샤 Water-repellent knitted fabric and its manufacturing method
KR20180028547A (en) 2016-06-15 2018-03-16 유니티카 트레이딩 가부시키가이샤 Water-repellent knitted fabric and its manufacturing method
JP6228718B1 (en) * 2016-06-15 2017-11-08 ユニチカトレーディング株式会社 Water-repellent woven or knitted fabric and method for producing the same
WO2017217484A1 (en) * 2016-06-15 2017-12-21 ユニチカトレーディング株式会社 Water-repellent woven or knitted fabric, and method for producing same
KR20180000074A (en) * 2016-06-22 2018-01-02 (주)인터마루인더스트리 Process Of Manufacturing Safety Mattress Textiles For Cruise·Ferry Ship
KR101869765B1 (en) 2016-06-22 2018-06-21 (주)인터마루인더스트리 Process Of Manufacturing Safety Mattress Textiles For Cruise·Ferry Ship
JP2018053414A (en) * 2016-09-30 2018-04-05 ユニチカトレーディング株式会社 Combined filament entangled yarn, method for producing the same, and woven or knitted fabric using combined filament entangled yarn
JP2018062714A (en) * 2016-10-11 2018-04-19 ユニチカトレーディング株式会社 Water-absorbing and quick-drying woven or knitted fabric
JP2018150629A (en) * 2017-03-09 2018-09-27 旭化成アドバンス株式会社 Knitted fabric knitted with composite textured yarn
JP2018172813A (en) * 2017-03-31 2018-11-08 ユニチカトレーディング株式会社 Combined filament entangled yarn, manufacturing method thereof, and woven knitted goods therewith
JP6247414B1 (en) * 2017-03-31 2017-12-13 ユニチカトレーディング株式会社 Mixed fiber entangled yarn, method for producing the same, and woven / knitted fabric using mixed fiber entangled yarn
JP2019077973A (en) * 2017-10-27 2019-05-23 ユニチカトレーディング株式会社 Water-absorbing knitted fabric
JP7193912B2 (en) 2017-10-27 2022-12-21 ユニチカトレーディング株式会社 Absorbent knitted fabric

Also Published As

Publication number Publication date
JP6174464B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6174464B2 (en) Mixed fiber entangled yarn, method for producing the same, and woven / knitted fabric using mixed fiber entangled yarn
US11766845B2 (en) Multilayer structured fabric and fiber product
JP7516032B2 (en) Polyester composite false twist yarn, stretchable woven and knitted fabric, and their manufacturing method
JP5612702B2 (en) Textiles and clothing
TWI830821B (en) Fabrics and fiber products
TW200538594A (en) Napped fabric and process for the production thereof
JP6242528B2 (en) Mixed fiber entangled yarn, method for producing the same, and woven / knitted fabric using mixed fiber entangled yarn
JP6247414B1 (en) Mixed fiber entangled yarn, method for producing the same, and woven / knitted fabric using mixed fiber entangled yarn
WO2017217484A1 (en) Water-repellent woven or knitted fabric, and method for producing same
JP2018053414A (en) Combined filament entangled yarn, method for producing the same, and woven or knitted fabric using combined filament entangled yarn
JP6228718B1 (en) Water-repellent woven or knitted fabric and method for producing the same
JP5180053B2 (en) Insulated knitted fabric
JP7193912B2 (en) Absorbent knitted fabric
TW201903233A (en) Cloth and fiber products
JP2018062714A (en) Water-absorbing and quick-drying woven or knitted fabric
JP2016113714A (en) False-twisted hollow multifilament yarn, and woven or knitted fabric
JP6345904B1 (en) Nylon blended tangled yarn, woven and knitted fabric, method for producing nylon blended tangled yarn, and laminated fabric
JP6366884B1 (en) Nylon blended tangled yarn, woven and knitted fabric, method for producing nylon blended tangled yarn, and laminated fabric
TWI615519B (en) Knitwear and clothes
JP7061441B2 (en) Heat shrinkable composite yarn and its manufacturing method
WO2017209062A1 (en) Laminated fabric and method for manufacturing same
TW201800631A (en) Crimped yarn having flat cross-section, method of manufacturing said crimped yarn, and textile comprising said crimped yarn
JP2024058245A (en) Latently crimpable polyester conjugated yarn, and woven or knitted fabric
JP3908851B2 (en) Polyester thick multifilament
JP2019167637A (en) Polyester combined filament yarn, woven or knitted fabric, and method for producing polyester combined filament yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170706

R150 Certificate of patent or registration of utility model

Ref document number: 6174464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150