Nothing Special   »   [go: up one dir, main page]

JP2015078597A - Antifreeze structure of road surface - Google Patents

Antifreeze structure of road surface Download PDF

Info

Publication number
JP2015078597A
JP2015078597A JP2014201973A JP2014201973A JP2015078597A JP 2015078597 A JP2015078597 A JP 2015078597A JP 2014201973 A JP2014201973 A JP 2014201973A JP 2014201973 A JP2014201973 A JP 2014201973A JP 2015078597 A JP2015078597 A JP 2015078597A
Authority
JP
Japan
Prior art keywords
road surface
road
freezing
pavement
roadbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014201973A
Other languages
Japanese (ja)
Inventor
悟司 安本
Satoshi Yasumoto
悟司 安本
輝幸 福原
Teruyuki Fukuhara
輝幸 福原
寛章 寺▲崎▼
Hiroaki Terasaki
寛章 寺▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eco Planner Kk
Original Assignee
Eco Planner Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eco Planner Kk filed Critical Eco Planner Kk
Priority to JP2014201973A priority Critical patent/JP2015078597A/en
Publication of JP2015078597A publication Critical patent/JP2015078597A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antifreeze structure of a road surface which can prevent freezing of a paved road surface in a tunnel etc. by utilizing geothermal energy.SOLUTION: In a pavement part of a tunnel etc., an opening area part of a base course and a road bed using sediment and ballast is filled with gelatinous liquid. Silica rock is used for the ballast of the base course, and the pavement surface of the pavement part is formed by an upper surface of a concrete panel using the silica rock as aggregate. Through filling of the opening area part with the gelatinous liquid, heat transfer of the geothermal energy from the layer of the base course and the road bed to the pavement surface can be promoted.

Description

本発明は、例えば、冬季のトンネル内の舗装道路において、路面の凍結を防止するための路面の凍結防止構造に関するものである。  The present invention relates to a road surface freezing prevention structure for preventing freezing of a road surface, for example, on a paved road in a winter tunnel.

寒冷地のトンネル道路面では、通過する車両のタイヤによって引き込まれた水や湧水が、気温低下によって凍結することがある。その対策のために、凍結防止剤の散布が多く用いられている。
多くの凍結防止剤の主成分は、塩化ナトリウム又は塩化カルシウムなど塩化化合物であるため、トンネル内のコンクリートや鋼材、更に、防災設備や電気配線などに悪影響を及ぼす。
On a tunnel road surface in a cold region, water and spring water drawn by the tires of passing vehicles may freeze due to a decrease in temperature. As a countermeasure, antifreeze spraying is often used.
The main component of many antifreeze agents is a chlorinated compound such as sodium chloride or calcium chloride, which adversely affects concrete and steel materials in the tunnel, as well as disaster prevention equipment and electrical wiring.

また、散水融雪法が用いられる場合もある。散水融雪法は、道路に給水パイプを配設し、散水ノズルから路面に地下水や温水等を散布して融雪を行うものであるが、排水溝を必要とする上に、散布した水が再度凍結する可能性がある。地下水を用いる場合には、地盤沈下の原因にもなる。  In some cases, a sprinkling snow melting method is used. In the water sprinkling snow melting method, water supply pipes are installed on the road, and ground water or hot water is sprayed from the water sprinkling nozzles onto the road surface to melt the snow. there's a possibility that. If groundwater is used, it may cause land subsidence.

加熱融雪法は、路面内部に温水パイプや電熱ヒーター等を配設して、これから供給される熱により路面の凍結防止と融雪を行うものであるが、設備やそれを運転するためのエネルギーコストが高い。  The heat-snow melting method is to install hot water pipes, electric heaters, etc. inside the road surface, and to prevent freezing of the road surface and snow melting by the heat supplied from this, but the equipment and the energy cost for operating it are low. high.

地熱を利用して路面の凍結防止する方法もある。これは、トンネル坑内の壁面や地中に埋設された採熱用パイプとトンネル坑口に埋設された放熱用パイプを繋ぎ、地熱を水により循環させるものである。しかしこれも、敷設費用がかさみ、単位凍結防止面積(m)当たり6〜12万円の追加金額が必要となる。There is also a method of preventing freezing of the road surface using geothermal heat. This connects the heat collecting pipe buried in the wall surface or underground of the tunnel mine and the heat radiating pipe buried in the tunnel pit, and circulates the geothermal heat with water. However, this also increases the installation cost, and an additional amount of 60 to 120,000 yen per unit freezing prevention area (m 2 ) is required.

特開平8−53807号公報JP-A-8-53807

本発明は、例えばこのような事情に鑑みてなされたもので、その目的は、舗装及び路盤・路床層の伝熱を促進させ、トンネル地盤等の地盤が保有する熱を有効に利用して、低コストで効率よくトンネル内道路面等の道路面の凍結防止を行う路面の凍結防止構造を提供することを目的とする。  The present invention has been made in view of such circumstances, for example. The purpose of the present invention is to promote heat transfer of the pavement and the roadbed / basement layer, and effectively use the heat held by the ground such as the tunnel ground. Another object of the present invention is to provide a road surface anti-freezing structure that efficiently prevents freezing of a road surface such as a road surface in a tunnel at low cost.

前記課題を解決するため、本発明は以下の如き手段を採用する。
即ち本発明に係る路面の凍結防止構造は、舗装道路において、土砂や砕石を使用した路盤及び路床の空隙部に、液体を充填させることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
That is, the anti-freezing structure for a road surface according to the present invention is characterized in that in a paved road, a liquid is filled in a gap portion of a roadbed and roadbed using earth and sand or crushed stone.

前記の路面の凍結防止構造において、充填させる液体をゲル状にすることができる。  In the anti-freezing structure on the road surface, the liquid to be filled can be made into a gel.

また、前記の路面の凍結防止構造において、充填させる液体に蒟蒻粉を混合させることができる。  Further, in the above road surface anti-freezing structure, soot can be mixed with the liquid to be filled.

また、前記の各路面の凍結防止構造において、充填させる液体に珪酸ナトリウムを混合させることができる。  In the anti-freezing structure for each road surface, sodium silicate can be mixed with the liquid to be filled.

また、前記の各路面の凍結防止構造において、路盤の砕石に珪石を使用することができる。  In the anti-freezing structure for each road surface, silica stone can be used for crushed stone of the roadbed.

そして、前記の各路面の凍結防止構造において、珪石を骨材としたコンクリートパネルを以て舗装面とすることができる。  And in the anti-freezing structure of each said road surface, it can be set as a pavement surface by the concrete panel which used the silica stone as an aggregate.

本発明の請求項1に記載の発明によれば、地盤に含まれている地熱は、トンネルを覆うコンクリート壁を通し、道路の路床、路盤を通って路面に至る。その際、路盤、路床の空隙(空気の熱伝導率0.024w/m・k)が水(熱伝導率0.63w/m・k)などの液体で充填されているほうが伝熱効率は高く、路面の凍結を防ぐことができる。  According to the first aspect of the present invention, the geothermal heat contained in the ground passes through the concrete wall covering the tunnel, and reaches the road surface through the road bed and roadbed. At that time, the heat transfer efficiency is higher when the gap of the roadbed and roadbed (thermal conductivity of air 0.024 w / m · k) is filled with liquid such as water (thermal conductivity 0.63 w / m · k). The road surface can be prevented from freezing.

実験(福井大学・寺▲崎▼寛章・H25年8月)によれば、乾燥土(現場土50%+珪石、珪砂50%)の熱伝導率0.47w/m・kに対し、湿潤土(質量含水率5〜10%)の熱伝導率は1.0〜1.7w/m・kであった。  According to the experiment (University of Fukui / Tera ▲ Saki / Hiraki / August 2013), dry soil (50% on-site soil + 50% silica and 50% silica sand) has a thermal conductivity of 0.47 w / m · k. The thermal conductivity (mass moisture content 5 to 10%) was 1.0 to 1.7 w / m · k.

また、本発明の請求項2によれば、充填されている液体がゲル状であるため、液体が流出することなく、路盤や路床の空隙に留まっていることになる。  According to claim 2 of the present invention, since the filled liquid is in a gel form, the liquid does not flow out and remains in the gap of the roadbed or the roadbed.

そして、本発明の請求項3及び請求項4によれば、液体に蒟蒻粉又は珪酸ナトリウムを混ぜることによって、安定したゲル状となり、路盤や路床の空隙に留まっていることになる。  And according to Claim 3 and Claim 4 of this invention, it becomes a stable gel form by mixing a powder or sodium silicate with a liquid, and it remains in the space | gap of a roadbed or a roadbed.

実験(福井大学・寺▲崎▼寛章・H25年8月)によれば、蒟蒻粉を混合した湿潤土(現場土45%+珪石、珪砂45%+蒟蒻水10%)の熱伝導率は、2.0w/m・kであり、段落0015に記載した乾燥土及び水だけの湿潤土より高い。  According to the experiment (University of Fukui / Tera ▲ Saki / Hiraki / August 2013), the thermal conductivity of wet soil (45% on-site soil + 45% silica and quartz sand + 10% mineral water) mixed with straw powder is 2.0 w / m · k, which is higher than dry soil and wet soil with only water as described in paragraph 0015.

本発明の請求項5によれば、路盤の砕石(通常砕石の熱伝導率0.9w/m・k)に熱伝導率の高い珪石(熱伝導率5.0w/m・k)を用いることによって、トンネルを覆う地盤と路面との間の熱伝導が良好になり、効果的に凍結防止をはかることができる。  According to claim 5 of the present invention, silica stone having a high thermal conductivity (thermal conductivity 5.0 w / m · k) is used for crushed stone (usually thermal conductivity 0.9 w / m · k of crushed stone). As a result, the heat conduction between the ground covering the tunnel and the road surface is improved, and freezing prevention can be effectively achieved.

さらに、本発明の請求項6によれば、舗装面に珪石を骨材としたコンクリートパネルを使用することによって、地盤と路面との間の熱伝導がさらに良好になるだけでなく、工事期間が短縮される。  Furthermore, according to claim 6 of the present invention, by using a concrete panel made of silica stone aggregate on the pavement surface, not only the heat conduction between the ground and the road surface is further improved, but also the construction period is reduced. Shortened.

本発明に係わる路面の凍結防止構造の一実施形態を正面側から見た断面図Sectional drawing which looked at one embodiment of the freezing prevention structure of the road surface concerning this invention from the front side

以下、本発明を実施するための最良の形態を図面に基づいて詳細に説明する。
図1は、本発明がトンネルに応用された場合を示すものであり、トンネル内の路面の凍結防止構造の一実施形態を示す。本発明は、トンネル地盤1、インバートコンクリート2、覆コンクリート3、路床4、路盤5、コンクリートパネル6の舗装部、路面7、砕石8、骨材9で構成される。
以下、図1において、この作動を順次説明する。
The best mode for carrying out the present invention will be described below in detail with reference to the drawings.
FIG. 1 shows a case where the present invention is applied to a tunnel, and shows an embodiment of a structure for preventing freezing of a road surface in the tunnel. The present invention includes a tunnel ground 1, invert concrete 2, covering concrete 3, roadbed 4, roadbed 5, pavement portion of concrete panel 6, road surface 7, crushed stone 8, and aggregate 9.
Hereinafter, this operation will be described in order in FIG.

図1において、トンネル地盤1の温度影響を無視した場合、厳冬期には、路面7は、通過する車両のタイヤによって引き込まれた水や湧水が、トンネル内の換気風などによる気温低下によって、0℃以下となって凍結することがある。  In FIG. 1, when the temperature effect of the tunnel ground 1 is ignored, in the severe winter season, the road surface 7 has water or spring water drawn by the tires of the passing vehicle due to a temperature drop due to ventilation air in the tunnel, May freeze below 0 ° C.

しかし厳冬期でも、トンネル地盤1内の温度は、10℃〜15℃に保たれている。その熱は、覆コンクリート3、インバートコンクリート2、路床4、路盤5を通ってコンクリートパネル6を以てなる舗装面に達し、路面7の温度を引き上げている。  However, even in the severe winter season, the temperature in the tunnel ground 1 is kept at 10 ° C to 15 ° C. The heat reaches the pavement surface including the concrete panel 6 through the covering concrete 3, the inverted concrete 2, the road floor 4, and the roadbed 5, and raises the temperature of the road surface 7.

この場合、路面7に至るまでの熱量の多少によって、路面7の温度が左右される。すなわち、路面7へのトンネル環境からの冷却作用に対しての、トンネル地盤1から路面7に至る熱量が少なければ、路面7は凍結する。
また、路面7へのトンネル環境からの冷却作用に対して、トンネル地盤1から路面7に至る熱量が多ければ、路面7は凍結しない。
In this case, the temperature of the road surface 7 depends on the amount of heat up to the road surface 7. That is, if the amount of heat from the tunnel ground 1 to the road surface 7 with respect to the cooling effect from the tunnel environment on the road surface 7 is small, the road surface 7 is frozen.
Moreover, if there is much heat amount from the tunnel ground 1 to the road surface 7 with respect to the cooling effect | action from the tunnel environment to the road surface 7, the road surface 7 will not freeze.

この路面7の氷結を左右する熱量は、インバートコンクリート2、路床4、路盤5を通ってコンクリートパネル6へ至るまでの伝熱効率が大きく影響する。  The amount of heat that affects the freezing of the road surface 7 is greatly affected by the heat transfer efficiency from the invert concrete 2, the road floor 4, and the roadbed 5 to the concrete panel 6.

一般に路床4、路盤5には、空隙があるため、これが熱移動を阻害する要因となる。しかし、この空隙に液体、例えば水を充填しておくことによって、空隙が無くなり、その部分の伝熱効率が高くなり、路面に多くの熱量が移動する。  In general, the road bed 4 and the road bed 5 have gaps, which is a factor that hinders heat transfer. However, by filling the gap with a liquid, for example, water, the gap disappears, the heat transfer efficiency of the portion increases, and a large amount of heat moves to the road surface.

ただ、水のような流動性の高い液体だと、空隙に保持されずに流出する。そこで、液体をゲル状に硬化させ、流出を防ぐ。  However, if it is a highly fluid liquid such as water, it will flow out without being retained in the gap. Therefore, the liquid is cured in a gel form to prevent outflow.

液体をゲル状に維持するための方法として、水に蒟蒻粉又は珪酸ナトリウムを混合させ、それを充填する。  As a method for maintaining the liquid in a gel state, water is mixed with starch or sodium silicate and filled.

充填工法として、水に蒟蒻粉又は珪酸ナトリウムが混合された液体を、砕石8とミキシングして充填する方法や、一定間隔で注入針から路床4や路盤5に注射する充填工法がある。  As a filling method, there are a method in which a liquid in which water powder or sodium silicate is mixed with water is mixed with the crushed stone 8 and a filling method in which the liquid is injected into the road bed 4 and the road bed 5 from the injection needle at regular intervals.

路床4、路盤5に使用されている通常の砕石8を、熱伝導率の高い珪石及び珪砂に置き換えれば、その部分の伝熱効率が高くなり、路面7に多くの熱量が移動する。  If ordinary crushed stone 8 used for the road bed 4 and the road bed 5 is replaced with silica stone and silica sand having high thermal conductivity, the heat transfer efficiency of the portion is increased, and a large amount of heat moves to the road surface 7.

コンクリートパネル6の骨材9に、熱伝導率の高い珪石を使用することによって、この部分の伝熱効率が高くなり、路面に多くの熱量が移動する。その場合、コンクリートパネル6の舗装部と路盤5の間の空隙にも充填水を注入する。  By using silica stone with high thermal conductivity for the aggregate 9 of the concrete panel 6, the heat transfer efficiency of this portion is increased, and a large amount of heat moves to the road surface. In that case, the filling water is also injected into the gap between the pavement of the concrete panel 6 and the roadbed 5.

本発明は、例えば、冬季のトンネル内の舗装道路や一般の舗装道路、駐車場等の舗装部、歩道の舗装部において、路面の凍結を防止するための道路構造として用いられる。  INDUSTRIAL APPLICABILITY The present invention is used as a road structure for preventing road surface freezing in, for example, a paved road in a winter tunnel, a general paved road, a pavement part such as a parking lot, and a pavement part of a sidewalk.

1 トンネル地盤
2 インバートコンクリート
3 覆コンクリート
4 路床
5 路盤
6 コンクリートパネル
7 路面
8 砕石
9 骨材
DESCRIPTION OF SYMBOLS 1 Tunnel ground 2 Invert concrete 3 Covered concrete 4 Road floor 5 Roadbed 6 Concrete panel 7 Road surface 8 Crushed stone 9 Aggregate

Claims (6)

舗装部において、土砂や砕石を使用した路盤及び路床の空隙部に、液体を充填させることを特徴とする路面の凍結防止構造。  In the pavement, a road surface freezing prevention structure characterized by filling a gap in a roadbed and roadbed using earth and sand or crushed stone. 請求項1記載の路面の凍結防止構造において、充填させる液体をゲル状にしたことを特徴とする路面の凍結防止構造。  2. The road surface anti-freezing structure according to claim 1, wherein the liquid to be filled is in a gel form. 請求項1記載の路面の凍結防止構造において、充填させる液体に蒟蒻粉を混合させることを特徴とする路面の凍結防止構造。  2. The road surface anti-freezing structure according to claim 1, wherein the liquid to be filled is mixed with soot powder. 請求項1記載の路面の凍結防止構造において、充填させる液体に珪酸ナトリウムを混合させることを特徴とする路面の凍結防止構造。  2. A road surface anti-freezing structure according to claim 1, wherein sodium silicate is mixed with the liquid to be filled. 請求項1,2,3,4のいずれかに記載の路面の凍結防止構造において、路盤の砕石に珪石を使用することを特徴とする路面の凍結防止構造。  The road surface freezing prevention structure according to any one of claims 1, 2, 3, and 4, characterized in that silica stone is used for the crushed stone of the roadbed. 請求項1,2,3,4、5のいずれかに記載の路面の凍結防止構造において、珪石を骨材としたコンクリートパネルを以て舗装面を形成することを特徴とする路面の凍結防止構造。  The road surface freezing prevention structure according to any one of claims 1, 2, 3, 4, and 5, wherein the pavement surface is formed by a concrete panel made of silica stone as an aggregate.
JP2014201973A 2013-09-11 2014-09-10 Antifreeze structure of road surface Pending JP2015078597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201973A JP2015078597A (en) 2013-09-11 2014-09-10 Antifreeze structure of road surface

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013206768 2013-09-11
JP2013206768 2013-09-11
JP2014201973A JP2015078597A (en) 2013-09-11 2014-09-10 Antifreeze structure of road surface

Publications (1)

Publication Number Publication Date
JP2015078597A true JP2015078597A (en) 2015-04-23

Family

ID=53010218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201973A Pending JP2015078597A (en) 2013-09-11 2014-09-10 Antifreeze structure of road surface

Country Status (1)

Country Link
JP (1) JP2015078597A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106089253A (en) * 2016-08-17 2016-11-09 中国路桥工程有限责任公司 A kind of all-hydraulic template system poured for culvert
CN111501967A (en) * 2020-04-20 2020-08-07 招商局重庆交通科研设计院有限公司 Scheme for adding central trench to tunnel without interrupting traffic and rapid construction method
CN111535856A (en) * 2020-04-29 2020-08-14 中铁第一勘察设计院集团有限公司 Tunnel cold-proof drainage system based on geothermal utilization and construction method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106089253A (en) * 2016-08-17 2016-11-09 中国路桥工程有限责任公司 A kind of all-hydraulic template system poured for culvert
CN111501967A (en) * 2020-04-20 2020-08-07 招商局重庆交通科研设计院有限公司 Scheme for adding central trench to tunnel without interrupting traffic and rapid construction method
CN111535856A (en) * 2020-04-29 2020-08-14 中铁第一勘察设计院集团有限公司 Tunnel cold-proof drainage system based on geothermal utilization and construction method thereof

Similar Documents

Publication Publication Date Title
Yu et al. State of the art and practice of pavement anti-icing and de-icing techniques
KR102106058B1 (en) System for prevention of pavement freezing
CN106702850A (en) Anti-freezing road capable of preventing road surface from being frozen and construction method of anti-freezing road
JP2015078597A (en) Antifreeze structure of road surface
CN103061230B (en) Construction method of technology utilizing ground source heat pump to cool and melt frozen road surfaces and drain boards for construction
CN106835896A (en) A kind of asphalt concrete pavement snow-melting system
CN203440731U (en) Combined snow melting and ice melting device for road
JP2017032218A (en) Heat exchanger utilizing geothermal heat
CN206034218U (en) Hot pin compound road bed of block stone layer cooling
KR20110113793A (en) Snow melting apparatus on paved road and mehod for paving road
CN108004863A (en) A kind of ground temperature and solar energy gravity type heat pipe road snow-melting system and its application method
Shi et al. Pavement treatments for sustainable winter road maintenance
JP2015141015A (en) Underground heat exchanging structure
CN202671996U (en) Snow melting device for melting snow on road surface or bridge floor with natural thermal spring water on mountain
JP2007291737A (en) Snow-melting pavement structure and permeable concrete slab for use in it
CN204803705U (en) Concrete road surface expansion joint filleting structure
CN208235256U (en) A kind of honest formula bridge floor inorganic medium heat pipe snow-melting system of bridge
CN211171472U (en) Anti-freezing and anti-corrosion submarine tunnel pavement structure
CN114263146A (en) Highway road surface cooling and deicing system
Joey Intersection-pavement de-icing: comprehensive review and the state of the practice
Miyamoto et al. Snow-melting and de-icing system on road using natural thermal energy sources
CN110055853A (en) A kind of honest formula bridge floor inorganic medium heat pipe snow-melting system of bridge and mounting arrangements method
CN111254775A (en) Heat-insulation anti-freezing type highway and construction method thereof
CN206457774U (en) Road ice melting snow melting device
JPH01247601A (en) Water unsprinkling type snow melting method utilizing geothermal effect in the depth of ground