Nothing Special   »   [go: up one dir, main page]

JP2015070781A - Wind power generation system - Google Patents

Wind power generation system Download PDF

Info

Publication number
JP2015070781A
JP2015070781A JP2013206348A JP2013206348A JP2015070781A JP 2015070781 A JP2015070781 A JP 2015070781A JP 2013206348 A JP2013206348 A JP 2013206348A JP 2013206348 A JP2013206348 A JP 2013206348A JP 2015070781 A JP2015070781 A JP 2015070781A
Authority
JP
Japan
Prior art keywords
torque
generator
cogging torque
windmill
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013206348A
Other languages
Japanese (ja)
Other versions
JP6295579B2 (en
Inventor
上原 深志
Fukashi Uehara
深志 上原
明秀 真下
Akihide Mashita
明秀 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013206348A priority Critical patent/JP6295579B2/en
Publication of JP2015070781A publication Critical patent/JP2015070781A/en
Application granted granted Critical
Publication of JP6295579B2 publication Critical patent/JP6295579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve such a problem that, in a wind power generation system comprising a windmill, a permanent magnet synchronous power generator converting a rotation energy of the windmill into an electric energy via a rotor and a stator, and a power converter for supplying the generated power to a power supply system, vibration is generated by a cogging torque caused by change in gap magnetic flux density between a permanent magnet of the rotor of the power generator and a stator iron core, which may cause damages at a bearing part and the like of the windmill.SOLUTION: A wind power generation system is provided that includes cogging torque estimation means 100C. By using a value obtained by subtracting a cogging torque estimation value τcalculated by the estimation means 100C from an original torque command value τof a power generator as a final torque command value τ, a power converter connected to the power generator is controlled. The cogging torque estimation means 100C estimates a cogging torque by combining the plurality of even-numbered harmonic components that are respectively calculated by using an induction voltage angular frequency of the power generator, an order setting value of an even-numbered harmonic wave of a basic frequency, and an amplitude component setting value of the even-numbered harmonic wave.

Description

この発明は、風車に接続された永久磁石同期発電機のトルクの脈動を抑制する風力発電システムに関するものである。   The present invention relates to a wind power generation system that suppresses torque pulsations of a permanent magnet synchronous generator connected to a wind turbine.

図5は、風車、永久磁石同期発電機及び電力変換器を備えた風力発電システムの概略的な構成図である。
風車1は、プロペラ形や縦形(ダリウス形等)等の種類があり、ブレードに受けた風を回転エネルギーに変換する。この風車1には、永久磁石同期発電機(以下、単に発電機ともいう)2の永久磁石からなる回転子が直結されており、発電機2の電機子(固定子)コイルから出力される交流電圧は、コンバータ装置3により直流電圧に整流された後、平滑コンデンサ7を介してコンバータ装置4により交流電圧に変換される。この交流電圧は、ACL(交流リアクトル)5及び高調波抑制用のフィルタ回路6を経由して電源系統に供給される。
なお、8は制御装置、9,10は各コンバータ装置3,4の半導体スイッチング素子を制御するための制御回路である。
FIG. 5 is a schematic configuration diagram of a wind power generation system including a windmill, a permanent magnet synchronous generator, and a power converter.
The windmill 1 is of a propeller type or vertical type (Darius type or the like) and converts wind received by the blades into rotational energy. The wind turbine 1 is directly connected to a rotor composed of permanent magnets of a permanent magnet synchronous generator (hereinafter also simply referred to as a generator) 2, and an alternating current output from an armature (stator) coil of the generator 2. The voltage is rectified to a DC voltage by the converter device 3 and then converted to an AC voltage by the converter device 4 via the smoothing capacitor 7. This AC voltage is supplied to the power supply system via an ACL (AC reactor) 5 and a harmonic suppression filter circuit 6.
In addition, 8 is a control device, and 9 and 10 are control circuits for controlling the semiconductor switching elements of the converter devices 3 and 4.

ここで、永久磁石同期発電機2では、その動作原理上、コギングトルク及びトルクリプルという2種類のトルク脈動成分が存在する。
コギングトルクは、永久磁石同期発電機の回転子の磁石と、スロット及び歯部からなる固定子鉄心との位置関係に起因する空隙磁束密度の変化によって発生する。
Here, in the permanent magnet synchronous generator 2, two types of torque pulsation components, cogging torque and torque ripple, exist on the operating principle.
The cogging torque is generated by a change in the gap magnetic flux density caused by the positional relationship between the rotor magnet of the permanent magnet synchronous generator and the stator core composed of slots and teeth.

図6は、回転方向に沿った磁石の長さがスロットピッチの整数倍、例えば2倍であるときの固定子鉄心と磁石との位置関係、及び、両者間の空隙の平均磁束密度を示している。
回転子が回転して磁石が位置MからMに移動し、固定子鉄心と磁石との位置関係が変化しても、磁石の長さがスロットピッチの整数倍であるため、破線の楕円で囲んだ部分の面積の増加分と減少分とは等しい。このため、回転前後の範囲B,B内の磁束及び磁気エネルギーに変化はなく、コギングトルクは発生しない。
FIG. 6 shows the positional relationship between the stator core and the magnet when the length of the magnet along the rotation direction is an integral multiple of the slot pitch, for example, twice, and the average magnetic flux density of the gap between the two. Yes.
Since the rotor is rotated to move the magnet is positioned M 1 to M 2, the positional relationship between the stator core and the magnet is changed, the length of the magnet is an integer multiple of the slot pitch, dashed ellipse The increase in area and the decrease in the area surrounded by are equal. For this reason, there is no change in the magnetic flux and magnetic energy in the ranges B 1 and B 2 before and after the rotation, and no cogging torque is generated.

これに対し、図7は、磁石の長さがスロットピッチの整数倍でない場合、例えば2.2倍であるときの固定子鉄心と磁石との位置関係、及び、空隙の平均磁束密度を示している。
回転子が回転して磁石が位置MからMに移動し、固定子鉄心と磁石との位置関係が変化すると、磁石の長さがスロットピッチの整数倍ではないため、破線の楕円で囲んだ部分の面積の増加分と減少分とは等しくならない。このため、回転前後の範囲B,B内の磁束及び磁気エネルギーが変化することとなり、コギングトルクが発生する。
On the other hand, FIG. 7 shows the positional relationship between the stator core and the magnet and the average magnetic flux density of the air gap when the length of the magnet is not an integral multiple of the slot pitch, for example, 2.2 times. Yes.
When the rotor rotates and the magnet moves from position M 1 to M 2 and the positional relationship between the stator core and the magnet changes, the length of the magnet is not an integral multiple of the slot pitch, so it is surrounded by a dashed ellipse. The increase in area and the decrease in the area are not equal. For this reason, the magnetic flux and magnetic energy in the ranges B 1 and B 2 before and after the rotation change, and a cogging torque is generated.

一方、トルクリプルは、空隙磁束密度の高調波成分と負荷電流とによって発生するトルク脈動成分である。
空隙磁束密度に高調波成分が存在する場合、この高調波成分に応じて相電圧にも高調波成分が現れる。例えば、空隙磁束密度の波形が台形波であり、相電圧に第5調波成分及び第7調波成分が含まれる場合、電流が正弦波であっても数式1のように電力Pに基本周波数の6倍の脈動成分が生じる。この脈動成分がトルクリプル(いわゆる6fトルクリプル)に相当するものであり、発電機の振動や騒音の原因となる。
On the other hand, the torque ripple is a torque pulsation component generated by the harmonic component of the gap magnetic flux density and the load current.
When a harmonic component exists in the gap magnetic flux density, a harmonic component appears in the phase voltage in accordance with the harmonic component. For example, when the waveform of the gap magnetic flux density is a trapezoidal wave and the phase voltage includes the fifth harmonic component and the seventh harmonic component, even if the current is a sine wave, 6 times the pulsation component. This pulsation component corresponds to torque ripple (so-called 6f torque ripple), and causes vibration and noise of the generator.

Figure 2015070781
Figure 2015070781

風力発電システムにおいて、永久磁石同期発電機のコギングトルクやトルクリプルは、風車の始動トルクを増大させ、微風時には風車の回転を妨害する場合があり、何れも風力発電システムの稼働率を低下させる原因となっていた。
このため、例えば特許文献1には、電力変換器の動作により永久磁石同期発電機の電機子巻線にコギングトルクを打ち消すトルクを発生させ、微風下における起動特性を改善するようにした風車の起動アシスト制御装置が記載されている。
In a wind power generation system, the cogging torque and torque ripple of the permanent magnet synchronous generator increase the starting torque of the windmill, which may interfere with the rotation of the windmill during light winds. It was.
For this reason, for example, Patent Document 1 discloses a startup of a wind turbine in which the operation of the power converter generates a torque that cancels the cogging torque in the armature winding of the permanent magnet synchronous generator, thereby improving the startup characteristics under a slight wind. An assist control device is described.

図8は、特許文献1に記載された従来技術の構成図であり、図9はその動作を示すフローチャートである。
図8において、31は風車、32は永久磁石同期発電機、33はコンバータ回路、34は平滑コンデンサ、35は降圧チョッパ回路、36はスイッチング素子、37はリアクトル、38はコンデンサ、39は蓄電池、40は負荷である。発電機32には回転子センサ51が設置されており、その出力信号が起動アシスト制御装置50内の磁極位置検出回路52及び回転数検出回路53に入力されている。これらの検出回路52,53により検出された磁極位置及び回転数は起動アシスト制御回路54に入力されると共に、回転数は発電制御回路56にも入力されている。起動アシスト制御回路54の出力はPWMゲートドライバ55に入力されてコンバータ回路33のスイッチング素子に対するゲート信号が生成され、発電制御回路56の出力はPWMゲートドライバ57に入力されて降圧チョッパ回路35内のスイッチング素子36に対するゲート信号が生成される。
FIG. 8 is a block diagram of the prior art described in Patent Document 1, and FIG. 9 is a flowchart showing its operation.
In FIG. 8, 31 is a windmill, 32 is a permanent magnet synchronous generator, 33 is a converter circuit, 34 is a smoothing capacitor, 35 is a step-down chopper circuit, 36 is a switching element, 37 is a reactor, 38 is a capacitor, 39 is a storage battery, 40 Is the load. A rotor sensor 51 is installed in the generator 32, and an output signal thereof is input to the magnetic pole position detection circuit 52 and the rotation speed detection circuit 53 in the activation assist control device 50. The magnetic pole position and the rotational speed detected by these detection circuits 52 and 53 are input to the start assist control circuit 54, and the rotational speed is also input to the power generation control circuit 56. The output of the start assist control circuit 54 is input to the PWM gate driver 55 to generate a gate signal for the switching element of the converter circuit 33, and the output of the power generation control circuit 56 is input to the PWM gate driver 57 to be included in the step-down chopper circuit 35. A gate signal for the switching element 36 is generated.

この従来技術の動作を図9により説明すると、まず、起動アシスト制御回路54が風車31の回転数Nに基づいて風車停止か否かを判断する(S101)。風車31の停止時には起動アシストモードとなり(S101Yes,S102)、一定時間Tを経過しても風車31が停止している場合には起動アシスト制御動作を実行する(S103Yes,S104)。起動アシスト制御動作は、蓄電池39を電源としてコンバータ回路33をPWM制御することにより、発電機32の電機子巻線に交流電圧を印加する動作である。
この制御動作では、磁極位置検出値に基づいてコギングトルクを打ち消すような位相制御が行われ、発電機32の起動トルクが軽減される。この状態で風車31に自己起動風速が加わり、その回転数がN以上になれば起動アシスト制御をオフとし、発電運転モードに移行する(S105Yes,S107,S101No,S108)。
起動アシスト制御動作を一定時間T継続しても所定の回転数Nが得られない無風状態においても、起動アシスト制御はオフとなる(S105No,S106Yes,S107)。
The operation of this prior art will be described with reference to FIG. 9. First, the start assist control circuit 54 determines whether or not the windmill is stopped based on the rotational speed N of the windmill 31 (S101). When stopping of the wind turbine 31 as an activation assist mode (S101Yes, S102), executes the start assist control operation when the wind turbine 31 even after the lapse of a predetermined time T 0 is stopped (S103Yes, S104). The start assist control operation is an operation in which an AC voltage is applied to the armature winding of the generator 32 by PWM control of the converter circuit 33 using the storage battery 39 as a power source.
In this control operation, phase control is performed to cancel the cogging torque based on the detected magnetic pole position value, and the starting torque of the generator 32 is reduced. In this state, when the self-starting wind speed is applied to the wind turbine 31 and the rotation speed becomes N 1 or more, the start assist control is turned off, and the operation mode is shifted to the power generation operation mode (S105 Yes, S107, S101 No, S108).
Also start at a predetermined windless state where the rotation speed N 1 can not be obtained even when the assist control operation a predetermined time T 1 continues, starting assist control is turned off (S105No, S106Yes, S107).

風車31が風力により回転する場合には発電運転モードとなり(S101No,S108)、コンバータ回路33を全ゲートオフすることにより整流回路として動作させる。この場合、回転数Nが発電出力可能な回転数(発電開始回転数)N以上になると、PWMゲートドライバ57から、回転数に見合う指令が降圧チョッパ回路35のスイッチング素子36に与えられてPWM制御が行なわれ、発電制御動作が行なわれる(S109Yes,S110)。これにより、発電機32の発電電流は蓄電池39または負荷40に供給される。
その後に回転数NがNを下回ると、発電制御オフとなり(S109No,S111)、更に風速が低下して風車31が自然停止したら、再び起動アシストモードに移行する(S101Yes,S102)。
When the windmill 31 is rotated by wind power, the operation mode is set (S101 No, S108), and the converter circuit 33 is operated as a rectifier circuit by turning off all the gates. In this case, when the rotational speed N is equal to or higher than the rotational speed (power generation start rotational speed) N 2 at which power generation output is possible, a command corresponding to the rotational speed is given from the PWM gate driver 57 to the switching element 36 of the step-down chopper circuit 35 and PWM. Control is performed and a power generation control operation is performed (S109 Yes, S110). Thereby, the generated current of the generator 32 is supplied to the storage battery 39 or the load 40.
Thereafter the rotational speed N falls below N 2, the power generation control off and become (S109No, S111), further When the wind speed is lowered windmill 31 is stopped naturally, the process proceeds to again start assist mode (S101Yes, S102).

特許4236969号公報(段落[0023]〜[0054]、図1〜図3等)Japanese Patent No. 4236969 (paragraphs [0023] to [0054], FIGS. 1 to 3 etc.)

上述したように、特許文献1では、起動後に発電機32の回転数がN未満である期間は、起動アシスト制御動作によりコギングトルクを打ち消すようなトルクが生成される。しかし、発電機32の回転数がN以上になると起動アシスト制御がオフされるため、定常回転時に発生するトルク脈動成分に対しては効果がない。
このため、トルク脈動成分によって発電機32が振動し、最悪の場合には、風車タワーが加振されて軸受部分等を損傷してしまうという問題があり、発電機から発生する騒音も、環境や健康を阻害する原因となっていた。
As described above, in Patent Document 1, a torque that cancels the cogging torque is generated by the startup assist control operation during a period in which the rotational speed of the generator 32 is less than N 1 after startup. However, since the start assist control is turned off when the rotational speed of the generator 32 becomes N 1 or more, there is no effect on the torque pulsation component generated during steady rotation.
For this reason, the generator 32 vibrates due to the torque pulsation component, and in the worst case, there is a problem that the wind turbine tower is vibrated and damages the bearing portion and the like. It was a cause of health problems.

そこで、本発明の解決課題は、永久磁石同期発電機の起動時だけでなく定常回転時にもトルク脈動成分を打ち消すようにトルク指令値を与えることにより、発電機の振動や騒音を抑制するようにした風力発電システムを提供することにある。   Therefore, the problem to be solved by the present invention is to suppress the vibration and noise of the generator by giving a torque command value so as to cancel the torque pulsation component not only at the time of starting the permanent magnet synchronous generator but also at the time of steady rotation. Is to provide a wind power generation system.

上記課題を解決するため、請求項1に係る発明は、風車と、前記風車の回転エネルギーを回転子及び固定子を介して電気エネルギーに変換する永久磁石同期発電機と、前記発電機の発電電力を電源系統に供給するための電力変換器と、を備え、前記回転子の磁石と固定子鉄心との間の空隙の磁束密度の変化によって発生するコギングトルクを第1の推定手段により推定し、前記第1の推定手段により推定したコギングトルクを相殺するトルク指令値に従って前記電力変換器を制御する風力発電システムにおいて、
前記第1の推定手段は、前記発電機の誘起電圧の角周波数と、基本周波数の偶数調波の次数設定値と、前記偶数調波の振幅成分設定値と、を用いてそれぞれ演算した複数の偶数調波成分を合成することにより、前記コギングトルクを推定するものである。
In order to solve the above-mentioned problem, the invention according to claim 1 includes a windmill, a permanent magnet synchronous generator that converts rotational energy of the windmill into electric energy via a rotor and a stator, and generated power of the generator. A power converter for supplying the power to the power system, and the cogging torque generated by the change in the magnetic flux density of the gap between the rotor magnet and the stator core is estimated by the first estimating means, In the wind power generation system that controls the power converter according to a torque command value that cancels the cogging torque estimated by the first estimating means,
The first estimating means includes a plurality of values calculated using the angular frequency of the induced voltage of the generator, the order setting value of the even harmonic of the fundamental frequency, and the amplitude component setting value of the even harmonic. The cogging torque is estimated by synthesizing even harmonic components.

請求項2に係る発明は、風車と、前記風車の回転エネルギーを回転子及び固定子を介して電気エネルギーに変換する永久磁石同期発電機と、前記発電機の発電電力を電源系統に供給するための電力変換器と、を備え、前記回転子の永久磁石と固定子鉄心との間の空隙の磁束密度の高調波成分及び負荷電流によって発生するトルクリプルを第2の推定手段により推定し、前記第2の推定手段により推定したトルクリプルを相殺するトルク指令値に従って前記電力変換器を制御する風力発電システムにおいて、
前記第2の推定手段は、前記発電機の誘起電圧角周波数の6倍の値に対する余弦波信号と、誘起電圧の第5調波成分及び第7調波成分の各振幅と、を用いて前記トルクリプルを推定するものである。
According to a second aspect of the present invention, there is provided a windmill, a permanent magnet synchronous generator that converts rotational energy of the windmill into electrical energy through a rotor and a stator, and supply of power generated by the generator to a power system. A power converter, and estimating a torque ripple generated by a harmonic component of a magnetic flux density in a gap between the permanent magnet of the rotor and the stator core and a load current by a second estimating means, In the wind power generation system that controls the power converter according to a torque command value that cancels out the torque ripple estimated by the estimating means of 2,
The second estimating means uses the cosine wave signal with respect to a value six times the induced voltage angular frequency of the generator and the amplitudes of the fifth harmonic component and the seventh harmonic component of the induced voltage. The torque ripple is estimated.

なお、請求項3に記載するように、請求項1における第1の推定手段と請求項2における第2の推定手段とを併用することにより、コギングトルク及びトルクリプルの両方を抑制することができる。   As described in claim 3, by using both the first estimating means in claim 1 and the second estimating means in claim 2, both cogging torque and torque ripple can be suppressed.

本発明によれば、永久磁石同期発電機から発生するコギングトルクやトルクリプルを推定し、これらの推定値を相殺するトルク指令値を生成して電力変換器を制御することにより、発電機のトルク脈動を抑制することができる。これにより、発電機の振動が低減され、風車タワーの加振による軸受部分等の損傷や騒音の発生を防止することが可能である。
また、本発明におけるトルク脈動成分の演算はソフトウェアにて実現可能であり、専用のハードウェアは不要であるため、装置の大型化を招くおそれもない。
According to the present invention, the cogging torque and torque ripple generated from the permanent magnet synchronous generator are estimated, and the torque pulsation of the generator is generated by controlling the power converter by generating a torque command value that cancels these estimated values. Can be suppressed. Thereby, the vibration of the generator is reduced, and it is possible to prevent damage to the bearing portion and the occurrence of noise due to the vibration of the wind turbine tower.
In addition, the calculation of the torque pulsation component in the present invention can be realized by software, and no dedicated hardware is required, so that there is no possibility of increasing the size of the apparatus.

本発明の第1実施形態の主要部の構成図である。It is a block diagram of the principal part of 1st Embodiment of this invention. 本発明の第1実施形態における、発電機のU相誘起電圧、コギングトルクの偶数調波成分、及びコギングトルク合成値の一例を示す波形図である。It is a wave form diagram which shows an example of the U phase induced voltage of a generator, the even harmonic component of cogging torque, and a cogging torque synthetic value in 1st Embodiment of this invention. 本発明の第2実施形態の主要部の構成図である。It is a block diagram of the principal part of 2nd Embodiment of this invention. 本発明の第3実施形態の主要部の構成図である。It is a block diagram of the principal part of 3rd Embodiment of this invention. 風力発電システムの概略的な構成図である。It is a schematic block diagram of a wind power generation system. コギングトルクの発生原理の説明図である。It is explanatory drawing of the generation principle of a cogging torque. コギングトルクの発生原理の説明図である。It is explanatory drawing of the generation principle of a cogging torque. 特許文献1に記載された従来技術の構成図である。It is a block diagram of the prior art described in patent document 1. FIG. 図8の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of FIG.

以下、図に沿って本発明の実施形態を説明する。
図1は、第1実施形態の主要部を示す構成図であり、永久磁石同期発電機のコギングトルクを打ち消すための最終トルク指令値を生成するブロック図である。なお、この最終トルク指令値は、例えば前述した図5におけるコンバータ装置3側の制御回路9において、コンバータ装置3内の半導体スイッチング素子を制御するために用いられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram showing a main part of the first embodiment, and is a block diagram for generating a final torque command value for canceling the cogging torque of the permanent magnet synchronous generator. The final torque command value is used, for example, in the control circuit 9 on the converter device 3 side in FIG.

図1において、発電機トルクパターン11は、永久磁石同期発電機の回転速度に応じたトルクパターンであり、風力発電システムとして出力すべきトルク指令値τを出力する。前述したごとく、コギングトルクは永久磁石同期発電機の磁石と、スロット及び歯部からなる固定子鉄心との間の空隙磁束密度の変化によって発生するので、コギングトルクは発電機誘起電圧の基本周波数の偶数調波成分を合成した波形となる。実際には、各次数の大きさ及び位相が異なる複数の波形が合成されることになり、6次までの偶数調波で考えると、コギングトルクの第2調波成分、第4調波成分、第6調波成分はそれぞれ以下の数式2,数式3,数式4となり、これらが数式5のように合成されることとなる。
[数式2]
τc2=Asin(2ωt+φ
[数式3]
τc4=Asin(4ωt+φ
[数式4]
τc6=Asin(6ωt+φ
[数式5]
τ=τc2+τc4+τc6
In FIG. 1, a generator torque pattern 11 is a torque pattern corresponding to the rotational speed of the permanent magnet synchronous generator, and outputs a torque command value τ g to be output as a wind power generation system. As described above, since the cogging torque is generated by the change in the gap magnetic flux density between the permanent magnet synchronous generator magnet and the stator core composed of the slots and the teeth, the cogging torque is a fundamental frequency of the generator induced voltage. The waveform is a composite of even harmonic components. Actually, a plurality of waveforms having different orders of magnitude and phase are synthesized. Considering even harmonics up to the sixth order, the second harmonic component, the fourth harmonic component of the cogging torque, The sixth harmonic component is represented by the following Equation 2, Equation 3, and Equation 4, respectively, and these are synthesized as Equation 5.
[Formula 2]
τ c2 = A 2 sin (2ωt + φ 2 )
[Formula 3]
τ c4 = A 4 sin (4ωt + φ 4 )
[Formula 4]
τ c6 = A 6 sin (6ωt + φ 6 )
[Formula 5]
τ c = τ c2 + τ c4 + τ c6

なお、数式2〜数式5において、
τ:コギングトルクの合成値〔N・m〕
τc2:コギングトルクの第2調波成分〔N・m〕
τc4:コギングトルクの第4調波成分〔N・m〕
τc6:コギングトルクの第6調波成分〔N・m〕
,A,A:各偶数調波成分の振幅〔N・m〕
ω:誘起電圧の角周波数〔rad/s〕
φ,φ,φ:各偶数調波成分の位相〔rad/s〕
である。
In Equations 2 to 5,
τ c : Cogging torque composite value [N · m]
τ c2 : second harmonic component of cogging torque [N · m]
τ c4 : fourth harmonic component of cogging torque [N · m]
τ c6 : sixth harmonic component of cogging torque [N · m]
A 2 , A 4 , A 6 : Amplitude of each even harmonic component [N · m]
ω: angular frequency of the induced voltage [rad / s]
φ 2 , φ 4 , φ 6 : phase of each even harmonic component [rad / s]
It is.

図1において、第1の推定手段としてのコギングトルク推定手段100Cは、永久磁石同期発電機の誘起電圧角周波数ωと偶数調波成分の次数2,4,6とをそれぞれ乗算する乗算手段12と、その乗算結果に各偶数調波成分の位相φ,φ,φをそれぞれ加算する加算手段13と、その加算結果X(各偶数調波成分についての加算結果X,X,X)が入力されて各々対応する正弦波信号sinX(sinX,sinX,sinX)を出力する正弦波テーブル14と、正弦波信号sinX(sinX,sinX,sinX)に各偶数調波成分の振幅A,A,Aをそれぞれ乗算する乗算手段15と、各偶数調波成分の演算結果を合成してコギングトルク推定値τを演算する合成手段16と、を備えている。
なお、次数2,4,6、位相φ,φ,φ、及び振幅A,A,Aは、コギングトルク推定値τを演算するための補正パラメータQとしてメモリに記憶されている。
In FIG. 1, a cogging torque estimation means 100C as a first estimation means is a multiplication means 12 for multiplying the induced voltage angular frequency ω of the permanent magnet synchronous generator and the orders 2, 4 and 6 of even harmonic components, respectively. The addition means 13 for adding the phases φ 2 , φ 4 , φ 6 of the even harmonic components to the multiplication result, and the addition result X (addition results X 2 , X 4 , X for each even harmonic component) 6 ) is input and outputs a corresponding sine wave signal sinX (sinX 2 , sinX 4 , sinX 6 ) and an even number of sine wave signals sinX (sinX 2 , sinX 4 , sinX 6 ). a multiplication means 15 for multiplying the amplitude a 2 of the wave components, a 4, a 6, respectively, and synthesizing means 16 for calculating the cogging torque estimate tau c by combining the operation result of each even harmonic components, the Eteiru.
The orders 2, 4, 6, the phases φ 2 , φ 4 , φ 6 and the amplitudes A 2 , A 4 , A 6 are stored in the memory as correction parameters Q for calculating the cogging torque estimated value τ c. ing.

コギングトルク推定手段100Cは、上記の各手段12〜16によって数式2〜5を演算し、その結果求めたコギングトルク推定値τを減算手段17にてトルク指令値τから減算することにより、発電機が発生するコギングトルクを相殺する最終トルク指令値τを求める。この最終トルク指令値τに基づいて、例えば図5の制御回路9がコンバータ装置3を介して発電機2を制御することにより、コギングトルクを打ち消すことが可能になる。
なお、図2は、発電機のU相誘起電圧、コギングトルクの第2調波成分,第4調波成分,第6調波成分、及び合成値(コギングトルク推定値)の一例を示す波形図である。
The cogging torque estimating means 100C calculates mathematical formulas 2 to 5 by the above means 12 to 16, and subtracting the cogging torque estimated value τ c obtained as a result from the torque command value τ g by the subtracting means 17, A final torque command value τ * that cancels the cogging torque generated by the generator is obtained. Based on this final torque command value τ * , for example, the control circuit 9 of FIG. 5 controls the generator 2 via the converter device 3 so that the cogging torque can be canceled.
FIG. 2 is a waveform diagram showing an example of the U-phase induced voltage of the generator, the second harmonic component, the fourth harmonic component, the sixth harmonic component, and the combined value (cogging torque estimated value) of the cogging torque. It is.

次に、図3は第2実施形態の主要部を示す構成図であり、永久磁石同期発電機のトルクリプルを打ち消すための最終トルク指令値を生成するブロック図である。
数式1によって説明したように、空隙磁束密度の波形が台形波であって相電圧に第5調波成分及び第7調波成分が含まれる場合、電流が正弦波であっても電力Pに基本周波数の6倍の脈動成分が生じ、この脈動成分がトルクリプルとなる。従って、発電機の誘起電圧を解析して第5調波成分及び第7調波成分を事前に求めることができれば、発電機のトルクリプルτを推定することができる。
Next, FIG. 3 is a block diagram showing a main part of the second embodiment, and is a block diagram for generating a final torque command value for canceling the torque ripple of the permanent magnet synchronous generator.
As explained by Equation 1, when the waveform of the gap magnetic flux density is a trapezoidal wave and the phase voltage includes the fifth harmonic component and the seventh harmonic component, even if the current is a sine wave, the power P is fundamental. A pulsation component of 6 times the frequency is generated, and this pulsation component becomes torque ripple. Therefore, if the induced voltage of the generator can be analyzed to obtain the fifth harmonic component and the seventh harmonic component in advance, the torque ripple τ r of the generator can be estimated.

図3において、第2の推定手段としてのトルクリプル推定手段100Rは数式1に基づいて構成されており、誘起電圧角周波数ωを6倍する乗算手段18と、その乗算結果Yが入力されて余弦波信号cosYを出力する余弦波テーブル19と、余弦波信号cosYに誘起電圧の第5調波成分の振幅V,第7調波成分の振幅Vをそれぞれ乗算する乗算手段20,21と、これらの乗算手段20,21による乗算結果を加算することにより基本周波数の6倍の脈動成分としてのトルクリプル推定値τを演算する加算手段22と、を備えている。
こうして求めたトルクリプル推定値τを減算手段23にてトルク指令値τから減算することにより、発電機が発生するトルクリプルを相殺する最終トルク指令値τを求める。この最終トルク指令値τに基づいて、例えば図5の制御回路9がコンバータ装置3を介して発電機2を制御することにより、トルクリプルを打ち消すことができる。
In FIG. 3, the torque ripple estimation means 100R as the second estimation means is configured based on the mathematical formula 1. The multiplication means 18 for multiplying the induced voltage angular frequency ω by 6 and the multiplication result Y are input to receive the cosine wave. a cosine wave table 19 outputting the signal COZY, and multiplying means 20, 21 for multiplying the amplitude V 5 of the fifth harmonic component of the induced voltage in the cosine wave signal COZY, the amplitude V 7 of the seventh harmonic components, respectively, which Adding means 22 for calculating a torque ripple estimated value τ r as a pulsation component of 6 times the fundamental frequency by adding the multiplication results of the multiplication means 20 and 21.
By subtracting the torque ripple estimated value τ r thus determined from the torque command value τ g by the subtracting means 23, a final torque command value τ * that cancels the torque ripple generated by the generator is obtained. Based on the final torque command value τ * , for example, the control circuit 9 in FIG. 5 controls the generator 2 via the converter device 3, thereby canceling out the torque ripple.

図4は、本発明の第3実施形態の主要部を示す構成図である。
この実施形態では、第1実施形態によりコギングトルク推定手段100Cが求めたコギングトルク推定値τを減算手段17にてトルク指令値τから減算し、その結果τ’から、第2実施形態によりトルクリプル推定手段100Rが求めたトルクリプル推定値τを減算手段23にて減算することにより、最終トルク指令値τを求めている。
この実施形態によれば、発電機のコギングトルク及びトルクリプルの両方を打ち消してトルク脈動の抑制機能を一層向上させることができる。
FIG. 4 is a block diagram showing the main part of the third embodiment of the present invention.
In this embodiment, the cogging torque estimated value τ c obtained by the cogging torque estimating means 100C according to the first embodiment is subtracted from the torque command value τ g by the subtracting means 17, and the result τ g ′ is used to obtain the second embodiment. Thus, the final torque command value τ * is obtained by subtracting the estimated torque ripple value τ r obtained by the torque ripple estimating means 100R by the subtracting means 23.
According to this embodiment, it is possible to further improve the function of suppressing torque pulsation by canceling both the cogging torque and the torque ripple of the generator.

1:風車
2:永久磁石同期発電機
3,4:コンバータ装置
5:ACL
6:フィルタ回路
7:平滑コンデンサ
8:制御装置
9,10:制御回路
11:発電機トルクパターン
12,15,18,20,21:乗算手段
13,22:加算手段
14:正弦波テーブル
16:合成手段
17,23:減算手段
19:余弦波テーブル
100C:コギングトルク推定手段
100R:トルクリプル推定手段
Q:補正パラメータ
1: Windmill 2: Permanent magnet synchronous generator 3, 4: Converter device 5: ACL
6: Filter circuit 7: Smoothing capacitor 8: Control device 9, 10: Control circuit 11: Generator torque pattern 12, 15, 18, 20, 21: Multiplication means 13, 22: Addition means 14: Sine wave table 16: Synthesis Means 17, 23: Subtraction means 19: Cosine wave table 100C: Cogging torque estimation means 100R: Torque ripple estimation means Q: Correction parameter

Claims (3)

風車と、前記風車の回転エネルギーを回転子及び固定子を介して電気エネルギーに変換する永久磁石同期発電機と、前記発電機の発電電力を電源系統に供給するための電力変換器と、を備え、前記回転子の磁石と固定子鉄心との間の空隙の磁束密度の変化によって発生するコギングトルクを第1の推定手段により推定し、前記第1の推定手段により推定したコギングトルクを相殺するトルク指令値に従って前記電力変換器を制御する風力発電システムにおいて、
前記第1の推定手段は、前記発電機の誘起電圧角周波数と、基本周波数の偶数調波の次数設定値と、前記偶数調波の振幅成分設定値と、を用いてそれぞれ演算した複数の偶数調波成分を合成することにより、前記コギングトルクを推定することを特徴とする風力発電システム。
A windmill, a permanent magnet synchronous generator that converts rotational energy of the windmill into electrical energy via a rotor and a stator, and a power converter for supplying power generated by the generator to a power supply system. The first estimation means estimates the cogging torque generated by the change in the magnetic flux density of the air gap between the rotor magnet and the stator core, and cancels the cogging torque estimated by the first estimation means In a wind power generation system that controls the power converter according to a command value,
The first estimating means includes a plurality of even numbers calculated using the induced voltage angular frequency of the generator, the order setting value of the even harmonic of the fundamental frequency, and the amplitude component setting value of the even harmonic. A wind power generation system characterized in that the cogging torque is estimated by synthesizing harmonic components.
風車と、前記風車の回転エネルギーを回転子及び固定子を介して電気エネルギーに変換する永久磁石同期発電機と、前記発電機の発電電力を電源系統に供給するための電力変換器と、を備え、前記回転子の永久磁石と固定子鉄心との間の空隙の磁束密度の高調波成分及び負荷電流によって発生するトルクリプルを第2の推定手段により推定し、前記第2の推定手段により推定したトルクリプルを相殺するトルク指令値に従って前記電力変換器を制御する風力発電システムにおいて、
前記第2の推定手段は、前記発電機の誘起電圧角周波数の6倍の値に対する余弦波信号と、誘起電圧の第5調波成分及び第7調波成分の各振幅と、を用いて前記トルクリプルを推定することを特徴とする風力発電システム。
A windmill, a permanent magnet synchronous generator that converts rotational energy of the windmill into electrical energy via a rotor and a stator, and a power converter for supplying power generated by the generator to a power supply system. The torque ripple generated by the harmonic component of the magnetic flux density of the air gap between the permanent magnet of the rotor and the stator core and the load current is estimated by the second estimating means, and the torque ripple estimated by the second estimating means In the wind power generation system that controls the power converter according to the torque command value that cancels
The second estimating means uses the cosine wave signal with respect to a value six times the induced voltage angular frequency of the generator and the amplitudes of the fifth harmonic component and the seventh harmonic component of the induced voltage. A wind power generation system characterized by estimating torque ripple.
請求項1に記載した前記第1の推定手段により推定したコギングトルクを相殺し、かつ、請求項2に記載した前記第2の推定手段により推定したトルクリプルを相殺するトルク指令値に従って前記電力変換器を制御することを特徴とする風力発電システム。   The power converter according to a torque command value that cancels the cogging torque estimated by the first estimating means according to claim 1 and cancels the torque ripple estimated by the second estimating means according to claim 2. Wind power generation system characterized by controlling
JP2013206348A 2013-10-01 2013-10-01 Wind power generation system Active JP6295579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013206348A JP6295579B2 (en) 2013-10-01 2013-10-01 Wind power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013206348A JP6295579B2 (en) 2013-10-01 2013-10-01 Wind power generation system

Publications (2)

Publication Number Publication Date
JP2015070781A true JP2015070781A (en) 2015-04-13
JP6295579B2 JP6295579B2 (en) 2018-03-20

Family

ID=52836958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013206348A Active JP6295579B2 (en) 2013-10-01 2013-10-01 Wind power generation system

Country Status (1)

Country Link
JP (1) JP6295579B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220406A (en) * 2015-05-20 2016-12-22 富士電機株式会社 Simulation device and simulation system
KR20180002799A (en) * 2015-05-27 2018-01-08 베이징 골드윈드 싸이언스 앤 크리에이션 윈드파워 이큅먼트 코.,엘티디. Method and apparatus for preventing vibration of wind turbine generator
CN109039215A (en) * 2018-09-05 2018-12-18 上海电力学院 Inverter harmonic is to automobile permanent magnet synchronous motor vibration noise impact analysis method
CN112177864A (en) * 2020-09-30 2021-01-05 中国船舶重工集团海装风电股份有限公司 Method and device for identifying extreme wind shear of wind turbine generator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037280A (en) * 1999-07-22 2001-02-09 Mitsubishi Electric Corp Motor control system, position detector and servo amplifier
JP2004285991A (en) * 2003-03-25 2004-10-14 Toshiba Plant Systems & Services Corp Starting assist controlling device of wind mill in wind power generating device
JP2007267465A (en) * 2006-03-28 2007-10-11 Meidensha Corp Controller for pm motor
JP2008005603A (en) * 2006-06-21 2008-01-10 Mitsubishi Electric Corp Synchronous machine and power generating system using it as generator
JP2011147272A (en) * 2010-01-14 2011-07-28 Toshiba Elevator Co Ltd Motor control device
JP2011223724A (en) * 2010-04-08 2011-11-04 Omron Automotive Electronics Co Ltd Motor drive device
JP2012019642A (en) * 2010-07-09 2012-01-26 Hitachi Ltd Wind turbine generator system
WO2013042237A1 (en) * 2011-09-22 2013-03-28 三菱電機株式会社 Motor control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037280A (en) * 1999-07-22 2001-02-09 Mitsubishi Electric Corp Motor control system, position detector and servo amplifier
JP2004285991A (en) * 2003-03-25 2004-10-14 Toshiba Plant Systems & Services Corp Starting assist controlling device of wind mill in wind power generating device
JP2007267465A (en) * 2006-03-28 2007-10-11 Meidensha Corp Controller for pm motor
JP2008005603A (en) * 2006-06-21 2008-01-10 Mitsubishi Electric Corp Synchronous machine and power generating system using it as generator
JP2011147272A (en) * 2010-01-14 2011-07-28 Toshiba Elevator Co Ltd Motor control device
JP2011223724A (en) * 2010-04-08 2011-11-04 Omron Automotive Electronics Co Ltd Motor drive device
JP2012019642A (en) * 2010-07-09 2012-01-26 Hitachi Ltd Wind turbine generator system
WO2013042237A1 (en) * 2011-09-22 2013-03-28 三菱電機株式会社 Motor control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220406A (en) * 2015-05-20 2016-12-22 富士電機株式会社 Simulation device and simulation system
KR20180002799A (en) * 2015-05-27 2018-01-08 베이징 골드윈드 싸이언스 앤 크리에이션 윈드파워 이큅먼트 코.,엘티디. Method and apparatus for preventing vibration of wind turbine generator
US10340831B2 (en) 2015-05-27 2019-07-02 Beijing Goldwind Science & Creation Windpower Equipment Co., Ltd. Wind power generator vibration inhibition method and device
KR102008085B1 (en) * 2015-05-27 2019-08-06 베이징 골드윈드 싸이언스 앤 크리에이션 윈드파워 이큅먼트 코.,엘티디. Wind generator vibration prevention method and apparatus
CN109039215A (en) * 2018-09-05 2018-12-18 上海电力学院 Inverter harmonic is to automobile permanent magnet synchronous motor vibration noise impact analysis method
CN109039215B (en) * 2018-09-05 2021-09-07 上海电力学院 Method for analyzing influence of inverter harmonic waves on vibration noise of permanent magnet synchronous motor for vehicle
CN112177864A (en) * 2020-09-30 2021-01-05 中国船舶重工集团海装风电股份有限公司 Method and device for identifying extreme wind shear of wind turbine generator
CN112177864B (en) * 2020-09-30 2022-04-29 中国船舶重工集团海装风电股份有限公司 Method and device for identifying extreme wind shear of wind turbine generator

Also Published As

Publication number Publication date
JP6295579B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
Kim et al. Commutation torque ripple reduction in a position sensorless brushless DC motor drive
JP6626513B2 (en) Control method of synchronous generator for gearless wind turbine generator
JP5916526B2 (en) Power converter control device and multi-winding motor drive device
JP5610651B2 (en) Brushless motor control device and brushless motor control method
JP5097081B2 (en) Field winding type synchronous machine
JPWO2018139295A1 (en) Inverter control device
JP6295579B2 (en) Wind power generation system
Suppharangsan et al. Experimental validation of a new switching technique for DC-link capacitor minimization in switched reluctance machine drives
US20130027000A1 (en) Reduction of noise and vibrations of an electromechanical transducer by using a modified stator coil drive signal comprising harmonic components
US9250614B2 (en) Motor control apparatus and motor control method
EP2840701B1 (en) Sensing PM electrical machine position
EP2363851B1 (en) Vibration and noise control strategy in electrical machines
JP6626973B2 (en) 6-wire three-phase motor and motor system
JP5426916B2 (en) Field winding type synchronous machine and control method of field winding type synchronous machine
JP2015116092A (en) Electric vehicle
JP2008236923A (en) Eddy current reduction method and device of pm motor
JP2012016267A (en) System and method for non-sinusoidal current waveform excitation of electrical generators
JP2017055637A (en) Motor control apparatus for controlling motor on the basis of counter-electromotive voltage generated in winding of motor
JP2012090460A (en) Motor controller
CN109845088B (en) Method for operating a converter for coupling an electric machine to an ac voltage network
JP5755342B2 (en) Motor drive system
JP5271641B2 (en) Field winding type synchronous machine
Zhu et al. Control of stator torsional vibration in PM brushless AC drives due to non-sinusoidal back-EMF and cogging torque by improved direct torque control
Pronin et al. MODELING a transistor converter-fed permanent magnet poly-phase machine and a variable-frequency drive controller under non-sinusoidal back-EMF conditions
Lee et al. Investigation of torque production and torque ripple reduction method for 6-stator/7-rotor-pole variable flux reluctance machines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180205

R150 Certificate of patent or registration of utility model

Ref document number: 6295579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250