Nothing Special   »   [go: up one dir, main page]

JP2015056412A - Power semiconductor device and method of manufacturing the same - Google Patents

Power semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2015056412A
JP2015056412A JP2013186900A JP2013186900A JP2015056412A JP 2015056412 A JP2015056412 A JP 2015056412A JP 2013186900 A JP2013186900 A JP 2013186900A JP 2013186900 A JP2013186900 A JP 2013186900A JP 2015056412 A JP2015056412 A JP 2015056412A
Authority
JP
Japan
Prior art keywords
electrode terminal
power semiconductor
semiconductor device
electrode
conductor pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013186900A
Other languages
Japanese (ja)
Other versions
JP2015056412A5 (en
JP6116452B2 (en
Inventor
米田 裕
Yutaka Yoneda
裕 米田
藤野 純司
Junji Fujino
純司 藤野
裕史 川島
Yuji Kawashima
裕史 川島
辰則 柳本
Tatsunori Yanagimoto
辰則 柳本
菊池 正雄
Masao Kikuchi
正雄 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013186900A priority Critical patent/JP6116452B2/en
Publication of JP2015056412A publication Critical patent/JP2015056412A/en
Publication of JP2015056412A5 publication Critical patent/JP2015056412A5/en
Application granted granted Critical
Publication of JP6116452B2 publication Critical patent/JP6116452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability of a power semiconductor device where an electrode terminal is jointed to a conductor pattern or a surface electrode of a power semiconductor element with an ultrasonic wave.SOLUTION: A power semiconductor device 100 includes an insulation board (ceramic board 5) on which a conductor pattern 52a is formed, a power semiconductor element 1 disposed on the conductor pattern 52a, and an electrode terminal 3. The electrode terminal 3 includes a body part, and a thin wall part (a tip part 3b) formed to be thinner than the body part in advance. The thin wall part (tip part 3b) includes an ultrasonic junction part 20 jointed to the conductor pattern 52a with an ultrasonic wave.

Description

本発明は、電力用半導体装置に関し、特に、電極端子が、半導体素子の表面電極や、半導体素子が実装される導体パターンに超音波接合により接合された電力用半導体装置に関するものである。   The present invention relates to a power semiconductor device, and more particularly to a power semiconductor device in which electrode terminals are joined by ultrasonic bonding to a surface electrode of a semiconductor element or a conductor pattern on which the semiconductor element is mounted.

従来の電力用半導体装置、特に大電流の電力用半導体装置においては、効率的に大電流を流すために、外部回路と接続する電極端子を大面積で接合する必要があるため、電極端子の接合にはんだ接合が用いられてきた(例えば、特許文献1)。しかし、電力用半導体装置が使用される温度環境が過酷化するに従って、従来のはんだ接合では要求される信頼性を満足できない可能性が生じてきた。また、従来のはんだ接合では、電力用半導体装置が、セラミック板の両面に導体パターンが形成されたセラミック基板をベース板にはんだ接合している様な構造であった場合、電極端子をはんだ接合する際の加熱によって、ベース板とセラミック基板を接合しているはんだが再溶融してしまう可能性があった。そのため、電極端子を接合するはんだとして、融点がベース板とセラミック基板を接合しているはんだに近いものを用いることができず、複数種のはんだが必要となり、プロセスが複雑になるという問題があった。   In a conventional power semiconductor device, particularly a high-current power semiconductor device, in order to efficiently flow a large current, it is necessary to join electrode terminals connected to an external circuit in a large area. Solder joints have been used (for example, Patent Document 1). However, as the temperature environment in which the power semiconductor device is used becomes severe, there is a possibility that the reliability required by the conventional solder joint cannot be satisfied. Further, in the conventional solder bonding, when the power semiconductor device has a structure in which a ceramic substrate having a conductor pattern formed on both sides of the ceramic plate is solder bonded to the base plate, the electrode terminal is solder bonded. Due to this heating, the solder joining the base plate and the ceramic substrate may be remelted. For this reason, the solder that joins the electrode terminals cannot use a solder whose melting point is close to that of the solder that joins the base plate and the ceramic substrate, which requires a plurality of types of solder, which complicates the process. It was.

これらの問題を解決する方法として、セラミック基板上の導体パターンに対し電極端子を超音波接合する方法がある。超音波接合は固相接合で加熱工程を必要としないため、電極端子の接合の際にベース板とセラミック基板を接合しているはんだを再溶融させずに電極端子を大面積で接合することができる上に、はんだ接合と比較して接合部の信頼性も向上することができる。   As a method for solving these problems, there is a method in which electrode terminals are ultrasonically bonded to a conductor pattern on a ceramic substrate. Since ultrasonic bonding is a solid phase bonding and does not require a heating process, it is possible to bond electrode terminals in a large area without remelting the solder bonding the base plate and the ceramic substrate when bonding the electrode terminals. In addition, the reliability of the joint can be improved as compared with the solder joint.

しかし、超音波接合は、被接合材を超音波ホーンで加圧しながら超音波振動させることにより接合を行う。そのため、電力用半導体装置に必要な電流容量を確保するために必要な断面積を持った電極端子を接合させる接合条件は、高い圧力と強い超音波振動、長い接合時間が必要になる。その結果、電極端子と導体パターンが接合された端子接合部の変形が大きくなり、端子接合部が局所的に薄くなる。これによって、超音波ホーンで加圧された押込み部と押込み部以外の電極端子本体との境目(厚さ境界部)に応力が集中しやすい箇所が生まれ、電力用半導体装置の動作時に発生する熱膨張および振動に伴う変形による応力がこの部位に集中することで、電極端子の疲労破壊を起こし、電力用半導体装置の信頼性の低下を招く恐れがある。これらを避けるために変形を最小限とすべく超音波接合の接合条件を弱めに設定することが考えられるが、この場合には端子接合部の接合強度が低下するという課題がある。   However, in ultrasonic bonding, bonding is performed by ultrasonically vibrating a material to be bonded with an ultrasonic horn. Therefore, joining conditions for joining electrode terminals having a cross-sectional area necessary for securing a current capacity necessary for a power semiconductor device require high pressure, strong ultrasonic vibration, and a long joining time. As a result, the deformation of the terminal joint where the electrode terminal and the conductor pattern are joined is increased, and the terminal joint is locally thinned. This creates a location where stress is likely to concentrate at the boundary (thickness boundary) between the pressed portion pressed by the ultrasonic horn and the electrode terminal body other than the pressed portion, and heat generated during operation of the power semiconductor device Concentration of stress due to deformation due to expansion and vibration in this region may cause fatigue failure of the electrode terminals, leading to a decrease in reliability of the power semiconductor device. In order to avoid these, it is conceivable to set the bonding conditions for ultrasonic bonding to be weak in order to minimize deformation, but in this case, there is a problem that the bonding strength of the terminal bonding portion is lowered.

そこでこの課題に対して、特許文献2には、電極端子先端の超音波接合部が、厚みが減少しない未押し当て部と、超音波ホーンで圧接されて厚みが減少した押し当て部とを含み、未押し当て部および押し当て部の境界部分の幅方向距離が、電極端子先端部の幅よりも大きくなるように構成する技術が開示されている。   Therefore, in order to solve this problem, Patent Document 2 includes a non-pressing portion in which the ultrasonic bonding portion at the tip of the electrode terminal is not reduced in thickness and a pressing portion in which the thickness is reduced by being pressed by an ultrasonic horn. A technique is disclosed in which the distance in the width direction between the non-pressing portion and the boundary portion of the pressing portion is larger than the width of the tip portion of the electrode terminal.

特開2006−253516号公報(0012段〜0014段、図1)Japanese Patent Laying-Open No. 2006-253516 (stage 0012 to stage 0014, FIG. 1) 特開2012−138459号公報(0006段〜0007段、0012段〜0013段、図3)JP 2012-138458 A (0006 to 0007, 0012 to 0013, FIG. 3)

上述したように、超音波ホーンで加圧された押込み部の変形を最小限とすべく超音波接合の接合条件を弱めに設定すると端子接合部の接合強度が低下する。端子接合部の接合強度が低下すると、動作時に発生する熱膨張および振動に伴う変形による応力によって端子接合部が剥離しやすくなるため、端子接合部が局所的に薄くなった場合と同様に電力用半導体装置の信頼性が低下する恐れがある。電力用半導体装置では、動作時に半導体素子に流れる電流が、電極端子から端子接合部を通じてセラミック基板上の導体パターンを流れているため、電極端子が疲労破壊しても端子接合部が剥離しても、電力用半導体装置に電流が流れなくなる恐れがあり、電流が流れなくなった場合には、電力用半導体装置によって被制御機器が正常に制御できなくなる恐れがある。   As described above, if the bonding conditions for ultrasonic bonding are set to be weak so as to minimize deformation of the indented portion pressed by the ultrasonic horn, the bonding strength of the terminal bonding portion decreases. When the joint strength of the terminal joint is reduced, the terminal joint is easily peeled off due to the stress caused by deformation caused by thermal expansion and vibration that occurs during operation. The reliability of the semiconductor device may be reduced. In a power semiconductor device, the current flowing through the semiconductor element during operation flows through the conductor pattern on the ceramic substrate from the electrode terminal through the terminal joint, so that even if the electrode terminal is fatigued or the terminal joint is peeled off There is a risk that current does not flow through the power semiconductor device, and if the current stops flowing, the controlled device may not be normally controlled by the power semiconductor device.

特許文献2では、厚みが減少しない未押し当て部および超音波ホーンで圧接されて厚みが減少した押し当て部の境界部分の幅方向距離が、電極端子先端部の幅よりも大きくなるように超音波接合部を構成している。厚みの減少が生じない未押し当て部と、厚みの減少する押し当て部とが直接接する距離が延長されることで、打点隅部に集中する応力が分散され、プル強度向上および耐久信頼性の向上を得ることができるとしている。また、特許文献2では、応力集中抑制効果により先端部の部材ネック部の強度が向上するため、超音波接合部の押込み量を増し、押し当て部を薄くすることが可能となり、単位面積あたりの接合強度を向上できる。これにより必要な接合面積を減少させ、全体の小型化に寄与できるとしている。   In Patent Document 2, the width direction distance of the non-pressing portion where the thickness does not decrease and the boundary portion of the pressing portion where the thickness is reduced by pressure contact with an ultrasonic horn is set to be larger than the width of the tip portion of the electrode terminal. A sonic junction is formed. By extending the distance of direct contact between the non-pressing part where the thickness does not decrease and the pressing part where the thickness decreases, the stress concentrated on the corner of the hit point is dispersed, improving the pull strength and improving the durability reliability. An improvement can be obtained. Moreover, in patent document 2, since the intensity | strength of the member neck part of a front-end | tip part improves by the stress concentration inhibitory effect, it becomes possible to increase the pushing amount of an ultrasonic joining part and to make a pressing part thin, and per unit area Bonding strength can be improved. This reduces the required bonding area and contributes to the overall size reduction.

しかしながら、上述した特許文献2の技術は、電極端子を接合させるための接合条件として高い圧力と強い超音波振動、長い接合時間が必要になる。そのため、超音波接合の際に電極端子の超音波ホーン(特許文献2の超音波接合ツールに相当)で加圧された部分は、削られ変形して局所的に薄くなってしまう。これによって、押込み部と電極端子本体の境目に応力が集中しやすい箇所が生まれるだけではなく、電極端子先端部の略L字状の曲げ部が接合の際の超音波振動によって変形を繰り返すことで疲労破壊やクラックを生じる恐れがある。略L字状の曲げ部が疲労破壊すると、上述のように電力用半導体装置に電流が流れなくなる。疲労破壊しなくてもクラックを生じると、動作時に発生する熱膨張および振動に伴う変形による応力がこの部位に集中することで最終的に疲労破壊を起こす恐れがある。   However, the technique of Patent Document 2 described above requires high pressure, strong ultrasonic vibration, and a long bonding time as bonding conditions for bonding the electrode terminals. Therefore, the portion pressed by the ultrasonic horn of the electrode terminal (corresponding to the ultrasonic bonding tool of Patent Document 2) at the time of ultrasonic bonding is shaved and deformed and locally thinned. This not only creates a location where stress is likely to concentrate at the boundary between the push-in portion and the electrode terminal body, but also causes the substantially L-shaped bent portion at the tip of the electrode terminal to be repeatedly deformed by ultrasonic vibration during joining. There is a risk of fatigue failure and cracking. When the substantially L-shaped bent portion undergoes fatigue failure, no current flows through the power semiconductor device as described above. If a crack is generated without fatigue failure, stress due to deformation caused by thermal expansion and vibration generated during operation concentrates on this part, and there is a risk of eventually causing fatigue failure.

本発明は、前記のような問題点を解決するためになされたものであり、セラミック基板等の絶縁基板上の導体パターンや電力用半導体素子の表面電極に対し電極端子を超音波接合した電力用半導体装置において、超音波接合する際に、略L字状等に曲げた電極端子であっても、その曲げ部の疲労破壊やクラックの発生を防止し、信頼性を向上することを目的としている。   The present invention has been made to solve the above-described problems, and is for power use in which electrode terminals are ultrasonically bonded to a conductor pattern on an insulating substrate such as a ceramic substrate or a surface electrode of a power semiconductor element. In a semiconductor device, even when an electrode terminal is bent in a substantially L shape or the like when ultrasonic bonding is performed, it is intended to prevent fatigue fracture or generation of cracks in the bent portion and improve reliability. .

本発明の電力用半導体装置は、導体パターンが形成された絶縁基板と、導体パターンの上に配設された電力用半導体素子と、電極端子とを備え、電極端子は、本体部と、予め本体部よりも薄く形成された薄肉部とを有し、薄肉部は、導体パターン又は電力用半導体素子の表面電極である対象物に超音波接合された超音波接合部を有することを特徴とする。   The power semiconductor device of the present invention includes an insulating substrate on which a conductor pattern is formed, a power semiconductor element disposed on the conductor pattern, and an electrode terminal. The electrode terminal includes a main body portion and a main body in advance. A thin-walled portion formed thinner than the portion, and the thin-walled portion includes an ultrasonic bonding portion ultrasonically bonded to an object which is a conductor pattern or a surface electrode of a power semiconductor element.

本発明の電力用半導体装置によれば、電極端子が予め本体部よりも薄く形成された薄肉部とを有するので、導体パターンや電力用半導体素子の表面電極である対象物に電極端子を超音波接合する際に、略L字状等に曲げた電極端子であっても、その曲げ部の疲労破壊やクラックの発生を防止し、信頼性を向上することができる。   According to the power semiconductor device of the present invention, since the electrode terminal has a thin portion that is previously formed thinner than the main body, the electrode terminal is ultrasonically applied to an object that is a surface electrode of a conductor pattern or power semiconductor element. Even when an electrode terminal is bent into a substantially L shape or the like when bonded, fatigue failure and cracking of the bent portion can be prevented and reliability can be improved.

本発明の実施の形態1による電力用半導体装置の要部を示す部分断面図である。It is a fragmentary sectional view which shows the principal part of the semiconductor device for electric power by Embodiment 1 of this invention. 比較例の超音波接合工程を説明する概略図である。It is the schematic explaining the ultrasonic bonding process of a comparative example. 比較例の超音波接合工程を説明する概略図である。It is the schematic explaining the ultrasonic bonding process of a comparative example. 比較例の超音波接合工程を説明する概略図である。It is the schematic explaining the ultrasonic bonding process of a comparative example. 本発明の実施の形態1による超音波接合工程を説明する概略図である。It is the schematic explaining the ultrasonic joining process by Embodiment 1 of this invention. 本発明の実施の形態1による超音波接合工程を説明する概略図である。It is the schematic explaining the ultrasonic joining process by Embodiment 1 of this invention. 本発明の実施の形態1による超音波接合工程を説明する概略図である。It is the schematic explaining the ultrasonic joining process by Embodiment 1 of this invention. 本発明の実施の形態2による電力用半導体装置の要部を示す部分断面図である。It is a fragmentary sectional view which shows the principal part of the semiconductor device for electric power by Embodiment 2 of this invention. 本発明の実施の形態3による電力用半導体装置の要部を示す部分断面図である。It is a fragmentary sectional view which shows the principal part of the semiconductor device for electric power by Embodiment 3 of this invention. 本発明の実施の形態4による電力用半導体装置の要部を示す部分断面図である。It is a fragmentary sectional view which shows the principal part of the semiconductor device for electric power by Embodiment 4 of this invention. 本発明の実施の形態5による電力用半導体装置の要部を示す部分断面図である。It is a fragmentary sectional view which shows the principal part of the power semiconductor device by Embodiment 5 of this invention. 本発明の実施の形態6による電力用半導体装置の要部を示す部分断面図である。It is a fragmentary sectional view which shows the principal part of the power semiconductor device by Embodiment 6 of this invention.

本発明の電力用半導体装置について、図を参照しながら以下に説明する。なお、各図において、同一または同様の構成部分については同じ符号を付している。各図間において、対応する各構成部のサイズや縮尺はそれぞれ独立している。例えば、構成の一部を変更した断面図の間では、変更されていない同一構成部分が、同一構成部分のサイズや縮尺が異なっている場合もある。また、該電力用半導体装置の構成は、実際にはさらに複数の部材を備えているが、説明を簡単にするため、説明に必要な部分のみを記載し、他の部分(例えば電力用半導体素子やケース、ヒートシンク等)については省略している。   The power semiconductor device of the present invention will be described below with reference to the drawings. In each figure, the same or similar components are denoted by the same reference numerals. Between each figure, the size and scale of each corresponding component are independent. For example, between the cross-sectional views in which a part of the configuration is changed, the same component that is not changed may have a different size or scale. In addition, the configuration of the power semiconductor device actually includes a plurality of members. However, in order to simplify the description, only the portions necessary for the description are described, and other portions (for example, the power semiconductor element) , Case, heat sink, etc.) are omitted.

実施の形態1.
図1は、本発明の実施の形態1による電力用半導体装置の要部の構成を説明するための部分断面図である。図1に示すように、本発明の実施の形態1による電力用半導体装置100は、絶縁基材51の両側に導体パターン52a、52bが形成されたセラミック基板5と、放熱部材6と、電極端子3等を備えている。セラミック基板5の放熱面側(導体パターン52b側)に放熱部材6がはんだ8によって接合され、回路面側(導体パターン52a側)には、電極端子3が超音波接合されている。電極端子3は、電力用半導体素子1の主電極に電気的に接続されている。以下、詳細に説明する。なお、各図には、座標系を示しており、x方向はセラミック基板5に水平な方向で電極端子3の接合部が延伸する方向であり、z方向はセラミック基板5に垂直な方向であり、y方向は紙面に垂直な方向である。座標系のx方向、y方向、z方向は、それぞれ直交している。
Embodiment 1 FIG.
FIG. 1 is a partial cross-sectional view for explaining a configuration of a main part of the power semiconductor device according to the first embodiment of the present invention. As shown in FIG. 1, the power semiconductor device 100 according to the first embodiment of the present invention includes a ceramic substrate 5 having conductor patterns 52a and 52b formed on both sides of an insulating base 51, a heat dissipation member 6, and electrode terminals. 3 etc. The heat radiating member 6 is joined to the heat radiating surface side (conductor pattern 52b side) of the ceramic substrate 5 with solder 8, and the electrode terminal 3 is ultrasonically joined to the circuit surface side (conductor pattern 52a side). The electrode terminal 3 is electrically connected to the main electrode of the power semiconductor element 1. Details will be described below. Each figure shows a coordinate system, where the x direction is a direction horizontal to the ceramic substrate 5 and the joint portion of the electrode terminal 3 extends, and the z direction is a direction perpendicular to the ceramic substrate 5. , Y direction is a direction perpendicular to the page. The x direction, y direction, and z direction of the coordinate system are orthogonal to each other.

電極端子3は、例えばIGBT(Insulated Gate Bipolar Transistor)等の電力用半導体素子1(図12参照)と外部回路とを電気接続するための配線部材である。電極端子3の材料は、電気抵抗の小さい金属が好ましく、一般的にはCuやAl等の板金を切断したものやプレス加工したものが用いられる。電極端子3は、一端に導体パターン52aと接続される接合部が形成され、他端側は他の回路部材や外部回路と電気接続される。また、電極端子3は、通電可能な電流を大きくするためには、電極端子3の断面積が大きいほうが好ましいが、超音波接合の際に印加されたパワーを接合面3jに伝わり易くするには厚さが薄い方が好ましい。そのため、実施の形態1の電極端子3を構成する板材は、接合面3jを含む端子先端部分である先端部3bが、接合面3jを有する面と反対側の面方向から予め加工されており(図5参照)、電極端子3における先端部3b以外(適宜、電極端子本体と称する。)より薄なった薄肉領域(薄肉部)を有している。電極端子3の接合面3jを含む先端部3bの加工は超音波ホーン50(図5参照)によって潰されるのとは異なり、プレスや切削で加工されていることが好ましい。なお、図1では、先端部3bが全て薄肉領域である例、すなわち、電極端子3の先端部分に薄肉部を設けた例を示した。   The electrode terminal 3 is a wiring member for electrically connecting a power semiconductor element 1 (see FIG. 12) such as an IGBT (Insulated Gate Bipolar Transistor) and an external circuit. The material of the electrode terminal 3 is preferably a metal having a low electric resistance, and generally, a material obtained by cutting or pressing a sheet metal such as Cu or Al is used. One end of the electrode terminal 3 is connected to the conductor pattern 52a, and the other end is electrically connected to another circuit member or an external circuit. The electrode terminal 3 preferably has a large cross-sectional area in order to increase the current that can be energized. However, in order to easily transmit the power applied during ultrasonic bonding to the bonding surface 3j. A thinner thickness is preferred. Therefore, in the plate material constituting the electrode terminal 3 of the first embodiment, the tip portion 3b which is the terminal tip portion including the joint surface 3j is processed in advance from the surface direction opposite to the surface having the joint surface 3j ( 5) and a thin region (thin portion) that is thinner than the tip portion 3b of the electrode terminal 3 (referred to as an electrode terminal main body as appropriate). Unlike the crushing by the ultrasonic horn 50 (see FIG. 5), the tip 3b including the joining surface 3j of the electrode terminal 3 is preferably processed by pressing or cutting. In FIG. 1, an example in which the tip portion 3 b is all a thin region, that is, an example in which a thin portion is provided at the tip portion of the electrode terminal 3 is shown.

電極端子3の先端部3bは、破線15から破線17までの部分である。先端部3bは、破線15から破線16までの部分である超音波接合部20と、破線16から破線17までの部分である未加圧部3aを有する。未加圧部3aは、導体パターン52aに接続されない未接続部である。超音波接合部20は少なくとも導体パターン52aと対向する接合面3jを有する部分であり、未加圧部3aは先端部3bにおける超音波接合部20以外の部分である。破線17から右側の部分は、電極端子3の電極端子本体である。破線17から破線18までの部分は、端子曲げ部3rである。   The tip portion 3 b of the electrode terminal 3 is a portion from the broken line 15 to the broken line 17. The distal end portion 3 b includes an ultrasonic bonding portion 20 that is a portion from the broken line 15 to the broken line 16 and an unpressurized portion 3 a that is a portion from the broken line 16 to the broken line 17. The unpressurized portion 3a is an unconnected portion that is not connected to the conductor pattern 52a. The ultrasonic bonding portion 20 is a portion having at least a bonding surface 3j facing the conductor pattern 52a, and the non-pressurized portion 3a is a portion other than the ultrasonic bonding portion 20 in the distal end portion 3b. A portion on the right side from the broken line 17 is an electrode terminal body of the electrode terminal 3. The part from the broken line 17 to the broken line 18 is the terminal bending part 3r.

電極端子3の好ましい寸法を示す。先端部(薄肉部)3bの厚さ(未加圧部厚t1、図5参照)は、0.3mm〜0.8mm程度が好ましい。電極端子3の厚さは、1.0mm〜2.0mm、電極端子3の幅(y方向の電極端子長)は2.0mm〜6.0mm程度が好ましい。また、電極端子3の電極端子本体より薄い部分(先端部3b)は、超音波ホーン50によって加圧され、超音波ホーン50によって加圧された部分(超音波接合部20)には超音波ホーン50の先端形状が転写される形で圧痕が形成される。この超音波ホーン50によって加圧される部分(超音波接合部20)と、電極端子3の電極端子本体との間に超音波ホーン50で加圧しない未加圧部3aを設けることが好ましく、未加圧部3aは0.5mm以上の長さ(x方向長)にするとさらに好ましい。   The preferable dimension of the electrode terminal 3 is shown. The thickness (unpressurized part thickness t1, see FIG. 5) of the tip part (thin part) 3b is preferably about 0.3 mm to 0.8 mm. The thickness of the electrode terminal 3 is preferably about 1.0 mm to 2.0 mm, and the width of the electrode terminal 3 (electrode terminal length in the y direction) is preferably about 2.0 mm to 6.0 mm. Further, a portion (tip portion 3b) thinner than the electrode terminal main body of the electrode terminal 3 is pressurized by the ultrasonic horn 50, and an ultrasonic horn is applied to the portion pressurized by the ultrasonic horn 50 (ultrasonic bonding portion 20). Indentations are formed in such a way that 50 tip shapes are transferred. It is preferable to provide an unpressurized portion 3a that is not pressurized by the ultrasonic horn 50 between the portion (ultrasonic bonding portion 20) pressed by the ultrasonic horn 50 and the electrode terminal body of the electrode terminal 3. The unpressurized portion 3a is more preferably 0.5 mm or longer (x-direction length).

セラミック基板5は、絶縁基材51と絶縁基材51の両側に形成された導体パターン52a、52bより成る。導体パターン52a、52bは、パターン形成された導体である。絶縁基材51は、電気的な絶縁物であり、熱伝導率の大きい材料が好ましく、一般的には厚さ0.635mmや0.32mmのAlNやSN、Al等のセラミック板が用いられる。導体パターン52aと導体パターン52bは、同じ材料が用いられる。このうち、電極端子3と接合される接合部を形成する導体パターン52aは、電力用半導体素子1と外部回路とを電気接続するための配線部材であるため、電気抵抗の小さい金属が好ましい。そのため、導体パターン52a、52bには、一般的には厚さ0.5mm以下程度のCuやAl等が用いられる。 The ceramic substrate 5 includes an insulating base 51 and conductor patterns 52 a and 52 b formed on both sides of the insulating base 51. The conductor patterns 52a and 52b are patterned conductors. The insulating base 51 is an electrical insulator and is preferably made of a material having a high thermal conductivity. Generally, a ceramic plate made of AlN, SN, Al 2 O 3 or the like having a thickness of 0.635 mm or 0.32 mm is used. Used. The same material is used for the conductor pattern 52a and the conductor pattern 52b. Among these, the conductor pattern 52a that forms the joint portion to be joined to the electrode terminal 3 is a wiring member for electrically connecting the power semiconductor element 1 and the external circuit, and therefore, a metal having a low electrical resistance is preferable. Therefore, Cu or Al having a thickness of about 0.5 mm or less is generally used for the conductor patterns 52a and 52b.

放熱部材6は、単体または複数枚のセラミック基板5とはんだ8によって接合され、自身が放熱板としての役割を果たすと共に、放熱部材6のはんだ8で接合される面と対向する面(反対側の面)が熱伝導グリス等でヒートシンク(図示せず)へ接続されることで、電力用半導体装置100で発生した熱を効率よく外部へ放熱させる。そのため、放熱部材6の材料は、熱伝導率の大きい金属が好ましく、一般的には厚さ1〜5mm程度のCuやAlやAlSiC等の金属板が用いられる。   The heat radiating member 6 is joined to a single or a plurality of ceramic substrates 5 by solder 8 and plays a role as a heat radiating plate, and faces the surface of the heat radiating member 6 that is joined by the solder 8 (on the opposite side). The surface) is connected to a heat sink (not shown) with thermal conductive grease or the like, so that heat generated in the power semiconductor device 100 is efficiently radiated to the outside. Therefore, the material of the heat radiating member 6 is preferably a metal having a large thermal conductivity, and generally a metal plate of Cu, Al, AlSiC or the like having a thickness of about 1 to 5 mm is used.

はんだ8は、セラミック基板5の放熱面側と放熱部材6を接合する。そのため、はんだ8の材料は、融点が低く、熱伝導率の大きい金属が好ましく、一般的にはSn、Pb、Ag、Cu等を用いた合金が用いられる。また、その厚さは、信頼性と放熱性の観点から、0.1mm〜0.3mm程度が好ましい。   The solder 8 joins the heat radiating surface side of the ceramic substrate 5 and the heat radiating member 6. Therefore, the material of the solder 8 is preferably a metal having a low melting point and a high thermal conductivity, and generally an alloy using Sn, Pb, Ag, Cu or the like is used. The thickness is preferably about 0.1 mm to 0.3 mm from the viewpoint of reliability and heat dissipation.

つぎに、このように構成した電力用半導体装置100の特徴及び効果について、従来の電力用半導体装置110(比較例)と比較して説明する。図2〜図4は、比較例の超音波接合工程を説明する概略図である。図5〜図7は、本発明の実施の形態1による超音波接合工程を説明する概略図である。図2〜図7は、それぞれ超音波接合工程毎の接合部分近傍の断面を示している。図2及び図5は、超音波ホーン50を電極端子3や電極端子13に接触させた状態を示している。図3及び図6は、電極端子3や電極端子13に、超音波ホーン50により加圧力30を加えながら、超音波で振動させている状態を示している。図4及び図7は、電極端子3や電極端子13がセラミック基板5の導体パターン52aに接合された状態を示している。   Next, features and effects of the power semiconductor device 100 configured as described above will be described in comparison with the conventional power semiconductor device 110 (comparative example). 2 to 4 are schematic diagrams for explaining the ultrasonic bonding process of the comparative example. 5-7 is the schematic explaining the ultrasonic joining process by Embodiment 1 of this invention. 2-7 has shown the cross section of the junction part vicinity for every ultrasonic bonding process, respectively. 2 and 5 show a state in which the ultrasonic horn 50 is in contact with the electrode terminal 3 and the electrode terminal 13. 3 and 6 show a state in which the electrode terminal 3 and the electrode terminal 13 are vibrated with ultrasonic waves while applying a pressure 30 with the ultrasonic horn 50. 4 and 7 show a state where the electrode terminal 3 and the electrode terminal 13 are joined to the conductor pattern 52a of the ceramic substrate 5. FIG.

実施の形態1の電力用半導体装置100の製造方法は、4つの工程、すなわち、電極端子3の先端部分に電極端子本体より薄い薄肉部を形成する薄肉部形成工程と、セラミック基板5を超音波接合装置に固定する基板固定工程と、セラミック基板5の導体パターン52aに電極端子3を載置する電極端子載置工程と、導体パターン52aと電極端子3とを超音波接合する超音波接合工程を含んでいる。薄肉部形成工程は、電極端子3における、導体パターン52aである対象物に接続する接合領域を含む領域を、本体部(電極端子本体)よりも薄く加工する工程である。図1、図5〜図7では、セラミック基板5の導体パターン52aと直接接触する面を含んだ先端部3b(超音波接合部20、未加圧部3a)が薄肉部である。超音波接合工程は、電極端子3におけるセラミック基板5への載置面の反対側(表面)から超音波接合装置の超音波ホーン50を当て、導体パターン52aと電極端子3とを超音波接合する工程である。比較例の電力用半導体装置110の製造方法は、実施の形態1の電力用半導体装置100の製造方法から薄肉部形成工程を削除し、電極端子13の接合条件が異なるものである。   The manufacturing method of the power semiconductor device 100 of the first embodiment includes four steps, that is, a thin portion forming step of forming a thin portion thinner than the electrode terminal main body at the tip portion of the electrode terminal 3, and an ultrasonic treatment of the ceramic substrate 5. A substrate fixing step for fixing to the bonding apparatus, an electrode terminal placing step for placing the electrode terminal 3 on the conductor pattern 52a of the ceramic substrate 5, and an ultrasonic bonding step for ultrasonically bonding the conductor pattern 52a and the electrode terminal 3 to each other. Contains. A thin part formation process is a process of processing the area | region including the joining area | region connected to the target object which is the conductor pattern 52a in the electrode terminal 3 thinner than a main-body part (electrode terminal main body). In FIG. 1 and FIG. 5 to FIG. 7, the tip portion 3 b (the ultrasonic bonding portion 20, the unpressurized portion 3 a) including the surface that directly contacts the conductor pattern 52 a of the ceramic substrate 5 is a thin portion. In the ultrasonic bonding process, the ultrasonic horn 50 of the ultrasonic bonding apparatus is applied from the opposite side (surface) of the electrode terminal 3 to the ceramic substrate 5 to ultrasonically bond the conductor pattern 52a and the electrode terminal 3. It is a process. In the method for manufacturing the power semiconductor device 110 of the comparative example, the thin portion forming step is deleted from the method for manufacturing the power semiconductor device 100 of the first embodiment, and the bonding conditions of the electrode terminals 13 are different.

図5は、実施の形態1の薄肉部形成工程、基板固定工程、電極端子載置工程が実行された状態を示している。図6は、実施の形態1の超音波接合工程を実行している状態を示している。図7は、実施の形態1の超音波接合工程が終了した後の電力用半導体装置100を示している。図2は、比較例の基板固定工程、電極端子載置工程が実行された状態を示している。図3は、比較例の超音波接合工程を実行している状態を示している。図4は、比較例の超音波接合工程が終了した後の電力用半導体装置110を示している。   FIG. 5 shows a state in which the thin portion forming process, the substrate fixing process, and the electrode terminal placing process of the first embodiment are performed. FIG. 6 shows a state in which the ultrasonic bonding process of the first embodiment is being performed. FIG. 7 shows the power semiconductor device 100 after the ultrasonic bonding process of the first embodiment is completed. FIG. 2 shows a state in which the substrate fixing process and the electrode terminal placing process of the comparative example are executed. FIG. 3 shows a state in which the ultrasonic bonding process of the comparative example is being executed. FIG. 4 shows the power semiconductor device 110 after the ultrasonic bonding process of the comparative example is completed.

従来の電力用半導体装置110では、電極端子13の厚さは全て一定である。破線15(図4参照)から破線19までの部分は、電極端子13の先端部13bである。破線19から右側の部分は、電極端子13の電極端子本体である。破線19から破線18までの部分は、端子曲げ部13rである。電極端子3には電力用半導体装置110を動作させるために必要な電流を流す必要があるため、特に発電や電鉄等大電流を扱う製品に用いられる電力用半導体装置110の電極端子13には、厚さ1.0mm以上のCu端子が用いられているのが一般的である。超音波接合を行う場合では板厚が厚く、かつ硬い材料ほど接合に必要なエネルギーが多くなるため、荷重や接合時間、振幅等の接合条件を大きくする必要がある。しかし、接合条件を大きくすると図2〜図4に示すように、超音波ホーン50によって電極端子13自体が大きく変形したり、端子曲げ部13rに長時間繰返し変形が加わることで端子曲げ部13rにクラックを生じることがある。   In the conventional power semiconductor device 110, the thicknesses of the electrode terminals 13 are all constant. A portion from the broken line 15 (see FIG. 4) to the broken line 19 is the tip portion 13 b of the electrode terminal 13. A portion on the right side from the broken line 19 is an electrode terminal body of the electrode terminal 13. A portion from a broken line 19 to a broken line 18 is a terminal bent portion 13r. Since it is necessary to pass a current necessary for operating the power semiconductor device 110 to the electrode terminal 3, the electrode terminal 13 of the power semiconductor device 110 used for a product that handles a large current such as power generation or railway A Cu terminal having a thickness of 1.0 mm or more is generally used. When ultrasonic bonding is performed, the thicker the plate and the harder the material, the more energy required for bonding. Therefore, it is necessary to increase bonding conditions such as load, bonding time, and amplitude. However, when the joining condition is increased, as shown in FIGS. 2 to 4, the electrode terminal 13 itself is greatly deformed by the ultrasonic horn 50, or the terminal bent portion 13r is repeatedly deformed for a long time, so that the terminal bent portion 13r is deformed. May cause cracks.

これに対して、前述したように、本発明の実施の形態1の電力用半導体装置100では、電極端子3の先端部3bが、接合面3jを有する面と反対側の面方向から予め加工されており、電極端子3の電極端子本体より薄なっている。このように、超音波ホーン50で加圧される部分を予め薄くしておくことで、超音波接合に必要なエネルギーを少なくすることができる。超音波接合に必要なエネルギーが少なくなれば、接合条件である荷重(加圧力)や振幅を小さく、接合時間を短くすることができるため、実施の形態1の電力用半導体装置100は、図5〜図7に示すように超音波ホーン50によって電極端子3自体が大きく変形するのを防ぐことができる。それに加えて、実施の形態1の電力用半導体装置100は、接合時間を短くすることで略L字状の端子曲げ部3rに繰返し変形が加わる時間を短くすることができるため、端子曲げ部3rにクラックが生じるのを防ぐことができる。   In contrast, as described above, in power semiconductor device 100 according to the first embodiment of the present invention, tip portion 3b of electrode terminal 3 is processed in advance from the surface direction opposite to the surface having bonding surface 3j. It is thinner than the electrode terminal body of the electrode terminal 3. As described above, by preliminarily thinning the portion to be pressed by the ultrasonic horn 50, the energy required for ultrasonic bonding can be reduced. If the energy required for ultrasonic bonding is reduced, the load (pressing force) and amplitude, which are bonding conditions, can be reduced and the bonding time can be shortened. Therefore, the power semiconductor device 100 of the first embodiment is shown in FIG. As shown in FIG. 7, the ultrasonic horn 50 can prevent the electrode terminal 3 itself from being greatly deformed. In addition, since the power semiconductor device 100 according to the first embodiment can shorten the time during which repeated deformation is applied to the substantially L-shaped terminal bending portion 3r by shortening the bonding time, the terminal bending portion 3r. It is possible to prevent cracks from occurring.

さらに、比較例の電極端子13の超音波ホーン50によって大きく変形した部分から削れた金属が、金属屑13c(図3参照)となって周囲に飛散する。これらの金属屑13cが電力用半導体素子1の表面や、導体パターン52aの間に落下することで電力用半導体装置110が動作不良や絶縁破壊を引き起こす恐れがある。   Furthermore, the metal scraped off from the portion greatly deformed by the ultrasonic horn 50 of the electrode terminal 13 of the comparative example is scattered as metal scrap 13c (see FIG. 3). If these metal scraps 13c fall between the surface of the power semiconductor element 1 or between the conductor patterns 52a, the power semiconductor device 110 may cause malfunction or dielectric breakdown.

これに対して、本発明の実施の形態1の電力用半導体装置100では、従来よりも接合条件を弱めに設定することにより、超音波ホーン50によって電極端子3が大きく変形するのを防ぐことができるため、電極端子3の削れる量が従来に比べて極めて少なくなり、削られた金属の大きな塊である金属屑13cの発生も抑制することができる。   On the other hand, in the power semiconductor device 100 according to the first embodiment of the present invention, it is possible to prevent the electrode terminal 3 from being greatly deformed by the ultrasonic horn 50 by setting the bonding condition weaker than before. Therefore, the amount that the electrode terminal 3 can be scraped is extremely small compared to the conventional case, and the generation of metal scrap 13c that is a large lump of scraped metal can be suppressed.

さらに、電力用半導体装置100、110の動作時に発生する熱膨張および振動に伴う変形により、電極端子3、13にも応力が生じる。このとき、従来の電力用半導体装置110では図4に示すように、電極端子13と導体パターン52aは超音波ホーン50によって加圧された部分が接合される。そのため、超音波ホーン50によって電極端子13が、先端部13bの未加圧部厚t5から潰されて厚さが薄くなった部分(破線15から破線16までの部分)のz方向から見た投影面積がそのまま超音波接合部25となる。電極端子13の厚さが薄くなる部分と電極端子13の超音波接合前の厚さのままである部分との境界は、破線16で示した部分である。また、電極端子13の先端部13bにおける超音波接合部25と、超音波ホーン50で押圧されずに、導体パターン52aと接合されない未接合部26との境界は、破線16で示した部分である。したがって、電極端子13の厚さが異なる部分の境界と、電極端子13における超音波接合部25及び未接合部26の境界とは一致しており、すなわち上記2つの境界が図4のz軸の同一線上に存在する。破線円27で囲った部分は、電極端子13における超音波接合部25と未接合部26との境界部であり、電極端子13の厚さが変化する部分である境界部である。   Furthermore, stress is also generated in the electrode terminals 3 and 13 due to deformation caused by thermal expansion and vibration generated during operation of the power semiconductor devices 100 and 110. At this time, in the conventional power semiconductor device 110, as shown in FIG. 4, the electrode terminal 13 and the conductor pattern 52 a are joined at the portion pressed by the ultrasonic horn 50. Therefore, the projection as seen from the z direction of the portion (the portion from the broken line 15 to the broken line 16) where the electrode terminal 13 is crushed from the unpressurized portion thickness t5 of the tip end portion 13b by the ultrasonic horn 50 and thinned. The area becomes the ultrasonic bonding portion 25 as it is. The boundary between the portion where the thickness of the electrode terminal 13 is reduced and the portion where the thickness of the electrode terminal 13 remains before ultrasonic bonding is the portion indicated by the broken line 16. Further, the boundary between the ultrasonic bonding portion 25 at the distal end portion 13 b of the electrode terminal 13 and the non-bonded portion 26 that is not pressed by the ultrasonic horn 50 and is not bonded to the conductor pattern 52 a is a portion indicated by a broken line 16. . Therefore, the boundary between the parts having different thicknesses of the electrode terminal 13 and the boundary between the ultrasonic bonding portion 25 and the non-bonding portion 26 in the electrode terminal 13 are coincident with each other, that is, the above two boundaries are on the z axis in FIG. Exists on the same line. A portion surrounded by a broken-line circle 27 is a boundary portion between the ultrasonic bonding portion 25 and the non-bonding portion 26 in the electrode terminal 13 and is a boundary portion that is a portion where the thickness of the electrode terminal 13 changes.

比較例の電極端子13の厚さが変化する部分である境界部27は、電極端子13の部材の厚さそのものが減少している上に、接合の際に超音波ホーン50の振動によってダメージを受けているため破断しやすくなっている。また、超音波接合部25と未接合部26との境界部も上記境界部27と一致しているため、電極端子13に生じた応力はこの部分で最も大きくなる。よって、比較例の電力用半導体装置110の動作時に発生する熱膨張および振動に伴う変形により電極端子13に生じた応力が、電極端子13の厚さが変化する部分である境界部27に集中することで、電極端子13が破断し、電力用半導体装置110の信頼性の低下を招く恐れがある。   The boundary portion 27, which is a portion where the thickness of the electrode terminal 13 of the comparative example changes, is reduced in the thickness of the member of the electrode terminal 13 and is damaged by the vibration of the ultrasonic horn 50 during bonding. It is easy to break because it receives. Further, since the boundary portion between the ultrasonic bonded portion 25 and the non-bonded portion 26 also coincides with the boundary portion 27, the stress generated in the electrode terminal 13 is the largest in this portion. Therefore, the stress generated in the electrode terminal 13 due to deformation caused by thermal expansion and vibration generated during the operation of the power semiconductor device 110 of the comparative example is concentrated on the boundary portion 27 where the thickness of the electrode terminal 13 changes. As a result, the electrode terminal 13 may be broken and the reliability of the power semiconductor device 110 may be reduced.

これに対して、本発明の実施の形態1の電力用半導体装置100では、超音波ホーン50によって電極端子3が大きく変形することもなく、図1に示すように超音波ホーン50によって加圧される部分(超音波接合部20)と、電極端子3の厚さが異なる端子曲げ部3rとの間に超音波ホーン50によって加圧しない未加圧部3aを設けることによって、薄肉になった先端部3bと端子曲げ部3rとの境界部21に対する超音波接合の際の機械的な影響を小さくし、境界部21が過度にダメージを受けるのを防止することができる。また、この未加圧部3aを長さが0.5mm程度以上となるように設けることで、超音波ホーン50や電極端子3の位置がずれても、超音波接合部20と端子曲げ部3rとの間に未加圧部3aが消滅することなく存在するので、境界部21に接合の際の機械的影響を受けないようにしてダメージを防止することができる。さらに、電力用半導体装置100の動作時に発生する熱膨張および振動に伴う熱変形により電極端子3に応力が生じても、その応力は電極端子3の未加圧部3a全体が変形することで未加圧部3a全体に分散される。そのため、電極端子3の厚さが異なる厚さ境界部(破線17が通過する部分)や、境界部21、超音波接合部20に応力が集中することがなく、その部分で電極端子3が破断し、製品の信頼性が低下するのを防ぐことができる。   On the other hand, in the power semiconductor device 100 according to the first embodiment of the present invention, the electrode terminal 3 is not greatly deformed by the ultrasonic horn 50 and is pressed by the ultrasonic horn 50 as shown in FIG. The tip is thinned by providing an unpressurized portion 3a that is not pressurized by the ultrasonic horn 50 between the portion to be bent (ultrasonic bonding portion 20) and the terminal bending portion 3r having a different thickness of the electrode terminal 3 The mechanical influence at the time of ultrasonic bonding with respect to the boundary portion 21 between the portion 3b and the terminal bent portion 3r can be reduced, and the boundary portion 21 can be prevented from being excessively damaged. Moreover, even if the position of the ultrasonic horn 50 or the electrode terminal 3 shifts by providing the non-pressurized portion 3a so that the length is about 0.5 mm or more, the ultrasonic bonded portion 20 and the terminal bent portion 3r. Since the non-pressurized portion 3a exists without disappearing, damage to the boundary portion 21 can be prevented without being affected by the mechanical effect at the time of joining. Further, even if stress is generated in the electrode terminal 3 due to thermal deformation and thermal deformation that occur during the operation of the power semiconductor device 100, the stress is not changed because the entire unpressurized portion 3 a of the electrode terminal 3 is deformed. Dispersed throughout the pressure unit 3a. Therefore, stress does not concentrate on the thickness boundary part (part where the broken line 17 passes), the boundary part 21 and the ultrasonic bonding part 20 with different thicknesses of the electrode terminal 3, and the electrode terminal 3 breaks at that part. In addition, the product reliability can be prevented from being lowered.

超音波接合部20では、電流が超音波接合部20を通じて電極端子3の他端側に流れ、また、超音波接合部20が構造的に超音波接合部20の厚さ方向に対して、電力用半導体装置100の放熱経路となっている。そのため電極端子3の先端部3bを薄くしても、電流集中する部分をなくす、または極力少なくすることができ、電流集中により異常発熱が生じることもなく、通電可能な電流量を維持することができる。電流の大きさによっては、先端部3bの一部または全部を電極端子3の他の部分よりもy方向の幅を幅広にすることによって、通電による発熱をさらに低減することもできる。   In the ultrasonic bonding part 20, the current flows to the other end side of the electrode terminal 3 through the ultrasonic bonding part 20, and the ultrasonic bonding part 20 is structurally powered with respect to the thickness direction of the ultrasonic bonding part 20. This is a heat dissipation path of the semiconductor device 100 for use. Therefore, even if the tip portion 3b of the electrode terminal 3 is thinned, the current concentration portion can be eliminated or minimized, and the current that can be energized can be maintained without causing abnormal heat generation due to the current concentration. it can. Depending on the magnitude of the current, heat generation due to energization can be further reduced by making part or all of the tip 3b wider in the y direction than other parts of the electrode terminal 3.

電極端子3の先端部3bが薄くなれば、電力用半導体装置100の動作に伴う温度変化によって、部材間の線膨張係数差によって超音波接合部20に生じる熱応力に対しても、超音波接合部20が壊れにくくなるため、信頼性の高い電力用半導体装置100を得ることができる。   If the tip portion 3b of the electrode terminal 3 is thinned, ultrasonic bonding can be applied even to thermal stress generated in the ultrasonic bonding portion 20 due to a difference in linear expansion coefficient between members due to a temperature change accompanying the operation of the power semiconductor device 100. Since the portion 20 is less likely to break, a highly reliable power semiconductor device 100 can be obtained.

実施の形態1の電力用半導体装置100は、接合面3jを含む電極端子3の先端部3bが、接合面3jを有する面と反対側の面方向から予め加工されており、他の部分より薄くなっている電極端子3を備えたことで、通電可能な電流量を維持したまま、電極端子3を導体パターン52aに超音波接合するために必要なエネルギーを小さくすることができる。実施の形態1の電力用半導体装置100は、超音波接合に必要なエネルギーが少なくなるため、超音波ホーン50によって電極端子3が大きく変形するのを防ぐことができる。さらに、実施の形態1の電力用半導体装置100は、接合時間を短くすることで端子曲げ部3rに繰返し変形が加わる時間を短くすることができるため、端子曲げ部3rにクラックが生じるのを防ぐことができる。また、実施の形態1の電力用半導体装置100は、電極端子3が大きく変形するのを防ぐことができるのと同時に、金属屑13cの発生を抑制でき、金属屑13cが電力用半導体素子1上や導体パターン52a上に飛散するのも抑制することができる。   In power semiconductor device 100 of the first embodiment, tip portion 3b of electrode terminal 3 including bonding surface 3j is processed in advance from the surface direction opposite to the surface having bonding surface 3j, and is thinner than the other portions. Since the electrode terminal 3 is provided, the energy required to ultrasonically bond the electrode terminal 3 to the conductor pattern 52a can be reduced while maintaining a current amount that can be energized. Since the power semiconductor device 100 according to the first embodiment requires less energy for ultrasonic bonding, the ultrasonic horn 50 can prevent the electrode terminal 3 from being greatly deformed. Furthermore, the power semiconductor device 100 according to the first embodiment can shorten the time during which the terminal bending portion 3r is repeatedly deformed by shortening the joining time, and thus prevents the terminal bending portion 3r from cracking. be able to. In addition, the power semiconductor device 100 of the first embodiment can prevent the electrode terminal 3 from being greatly deformed, and at the same time, can suppress the generation of the metal scrap 13c, and the metal scrap 13c is on the power semiconductor element 1. It is also possible to suppress scattering on the conductor pattern 52a.

さらに、実施の形態1の電力用半導体装置100は、超音波ホーン50によって加圧される部分(超音波接合部20)と、電極端子3の厚さが異なる厚さ境界部に間を開けておくことで、すなわち、超音波接合部20と端子曲げ部3rとの間に、電極端子3の本体部よりも薄い未加圧部3aを設けることで、超音波接合の際に超音波ホーン50によって与えられる機械的影響によって電極端子3が受けるダメージを防止することができる。実施の形態1の電力用半導体装置100は、電力用半導体装置100の動作時に発生する熱膨張および振動に伴う変形により電極端子3に生じる応力が未加圧部3a全体に分散されるので、従来の境界部27に集中することで電極端子3が破断し、製品の信頼性が低下してしまうのとは異なり、良好な超音波接合部20を持った、大電流に対応でき、信頼性を向上することができる。   Furthermore, in the power semiconductor device 100 of the first embodiment, the portion (ultrasonic bonding portion 20) pressed by the ultrasonic horn 50 and the thickness boundary portion where the thickness of the electrode terminal 3 is different are opened. In other words, by providing the unpressurized portion 3a thinner than the main body portion of the electrode terminal 3 between the ultrasonic bonding portion 20 and the terminal bending portion 3r, the ultrasonic horn 50 is provided at the time of ultrasonic bonding. It is possible to prevent the electrode terminal 3 from being damaged by the mechanical effect given by the above. In the power semiconductor device 100 of the first embodiment, the stress generated in the electrode terminal 3 due to deformation caused by thermal expansion and vibration generated during the operation of the power semiconductor device 100 is dispersed throughout the unpressurized portion 3a. Unlike the case where the electrode terminal 3 is broken by concentrating on the boundary portion 27 and the reliability of the product is lowered, the reliability can be increased with the high ultrasonic junction 20 and the reliability. Can be improved.

電力用半導体素子1は、シリコンウエハを基材とした一般的な素子でもよいが、本発明においては炭化ケイ素(SiC)や窒化ガリウム(GaN)系材料、またはダイヤモンドといったシリコンと較べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料を適用できる。電力用半導体素子1のデバイス種類としては、特に限定する必要はないが、IGBTやMOSFET(Metal Oxide Semiconductor Field-Effect-Transistor)のようなスイッチング素子や、ダイオードのような整流素子を搭載することができる。例えば、スイッチング素子や整流素子として機能する電力用半導体素子1に、炭化ケイ素(SiC)や窒化ガリウム(GaN)系材料又はダイヤモンドを用いた場合、従来から用いられてきたシリコン(Si)で形成された素子よりも電力損失が低いため、電力用半導体装置100の高効率化が可能となる。また、耐電圧性が高く、許容電流密度も高いため、電力用半導体装置100の小型化が可能となる。さらにワイドバンドギャップ半導体素子は、耐熱性が高いので、高温動作が可能であり、放熱フィン(ヒートシンク)の小型化や、水冷部の空冷化も可能となるので、放熱フィン(ヒートシンク)を備えた電力用半導体装置100の一層の小型化が可能になる。   The power semiconductor element 1 may be a general element based on a silicon wafer. However, in the present invention, the band gap is larger than that of silicon carbide (SiC), gallium nitride (GaN) -based material, or silicon such as diamond. A wide so-called wide band gap semiconductor material can be applied. The device type of the power semiconductor element 1 is not particularly limited, but a switching element such as an IGBT or MOSFET (Metal Oxide Semiconductor Field-Effect-Transistor) or a rectifying element such as a diode may be mounted. it can. For example, when silicon carbide (SiC), gallium nitride (GaN) -based material, or diamond is used for the power semiconductor element 1 that functions as a switching element or a rectifying element, it is formed of silicon (Si) that has been used conventionally. Since the power loss is lower than that of the element, the efficiency of the power semiconductor device 100 can be increased. In addition, since the withstand voltage is high and the allowable current density is also high, the power semiconductor device 100 can be downsized. Furthermore, the wide band gap semiconductor element has high heat resistance, so it can be operated at high temperature, and the radiating fin (heat sink) can be downsized and the water cooling part can be cooled by air. The power semiconductor device 100 can be further reduced in size.

以上のように、実施の形態1の電力用半導体装置100によれば、導体パターン52aが形成された絶縁基板(セラミック基板5)と、導体パターン52aの上に配設された電力用半導体素子1と、電極端子3とを備え、電極端子3は、本体部と、予め本体部よりも薄く形成された薄肉部(先端部3b)とを有し、薄肉部(先端部3b)は、導体パターン52aに超音波接合された超音波接合部20を有することを特徴とするので、超音波接合する際に、略L字状等に曲げた電極端子であっても、その曲げ部の疲労破壊やクラックの発生を防止し、信頼性を向上することができる。   As described above, according to the power semiconductor device 100 of the first embodiment, the insulating substrate (ceramic substrate 5) on which the conductor pattern 52a is formed, and the power semiconductor element 1 disposed on the conductor pattern 52a. And the electrode terminal 3, the electrode terminal 3 having a main body portion and a thin portion (tip portion 3 b) formed in advance thinner than the main body portion, and the thin portion (tip portion 3 b) is a conductor pattern. Since the ultrasonic bonding portion 20 is ultrasonically bonded to the 52a, even when the electrode terminal is bent in a substantially L shape or the like when the ultrasonic bonding is performed, Generation of cracks can be prevented and reliability can be improved.

実施の形態1の電力用半導体装置の製造方法によれば、電極端子3における、導体パターン52a又は電力用半導体素子1の表面電極2である対象物に接続する接合領域を含む領域を、本体部よりも薄くすることにより、薄肉部を形成する薄肉部形成工程と、電力用半導体素子1が搭載された絶縁基板(セラミック基板5)を超音波接合装置に固定する基板固定工程と、対象物に電極端子3を載置する電極端子載置工程と、電極端子3の薄肉部において、電極端子3が対象物に載置された面に対向する面側から超音波接合装置の超音波ホーン50を当て、対象物と電極端子3とを超音波接合する超音波接合工程と、を含むことを特徴とするので、超音波接合する際に、略L字状等に曲げた電極端子であっても、その曲げ部の疲労破壊やクラックの発生を防止し、信頼性を向上することができる。   According to the manufacturing method of the power semiconductor device of the first embodiment, the region including the bonding region connected to the object that is the conductor pattern 52a or the surface electrode 2 of the power semiconductor element 1 in the electrode terminal 3 The thin-walled portion forming step for forming the thin-walled portion, the substrate fixing step for fixing the insulating substrate (ceramic substrate 5) on which the power semiconductor element 1 is mounted to the ultrasonic bonding apparatus, and the object In the electrode terminal placing process for placing the electrode terminal 3 and the thin portion of the electrode terminal 3, the ultrasonic horn 50 of the ultrasonic bonding apparatus is placed on the surface facing the surface on which the electrode terminal 3 is placed on the object. And an ultrasonic bonding step of ultrasonically bonding the object and the electrode terminal 3, so that even if the electrode terminal is bent into a substantially L shape or the like when ultrasonically bonding, , Fatigue fracture and To prevent the occurrence, it is possible to improve the reliability.

実施の形態2.
図8は、本発明の実施の形態2による電力用半導体装置の要部を示す部分断面図である。実施の形態2の電力用半導体装置100は、電極端子3の未加圧部3aにおけるセラミック基板5に対向する載置面と反対側の形状が実施の形態1と異なり、角丸め形状にしたものである。実施の形態1では、図7における電極端子3の厚さが異なる厚さ境界部(破線17が通過する部分)において、段差が生じていたが、実施の形態2では厚さ境界部と未加圧部3aとの接続が滑らかになっている。電極端子3の未加圧部3aを角丸め形状にすれば、超音波接合の際に図7における電極端子3の厚さが異なる厚さ境界部(破線17が通過する部分)の角部に繰返し変形が加わるのとは異なり、厚さ境界部(破線17が通過する部分)の機械的なダメージを低減することがき、クラックを生じるのを防止する効果を実施の形態1に比べて高めることができる。
Embodiment 2. FIG.
FIG. 8 is a partial cross-sectional view showing a main part of the power semiconductor device according to the second embodiment of the present invention. The power semiconductor device 100 according to the second embodiment is different from the first embodiment in that the shape of the unpressurized portion 3a of the electrode terminal 3 on the opposite side of the mounting surface facing the ceramic substrate 5 is rounded. It is. In the first embodiment, there is a step at the thickness boundary portion (the portion through which the broken line 17 passes) where the thickness of the electrode terminal 3 in FIG. 7 is different, but in the second embodiment, the step is not added to the thickness boundary portion. The connection with the pressure part 3a is smooth. If the non-pressurized portion 3a of the electrode terminal 3 is rounded, at the corner of the thickness boundary portion (the portion through which the broken line 17 passes) in FIG. Unlike repeated deformation, mechanical damage at the thickness boundary portion (portion through which the broken line 17 passes) can be reduced, and the effect of preventing the occurrence of cracks can be enhanced compared to the first embodiment. Can do.

なお、電極端子3の未加圧部3aにおけるセラミック基板5に対向する載置面と反対側の形状は、角丸め形状以外にもC面取り形状等にしても、同様の効果が得られる。   In addition, the same effect is acquired even if the shape on the opposite side to the mounting surface which opposes the ceramic substrate 5 in the unpressurized part 3a of the electrode terminal 3 is made into a C chamfering shape other than a rounded corner shape.

実施の形態3.
図9は、本発明の実施の形態3による電力用半導体装置の要部を示す部分断面図である。実施の形態3の電力用半導体装置100は、実施の形態2と同様に電極端子3の未加圧部3aの形状が角丸め形状であり、さらにセラミック基板5との対向面と反対側である電極端子3の端子曲げ部3rの曲げ部内側3cも角丸め形状にしたものである。電極端子3の未加圧部3aの形状及び電極端子3の端子曲げ部3rの曲げ部内側3cの形状を角丸め形状にすれば、実施の形態2よりも厚さ境界部(破線17が通過する部分)の機械的なダメージを低減することがき、クラックを生じるのを防止する効果を実施の形態2に比べて高めることができる。
Embodiment 3 FIG.
FIG. 9 is a partial cross-sectional view showing a main part of the power semiconductor device according to the third embodiment of the present invention. In the power semiconductor device 100 of the third embodiment, the shape of the non-pressurized portion 3a of the electrode terminal 3 is a rounded corner shape as in the second embodiment, and is on the side opposite to the surface facing the ceramic substrate 5. The bent portion inner side 3c of the terminal bent portion 3r of the electrode terminal 3 is also rounded. If the shape of the unpressurized portion 3a of the electrode terminal 3 and the shape of the bent portion inside 3c of the terminal bent portion 3r of the electrode terminal 3 are rounded, the thickness boundary portion (the broken line 17 passes through the second embodiment). And the effect of preventing the occurrence of cracks can be enhanced as compared with the second embodiment.

なお、電極端子3の端子曲げ部3rにおける曲げ部内側3cの形状は、角丸め形状以外にもC面取り形状等にしても、同様の効果が得られる。   In addition, the same effect is acquired even if the shape of the bending part inner side 3c in the terminal bending part 3r of the electrode terminal 3 is made into a C chamfering shape other than a rounded corner shape.

実施の形態4.
図10は、本発明の実施の形態4による電力用半導体装置の要部を示す部分断面図である。実施の形態4の電力用半導体装置100は、電極端子3の本体部において略S字型のベンド構造部3dを有するものである。電極端子3に略S字型のベンド構造部3dを設ければ、ベンド構造部3dが優先的に変形するため、超音波接合の際に電極端子3の端子曲げ部3rに繰返し変形が加わらなくなることに加えて、超音波接合の際に与えられる振動によって電極端子3の厚さが異なる厚さ境界部(破線17が通過する部分)の角部に繰返し変形が加わるのとは異なり、厚さ境界部(破線17が通過する部分)の機械的なダメージを低減することがき、クラックが生じるのを防止する効果を実施の形態1に比べて高めることができる。
Embodiment 4 FIG.
FIG. 10 is a partial cross-sectional view showing a main part of the power semiconductor device according to the fourth embodiment of the present invention. The power semiconductor device 100 of the fourth embodiment has a substantially S-shaped bend structure portion 3 d in the main body portion of the electrode terminal 3. If the electrode terminal 3 is provided with the substantially S-shaped bend structure portion 3d, the bend structure portion 3d is preferentially deformed, so that the terminal bending portion 3r of the electrode terminal 3 is not repeatedly deformed during ultrasonic bonding. In addition, the thickness of the electrode terminal 3 is different from that repeatedly deformed at the corner of the thickness boundary portion (the portion through which the broken line 17 passes) due to vibration applied during ultrasonic bonding. Mechanical damage at the boundary (portion through which the broken line 17 passes) can be reduced, and the effect of preventing the occurrence of cracks can be enhanced compared to the first embodiment.

さらに、電力用半導体装置100の動作時に発生する熱膨張および振動に伴う変形により電極端子3に応力が生じた場合にも、ベンド構造部3dが優先的に変形するため、応力が電極端子3の1箇所に集中する従来と異なり、電極端子3の厚さが異なる厚さ境界部(破線17が通過する部分)や、境界部21において破断耐性を向上することができ、製品の信頼性を実施の形態1に比べて高めることができる。なお、電極端子3は、本体部において、凹型のベンド構造部等を有した端子形状でもよく、この場合も上記と同様の効果が得られる。   Further, when stress is generated in the electrode terminal 3 due to deformation caused by thermal expansion and vibration generated during operation of the power semiconductor device 100, the bend structure portion 3d is preferentially deformed. Unlike the conventional case where the electrode terminal 3 is concentrated at one place, the thickness boundary part where the electrode terminal 3 is different (the part where the broken line 17 passes) and the boundary part 21 can be improved in fracture resistance, and the reliability of the product is implemented. This can be increased compared to the first embodiment. The electrode terminal 3 may have a terminal shape having a concave bend structure portion or the like in the main body portion. In this case, the same effect as described above can be obtained.

実施の形態5.
図11は、本発明の実施の形態5による電力用半導体装置の要部を示す部分断面図である。実施の形態5の電力用半導体装置100は、電極端子3を複数枚の電極端子部材11、12を重ねにして構成したものであり、電極端子部材11と電極端子部材12とが互いに固定されない領域を有したものである。この電極端子部材11と電極端子部材12とが互いに固定されない領域は、図11における隙間14を形成する領域である。図11では、2枚の電極端子部材11、12を備えた電極端子3の例を示した。図11において、破線17から破線18までの部分である端子曲げ部3rは、電極端子部材11の端子曲げ部11rと電極端子部材12の端子曲げ部12rを有している。
Embodiment 5 FIG.
FIG. 11 is a partial cross-sectional view showing a main part of the power semiconductor device according to the fifth embodiment of the present invention. The power semiconductor device 100 according to the fifth embodiment is configured such that the electrode terminal 3 is formed by overlapping a plurality of electrode terminal members 11 and 12, and the electrode terminal member 11 and the electrode terminal member 12 are not fixed to each other. It is what has. A region where the electrode terminal member 11 and the electrode terminal member 12 are not fixed to each other is a region where the gap 14 in FIG. 11 is formed. In FIG. 11, the example of the electrode terminal 3 provided with the two electrode terminal members 11 and 12 was shown. In FIG. 11, the terminal bent portion 3 r that is a portion from the broken line 17 to the broken line 18 includes a terminal bent portion 11 r of the electrode terminal member 11 and a terminal bent portion 12 r of the electrode terminal member 12.

実施の形態5の電力用半導体装置100は、電極端子3を複数枚の電極端子部材11、12を重ねにして構成することで、通電可能な電流量を維持したまま電極端子3を構成する電極端子部材11、12のそれぞれの厚さを薄くすることができるため、電極端子3が可撓性を持ち、電力用半導体装置100の動作時に発生する熱膨張および振動に伴う変形により電極端子3に応力が生じた場合にも、電極端子3の電極端子部材11、12が個別に変形することで、応力が電極端子3の1箇所に集中する従来と異なり、電極端子3の厚さが異なる厚さ境界部(破線17が通過する部分)や、境界部21において破断耐性を向上することができ、製品の信頼性を実施の形態1に比べて高めることができる。   In the power semiconductor device 100 of the fifth embodiment, the electrode terminal 3 is configured by stacking a plurality of electrode terminal members 11 and 12, thereby forming the electrode terminal 3 while maintaining a current amount that can be energized. Since the thickness of each of the terminal members 11 and 12 can be reduced, the electrode terminal 3 has flexibility, and the electrode terminal 3 is deformed by thermal expansion and vibration generated during operation of the power semiconductor device 100. Even when stress is generated, the electrode terminal members 11 and 12 of the electrode terminal 3 are individually deformed, so that the thickness of the electrode terminal 3 is different from the conventional thickness in which the stress is concentrated on one place of the electrode terminal 3. The fracture resistance can be improved at the boundary portion (portion through which the broken line 17 passes) and at the boundary portion 21, and the reliability of the product can be increased as compared with the first embodiment.

なお、複数枚の電極端子部材11、12を重ねた電極端子3の先端部3bは超音波接合で一度に接合することができるため、接合回数が増えることで電極端子3に繰返し変形が加わる回数が増えることもない。   In addition, since the front-end | tip part 3b of the electrode terminal 3 which piled up several electrode terminal members 11 and 12 can be joined at once by ultrasonic joining, the frequency | count that a deformation | transformation is repeatedly added to the electrode terminal 3 by the joining frequency | count increasing. Will not increase.

実施の形態6.
実施の形態6の電力用半導体装置100について、図12を参照して説明する。図12は、本発明の実施の形態6による電力用半導体装置の要部を示す部分断面図である。実施の形態1の図1との相違点は、電極端子3を接合する対象物が異なることである。すなわち、実施の形態1の図1との相違点は、電極端子3をセラミック基板5の導体パターン52aに接合したのとは異なり、電極端子3を電力用半導体素子1の表面に形成された表面電極2に接合したことである。電力用半導体素子1は、表面電極2が形成されている面と対向する面に裏面電極9が形成されており、この裏面電極9がセラミック基板5の導体パターン52a上にはんだで接合されている。
Embodiment 6 FIG.
A power semiconductor device 100 according to the sixth embodiment will be described with reference to FIG. FIG. 12 is a partial cross-sectional view showing a main part of the power semiconductor device according to the sixth embodiment of the present invention. The difference from Embodiment 1 in FIG. 1 is that the objects to which the electrode terminals 3 are joined are different. That is, the difference from FIG. 1 of Embodiment 1 is that the electrode terminal 3 is formed on the surface of the power semiconductor element 1, unlike the electrode terminal 3 bonded to the conductor pattern 52 a of the ceramic substrate 5. That is, it is bonded to the electrode 2. In the power semiconductor element 1, a back electrode 9 is formed on a surface facing the surface on which the front surface electrode 2 is formed, and the back electrode 9 is joined to the conductor pattern 52 a of the ceramic substrate 5 with solder. .

電極端子3は、電力用半導体素子1の表面に形成された表面電極2と超音波接合されている。表面電極2の下にはトランジスタ領域10が形成されている。   The electrode terminal 3 is ultrasonically bonded to the surface electrode 2 formed on the surface of the power semiconductor element 1. A transistor region 10 is formed under the surface electrode 2.

電力用半導体素子1は、インバータやコンバータ等を構成する電力用半導体素子である。実施の形態6の電力用半導体装置100は、少なくとも1個以上の電力用半導体素子1を有すればよいが、IGBTもしくはMOSFETがダイオードと逆並列に接続されるように構成することが好ましい。電力用半導体素子1の材料にはSiやSiC、GaN等が用いられるが、SiCの方がSiと比較して、チップの定格電流に対する表面電極2の面積が小さくなるため、Siの場合より高密度の配線技術が求められる。そのため、SiCを用いた電力用半導体装置100においては、表面電極2に電極端子3を超音波接合することで、後述するように本発明のメリットはより効果的なものとなる。実施の形態6の電力用半導体素子1の材質がSiの場合には、定格電圧と定格電流は、例えば1400V、175Aである。また、電力用半導体素子1の大きさ及び厚さは、例えば大きさが15mm×15mmであり、厚さが0.15mmである。   The power semiconductor element 1 is a power semiconductor element that constitutes an inverter, a converter, or the like. The power semiconductor device 100 according to the sixth embodiment may have at least one power semiconductor element 1, but is preferably configured so that the IGBT or MOSFET is connected in antiparallel with the diode. Si, SiC, GaN, or the like is used as the material of the power semiconductor element 1, but SiC has a smaller area than the surface electrode 2 with respect to the rated current of the chip as compared with Si, so that it is higher than that of Si. High density wiring technology is required. Therefore, in the power semiconductor device 100 using SiC, the merit of the present invention becomes more effective as will be described later by ultrasonically bonding the electrode terminal 3 to the surface electrode 2. When the power semiconductor element 1 of the sixth embodiment is made of Si, the rated voltage and the rated current are, for example, 1400 V and 175 A. The size and thickness of the power semiconductor element 1 are, for example, 15 mm × 15 mm in size and 0.15 mm in thickness.

表面電極2は、電力用半導体素子1の表面に形成された電極配線用の金属膜である。表面電極2の材料には一般的にはAlが用いられるが、Al合金やCu、Cu合金等が用いられることもある。場合によってはTi、Mo、Ni、Au等の金属が積層されていることもあるが、いずれの場合においても同様の効果を得ることができる。実施の形態6の表面電極2の材料は、例えば厚さ0.07mmのAlである。   The surface electrode 2 is a metal film for electrode wiring formed on the surface of the power semiconductor element 1. Al is generally used as the material of the surface electrode 2, but an Al alloy, Cu, Cu alloy, or the like may be used. In some cases, metals such as Ti, Mo, Ni, and Au may be laminated, but in any case, the same effect can be obtained. The material of the surface electrode 2 of the sixth embodiment is, for example, Al having a thickness of 0.07 mm.

つぎに、このように構成した電力用半導体装置100の特徴及び効果について、従来の厚さが全て一定である電極端子を用いた場合と、本発明の実施の形態6にかかる接合面3jを含む先端部3bが、接合面3jを有する面と反対側の面方向から予め加工され、他の部分(本体部)より薄くなっている電極端子3を用いた場合とを比較して説明する。   Next, with respect to the characteristics and effects of the power semiconductor device 100 configured as described above, the conventional case where electrode terminals having a constant thickness are used and the bonding surface 3j according to the sixth embodiment of the present invention are included. A case will be described in which the tip portion 3b is processed in advance from the surface direction opposite to the surface having the joint surface 3j and the electrode terminal 3 is thinner than the other portion (main body portion).

実施の形態1において説明したとおり、電極端子3には電力用半導体装置100を動作させるために必要な電流を流す必要があり、これは電極端子3を電力用半導体素子1の表面電極2上に超音波接合した場合でも同様である。また、超音波接合では板厚が厚く、かつ硬い材料ほど接合に必要なエネルギーは多くなるため、荷重や接合時間、振幅等の接合条件を大きくする必要があるのも同様である。   As described in the first embodiment, it is necessary to pass a current necessary for operating the power semiconductor device 100 to the electrode terminal 3, and this is because the electrode terminal 3 is placed on the surface electrode 2 of the power semiconductor element 1. The same applies to ultrasonic bonding. In ultrasonic bonding, the thicker the plate and the harder the material, the more energy required for bonding. Therefore, it is also necessary to increase the bonding conditions such as load, bonding time, and amplitude.

ここで、従来の厚さが全て一定である従来の電極端子13を用いた場合、超音波接合の際に十分な接合面積を得るために必要な接合条件では、実際の表面電極2の厚さが薄すぎるため、超音波ホーン50による加圧と超音波振動によって、電極端子3と共に表面電極2が変形し、表面電極2の一部が破壊され、その下に形成されているトランジスタ領域10のトランジスタが破壊される。更に表面電極2の変形が進むと、電極端子3が電力用半導体素子1と接触し、電力用半導体素子1が破壊される。   Here, in the case where the conventional electrode terminal 13 in which the conventional thicknesses are all constant is used, the actual thickness of the surface electrode 2 is obtained under the bonding conditions necessary to obtain a sufficient bonding area during ultrasonic bonding. Is too thin, the surface electrode 2 is deformed together with the electrode terminal 3 by pressurization and ultrasonic vibration by the ultrasonic horn 50, and a part of the surface electrode 2 is destroyed, and the transistor region 10 formed thereunder The transistor is destroyed. When the surface electrode 2 is further deformed, the electrode terminal 3 comes into contact with the power semiconductor element 1 and the power semiconductor element 1 is destroyed.

これに対して、実施の形態6の電力用半導体装置100では、実施の形態1で説明したように、電極端子3の先端部3bが他の部分(本体部)より薄くなっている。実施の形態1で説明したように、電極端子3の先端部3bが薄い場合には、超音波接合に必要なエネルギーが少なくなるため、電極端子3及び表面電極2が超音波ホーン50による加圧と超音波振動によって変形するのを抑制することができ、その下に形成されているトランジスタ領域10のトランジスタ、すなわち電力用半導体素子1が破壊されるのを防止することができる。   On the other hand, in the power semiconductor device 100 of the sixth embodiment, as described in the first embodiment, the tip portion 3b of the electrode terminal 3 is thinner than the other portion (main body portion). As described in the first embodiment, when the tip portion 3b of the electrode terminal 3 is thin, the energy required for ultrasonic bonding is reduced, so that the electrode terminal 3 and the surface electrode 2 are pressed by the ultrasonic horn 50. And deformation due to ultrasonic vibration can be suppressed, and the transistor in the transistor region 10 formed thereunder, that is, the power semiconductor element 1 can be prevented from being destroyed.

このように、実施の形態6の電力用半導体装置100は、接合面3jを含む電極端子3の先端部3bが、接合面3jを有する面と反対側の面方向から予め加工され、他の部分より薄くなっている電極端子3を備えたことで、電力用半導体素子1が破壊されることなく、電力用半導体素子1の表面に形成された表面電極2に電極端子3を超音波接合することができる。すなわち、実施の形態6の電力用半導体装置100は、実施の形態1の効果を奏すると共に、表面電極2が超音波ホーン50による加圧と超音波振動によって変形するのを抑制し、その下に形成されているトランジスタ領域10のトランジスタ、すなわち電力用半導体素子1が破壊されるのを防止することができる。   Thus, in the power semiconductor device 100 of the sixth embodiment, the tip 3b of the electrode terminal 3 including the bonding surface 3j is processed in advance from the surface direction opposite to the surface having the bonding surface 3j, and other parts By providing the electrode terminal 3 that is thinner, the electrode terminal 3 is ultrasonically bonded to the surface electrode 2 formed on the surface of the power semiconductor element 1 without destroying the power semiconductor element 1. Can do. That is, the power semiconductor device 100 of the sixth embodiment has the effects of the first embodiment, suppresses the surface electrode 2 from being deformed by the pressurization and ultrasonic vibration by the ultrasonic horn 50, and below it. It is possible to prevent the transistor in the formed transistor region 10, that is, the power semiconductor element 1 from being destroyed.

表面電極2とセラミック基板5の導体パターン52aとがワイヤ等で接続され、この導体パターン52aに電極端子3を超音波接合された電力用半導体装置の場合には、表面電極2と導体パターン52aとを接続するワイヤ等の断面積が小さくなることで、ワイヤ等が電力用半導体素子1から外部回路までの電気抵抗を増大させてしまう原因になる。これに対して、実施の形態6の電力用半導体装置100は、表面電極2に電極端子3を超音波接合することで、ワイヤ等で表面電極2とセラミック基板5の導体パターン52aに接続する場合に比べて、表面電極2と電極端子3とを一度に大面積で接合することができる。実施の形態6の電力用半導体装置100は、表面電極2と電極端子3とを一度に大面積で接合することができるので、電力用半導体素子1から外部回路までの電気抵抗を低減することができる。この効果は、大電流を流すことができるワイドバンドギャップ半導体材料の電力用半導体素子1を搭載した電力用半導体装置100には、有利に働く。すなわち、電力用半導体装置100の電力損失をさらに低くでき、さらなる高効率化が可能となる。   In the case of a power semiconductor device in which the surface electrode 2 and the conductor pattern 52a of the ceramic substrate 5 are connected by a wire or the like and the electrode terminal 3 is ultrasonically bonded to the conductor pattern 52a, the surface electrode 2 and the conductor pattern 52a As the cross-sectional area of the wire or the like connecting the wires decreases, the wire or the like increases the electrical resistance from the power semiconductor element 1 to the external circuit. In contrast, in the power semiconductor device 100 of the sixth embodiment, when the electrode terminal 3 is ultrasonically bonded to the surface electrode 2, the surface electrode 2 and the conductor pattern 52 a of the ceramic substrate 5 are connected by a wire or the like. As compared with the above, the surface electrode 2 and the electrode terminal 3 can be joined in a large area at a time. Since power semiconductor device 100 of the sixth embodiment can join surface electrode 2 and electrode terminal 3 at a large area at a time, the electrical resistance from power semiconductor element 1 to the external circuit can be reduced. it can. This effect is advantageous for the power semiconductor device 100 equipped with the power semiconductor element 1 made of a wide band gap semiconductor material capable of flowing a large current. That is, the power loss of the power semiconductor device 100 can be further reduced, and further high efficiency can be achieved.

なお、実施の形態1〜実施の形態6では、先端部3bが全て薄肉部である例で説明したが、超音波接合部20の左側(電極端子3の最先端側)に薄肉部よりも厚さが厚い領域があっても構わない。また、薄肉部が電極端子3の先端部分でない中間部分にあってよい。中間部分に薄肉部が設けられた場合でも、この薄肉部において超音波接合部20が形成される。また、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   In Embodiments 1 to 6, the example in which the tip 3b is a thin part has been described, but the left side of the ultrasonic bonding part 20 (the most distal side of the electrode terminal 3) is thicker than the thin part. There may be a thick region. Further, the thin portion may be in an intermediate portion that is not the tip portion of the electrode terminal 3. Even when the thin portion is provided in the intermediate portion, the ultrasonic bonding portion 20 is formed in the thin portion. Further, the present invention can be combined with each other within the scope of the present invention, and each embodiment can be appropriately modified or omitted.

1…電力用半導体素子、2…表面電極、3…電極端子、3a…未加圧部(未接続部)、3b…先端部(薄肉部)、3d…ベンド構造部、3j…接合面、3r…端子曲げ部、5…セラミック基板、11…電極端子部材、12…電極端子部材、20…超音波接合部、50…超音波ホーン、52a…導体パターン、100…電力用半導体装置。   DESCRIPTION OF SYMBOLS 1 ... Power semiconductor element, 2 ... Surface electrode, 3 ... Electrode terminal, 3a ... Unpressurized part (unconnected part), 3b ... Tip part (thin part), 3d ... Bend structure part, 3j ... Joining surface, 3r DESCRIPTION OF SYMBOLS ... Terminal bending part, 5 ... Ceramic substrate, 11 ... Electrode terminal member, 12 ... Electrode terminal member, 20 ... Ultrasonic bonding part, 50 ... Ultrasonic horn, 52a ... Conductor pattern, 100 ... Power semiconductor device.

Claims (10)

導体パターンが形成された絶縁基板と、前記導体パターンの上に配設された電力用半導体素子と、電極端子とを備えた電力用半導体装置であって、
前記電極端子は、本体部と、予め前記本体部よりも薄く形成された薄肉部とを有し、
前記薄肉部は、前記導体パターンに超音波接合された超音波接合部を有することを特徴とする電力用半導体装置。
A power semiconductor device comprising: an insulating substrate on which a conductor pattern is formed; a power semiconductor element disposed on the conductor pattern; and an electrode terminal,
The electrode terminal has a main body part and a thin part formed in advance thinner than the main body part,
The thin-walled portion includes an ultrasonic bonding portion that is ultrasonically bonded to the conductor pattern.
導体パターンが形成された絶縁基板と、前記導体パターンの上に配設された電力用半導体素子と、電極端子とを備えた電力用半導体装置であって、
前記電極端子は、本体部と、予め前記本体部よりも薄く形成された薄肉部とを有し、
前記薄肉部は、前記電力用半導体素子の主電極のうち表面側に形成された表面電極に超音波接合された超音波接合部を有することを特徴とする電力用半導体装置。
A power semiconductor device comprising: an insulating substrate on which a conductor pattern is formed; a power semiconductor element disposed on the conductor pattern; and an electrode terminal,
The electrode terminal has a main body part and a thin part formed in advance thinner than the main body part,
The thin-walled portion has an ultrasonic bonding portion ultrasonically bonded to a surface electrode formed on the front surface side of the main electrode of the power semiconductor element.
前記電極端子は、前記薄肉部において、前記超音波接合部と前記本体部との間に、前記導体パターンに接続されない未接続部を有することを特徴とする請求項1または2に記載の電力用半導体装置。   3. The power terminal according to claim 1, wherein the electrode terminal has an unconnected portion that is not connected to the conductor pattern between the ultrasonic bonding portion and the main body portion in the thin portion. Semiconductor device. 前記電極端子は、
前記本体部が、前記薄肉部から曲げられた端子曲げ部を介して前記絶縁基板の表面から離れる方向に延伸しており、
前記本体部と前記薄肉部との境界部における、前記絶縁基板と反対側の形状が、丸め形状又は面取り形状であることを特徴とする請求項1乃至3のいずれか1項に記載の電力用半導体装置。
The electrode terminal is
The main body portion extends in a direction away from the surface of the insulating substrate through a terminal bent portion bent from the thin portion,
4. The electric power according to claim 1, wherein a shape opposite to the insulating substrate at a boundary portion between the main body portion and the thin portion is a rounded shape or a chamfered shape. Semiconductor device.
前記電極端子は、前記端子曲げ部における、前記絶縁基板と反対側の形状が、丸め形状又は面取り形状であることを特徴とする請求項4記載の電力用半導体装置。   5. The power semiconductor device according to claim 4, wherein the electrode terminal has a rounded shape or a chamfered shape on a side opposite to the insulating substrate in the terminal bending portion. 前記電極端子は、前記本体部において、外部回路が接続される側に、略S字形状のベンド部を有することを特徴とする請求項1乃至5のいずれか1項に記載の電力用半導体装置。   6. The power semiconductor device according to claim 1, wherein the electrode terminal has a substantially S-shaped bend portion on a side to which an external circuit is connected in the main body portion. 7. . 前記電極端子は、複数の電極端子部材を前記絶縁基板に垂直な方向に重ねて構成されたことを特徴とする請求項1乃至6のいずれか1項に記載の電力用半導体装置。   The power semiconductor device according to any one of claims 1 to 6, wherein the electrode terminal is configured by stacking a plurality of electrode terminal members in a direction perpendicular to the insulating substrate. 前記電力用半導体素子は、ワイドバンドギャップ半導体材料により形成されていることを特徴とする請求項1乃至7のいずれか1項に記載の電力用半導体装置。   The power semiconductor device according to claim 1, wherein the power semiconductor element is formed of a wide band gap semiconductor material. 前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム系材料、またはダイヤモンドのうちのいずれかであることを特徴とする請求項8記載の電力用半導体装置。   9. The power semiconductor device according to claim 8, wherein the wide band gap semiconductor material is any one of silicon carbide, a gallium nitride-based material, and diamond. 請求項1乃至9のいずれか1項に記載の電力用半導体装置を製造する電力用半導体装置の製造方法であって、
前記電極端子における、前記導体パターン又は前記電力用半導体素子の表面電極である対象物に接続する接合領域を含む領域を、前記本体部よりも薄くすることにより、前記薄肉部を形成する薄肉部形成工程と、
前記電力用半導体素子が搭載された前記絶縁基板を超音波接合装置に固定する基板固定工程と、
前記対象物に前記電極端子を載置する電極端子載置工程と、
前記電極端子の前記薄肉部において、前記電極端子が前記対象物に載置された面に対向する面側から前記超音波接合装置の超音波ホーンを当て、前記対象物と前記電極端子とを超音波接合する超音波接合工程と、を含むことを特徴とする電力用半導体装置の製造方法。
A power semiconductor device manufacturing method for manufacturing the power semiconductor device according to any one of claims 1 to 9,
Forming the thin portion by forming the thin portion in the electrode terminal by making a region including a joining region connected to an object which is a surface electrode of the conductor pattern or the power semiconductor element, than the main body portion. Process,
A substrate fixing step of fixing the insulating substrate on which the power semiconductor element is mounted to an ultrasonic bonding apparatus;
An electrode terminal placing step of placing the electrode terminal on the object;
In the thin portion of the electrode terminal, an ultrasonic horn of the ultrasonic bonding apparatus is applied from the surface side facing the surface where the electrode terminal is placed on the object, and the object and the electrode terminal are And a method of manufacturing a power semiconductor device, comprising: an ultrasonic bonding step for ultrasonic bonding.
JP2013186900A 2013-09-10 2013-09-10 Power semiconductor device manufacturing method, power semiconductor device, and power conversion device Active JP6116452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186900A JP6116452B2 (en) 2013-09-10 2013-09-10 Power semiconductor device manufacturing method, power semiconductor device, and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186900A JP6116452B2 (en) 2013-09-10 2013-09-10 Power semiconductor device manufacturing method, power semiconductor device, and power conversion device

Publications (3)

Publication Number Publication Date
JP2015056412A true JP2015056412A (en) 2015-03-23
JP2015056412A5 JP2015056412A5 (en) 2016-04-28
JP6116452B2 JP6116452B2 (en) 2017-04-19

Family

ID=52820644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186900A Active JP6116452B2 (en) 2013-09-10 2013-09-10 Power semiconductor device manufacturing method, power semiconductor device, and power conversion device

Country Status (1)

Country Link
JP (1) JP6116452B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139304A (en) * 2016-02-03 2017-08-10 三菱電機株式会社 Electrode terminal, semiconductor device, and power conversion device
JP2017199813A (en) * 2016-04-27 2017-11-02 富士電機株式会社 Semiconductor device and manufacturing method of the same
JP2017228630A (en) * 2016-06-22 2017-12-28 富士電機株式会社 Semiconductor device and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018204408B4 (en) 2018-03-22 2022-05-05 Danfoss Silicon Power Gmbh BUSBAR, METHOD OF MAKING SAME, AND POWER MODULE HAVING SUCH

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330134A (en) * 1998-05-12 1999-11-30 Hitachi Ltd Wire-bonding method and device, and semiconductor device
JP2004296468A (en) * 2003-03-25 2004-10-21 Denso Corp Wire bonding structure and method therefor
JP2013004658A (en) * 2011-06-15 2013-01-07 Mitsubishi Electric Corp Power semiconductor device and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330134A (en) * 1998-05-12 1999-11-30 Hitachi Ltd Wire-bonding method and device, and semiconductor device
JP2004296468A (en) * 2003-03-25 2004-10-21 Denso Corp Wire bonding structure and method therefor
JP2013004658A (en) * 2011-06-15 2013-01-07 Mitsubishi Electric Corp Power semiconductor device and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139304A (en) * 2016-02-03 2017-08-10 三菱電機株式会社 Electrode terminal, semiconductor device, and power conversion device
US10714447B2 (en) 2016-02-03 2020-07-14 Mitsubishi Electric Corporation Electrode terminal, semiconductor device, and power conversion apparatus
JP2017199813A (en) * 2016-04-27 2017-11-02 富士電機株式会社 Semiconductor device and manufacturing method of the same
US10090223B2 (en) 2016-04-27 2018-10-02 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing same
JP2017228630A (en) * 2016-06-22 2017-12-28 富士電機株式会社 Semiconductor device and method for manufacturing the same
CN107527892A (en) * 2016-06-22 2017-12-29 富士电机株式会社 The manufacture method of semiconductor device and semiconductor device

Also Published As

Publication number Publication date
JP6116452B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
CN107615464B (en) Method for manufacturing power semiconductor device and power semiconductor device
JP6033011B2 (en) Power semiconductor device and method for manufacturing power semiconductor device
JP5542567B2 (en) Semiconductor device
JP2015220429A (en) Semiconductor device
US10522482B2 (en) Semiconductor device manufacturing method comprising bonding an electrode terminal to a conductive pattern on an insulating substrate using ultrasonic bonding
CN106575628A (en) Power module
JP6116452B2 (en) Power semiconductor device manufacturing method, power semiconductor device, and power conversion device
JP5916651B2 (en) Method for manufacturing power semiconductor device
JPWO2020105476A1 (en) Semiconductor device
JP6091443B2 (en) Semiconductor module
JP2017199813A (en) Semiconductor device and manufacturing method of the same
JP6129090B2 (en) Power module and method for manufacturing power module
JP6406983B2 (en) Semiconductor device and manufacturing method thereof
JPWO2017037837A1 (en) Semiconductor device and power electronics device
JP2017092389A (en) Semiconductor device
JP2006196765A (en) Semiconductor device
JP2013226580A (en) Ultrasonic vibration joining apparatus
JP5840102B2 (en) Power semiconductor device
JP2011061105A (en) Connection structure, power module, and method of manufacturing the same
JP2006135270A (en) Semiconductor device and its manufacturing method
CN106252307B (en) Semiconductor device with a plurality of semiconductor chips
JP4795471B2 (en) Power semiconductor device
JP2016134547A (en) Semiconductor device
JP7570298B2 (en) Semiconductor Device
WO2022049999A1 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R151 Written notification of patent or utility model registration

Ref document number: 6116452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250