JP2015054919A - Polypropylene resin composition for fusion cutting seal and polypropylene film - Google Patents
Polypropylene resin composition for fusion cutting seal and polypropylene film Download PDFInfo
- Publication number
- JP2015054919A JP2015054919A JP2013189032A JP2013189032A JP2015054919A JP 2015054919 A JP2015054919 A JP 2015054919A JP 2013189032 A JP2013189032 A JP 2013189032A JP 2013189032 A JP2013189032 A JP 2013189032A JP 2015054919 A JP2015054919 A JP 2015054919A
- Authority
- JP
- Japan
- Prior art keywords
- polypropylene
- propylene
- fusing
- polypropylene resin
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本発明は、溶断シール用ポリプロピレン系樹脂組成物及びポリプロピレン系フィルムに関し、詳しくは、溶断シール性とクリーン性(ベタツキ、ブリードアウト、低溶出成分等)に優れた溶断シール用ポリプロピレン系樹脂組成物及びポリプロピレン系フィルムに関する。 The present invention relates to a polypropylene resin composition and a polypropylene film for a fusing seal, and more specifically, a polypropylene resin composition for a fusing seal and excellent in fusing and sealing properties (stickiness, bleed out, low elution components, etc.) The present invention relates to a polypropylene film.
従来から、二軸延伸ポリプロピレン系フィルムは、透明性、剛性に優れ、且つ共押出し成形での多層化による低温ヒートシール化が可能であることから、食品包装用途など様々な用途に使用されている。
そのシール層に使用されるポリプロピレン系樹脂(PP)は、従来からチーグラー系PPが提案されているが、クリーン性(ベタツキ、ブリードアウト、残留揮発分等)が劣るために、クリーン性に優れた、メタロセン系PP化が望まれている。
しかしながら、メタロセン系PPを溶断シール層に用いた場合、チーグラー系PPを使用した場合と比較し、溶断ヒートシール強度が低下するといった問題があった。
Conventionally, biaxially oriented polypropylene-based films are excellent in transparency and rigidity, and can be heat-sealed at low temperatures by multilayering by coextrusion molding. Therefore, they are used in various applications such as food packaging applications. .
As the polypropylene resin (PP) used for the sealing layer, a Ziegler PP has been conventionally proposed. However, cleanliness (stickiness, bleedout, residual volatile content, etc.) is inferior, and thus excellent cleanliness. Metallocene PP is desired.
However, when the metallocene PP is used for the fusing seal layer, there is a problem that the fusing heat seal strength is lowered as compared with the case where the Ziegler PP is used.
また、低密度ポリエチレンや無定形エチレン−α−オレフィン共重合体を含有するポリプロピレン系フィルムは、引張強度や引張破断応力などの機械的強度が不足していたり、溶断シール強度が低かったりするため、溶断シールが施される溶断シール用製品を用いて、自動包装する際やラベルとして装着する際にフィルムやフィルムのシール部が破損することがあり、溶断シール用製品の引張強度、引張破断応力および溶断シール強度の改良が望まれている。 In addition, the polypropylene film containing low-density polyethylene and amorphous ethylene-α-olefin copolymer has insufficient mechanical strength such as tensile strength and tensile rupture stress, or has low fusing seal strength. When using a fusing seal product with a fusing seal, the film or film seal may be damaged during automatic packaging or mounting as a label, and the tensile strength, tensile breaking stress and Improvement of the fusing seal strength is desired.
ところが、溶断シール強度を改良した溶断シール用二軸延伸ポリプロピレン系フィルム(OPPフィルム)として、種々提案されている(例えば、特許文献1〜4参照。)。
例えば、上記特許文献1には、プロピレン単独重合体で形成された中間層と、前記中間層を挟むように表裏面に設けられた、プロピレン系ランダム共重合体で形成されたスキン層とを備え、前記中間層には、プロピレン単独重合体100質量部に対し、結晶化核剤が0.005〜0.1重量部含まれていることを特徴とする溶断シール用OPPフィルムが開示されている。
また、上記特許文献2には、少なくともマット層とシール層の2層を含む積層フィルムであって、前記マット層がプロピレン系ブロック共重合体(A)を主成分とし、少なくともアルキルスルホン酸塩を含有する帯電防止剤を3000〜10000ppm添加したものであり、また、前記シール層がプロピレン系ランダム共重合体樹脂(B)50〜80重量%と、密度が0.870〜0.895のエチレン・α−オレフィン共重合体樹脂(C)20〜50重量%とからなる樹脂組成物100重量部に対し、滑剤及び/あるいは帯電防止剤を合計で2000〜5000ppm添加したものであることを特徴とするポリオレフィン系樹脂積層フィルムが開示されている。
また、上記特許文献3には、ポリプロピレン系樹脂を主体とする基層の表裏両面にポリオレフィン系樹脂を主体とするシール層が積層されており、二軸延伸されているとともに、厚みが10μm以上70μm未満であり、かつ、ヘイズ値が0.4%以上5.0%以下である生鮮品包装用のポリプロピレン系樹脂積層フィルムであって、基層およびシール層を構成するポリプロピレン系樹脂が気相法によって形成されたものであるとともに、少なくともシール層中に無機微粒子が添加されており、かつ、基層を形成する樹脂、シール層を形成する樹脂の少なくとも一方に防曇剤が配合されていることなどを満たすことを特徴とする生鮮品包装用のポリプロピレン系樹脂積層フィルムが開示されている。
さらに、上記特許文献4には、NMRペンタッド分率93〜98%のプロピレン単独重合体を含む(A)層と、プロピレン系ランダム共重合体とポリエチレン系樹脂を含む(B)層の2層を有することを特徴とする二軸延伸ポリプロピレン系フィルムが開示されている。
しかしながら、上記提案されている溶断シール用OPPフィルムでは、溶断シール強度などの性能の点で、未だ十分とはいえない。
However, various proposals have been made as a biaxially stretched polypropylene film (OPP film) for fusing seal with improved fusing seal strength (see, for example, Patent Documents 1 to 4).
For example, Patent Document 1 includes an intermediate layer formed of a propylene homopolymer, and a skin layer formed of a propylene random copolymer provided on the front and back surfaces so as to sandwich the intermediate layer. In addition, an OPP film for fusing sealing is disclosed, wherein the intermediate layer contains 0.005 to 0.1 parts by weight of a crystallization nucleating agent with respect to 100 parts by mass of a propylene homopolymer. .
Patent Document 2 discloses a laminated film including at least two layers of a mat layer and a seal layer, wherein the mat layer has a propylene-based block copolymer (A) as a main component and at least an alkyl sulfonate. The antistatic agent contained is added to 3000 to 10000 ppm, and the seal layer is 50 to 80% by weight of the propylene random copolymer resin (B), and the density is 0.870 to 0.895. A total of 2000 to 5000 ppm of a lubricant and / or an antistatic agent is added to 100 parts by weight of a resin composition comprising 20 to 50% by weight of an α-olefin copolymer resin (C). A polyolefin resin laminated film is disclosed.
In Patent Document 3, a sealing layer mainly composed of a polyolefin resin is laminated on both the front and back surfaces of a base layer mainly composed of a polypropylene resin, is biaxially stretched, and has a thickness of 10 μm or more and less than 70 μm. And a polypropylene resin laminated film for packaging fresh products having a haze value of 0.4% or more and 5.0% or less, and a polypropylene resin constituting a base layer and a seal layer is formed by a gas phase method. And satisfying that at least one of inorganic particles is added to the seal layer and an antifogging agent is blended in at least one of the resin forming the base layer and the resin forming the seal layer. A polypropylene resin laminated film for packaging fresh products is disclosed.
Furthermore, in the above-mentioned Patent Document 4, there are two layers of an (A) layer containing a propylene homopolymer having an NMR pentad fraction of 93 to 98% and a (B) layer containing a propylene random copolymer and a polyethylene resin. A biaxially oriented polypropylene-based film characterized by having it is disclosed.
However, the proposed OPP film for fusing seal is still not sufficient in terms of performance such as fusing seal strength.
一方、ポリプロピレン延伸フィルム、特にポリプロピレン二軸延伸フィルムは、その優れた機械的物性、光学的物性により包装材料等、主に食品包装用途に広く使用されているが、その溶断ヒートシール層には、チーグラー・ナッタ(ZN)系触媒で重合された樹脂が主に用いられているため、クリーン性に劣り、そのため、ベタツキやブリードアウト、残留揮発分等が少ないクリーンな材料が求められている。 On the other hand, a polypropylene stretched film, particularly a polypropylene biaxially stretched film, is widely used mainly for food packaging applications due to its excellent mechanical and optical properties, but its fusing heat seal layer has Since a resin polymerized with a Ziegler-Natta (ZN) -based catalyst is mainly used, it is inferior in cleanliness. Therefore, a clean material with less stickiness, bleedout, residual volatile matter, etc. is required.
本発明の目的は、従来技術の現状に鑑み、溶断シール性とクリーン性(ベタツキ、ブリードアウト、低溶出成分等)に優れた溶断シール用ポリプロピレン系樹脂組成物及びポリプロピレン系フィルムを提供することにある。 An object of the present invention is to provide a polypropylene-based resin composition and a polypropylene-based film for fusing and sealing, which are excellent in fusing and sealing properties and cleanliness (stickiness, bleed-out, low-elution components, etc.). is there.
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、溶断シール用の樹脂組成物として、メタロセン触媒を用いて重合されたポリプロピレン系樹脂と、特定の長鎖分岐構造を有するポリプロピレン樹脂とを、特定の割合で組み合せたところ、メタロセン触媒を用いて重合されたポリプロピレン系樹脂のクリーン性を保ちつつ、溶断シール強度が格段に向上することを見出し、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the present inventors have a polypropylene resin polymerized using a metallocene catalyst and a specific long-chain branch structure as a resin composition for fusing sealing. When the polypropylene resin was combined at a specific ratio, it was found that the fusing seal strength was greatly improved while maintaining the cleanliness of the polypropylene resin polymerized using the metallocene catalyst, and the present invention was completed. It was.
すなわち、本発明の第1の発明によれば、下記の(X−i)〜(X−vi)の特性を有し、長鎖分岐構造を有するポリプロピレン樹脂(X)3〜50重量%、並びに、メタロセン触媒を用いて重合された、ポリプロピレン及び/又はプロピレン・α−オレフィン共重合体からなるプロピレン系樹脂(Y)50〜97重量%を含有することを特徴とする溶断シール用ポリプロピレン系樹脂組成物が提供される。
特性(X−i):MFRが0.1〜30.0g/10分である。
特性(X−ii):25℃パラキシレン可溶成分量(CXS)がポリプロピレン樹脂(X)全量に対して5.0重量%未満である。
特性(X−iii):13C−NMRによるプロピレン単位3連鎖のmm分率が95%以上である。
特性(X−iv):GPCによる分子量分布Mw/Mnが3.0〜10.0、且つMz/Mwが2.5〜10.0である。
特性(X−v):絶対分子量Mabsが100万における分岐指数g’は、0.30以上1.00未満である。
特性(X−vi):溶融張力(MT)(単位:g)は、
log(MT)≧−0.9×log(MFR)+0.7 または MT≧15
のいずれかを満たす。
That is, according to the first invention of the present invention, polypropylene resin (X) having the following characteristics (X-i) to (X-vi) and having a long-chain branched structure: 3 to 50% by weight, and Polypropylene resin composition for fusing seals, comprising 50 to 97% by weight of a propylene resin (Y) polymerized using a metallocene catalyst and made of polypropylene and / or a propylene / α-olefin copolymer Things are provided.
Characteristic (Xi): MFR is 0.1 to 30.0 g / 10 min.
Property (X-ii): 25 degreeC paraxylene soluble component amount (CXS) is less than 5.0 weight% with respect to polypropylene resin (X) whole quantity.
Characteristic (X-iii): mm fraction of propylene unit 3 chain by 13 C-NMR is 95% or more.
Characteristic (X-iv): GPC molecular weight distribution Mw / Mn is 3.0 to 10.0, and Mz / Mw is 2.5 to 10.0.
Characteristic (Xv): The branching index g ′ when the absolute molecular weight Mabs is 1 million is 0.30 or more and less than 1.00.
Characteristic (X-vi): Melt tension (MT) (unit: g) is
log (MT) ≧ −0.9 × log (MFR) +0.7 or MT ≧ 15
Satisfy one of the following.
また、第2の発明によれば、第1の発明において、プロピレン樹脂(Y)は、プロピレン・エチレンランダム共重合体であることを特徴とする溶断シール用ポリプロピレン系樹脂組成物が提供される。
さらに、第3の発明によれば、第1の発明において、プロピレン樹脂(Y)は、MFRが1〜10g/10分のプロピレン・α−オレフィン共重合体であることを特徴とする溶断シール用ポリプロピレン系樹脂組成物が提供される。
In addition, according to the second invention, there is provided a polypropylene resin composition for fusing sealing, wherein in the first invention, the propylene resin (Y) is a propylene / ethylene random copolymer.
Further, according to the third invention, in the first invention, the propylene resin (Y) is a propylene / α-olefin copolymer having an MFR of 1 to 10 g / 10 min. A polypropylene resin composition is provided.
また、第4の発明によれば、第1又は3の発明において、プロピレン樹脂(Y)は、融点が110〜140℃のプロピレン・α−オレフィン共重合体であることを特徴とする溶断シール用ポリプロピレン系樹脂組成物が提供される。 According to a fourth invention, in the first or third invention, the propylene resin (Y) is a propylene / α-olefin copolymer having a melting point of 110 to 140 ° C. A polypropylene resin composition is provided.
また、第5の発明によれば、第1〜4のいずれかの発明に係る溶断シール用ポリプロピレン系樹脂組成物は、中間層を介して共押出しにて積層され、少なくとも一軸方向に延伸されてなることを特徴とするポリプロピレン系フィルムが提供される。 According to the fifth invention, the polypropylene resin composition for fusing sealing according to any one of the first to fourth inventions is laminated by coextrusion through an intermediate layer, and is stretched at least in a uniaxial direction. A polypropylene-based film is provided.
また、第6の発明によれば、第5の発明において、溶断シールに用いられることを特徴とするポリプロピレン系フィルムが提供される。 Moreover, according to 6th invention, in 5th invention, the polypropylene-type film characterized by being used for a fusing seal is provided.
また、第7の発明によれば、第5又は6の発明に係るポリプロピレン系フィルムを溶断して形成されることを特徴とする溶断シール袋が提供される。 According to the seventh invention, there is provided a fusing seal bag characterized by being formed by fusing a polypropylene film according to the fifth or sixth invention.
本発明の溶断シール用ポリプロピレン系樹脂組成物は、溶断シール性とクリーン性(ベタツキ、ブリードアウト、低溶出成分等)に優れる。そして、得られるポリプロピレン系フィルムおよびそれを用いた溶断シール袋は、高速の溶断シール加工においても、シール強度に優れたものである。 The polypropylene resin composition for fusing seals of the present invention is excellent in fusing sealability and cleanliness (stickiness, bleed out, low elution components, etc.). And the polypropylene film obtained and the fusing seal bag using the same are excellent in sealing strength even in high-speed fusing sealing.
以下に、本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施の形態の一例であり、本発明は、その要旨を超えない限り、以下の記載内容に限定されるものではない。 Embodiments of the present invention will be described in detail below, but the description of the constituent elements described below is an example of the embodiments of the present invention, and the present invention is not limited to the following unless it exceeds the gist. The description is not limited.
本発明の溶断シール用ポリプロピレン系樹脂組成物(以下、樹脂組成物と記載することもある。)は、長鎖分岐構造を有するポリプロピレン樹脂成分、特に特定の物性を有するポリプロピレン樹脂成分(X)3〜50重量%、並びに、メタロセン触媒を用いて重合された、ポリプロピレン及び/又はプロピレン・α−オレフィン共重合体からなるプロピレン系樹脂(Y)50〜97重量%を含有することを特徴とする。 The polypropylene resin composition for fusing and sealing of the present invention (hereinafter sometimes referred to as a resin composition) is a polypropylene resin component having a long-chain branched structure, particularly a polypropylene resin component (X) 3 having specific physical properties. And 50 to 97% by weight of propylene-based resin (Y) made of polypropylene and / or propylene / α-olefin copolymer, polymerized using a metallocene catalyst.
樹脂組成物全量に対する、ポリプロピレン樹脂成分(X)の量の範囲としては、3〜50重量%、好ましくは5〜50重量%、更に好ましくは10〜40重量%である。これに対応して、プロピレン系樹脂(Y)の量の範囲は、50〜97重量%、好ましくは50〜95重量%、更に好ましくは60〜90重量%である。この範囲を外れるものでは、例えば、長鎖分岐構造を有するポリプロピレン樹脂成分(X)が少なすぎる場合は、溶融押出し加工特性が低下する現象が生じ、逆に、多すぎる場合には、外観不良の問題や、生産性の低下の問題が生じる。
以下で、成分(X)及び(Y)が満たすべき特性などについて、項目毎に、詳細に述べる。
The range of the amount of the polypropylene resin component (X) relative to the total amount of the resin composition is 3 to 50% by weight, preferably 5 to 50% by weight, and more preferably 10 to 40% by weight. Correspondingly, the range of the amount of the propylene-based resin (Y) is 50 to 97% by weight, preferably 50 to 95% by weight, and more preferably 60 to 90% by weight. For example, if the polypropylene resin component (X) having a long-chain branched structure is too small, a phenomenon that the melt-extrusion processing property is deteriorated occurs. Problems and productivity problems occur.
In the following, characteristics to be satisfied by the components (X) and (Y) will be described in detail for each item.
I.長鎖分岐構造を有するポリプロピレン樹脂成分(X)
本発明の溶断シール用ポリプロピレン系樹脂組成物においては、まず、以下の(X−i)〜(X−vi)の各特性を有することが必須であり、長鎖分岐構造を有するポリプロピレン樹脂(X)を使用することを特徴とする。
特性(X−i):MFRが0.1〜30.0g/10分である。
特性(X−ii):25℃パラキシレン可溶成分量(CXS)がポリプロピレン樹脂(X)全量に対して5.0重量%未満である。
特性(X−iii):13C−NMRによるプロピレン単位3連鎖のmm分率が95%以上である。
特性(X−iv):GPCによる分子量分布Mw/Mnが3.0〜10.0、且つMz/Mwが2.5〜10.0である。
特性(X−v):絶対分子量Mabsが100万における分岐指数g’は、0.30以上1.00未満である。
特性(X−vi):溶融張力(MT)(単位:g)は、
log(MT)≧−0.9×log(MFR)+0.7 または MT≧15
のいずれかを満たす。
I. Polypropylene resin component (X) having a long-chain branched structure
In the polypropylene resin composition for fusing seals of the present invention, it is essential to have the following properties (Xi) to (X-vi), and a polypropylene resin (X ) Is used.
Characteristic (Xi): MFR is 0.1 to 30.0 g / 10 min.
Property (X-ii): 25 degreeC paraxylene soluble component amount (CXS) is less than 5.0 weight% with respect to polypropylene resin (X) whole quantity.
Characteristic (X-iii): mm fraction of propylene unit 3 chain by 13 C-NMR is 95% or more.
Characteristic (X-iv): GPC molecular weight distribution Mw / Mn is 3.0 to 10.0, and Mz / Mw is 2.5 to 10.0.
Characteristic (Xv): The branching index g ′ when the absolute molecular weight Mabs is 1 million is 0.30 or more and less than 1.00.
Characteristic (X-vi): Melt tension (MT) (unit: g) is
log (MT) ≧ −0.9 × log (MFR) +0.7 or MT ≧ 15
Satisfy one of the following.
1.特性(X−i):MFR
本発明における長鎖分岐構造を有するポリプロピレン樹脂(X)のメルトフローレート(MFR)は、0.1〜30.0g/10分の範囲であることが必要であり、好ましくは0.3〜20.0g/10分、さらに好ましくは0.5〜10.0g/10分である。この範囲を下回るものは、流動性不足となり、各種の成形に対して押出機の負荷が高すぎるなどの問題が生じ、一方、上回るものは、張力不足により、高溶融張力材としての特性が乏しくなり、適さないものとなる。
MFR値の制御の方法は、周知であり、ポリプロピレン樹脂(X)の重合条件である温度や圧力を調節したり、水素等の連鎖移動剤を重合時に添加する水素添加量の制御により、容易に調整を行なうことができる。
なお、MFRは、JIS K7210:1999「プラスチック―熱可塑性プラスチックのメルトマスフローレイト(MFR)およびメルトボリュームフローレイト(MVR)の試験方法」のA法、条件M(230℃、2.16kg荷重)に準拠して測定したもので、単位はg/10分である。
1. Characteristic (X-i): MFR
The melt flow rate (MFR) of the polypropylene resin (X) having a long-chain branched structure in the present invention needs to be in the range of 0.1 to 30.0 g / 10 minutes, and preferably 0.3 to 20 0.0 g / 10 min, more preferably 0.5 to 10.0 g / 10 min. If it falls below this range, the fluidity will be insufficient, causing problems such as too high load on the extruder for various moldings. On the other hand, if it exceeds this range, the properties as a high melt tension material will be poor due to insufficient tension. Become unsuitable.
The method for controlling the MFR value is well known, and can be easily adjusted by adjusting the temperature and pressure, which are polymerization conditions of the polypropylene resin (X), or by controlling the amount of hydrogen added during polymerization of a chain transfer agent such as hydrogen. Adjustments can be made.
MFR is JIS K7210: 1999 “Method of plastic-thermoplastic melt mass flow rate (MFR) and melt volume flow rate (MVR) test method”, condition M (230 ° C., 2.16 kg load). Measured according to the standard, the unit is g / 10 minutes.
2.特性(X−ii):25℃パラキシレン可溶成分量(CXS)
本発明に用いる長鎖分岐構造を有するポリプロピレン樹脂(X)は、立体規則性が高く、製品となったときにベタツキやブリードアウトの原因となる低結晶性成分が少ないことが好ましい。この低結晶性成分は、25℃キシレン可溶成分量(CXS)によって評価され、それが成分(X)全量に対して、5.0重量%未満であることが必要であり、好ましくは3.0重量%以下であり、より好ましくは1.0重量%以下あり、さらに好ましくは0.5重量%以下である。下限については、特に制限されないが、通常0.01重量%以上、好ましくは0.03重量%以上である。
CXSを5重量%未満にするには、後述するように、メタロセン触媒を使用して製造することで可能となるが、触媒の純度を一定以上に保つことに加え、触媒の製造方法や重合時の反応条件を、極端に高温にしないことやメタロセン錯体に対する有機アルミニウム化合物の量比を上げすぎないことが必要である。
2. Characteristic (X-ii): 25 ° C. paraxylene soluble component amount (CXS)
The polypropylene resin (X) having a long-chain branched structure used in the present invention has high stereoregularity and preferably has few low crystallinity components that cause stickiness and bleed-out when it becomes a product. This low crystallinity component is evaluated by the amount of xylene soluble component (CXS) at 25 ° C., and it must be less than 5.0% by weight, preferably 3. It is 0 weight% or less, More preferably, it is 1.0 weight% or less, More preferably, it is 0.5 weight% or less. The lower limit is not particularly limited, but is usually 0.01% by weight or more, preferably 0.03% by weight or more.
In order to make CXS less than 5% by weight, it can be produced by using a metallocene catalyst, as will be described later. It is necessary that the reaction conditions are not extremely high and that the amount ratio of the organoaluminum compound to the metallocene complex is not increased too much.
なお、CXS測定法の詳細は、以下の通りである。
2gの試料を300mlのp−キシレン(0.5mg/mlのBHTを含む)に130℃で溶解させ溶液とした後、25℃で12時間放置する。その後、析出したポリマーを濾別し、濾液からp−キシレンを蒸発させ、さらに100℃で12時間減圧乾燥し室温キシレン可溶成分を回収する。この回収成分の重量の仕込み試料重量に対する割合(重量%)をCXSと定義する。
The details of the CXS measurement method are as follows.
A 2 g sample is dissolved in 300 ml of p-xylene (containing 0.5 mg / ml BHT) at 130 ° C. to make a solution, and then left at 25 ° C. for 12 hours. Thereafter, the precipitated polymer is separated by filtration, p-xylene is evaporated from the filtrate, and further dried under reduced pressure at 100 ° C. for 12 hours to recover room temperature xylene-soluble components. The ratio (% by weight) of the weight of the recovered component to the charged sample weight is defined as CXS.
3.特性(X−iii):13C−NMRによるプロピレン単位3連鎖のmm分率
本発明に用いる長鎖分岐構造を有するポリプロピレン樹脂(X)は、立体規則性が高いことを特徴とする。立体規則性の高さは、13C−NMRによって評価することができ、13C−NMRによって得られるプロピレン単位3連鎖のmm分率が95%以上であることを必要とする。
mm分率は、ポリマー鎖中、頭−尾結合からなる任意のプロピレン単位3連鎖中、各プロピレン単位中のメチル分岐の方向が同一であるプロピレン単位3連鎖の割合であるの上限は100%である。このmm分率は、ポリプロピレン分子鎖中のメチル基の立体構造がアイソタクチックに制御されていることを示す値であり、高いほど、高度に制御されていることを意味する。mm分率がこの値より小さいと、弾性率が低下するなど機械的物性が低下する傾向にある。
従って、mm分率は、95.0%以上が好ましく、より好ましくは96.0%以上であり、さらに好ましくは97.0%以上である。
mm分率を95%以上にするには、高結晶性の重合体を達成する重合触媒により可能であり、後述する好ましいメタロセン触媒を使用して重合することで可能となる。
3. Characteristic (X-iii): mm fraction of 3 chain of propylene units by 13 C-NMR The polypropylene resin (X) having a long chain branched structure used in the present invention is characterized by high stereoregularity. Stereoregularity of the height, can be evaluated by 13 C-NMR, 13 C- NMR mm fraction of the propylene unit triad sequences obtained by needs to be at least 95%.
The upper limit of the mm fraction is the ratio of the three propylene units in the polymer chain, and the three propylene units in the same direction of the methyl branch in each propylene unit consisting of head-to-tail bonds is 100%. is there. This mm fraction is a value indicating that the steric structure of the methyl group in the polypropylene molecular chain is controlled isotactically, and the higher the value, the higher the degree of control. If the mm fraction is smaller than this value, the mechanical properties tend to decrease, such as the decrease in elastic modulus.
Therefore, the mm fraction is preferably 95.0% or more, more preferably 96.0% or more, and further preferably 97.0% or more.
The mm fraction can be 95% or more by using a polymerization catalyst that achieves a highly crystalline polymer, and by using a preferred metallocene catalyst described later for polymerization.
なお、13C−NMRによるプロピレン単位3連鎖のmm分率の測定法の詳細は、以下の通りである。
試料375mgをNMRサンプル管(10φ)中で重水素化1,1,2,2、−テトラクロロエタン2.5mlに完全に溶解させた後、125℃においてプロトン完全デカップリング法で測定する。ケミカルシフトは、重水素化1,1,2,2−テトラクロロエタンの3本のピークの中央のピークを74.2ppmに設定する。他の炭素ピークのケミカルシフトはこれを基準とする。
フリップ角:90度
パルス間隔:10秒
共鳴周波数:100MHz以上
積算回数:10,000回以上
観測域:−20ppmから179ppm
データポイント数:32768
mm分率の解析は、前記の条件により測定された13C−NMRスペクトルを用いて行う。
スペクトルの帰属は、Macromolecules,(1975年)8卷,687頁やPolymer, 30巻 1350頁(1989年)を参考に行う。
なお、mm分率決定のより具体的な方法は、特開2009−275207号公報の段落[0053]〜[0065]に詳細に記載されており、本発明においても、この方法に従って行うものとする。
In addition, the detail of the measuring method of mm fraction of the propylene unit 3 chain | strand by 13 C-NMR is as follows.
A sample of 375 mg is completely dissolved in 2.5 ml of deuterated 1,1,2,2, -tetrachloroethane in an NMR sample tube (10φ), and then measured at 125 ° C. by a proton complete decoupling method. The chemical shift sets the central peak of the three peaks of deuterated 1,1,2,2-tetrachloroethane to 74.2 ppm. The chemical shift of other carbon peaks is based on this.
Flip angle: 90 degrees Pulse interval: 10 seconds Resonance frequency: 100 MHz or more Integration frequency: 10,000 times or more Observation range: -20 ppm to 179 ppm
Number of data points: 32768
The analysis of the mm fraction is performed using a 13 C-NMR spectrum measured under the above conditions.
The spectrum is assigned with reference to Macromolecules, (1975) 8 pp. 687 and Polymer, 30 pages 1350 (1989).
Note that a more specific method for determining the mm fraction is described in detail in paragraphs [0053] to [0065] of Japanese Patent Laid-Open No. 2009-275207, and the present invention is performed according to this method. .
4.特性(X−iv):GPCによる分子量分布
また、長鎖分岐構造を有するポリプロピレン樹脂(X)は、分子量分布が比較的広いことが必要であり、ゲルパーミエーションクロマトグラフィー(GPC)によって得られる分子量分布Mw/Mn(ここで、Mwは重量平均分子量、Mnは数平均分子量)が3.0以上10.0以下であることが必要である。長鎖分岐構造を有するポリプロピレン樹脂(X)の分子量分布Mw/Mnは、その好ましい範囲としては3.5〜8.0、更に好ましくは4.1〜6.0の範囲である。
さらに、分子量分布の広さをより顕著に表すパラメータとして、Mz/Mw(ここで、MzはZ平均分子量である)が2.5以上10.0以下であることが必要である。Mz/Mwの好ましい範囲は2.8〜8.0、更に好ましくは3.0〜6.0の範囲である。
分子量分布の広いものほど成形加工性が向上するが、Mw/MnおよびMz/Mwがこの範囲にあるものは、成形加工性や溶融押出し加工特性に、特に優れるものである。
なお、Mn、Mw、Mzの定義は「高分子化学の基礎」(高分子学会編、東京化学同人、1978)等に記載されており、GPCによる分子量分布曲線から計算可能である。
4). Characteristic (X-iv): Molecular weight distribution by GPC In addition, the polypropylene resin (X) having a long chain branched structure needs to have a relatively wide molecular weight distribution, and the molecular weight obtained by gel permeation chromatography (GPC). The distribution Mw / Mn (where Mw is the weight average molecular weight and Mn is the number average molecular weight) needs to be 3.0 or more and 10.0 or less. The molecular weight distribution Mw / Mn of the polypropylene resin (X) having a long-chain branched structure is preferably in the range of 3.5 to 8.0, more preferably 4.1 to 6.0.
Furthermore, Mz / Mw (where Mz is the Z average molecular weight) needs to be 2.5 or more and 10.0 or less as a parameter that more significantly represents the width of the molecular weight distribution. The preferable range of Mz / Mw is 2.8 to 8.0, more preferably 3.0 to 6.0.
As the molecular weight distribution is wider, the molding processability is improved, but those having Mw / Mn and Mz / Mw within this range are particularly excellent in molding processability and melt extrusion characteristics.
The definitions of Mn, Mw, and Mz are described in “Basics of Polymer Chemistry” (edited by the Society of Polymer Science, Tokyo Kagaku Dojin, 1978) and can be calculated from molecular weight distribution curves by GPC.
Mw/Mnを3.0以上、10.0以下、Mz/Mwを2.5以上10.0以下にするには、プロピレン重合の温度や圧力条件を変えるか、または、最も一般的な手法としては、水素等の連鎖移動剤をプロピレン重合時に添加する方法により、容易に調整を行なうことができる。さらに、後述するメタロセン触媒の種類、触媒を2種以上使用する場合は、その量比を変えることで制御することができる。 In order to set Mw / Mn to 3.0 or more and 10.0 or less and Mz / Mw to 2.5 or more and 10.0 or less, the temperature and pressure conditions of propylene polymerization are changed, or as the most general technique Can be easily adjusted by a method in which a chain transfer agent such as hydrogen is added during propylene polymerization. Furthermore, when using 2 or more types of the metallocene catalyst mentioned later and a catalyst, it can control by changing the quantity ratio.
尚、GPCの具体的な測定手法は、以下の通りである。
・装置:Waters社製GPC(ALC/GPC 150C)
・検出器:FOXBORO社製MIRAN 1A IR検出器(測定波長:3.42μm)
・カラム:昭和電工社製AD806M/S(3本)
・移動相溶媒:オルトジクロロベンゼン(ODCB)
・測定温度:140℃
・流速:1.0ml/min
・注入量:0.2ml
・試料の調製:試料はODCB(0.5mg/mLのBHTを含む)を用いて1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させる。
GPC測定で得られた保持容量から分子量への換算は、予め作成しておいた標準ポリスチレン(PS)による検量線を用いて行う。使用する標準ポリスチレンは、何れも東ソー(株)製の以下の銘柄である。
F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000
各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して較正曲線を作成する。較正曲線は、最小二乗法で近似して得られる三次式を用いる。
なお、分子量への換算に使用する粘度式[η]=K×Mαは、以下の数値を用いる。
PS:K=1.38×10−4、α=0.7
PP:K=1.03×10−4、α=0.78
A specific GPC measurement method is as follows.
Apparatus: GPC manufactured by Waters (ALC / GPC 150C)
Detector: MIRAN 1A IR detector manufactured by FOXBORO (measurement wavelength: 3.42 μm)
Column: AD806M / S (3 pieces) manufactured by Showa Denko KK
-Mobile phase solvent: orthodichlorobenzene (ODCB)
・ Measurement temperature: 140 ℃
・ Flow rate: 1.0 ml / min
・ Injection volume: 0.2ml
Sample preparation: Prepare a 1 mg / mL solution using ODCB (containing 0.5 mg / mL BHT) and dissolve it at 140 ° C. for about 1 hour.
Conversion from the retention capacity obtained by GPC measurement to the molecular weight is performed using a calibration curve prepared in advance by standard polystyrene (PS). The standard polystyrenes used are all the following brands manufactured by Tosoh Corporation.
F380, F288, F128, F80, F40, F20, F10, F4, F1, A5000, A2500, A1000
A calibration curve is created by injecting 0.2 mL of a solution dissolved in ODCB (containing 0.5 mg / mL BHT) so that each is 0.5 mg / mL. The calibration curve uses a cubic equation obtained by approximation by the least square method.
In addition, the following numerical value is used for the viscosity formula [η] = K × M α used for conversion to molecular weight.
PS: K = 1.38 × 10 −4 , α = 0.7
PP: K = 1.03 × 10 −4 , α = 0.78
5.特性(X−v):分岐指数g’
長鎖分岐構造を有するポリプロピレン樹脂(X)が分岐を有することの直接的な指標として、分岐指数g’を挙げることができる。g’は、長鎖分岐構造を有するポリマーの固有粘度[η]brと同じ分子量を有する線状ポリマーの固有粘度[η]linの比、すなわち、[η]br/[η]lin によって与えられ、長鎖分岐構造が存在すると、1よりも小さな値をとる。
定義は、例えば「Developments in Polymer Characterization−4」(J.V. Dawkins ed. Applied Science Publishers,1983)に、記載されており、当業者にとって公知の指標である。
5. Characteristic (Xv): Branch index g ′
As a direct indicator that the polypropylene resin (X) having a long-chain branched structure has a branch, a branch index g ′ can be mentioned. g ′ is given by the ratio of the intrinsic viscosity [η] lin of the linear polymer having the same molecular weight as the intrinsic viscosity [η] br of the polymer having a long chain branched structure, that is, [η] br / [η] lin. When a long chain branched structure is present, the value is smaller than 1.
The definition is described in, for example, “Developments in Polymer Characterization-4” (JV Dawkins ed. Applied Science Publishers, 1983), and is an index known to those skilled in the art.
分岐指数g’は、例えば、下記に記すような光散乱計と粘度計を検出器に備えたGPCを使用することによって、絶対分子量Mabsの関数として得ることができる。
本発明で使用する長鎖分岐構造を有するポリプロピレン樹脂(X)は、光散乱によって求めた絶対分子量Mabsが100万の時に、g’が0.30以上1.00未満であることが好ましく、より好ましくは0.55以上0.98以下、更に好ましくは0.75以上0.96以下、最も好ましくは0.78以上0.95以下である。
本発明に係る長鎖分岐構造を有するポリプロピレン樹脂(X)は、その重合機構から、分子構造としては櫛型鎖が生成すると考えられ、g’が0.30未満であると、主鎖が少なく側鎖の割合が極めて多いこととなり、このような場合には、溶融張力が向上しなかったり、ゲルが生成するおそれがあるため、溶融押出し加工などにおいて好ましくない。一方、1.00である場合には、これは分岐が存在しないことを意味し、溶融張力が不足しやすくなる傾向にあり、溶融押出し加工などに適さない。
The branching index g ′ can be obtained as a function of the absolute molecular weight Mabs, for example, by using a GPC equipped with a light scatterometer and a viscometer as described below in the detector.
The polypropylene resin (X) having a long-chain branched structure used in the present invention preferably has a g ′ of 0.30 or more and less than 1.00 when the absolute molecular weight Mabs determined by light scattering is 1,000,000. Preferably they are 0.55 or more and 0.98 or less, More preferably, they are 0.75 or more and 0.96 or less, Most preferably, they are 0.78 or more and 0.95 or less.
The polypropylene resin (X) having a long-chain branched structure according to the present invention is considered to generate a comb-like chain as a molecular structure from its polymerization mechanism. When g ′ is less than 0.30, the main chain is small. The ratio of the side chain is extremely large. In such a case, the melt tension may not be improved or a gel may be formed, which is not preferable in melt extrusion processing. On the other hand, when it is 1.00, this means that there is no branch, and the melt tension tends to be insufficient, which is not suitable for melt extrusion processing.
なお、g’の下限値が上記の値であると好ましいのは、以下の理由による。
文献「Encyclopedia of Polymer Science and Engineering vol.2」(John Wiley & Sons 1985 p.485)によると、櫛型ポリマーのg’値は、以下の式で表されている。
The lower limit of g ′ is preferably the above value for the following reason.
According to the document “Encyclopedia of Polymer Science and Engineering vol. 2” (John Wiley & Sons 1985 p.485), the g ′ value of the comb polymer is represented by the following formula.
ここで、gは、ポリマーの回転半径比で定義される分岐指数であり、εは分岐鎖の形状と溶媒によって決まる定数で、同文献のp.487のTable3によれば、良溶媒中の櫛型鎖では、おおよそ0.7〜1.0程度の値が報告されている。λは櫛型鎖における主鎖の割合、pは平均の分岐数である。この式によると、櫛型鎖であれば、分岐数が極めて大きくなる、すなわち、pが無限大の極限で、g’=gε=λεとなり、λεの値以下にはならないことになり、一般に下限値が存在することになる。
一方、電子線照射や過酸化物変成の場合において生じると考えられる、従来公知のランダム分岐鎖の式は、同文献中の485ページ式(19)で与えられており、これによると、ランダム分岐鎖では、分岐点が多くなるにつれ、g’およびg値は、特に下限値が存在することなく、単調に減少する。つまり、本発明において、g’値に下限値があるということは、本発明に用いる長鎖分岐構造を有するポリプロピレン樹脂(X)は、櫛型鎖に近い構造を有しているということを意味しており、これにより、電子線照射や過酸化物変成によって生成されるランダム分岐鎖との区別が、より明確となる。
また、g’が上記の範囲にある櫛型鎖に近い構造を有する分岐状ポリマーにおいては、混練を繰り返した際の溶融張力の低下度合いが小さく、工業的に成形体を生産する工程で発生する、例えばシート、フィルム成形時に端部をカットすることで生じる端材であるとか、射出成形のランナー等の部材を、リサイクル材として再度成形に供する際に、物性や成形性の低下が小さくなることになり、好ましい。
Here, g is a branching index defined by the rotation radius ratio of the polymer, and ε is a constant determined by the shape of the branched chain and the solvent. According to Table 3 of 487, a value of about 0.7 to 1.0 is reported for the comb chain in a good solvent. λ is the ratio of the main chain in the comb chain, and p is the average number of branches. According to this equation, the number of branches is extremely large with a comb chain, that is, p is infinite, and g ′ = g ε = λ ε , which is not less than the value of λ ε. In general, there will be a lower limit.
On the other hand, the conventionally known random branched chain formula, which is considered to occur in the case of electron beam irradiation or peroxide modification, is given by the 485 page formula (19) in the same document. In the chain, as the number of branch points increases, the g ′ and g values monotonously decrease, especially without the lower limit. That is, in the present invention, the fact that the g ′ value has a lower limit means that the polypropylene resin (X) having a long chain branched structure used in the present invention has a structure close to a comb chain. Thus, the distinction from random branched chains generated by electron beam irradiation or peroxide modification becomes clearer.
Further, in a branched polymer having a structure close to a comb chain in which g ′ is in the above range, the degree of decrease in melt tension is small when kneading is repeated, and this occurs in the process of industrially producing a molded product. For example, when a sheet or film is formed by cutting an edge during film molding, or when a member such as an injection molding runner is subjected to molding again as a recycled material, a decrease in physical properties and moldability is reduced. It is preferable.
なお、分岐指数g’の具体的な算出方法は、以下の通りである。
示差屈折計(RI)および粘度検出器(Viscometer)を装備したGPC装置として、Waters社のAlliance GPCV2000を用いる。また、光散乱検出器として、多角度レーザー光散乱検出器(MALLS)Wyatt Technology社のDAWN−Eを用いる。検出器は、MALLS、RI、Viscometerの順で接続する。移動相溶媒は、1,2,4−トリクロロベンゼン(BASFジャパン社製酸化防止剤Irganox1076を0.5mg/mLの濃度で添加)である。
流量は1mL/分で、カラムは、東ソー社 GMHHR−H(S) HTを2本連結して用いる。カラム、試料注入部および各検出器の温度は、140℃である。試料濃度は1mg/mLとし、注入量(サンプルループ容量)は0.2175mLである。
MALLSから得られる絶対分子量(Mabs)、二乗平均慣性半径(Rg)およびViscometerから得られる極限粘度([η])を求めるにあたっては、MALLS付属のデータ処理ソフトASTRA(version4.73.04)を利用し、以下の文献を参考にして計算を行う。
参考文献:
1.「Developments in Polymer Characterization−4」(J.V. Dawkins ed. Applied Science Publishers, 1983. Chapter1.)
2.Polymer, 45, 6495−6505(2004)
3.Macromolecules, 33, 2424−2436(2000)
4.Macromolecules, 33, 6945−6952(2000)
A specific method for calculating the branching index g ′ is as follows.
Waters Alliance GPCV2000 is used as a GPC apparatus equipped with a differential refractometer (RI) and a viscosity detector (Viscometer). As the light scattering detector, a DAWN-E manufactured by Wyatt Technology, a multi-angle laser light scattering detector (MALLS) is used. The detectors are connected in the order of MALLS, RI, and Viscometer. The mobile phase solvent is 1,2,4-trichlorobenzene (added with an antioxidant Irganox 1076 manufactured by BASF Japan Ltd. at a concentration of 0.5 mg / mL).
The flow rate is 1 mL / min, and two columns of Tosoh Corporation GMHHR-H (S) HT are connected and used. The temperature of the column, sample injection section, and each detector is 140 ° C. The sample concentration is 1 mg / mL and the injection volume (sample loop volume) is 0.2175 mL.
In order to obtain the absolute molecular weight (Mabs) obtained from MALLS, the mean square inertia radius (Rg), and the intrinsic viscosity ([η]) obtained from Viscometer, the data processing software ASTRA (version 4.73.04) attached to MALLS is used. The calculation is performed with reference to the following documents.
References:
1. “Developments in Polymer Characterization-4” (JV Dawkins ed. Applied Science Publishers, 1983. Chapter 1.)
2. Polymer, 45, 6495-6505 (2004).
3. Macromolecules, 33, 2424-2436 (2000)
4). Macromolecules, 33, 6945-6952 (2000)
[分岐指数(g’)の算出]
分岐指数(g’)は、サンプルを上記Viscometerで測定して得られる極限粘度([η]br)と、別途、線状ポリマーを測定して得られる極限粘度([η]lin)との比([η]br/[η]lin)として算出する。
ポリマー分子に長鎖分岐構造が導入されると、同じ分子量の線状のポリマー分子と比較して慣性半径が小さくなる。慣性半径が小さくなると、極限粘度が小さくなることから、長鎖分岐構造が導入されるに従い同じ分子量の線状ポリマーの極限粘度([η]lin)に対する分岐ポリマーの極限粘度([η]br)の比([η]br/[η]lin)は、小さくなっていく。
したがって、分岐指数(g’=[η]br/[η]lin)が1より小さい値になる場合には、分岐が導入されていることを意味する。ここで、[η]linを得るための線状ポリマーとしては、市販のホモポリプロピレン(日本ポリプロ社製ノバテックPP(登録商標)グレード名:FY6)を用いる。線状ポリマーの[η]linの対数は分子量の対数と線形の関係があることは、Mark−Houwink−Sakurada式として公知であるから、[η]linは、低分子量側や高分子量側に適宜外挿して数値を得ることができる。
[Calculation of branching index (g ′)]
The branching index (g ′) is a ratio between the intrinsic viscosity ([η] br) obtained by measuring the sample with the above Viscometer and the intrinsic viscosity ([η] lin) obtained separately by measuring the linear polymer. Calculated as ([η] br / [η] lin).
When a long-chain branched structure is introduced into a polymer molecule, the radius of inertia becomes smaller than that of a linear polymer molecule having the same molecular weight. Since the intrinsic viscosity becomes smaller as the inertia radius becomes smaller, the intrinsic viscosity ([η] br) of the branched polymer with respect to the intrinsic viscosity ([η] lin) of the linear polymer having the same molecular weight as the long chain branched structure is introduced. The ratio ([η] br / [η] lin) becomes smaller.
Therefore, when the branch index (g ′ = [η] br / [η] lin) is a value smaller than 1, it means that a branch is introduced. Here, as a linear polymer for obtaining [η] lin, a commercially available homopolypropylene (Novatech PP (registered trademark) grade name: FY6 manufactured by Nippon Polypro Co., Ltd.) is used. The fact that the logarithm of [η] lin of a linear polymer has a linear relationship with the logarithm of molecular weight is known as the Mark-Houwink-Sakurada equation, so [η] lin is appropriately set on the low molecular weight side or the high molecular weight side. Extrapolation can be used to obtain numerical values.
分岐指数g’を0.30以上、1.00未満にするには、長鎖分岐を多く導入することにより達成され、後述する好ましいメタロセン触媒の選択やその組み合わせ、およびその量比、ならびに予備重合条件を制御して重合することで可能となる。 In order to make the branching index g ′ 0.30 or more and less than 1.00, it is achieved by introducing many long-chain branches, selection of preferred metallocene catalysts described later, a combination thereof, a quantitative ratio thereof, and prepolymerization This can be achieved by controlling the conditions for polymerization.
6.特性(X−vi):溶融張力(MT)
さらに、本発明で使用する長鎖分岐構造を有するポリプロピレン樹脂(X)は、以下の溶融張力(MT)とMFRの関係式:
log(MT)≧−0.9×log(MFR)+0.7
又は
MT≧15
のうちのいずれかを満たすことを必要とする。
ここで、MTは、(株)東洋精機製作所製キャピログラフ1Bを用いて、キャピラリー:直径2.0mm、長さ40mm、シリンダー径:9.55mm、シリンダー押出速度:20mm/分、引き取り速度:4.0m/分、温度:230℃の条件で、測定したときの溶融張力を表し、単位はグラムである。ただし、ポリプロピレン樹脂(X)のMTが極めて高い場合には、引き取り速度4.0m/分では、樹脂が破断してしまう場合があり、このような場合には、引き取り速度を下げ、引き取りのできる最高の速度における張力をMTとする。また、MFRの測定条件、単位は前述の通りである。
6). Characteristic (X-vi): Melt tension (MT)
Furthermore, the polypropylene resin (X) having a long-chain branched structure used in the present invention has the following relationship between melt tension (MT) and MFR:
log (MT) ≧ −0.9 × log (MFR) +0.7
Or MT ≧ 15
You need to meet one of the following:
Here, MT is Capillograph 1B manufactured by Toyo Seiki Seisakusho Co., Ltd. Capillary: 2.0 mm in diameter, 40 mm in length, cylinder diameter: 9.55 mm, cylinder extrusion speed: 20 mm / min, take-off speed: 4. The melt tension when measured under the conditions of 0 m / min and temperature: 230 ° C. is expressed in grams. However, when the MT of the polypropylene resin (X) is extremely high, the resin may be broken at a take-up speed of 4.0 m / min. In such a case, the take-up speed can be lowered to take off the resin. Let MT be the tension at the highest speed. The measurement conditions and units of MFR are as described above.
この規定は、長鎖分岐構造を有するポリプロピレン樹脂(X)が溶融押出し加工のために充分な溶融張力を有するための指標であり、一般に、MTは、MFRと相関を有していることから、MFRとの関係式によって記述している。
このように溶融張力MTをMFRとの関係式で規定する手法は、当業者にとって通常の手法であって、例えば、特開2003−25425号公報には、高溶融張力を有するポリプロピレンの定義として、以下の関係式が提案されている。
log(MS)>−0.61×log(MFR)+0.82
(ここで、MSは、MTと同義である。)
また、特開2003−64193号公報には、高溶融張力を有するポリプロピレンの定義として、以下の関係式が提案されている。
11.32×MFR−0.7854≦MT
さらに、特開2003−94504号公報には、高溶融張力を有するポリプロピレンの定義として、以下の関係式が提案されている。
MT≧7.52×MFR−0.576
This rule is an index for the polypropylene resin (X) having a long-chain branched structure to have a sufficient melt tension for melt extrusion processing. Generally, since MT has a correlation with MFR, It is described by a relational expression with MFR.
Thus, the method of defining the melt tension MT by the relational expression with MFR is a normal method for those skilled in the art. The following relational expression has been proposed.
log (MS)> − 0.61 × log (MFR) +0.82
(Here, MS is synonymous with MT.)
Japanese Unexamined Patent Application Publication No. 2003-64193 proposes the following relational expression as a definition of polypropylene having a high melt tension.
11.32 × MFR −0.7854 ≦ MT
Furthermore, Japanese Patent Laid-Open No. 2003-94504 proposes the following relational expression as a definition of polypropylene having a high melt tension.
MT ≧ 7.52 × MFR −0.576
本発明においては、長鎖分岐構造を有するポリプロピレン樹脂(X)が、関係式:
log(MT)≧−0.9×log(MFR)+0.7 又は MT≧15
のいずれかを満たせば、充分に溶融張力の高い樹脂といえ、溶融押出し加工に有用である。
また、ポリプロピレン樹脂(X)は、以下の関係式:
log(MT)≧−0.9×log(MFR)+0.9 又は MT≧15
を満たすことがより好ましく、以下の関係式を満たすことが更に好ましい。
log(MT)≧−0.9×log(MFR)+1.1 又は MT≧15
MTの上限値については、これを特に設ける必要はないが、MTが40gを超えるような場合には、上記測定手法では引き取り速度が著しく遅くなり、測定が困難となる。このような場合は、樹脂の延展性も悪化しているものと考えられるため、好ましくは40g以下、さらに好ましくは35g以下、もっとも好ましくは30g以下である。
In the present invention, the polypropylene resin (X) having a long-chain branched structure is represented by the relational formula:
log (MT) ≧ −0.9 × log (MFR) +0.7 or MT ≧ 15
If either of these is satisfied, it can be said that the resin has a sufficiently high melt tension and is useful for melt extrusion.
The polypropylene resin (X) has the following relational expression:
log (MT) ≧ −0.9 × log (MFR) +0.9 or MT ≧ 15
It is more preferable to satisfy | fill, and it is still more preferable to satisfy | fill the following relational expressions.
log (MT) ≧ −0.9 × log (MFR) +1.1 or MT ≧ 15
Although it is not necessary to provide the upper limit of MT in particular, when MT exceeds 40 g, the take-up speed is remarkably slowed by the measurement method described above, and measurement becomes difficult. In such a case, since it is considered that the spreadability of the resin is also deteriorated, it is preferably 40 g or less, more preferably 35 g or less, and most preferably 30 g or less.
上記したMTとMFRの関係式を満足するためには、ポリプロピレン樹脂(X)の長鎖分岐量を増大させて、溶融張力を高くすればよく、後述する好ましいメタロセン触媒の選択やその組み合わせ、およびその量比、ならびに予備重合条件を制御して長鎖分岐を多く導入することにより可能となる。 In order to satisfy the relational expression of MT and MFR described above, the long chain branching amount of the polypropylene resin (X) may be increased to increase the melt tension. Selection of a preferable metallocene catalyst described later and a combination thereof, and This can be achieved by controlling the amount ratio and prepolymerization conditions to introduce a large amount of long chain branches.
7.長鎖分岐構造を有するポリプロピレン樹脂(X)のその他の特性
本発明に係る長鎖分岐構造を有するポリプロピレン樹脂(X)の更なる付加的特徴として、歪み速度0.1s−1での伸長粘度の測定における歪硬化度(λmax(0.1))が6.0以上であることが挙げられる。
歪硬化度(λmax(0.1))は、溶融時強度を表す指標であり、この値が大きいと、溶融張力が向上する効果がある。その結果、溶融押出し加工を行う際のネックインを抑制することができ、歪硬化度は、6.0以上であることが好ましく、より好ましくは8.0以上である。
7). Other Properties of Polypropylene Resin (X) Having Long Chain Branched Structure As a further additional feature of the polypropylene resin (X) having a long chain branched structure according to the present invention, the elongation viscosity at a strain rate of 0.1 s −1 is used. The strain hardening degree (λmax (0.1)) in the measurement is 6.0 or more.
The strain hardening degree (λmax (0.1)) is an index representing the strength at the time of melting, and when this value is large, there is an effect of improving the melt tension. As a result, neck-in at the time of melt extrusion can be suppressed, and the strain hardening degree is preferably 6.0 or more, more preferably 8.0 or more.
λmax(0.1)の算出方法の詳細は、以下の通りである。
温度180℃、歪み速度=0.1s−1の場合の伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度ηE(Pa・秒)を両対数グラフでプロットする。その両対数グラフ上で歪み硬化を起こす直前の粘度を直線で近似する。
具体的には、まず伸張粘度を時間に対してプロットした際の各々の時刻での傾きを求めるが、それに当っては伸張粘度の測定データは離散的であることを考慮し、種々の平均法を利用する。たとえば隣接データの傾きをそれぞれ求め、周囲数点の移動平均をとる方法等が挙げられる。
伸張粘度は、低歪み量の領域では、単純増加関数となり、次第に一定値に漸近し、歪み硬化がなければ充分な時間経過後にトルートン粘度に一致するが、歪み硬化のある場合には、一般的に歪み量(=歪み速度×時間)1程度から、伸張粘度が時間と共に増大を始める。すなわち、上記傾きは、低歪み領域では時間と共に減少傾向があるが、歪み量1程度から逆に増加傾向となり、伸張粘度を時間に対してプロットした際の曲線上に、変曲点が存在する。そこで歪み量が0.1〜2.5程度の範囲で、上記で求めた各々の時刻の傾きが最小値をとる点を求めて、その点で接線を引き、直線を歪み量が4.0となるまで外挿する。歪み量4.0となるまでの伸長粘度ηEの最大値(ηmax)を求め、また、その時間までの上記近似直線上の粘度をηlinとする。ηmax/ηlinを、λmax(0.1)と定義する。
Details of the calculation method of λmax (0.1) are as follows.
The elongational viscosity at a temperature of 180 ° C. and the strain rate = 0.1 s −1 is plotted on a logarithmic graph with the horizontal axis representing time t (seconds) and the vertical axis representing elongational viscosity η E (Pa · seconds). On the log-log graph, the viscosity immediately before strain hardening is approximated by a straight line.
Specifically, first, the slope at each time when the extensional viscosity is plotted against time is obtained. In this case, considering that the measurement data of the extensional viscosity is discrete, various averaging methods are used. Is used. For example, there is a method of obtaining the slope of adjacent data and taking a moving average of several surrounding points.
In the low strain region, the extensional viscosity is a simple increasing function, gradually approaches a constant value, and if there is no strain hardening, it agrees with the Truton viscosity after a sufficient amount of time. From about 1 strain amount (= strain rate × time), the extensional viscosity starts to increase with time. That is, the slope tends to decrease with time in the low strain region, but tends to increase from about 1 strain, and there is an inflection point on the curve when the extensional viscosity is plotted against time. . Therefore, a point where the slope of each time obtained above takes the minimum value in the range of the distortion amount of about 0.1 to 2.5 is obtained, and a tangent line is drawn at the point, and the straight line has a distortion amount of 4.0. Extrapolate until The maximum value (ηmax) of the extensional viscosity η E until the strain amount becomes 4.0 is obtained, and the viscosity on the approximate straight line up to that time is η lin. ηmax / ηlin is defined as λmax (0.1).
本発明に用いる長鎖分岐構造を有するポリプロピレン樹脂(X)は、上に述べたように高立体規則性を有することが好ましく、それにより成形体の剛性の高いものを製造することができる。ポリプロピレン樹脂(X)は、ホモポリプロピレンであるか、または上に述べた種々の特性を満足する限り、少量のエチレンや1−ブテン、1−ヘキセン等のα−オレフィンその他のコモノマーとのプロピレン−α−オレフィンランダム共重合体であってもよい。ポリプロピレン樹脂(X)がホモポリプロピレンである場合には、結晶性が高く、融点が高くなるが、ポリプロピレン樹脂(X)がプロピレン−α−オレフィンランダム共重合体である場合にも、融点が高いことが好ましい。
より具体的には、示差走査熱量測定(DSC)によって得られた融点が145℃以上であることが好ましく、150℃以上がより好ましい。融点が145℃より高いと、製品の耐熱性の観点から好ましいが、ポリプロピレン樹脂(X)の融点の上限は、通常170℃以下である。
なお、融点は、示差走査熱量測定(DSC)によって求められ、一旦200℃まで温度を上げて熱履歴を消去した後、10℃/分の降温速度で40℃まで温度を降下させ、再び昇温速度10℃/分にて測定した際の、吸熱ピークトップの温度とする。
The polypropylene resin (X) having a long-chain branched structure used in the present invention preferably has high stereoregularity as described above, whereby a molded article having high rigidity can be produced. The polypropylene resin (X) is a homopolypropylene, or a propylene-α with a small amount of an α-olefin or other comonomer such as ethylene, 1-butene, 1-hexene or the like as long as the various properties described above are satisfied. -An olefin random copolymer may be sufficient. When the polypropylene resin (X) is homopolypropylene, the crystallinity is high and the melting point is high, but the melting point is also high when the polypropylene resin (X) is a propylene-α-olefin random copolymer. Is preferred.
More specifically, the melting point obtained by differential scanning calorimetry (DSC) is preferably 145 ° C. or higher, more preferably 150 ° C. or higher. When the melting point is higher than 145 ° C., it is preferable from the viewpoint of heat resistance of the product, but the upper limit of the melting point of the polypropylene resin (X) is usually 170 ° C. or less.
The melting point is obtained by differential scanning calorimetry (DSC). After the temperature is temporarily increased to 200 ° C. and the thermal history is erased, the temperature is decreased to 40 ° C. at a temperature decreasing rate of 10 ° C./min, and the temperature is increased again. The temperature is the endothermic peak top temperature when measured at a rate of 10 ° C./min.
8.長鎖分岐構造を有するポリプロピレン樹脂(X)の製造方法
長鎖分岐構造を有するポリプロピレン樹脂(X)は、上記した(X−i)〜(X−vi)の特性を満たす限り、特に製造方法を限定するものではないが、前述のように、低い低結晶性成分量、高い立体規則性、比較的広い分子量分布、分岐指数g’の範囲、高い溶融張力の全ての条件を満足するための好ましい製造方法は、メタロセン触媒の組み合わせを利用したマクロマー共重合法を用いる方法である。このような方法の例としては、例えば、特開2009−57542号公報に開示される方法が挙げられる。
この手法は、マクロマー生成能力を有する特定の構造の触媒成分と、高分子量でマクロマー共重合能力を有する特定の構造の触媒成分とを組み合わせた触媒を用いて、長鎖分岐構造を有するポリプロピレンを製造する方法であり、これによれば、バルク重合や気相重合といった工業的に有効な方法で、特に実用的な圧力温度条件下の単段重合で、しかも、分子量調整剤である水素を用いて、目的とする物性を有する長鎖分岐構造を有するポリプロピレン樹脂の製造が可能である。
8). Method for Producing Polypropylene Resin (X) Having Long-Chain Branched Structure Polypropylene resin (X) having a long-chain branched structure is not particularly limited as long as it satisfies the characteristics (X-i) to (X-vi) described above. Although not limited, as described above, it is preferable to satisfy all the conditions of low low crystalline component amount, high stereoregularity, relatively wide molecular weight distribution, range of branching index g ′ , and high melt tension. The production method is a method using a macromer copolymerization method using a combination of metallocene catalysts. As an example of such a method, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2009-57542 can be given.
This method produces a polypropylene having a long-chain branched structure using a catalyst in which a catalyst component having a specific structure having macromer-producing ability and a catalyst component having a specific structure having high molecular weight and macromer copolymerization ability are combined. According to this, industrially effective methods such as bulk polymerization and gas phase polymerization, particularly single-stage polymerization under practical pressure-temperature conditions, and using hydrogen as a molecular weight regulator. It is possible to produce a polypropylene resin having a long-chain branched structure having the desired physical properties.
また、従来は、立体規則性の低いポリプロピレン成分を使用して結晶性を落とすことによって、分岐生成効率を高めなければならなかったが、上記の方法では、充分に立体規則性の高いポリプロピレン成分を、側鎖に簡便な方法で、導入することが可能であり、本発明に用いるポリプロピレン樹脂(X)として好ましい、高い立体規則性と低い低結晶性成分量に係る前記(X−iii)及び(X−ii)の特性を満足するのに好適である。
また、上記手法を用いれば、重合特性の大きく異なる二種の触媒を使用することで、分子量分布を広くでき、本発明に用いる長鎖分岐構造を有するポリプロピレン樹脂(X)に必要な前記(X−iv)〜(X−vi)の特性を同時に満たすことが可能であり、好ましい。
In the past, it was necessary to increase the branching efficiency by lowering the crystallinity by using a polypropylene component having a low stereoregularity. However, in the above method, a polypropylene component having a sufficiently high stereoregularity is required. The above (X-iii) and (X) can be introduced into the side chain by a simple method, and are preferable as the polypropylene resin (X) used in the present invention. It is suitable for satisfying the characteristics of X-ii).
Moreover, if the said method is used, molecular weight distribution can be widened by using two types of catalysts having greatly different polymerization characteristics, and the above-described (X required for the polypropylene resin (X) having a long-chain branched structure used in the present invention. -Iv) to (X-vi) can be satisfied at the same time, which is preferable.
そこで、以下に、本発明に使用される長鎖分岐構造を有するポリプロピレン樹脂(X)の好ましい製造法について、詳細に記載する。
長鎖分岐構造を有するポリプロピレン樹脂(X)を製造する好ましい方法として、プロピレン重合触媒に下記の触媒成分(A)、(B)および(C)を用いるプロピレン系重合体の製造方法が挙げられる。
(A):下記一般式(a1)で表される化合物である成分[A−1]から少なくとも1種類と、
後記一般式(a2)で表される化合物である成分[A−2]から少なくとも1種類の、2種以上の周期律表4族の遷移金属化合物。
(B):イオン交換性層状珪酸塩
(C):有機アルミニウム化合物
Therefore, a preferable method for producing a polypropylene resin (X) having a long chain branched structure used in the present invention will be described in detail below.
As a preferred method for producing the polypropylene resin (X) having a long-chain branched structure, a method for producing a propylene polymer using the following catalyst components (A), (B) and (C) as a propylene polymerization catalyst can be mentioned.
(A): at least one from component [A-1], which is a compound represented by the following general formula (a1),
A transition metal compound belonging to Group 4 of the periodic table of at least one kind from Component [A-2], which is a compound represented by General Formula (a2) described later.
(B): Ion exchange layered silicate (C): Organoaluminum compound
以下、触媒成分(A)、(B)および(C)について、詳細に説明する。
(1)触媒成分(A)
(i)成分[A−1]:下記一般式(a1)で表される化合物
Hereinafter, the catalyst components (A), (B), and (C) will be described in detail.
(1) Catalyst component (A)
(I) Component [A-1]: Compound represented by the following general formula (a1)
[一般式(a1)中、R11およびR12は、各々独立して、炭素数4〜16の窒素、酸素または硫黄を含有する複素環基を示す。また、R13およびR14は、各々独立して、ハロゲン、ケイ素、酸素、硫黄、窒素、ホウ素、リン又はこれらから選択される複数のヘテロ元素を含有してもよい、炭素数6〜16のアリール基、炭素数6〜16の窒素、酸素または硫黄を含有する複素環基を表す。さらに、X11およびY11は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を表し、Q11は、炭素数1〜20の二価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基またはゲルミレン基を表す。] [In General Formula (a1), R 11 and R 12 each independently represent a heterocyclic group containing nitrogen, oxygen or sulfur having 4 to 16 carbon atoms. R 13 and R 14 each independently contain halogen, silicon, oxygen, sulfur, nitrogen, boron, phosphorus, or a plurality of heteroelements selected from these, having 6 to 16 carbon atoms An aryl group, a heterocyclic group containing 6 to 16 carbon atoms, nitrogen, oxygen or sulfur. X 11 and Y 11 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group having 1 to 20 carbon atoms, or a halogenated group having 1 to 20 carbon atoms. Represents a hydrocarbon group, an oxygen-containing hydrocarbon group having 1 to 20 carbon atoms, an amino group, or a nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms, Q 11 is a divalent hydrocarbon group having 1 to 20 carbon atoms, It represents a silylene group or a germylene group which may have a hydrocarbon group having 1 to 20 carbon atoms. ]
上記R11およびR12の炭素数4〜16の窒素、酸素または硫黄を含有する複素環基としては、好ましくは2−フリル基、置換された2−フリル基、置換された2−チエニル基、置換された2−フルフリル基であり、さらに好ましくは、置換された2−フリル基である。
また、置換された2−フリル基、置換された2−チエニル基、置換された2−フルフリル基の置換基としては、メチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基、トリアルキルシリル基等が挙げられる。これらのうち、メチル基、トリメチルシリル基が好ましく、メチル基が特に好ましい。
さらに、R11およびR12として、特に好ましくは、2−(5−メチル)−フリル基である。また、R11およびR12は、互いに同一である場合が好ましい。
The heterocyclic group containing nitrogen, oxygen or sulfur having 4 to 16 carbon atoms of R 11 and R 12 is preferably a 2-furyl group, a substituted 2-furyl group, a substituted 2-thienyl group, It is a substituted 2-furfuryl group, and more preferably a substituted 2-furyl group.
Moreover, as a substituted 2-furyl group, a substituted 2-thienyl group, and a substituted 2-furfuryl group, an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group, Examples include halogen atoms such as fluorine atom and chlorine atom, alkoxy groups having 1 to 6 carbon atoms such as methoxy group and ethoxy group, and trialkylsilyl groups. Of these, a methyl group and a trimethylsilyl group are preferable, and a methyl group is particularly preferable.
Further, R 11 and R 12 are particularly preferably a 2- (5-methyl) -furyl group. R 11 and R 12 are preferably the same as each other.
上記R13およびR14の炭素数6〜16の、ハロゲン、ケイ素、酸素、硫黄、窒素、ホウ素、リン、あるいは、これらから選択される複数のヘテロ元素を含有してもよい、アリール基としては、炭素数6〜16になる範囲で、アリール環状骨格上に、1つ以上の、炭素数1〜6の炭化水素基、炭素数1〜6の珪素含有炭化水素基、炭素数1〜6のハロゲン含有炭化水素基を置換基として有していてもよい。 Carbon atoms 6 to 16 of the R 13 and R 14, halogen, silicon, oxygen, sulfur, nitrogen, boron, phosphorus, or may contain a plurality of hetero elements selected from these, the aryl group In the range of 6 to 16 carbon atoms, one or more hydrocarbon group having 1 to 6 carbon atoms, silicon-containing hydrocarbon group having 1 to 6 carbon atoms, 1 to 6 carbon atoms on the aryl cyclic skeleton It may have a halogen-containing hydrocarbon group as a substituent.
R13およびR14としては、好ましくは少なくとも1つが、フェニル基、4−メチルフェニル基、4−i−プロピルフェニル基、4−t−ブチルフェニル基、4−トリメチルシリルフェニル基、2,3―ジメチルフェニル基、3,5―ジ−t−ブチルフェニル基、4−フェニル−フェニル基、クロロフェニル基、ナフチル基、又はフェナンスリル基であり、更に好ましくはフェニル基、4−i−プロピルフェニル基、4−t−ブチルフェニル基、4−トリメチルシリルフェニル基、4−クロロフェニル基である。また、R13およびR14が互いに同一である場合が好ましい。 At least one of R 13 and R 14 is preferably a phenyl group, a 4-methylphenyl group, a 4-i-propylphenyl group, a 4-t-butylphenyl group, a 4-trimethylsilylphenyl group, or 2,3-dimethyl. A phenyl group, 3,5-di-t-butylphenyl group, 4-phenyl-phenyl group, chlorophenyl group, naphthyl group, or phenanthryl group, more preferably a phenyl group, 4-i-propylphenyl group, 4- t-butylphenyl group, 4-trimethylsilylphenyl group, 4-chlorophenyl group. Further, it is preferable that R 13 and R 14 are the same.
一般式(a1)中、X11およびY11は、補助配位子であり、触媒成分(B)の助触媒と反応して、オレフィン重合能を有する活性なメタロセンを生成させる。したがって、この目的が達成される限り、X11とY11は、配位子の種類が制限されるものではなく、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を示す。 In the general formula (a1), X 11 and Y 11 are auxiliary ligands, and react with the co-catalyst of the catalyst component (B) to generate an active metallocene having olefin polymerization ability. Therefore, as long as this object is achieved, X 11 and Y 11 are not limited in the type of ligand, and are independently a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms. A C1-C20 silicon-containing hydrocarbon group, a C1-C20 halogenated hydrocarbon group, a C1-C20 oxygen-containing hydrocarbon group, an amino group, or a C1-C20 nitrogen-containing hydrocarbon Indicates a group.
一般式(a1)中、Q11は、二つの五員環を結合する、炭素数1〜20の2価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基またはゲルミレン基のいずれかを示す。シリレン基またはゲルミレン基上に2個の炭化水素基が存在する場合は、それらが互いに結合して環構造を形成していてもよい。
上記のQ11の具体例としては、メチレン、メチルメチレン、ジメチルメチレン、1,2−エチレン等のアルキレン基;ジフェニルメチレン等のアリールアルキレン基;シリレン基;メチルシリレン、ジメチルシリレン、ジエチルシリレン、ジ(n−プロピル)シリレン、ジ(i−プロピル)シリレン、ジ(シクロヘキシル)シリレン等のアルキルシリレン基、メチル(フェニル)シリレン等の(アルキル)(アリール)シリレン基;ジフェニルシリレン等のアリールシリレン基;テトラメチルジシリレン等のアルキルオリゴシリレン基;ゲルミレン基;上記の2価の炭素数1〜20の炭化水素基を有するシリレン基のケイ素をゲルマニウムに置換したアルキルゲルミレン基;(アルキル)(アリール)ゲルミレン基;アリールゲルミレン基などを挙げることが出来る。これらの中では、炭素数1〜20の炭化水素基を有するシリレン基、または、炭素数1〜20の炭化水素基を有するゲルミレン基が好ましく、アルキルシリレン基、アルキルゲルミレン基が特に好ましい。
In the general formula (a1), Q 11 is a silylene that may have a divalent hydrocarbon group having 1 to 20 carbon atoms and a hydrocarbon group having 1 to 20 carbon atoms that connects two five-membered rings. Represents either a group or a germylene group. When two hydrocarbon groups are present on the silylene group or the germylene group, they may be bonded to each other to form a ring structure.
Specific examples of Q 11 include alkylene groups such as methylene, methylmethylene, dimethylmethylene and 1,2-ethylene; arylalkylene groups such as diphenylmethylene; silylene groups; methylsilylene, dimethylsilylene, diethylsilylene, di ( n-propyl) silylene, di (i-propyl) silylene, alkylsilylene groups such as di (cyclohexyl) silylene, (alkyl) (aryl) silylene groups such as methyl (phenyl) silylene; arylsilylene groups such as diphenylsilylene; tetra An alkyl oligosilylene group such as methyldisilylene; a germylene group; an alkylgermylene group in which the silicon of the above-mentioned divalent hydrocarbon group having 1 to 20 carbon atoms is replaced with germanium; (alkyl) (aryl) germylene Group; arylgermylene group And so on. In these, the silylene group which has a C1-C20 hydrocarbon group, or the germylene group which has a C1-C20 hydrocarbon group is preferable, and an alkylsilylene group and an alkylgermylene group are especially preferable.
上記一般式(a1)で表される化合物のうち、好ましい化合物として、以下に具体的に例示する。
ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジフェニルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−トリメチルシリル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−フェニル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(4,5−ジメチル−2−フリル)−4−フェニル−インデニル}]ハフニウムジクロライド、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−ベンゾフリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−メチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−iプロピルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリメチルシリルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フルフリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−クロロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−フルオロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリフルオロメチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウムなどを挙げることができる。
Of the compounds represented by the general formula (a1), preferred compounds are specifically exemplified below.
Dichloro [1,1′-dimethylsilylenebis {2- (2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2-thienyl) -4-phenyl -Indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-diphenylsilylenebis {2 -(5-Methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylgermylenebis {2- (5-methyl-2-furyl) -4-phenyl-indenyl} ] Hafnium, dichloro [1,1'-dimethylgermylenebis {2- (5-methyl-2-thienyl) -4-phenyl-indenyl}] hafnium, dic B [1,1′-dimethylsilylenebis {2- (5-t-butyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5- Trimethylsilyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-phenyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [ 1,1′-dimethylsilylenebis {2- (4,5-dimethyl-2-furyl) -4-phenyl-indenyl}] hafnium dichloride, dichloro [1,1′-dimethylsilylenebis {2- (2-benzofuryl) ) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- ( -Methylphenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-ipropylphenyl) -indenyl}] hafnium, dichloro [ 1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-trimethylsilylphenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2 -Furfuryl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-chlorophenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-fluorophenyl) -indenyl}] Hough , Dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-trifluoromethylphenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylene Bis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2-furyl) -4 -(1-Naphtyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2-furyl) -4- (2-naphthyl) -indenyl}] hafnium, dichloro [1,1 ′ -Dimethylsilylenebis {2- (2-furyl) -4- (2-phenanthryl) -indenyl}] hafnium, dichloro [1,1'-dimethylsilylenebis {2- (2-furyl) -4- (9-phenanthryl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (1-naphthyl) -indenyl}] hafnium, Dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (2-naphthyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- ( 5-methyl-2-furyl) -4- (2-phenanthryl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (9- Phenanthryl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-t-butyl-2-furyl) -4- (1-naphthyl) -indenyl}] ha Nitrogen, dichloro [1,1′-dimethylsilylenebis {2- (5-tert-butyl-2-furyl) -4- (2-naphthyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-t-butyl-2-furyl) -4- (2-phenanthryl) -indenyl}] hafnium, dichloro [1,1'-dimethylsilylenebis {2- (5-t-butyl-2- Furyl) -4- (9-phenanthryl) -indenyl}] hafnium.
これらのうち、更に好ましいのは、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−メチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−iプロピルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリメチルシリルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−クロロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウムである。 Of these, more preferred are dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylene. Bis {2- (5-methyl-2-furyl) -4- (4-methylphenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-ipropylphenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-trimethylsilylphenyl) -indenyl} ] Hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-chlorophenyl) -indenyl}] hafni Dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (2-naphthyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2 -(5-Methyl-2-furyl) -4- (4-t-butylphenyl) -indenyl}] hafnium.
また、特に好ましいのは、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−iプロピルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリメチルシリルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウムである。 Particularly preferred is dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis { 2- (5-Methyl-2-furyl) -4- (4-ipropylphenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl)- 4- (4-Trimethylsilylphenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) -indenyl} ] Hafnium.
(ii)成分[A−2]:一般式(a2)で表される化合物 (Ii) Component [A-2]: Compound represented by general formula (a2)
[一般式(a2)中、R21およびR22は、各々独立して、炭素数1〜6の炭化水素基であり、R23およびR24は、それぞれ独立して、ハロゲン、ケイ素、酸素、硫黄、窒素、ホウ素、リン又はこれらから選択される複数のヘテロ元素を含有してもよい、炭素数6〜16のアリール基である。X21およびY21は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を表し、Q21は、炭素数1〜20の二価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基またはゲルミレン基を表す。M21は、ジルコニウムまたはハフニウムである。] [In General Formula (a2), R 21 and R 22 are each independently a hydrocarbon group having 1 to 6 carbon atoms, and R 23 and R 24 are each independently halogen, silicon, oxygen, It is a C6-C16 aryl group which may contain sulfur, nitrogen, boron, phosphorus, or a plurality of heteroelements selected from these. X 21 and Y 21 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon having 1 to 20 carbon atoms. Group, an oxygen-containing hydrocarbon group having 1 to 20 carbon atoms, an amino group, or a nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms, Q 21 is a divalent hydrocarbon group having 1 to 20 carbon atoms, carbon number It represents a silylene group or a germylene group which may have 1 to 20 hydrocarbon groups. M 21 is zirconium or hafnium. ]
上記R21およびR22は、それぞれ独立して、炭素数1〜6の炭化水素基であり、好ましくはアルキル基であり、さらに好ましくは炭素数1〜4のアルキル基である。具体的な例としては、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、n−ペンチル、i−ペンチル、n−ヘキシル等が挙げられ、好ましくはメチル、エチル、n−プロピルである。 R 21 and R 22 are each independently a hydrocarbon group having 1 to 6 carbon atoms, preferably an alkyl group, and more preferably an alkyl group having 1 to 4 carbon atoms. Specific examples include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, n-pentyl, i-pentyl, n-hexyl, and preferably methyl. , Ethyl, n-propyl.
また、上記R23およびR24は、それぞれ独立して、炭素数6〜16の、好ましくは炭素数6〜12の、ハロゲン、ケイ素、あるいは、これらから選択される複数のヘテロ元素を含有してもよいアリール基である。好ましい例としては、フェニル、3−クロロフェニル、4−クロロフェニル、3−フルオロフェニル、4−フルオロフェニル、4−メチルフェニル、4−i−プロピルフェニル、4−t−ブチルフェニル、4−トリメチルシリルフェニル、4−(2−フルオロ−4−ビフェニリル)、4−(2−クロロ−4−ビフェニリル)、1−ナフチル、2−ナフチル、4−クロロ−2−ナフチル、3−メチル−4−トリメチルシリルフェニル、3,5−ジメチル−4−t−ブチルフェニル、3,5−ジメチル−4−トリメチルシリルフェニル、3,5−ジクロロ−4−トリメチルシリルフェニル等が挙げられる。 In addition, R 23 and R 24 each independently contain a halogen having 6 to 16 carbon atoms, preferably 6 to 12 carbon atoms, silicon, or a plurality of hetero elements selected from these. It is a good aryl group. Preferable examples include phenyl, 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl, 4-fluorophenyl, 4-methylphenyl, 4-i-propylphenyl, 4-t-butylphenyl, 4-trimethylsilylphenyl, 4 -(2-fluoro-4-biphenylyl), 4- (2-chloro-4-biphenylyl), 1-naphthyl, 2-naphthyl, 4-chloro-2-naphthyl, 3-methyl-4-trimethylsilylphenyl, 3, Examples include 5-dimethyl-4-t-butylphenyl, 3,5-dimethyl-4-trimethylsilylphenyl, 3,5-dichloro-4-trimethylsilylphenyl, and the like.
また、上記X21およびY21は、補助配位子であり、触媒成分(B)の助触媒と反応してオレフィン重合能を有する活性なメタロセンを生成させる。したがって、この目的が達成される限りX21およびY21は、配位子の種類が制限されるものではなく、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を示す。 X 21 and Y 21 are auxiliary ligands, and react with the co-catalyst of the catalyst component (B) to generate an active metallocene having olefin polymerization ability. Therefore, as long as this object is achieved, X 21 and Y 21 are not limited in the type of ligand, and are independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, C1-C20 silicon-containing hydrocarbon group, C1-C20 halogenated hydrocarbon group, C1-C20 oxygen-containing hydrocarbon group, amino group, or C1-C20 nitrogen-containing hydrocarbon group Indicates.
また、上記Q21は、二つの共役五員環配位子を架橋する結合性基であり、炭素数1〜20の2価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基または炭素数1〜20の炭化水素基を有するゲルミレン基であり、好ましくは置換シリレン基あるいは置換ゲルミレン基である。ケイ素、ゲルマニウムに結合する置換基は、炭素数1〜12の炭化水素基が好ましく、二つの置換基が連結していてもよい。 Q 21 is a binding group that bridges two conjugated five-membered ring ligands, and has a divalent hydrocarbon group having 1 to 20 carbon atoms and a hydrocarbon group having 1 to 20 carbon atoms. A silylene group or a germylene group having a hydrocarbon group having 1 to 20 carbon atoms, preferably a substituted silylene group or a substituted germylene group. The substituent bonded to silicon and germanium is preferably a hydrocarbon group having 1 to 12 carbon atoms, and two substituents may be linked.
Q21の具体的な例としては、メチレン、ジメチルメチレン、エチレン−1,2−ジイル、ジメチルシリレン、ジエチルシリレン、ジフェニルシリレン、メチルフェニルシリレン、9−シラフルオレン−9,9−ジイル、ジメチルシリレン、ジエチルシリレン、ジフェニルシリレン、メチルフェニルシリレン、9−シラフルオレン−9,9−ジイル、ジメチルゲルミレン、ジエチルゲルミレン、ジフェニルゲルミレン、メチルフェニルゲルミレン等が挙げられる。 Specific examples of Q 21 include methylene, dimethylmethylene, ethylene-1,2-diyl, dimethylsilylene, diethylsilylene, diphenylsilylene, methylphenylsilylene, 9-silafluorene-9,9-diyl, dimethylsilylene, Examples include diethylsilylene, diphenylsilylene, methylphenylsilylene, 9-silafluorene-9,9-diyl, dimethylgermylene, diethylgermylene, diphenylgermylene, methylphenylgermylene, and the like.
さらに、上記M21は、ジルコニウムまたはハフニウムであり、好ましくはハフニウムである。 Further, M 21 is zirconium or hafnium, preferably hafnium.
上記一般式(a2)で表されるメタロセン化合物の非限定的な例として、下記のものを好ましく挙げることができる。
ただし、以下は、煩雑な多数の例示を避けて代表的例示化合物のみ記載しており、本発明はこれら化合物に限定して解釈されるものではなく、種々の配位子や架橋結合基あるいは補助配位子を任意に使用しうることは自明なことである。また、以下では、中心金属がハフニウムの化合物を記載したが、ジルコニウムに代替した化合物も本願明細書に開示されたものとして取り扱われる。
As non-limiting examples of the metallocene compound represented by the general formula (a2), the following can be preferably mentioned.
However, in the following, only representative exemplary compounds are described avoiding many complicated examples, and the present invention is not construed as being limited to these compounds. Obviously, any ligand can be used. In the following, a compound in which the central metal is hafnium is described, but a compound substituted for zirconium is also treated as disclosed in the present specification.
ジクロロ{1,1’−ジメチルシリレンビス(2−メチル−4−フェニル−4−ヒドロアズレニル)}ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−メチル−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(1−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−クロロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(9−フェナントリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−n−プロピル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−クロロ−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−メチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−メチル−4−(4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウムなどが挙げられる。 Dichloro {1,1′-dimethylsilylenebis (2-methyl-4-phenyl-4-hydroazurenyl)} hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4 -Hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-t-butylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis { 2-methyl-4- (4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-chloro-4-t-butylphenyl)- 4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- ( -Methyl-4-t-butylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-chloro-4-trimethylsilylphenyl) -4-hydroazurenyl} ] Hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-methyl-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2 -Methyl-4- (1-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (2-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [ 1,1′-dimethylsilylenebis {2-methyl-4- (4-chloro-2-naphthyl)- -Hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (2-fluoro-4-biphenylyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-Methyl-4- (2-chloro-4-biphenylyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (9-phenanthryl) -4-hydroazurenyl] }] Hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (4-chlorophenyl) -4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-n-propyl -4- (3-Chloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] huff Nitrogen, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (3-chloro-4-tert-butylphenyl) -4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis { 2-ethyl-4- (3-methyl-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylgermylenebis {2-methyl-4- (2-fluoro-4-biphenylyl) ) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylgermylenebis {2-methyl-4- (4-t-butylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′- (9-silafluorene-9,9-diyl) bis {2-ethyl-4- (4-chlorophenyl) -4-hydroazurenyl}] Funium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (4-chloro-2-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl -4- (2-fluoro-4-biphenylyl) -4-hydroazulenyl}] hafnium, dichloro [1,1 ′-(9-silafluorene-9,9-diyl) bis {2-ethyl-4- (3 5-dichloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium and the like.
これらの中で好ましくは、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、である。 Of these, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- Methyl-4- (3-chloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (2-fluoro-4-biphenylyl) -4 -Hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (4-chloro-2-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-Ethyl-4- (3-methyl-4-trimethylsilylphenyl) -4-hydroazurenyl}] ha Dichloro, [1,1 ′-(9-silafluorene-9,9-diyl) bis {2-ethyl-4- (3,5-dichloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, is there.
また、特に好ましくは、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、である。 Particularly preferably, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl -4- (2-Fluoro-4-biphenylyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (3-methyl-4-trimethylsilylphenyl) -4- Hydroazurenyl}] hafnium, dichloro [1,1 ′-(9-silafluorene-9,9-diyl) bis {2-ethyl-4- (3,5-dichloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] Hafnium.
(2)触媒成分(B)
ポリプロピレン樹脂(X)を製造するのに好ましく使用される触媒成分(B)は、イオン交換性層状珪酸塩である。
(i)イオン交換性層状珪酸塩の種類
イオン交換性層状珪酸塩(以下、単に珪酸塩と略記することもある。)とは、イオン結合などによって構成される面が、互いに結合力で平行に積み重なった結晶構造を有し、かつ、含有されるイオンが交換可能である珪酸塩化合物をいう。大部分の珪酸塩は、天然では主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物(石英、クリストバライト等)が含まれることが多いが、それらを含んでもよい。それら夾雑物の種類、量、粒子径、結晶性、分散状態によっては純粋な珪酸塩以上に好ましいことがあり、そのような複合体も、触媒成分(B)に含まれる。
使用する珪酸塩は、天然産のものに限らず、人工合成物であってもよく、また、それらを含んでもよい。
(2) Catalyst component (B)
The catalyst component (B) preferably used for producing the polypropylene resin (X) is an ion-exchange layered silicate.
(I) Types of ion-exchanged layered silicates Ion-exchanged layered silicates (hereinafter sometimes simply referred to as silicates) are surfaces formed by ionic bonds or the like that are parallel to each other with a binding force. A silicate compound having a stacked crystal structure and containing exchangeable ions. Most silicates are mainly produced as a main component of clay minerals in nature, and therefore often contain impurities (quartz, cristobalite, etc.) other than ion-exchanged layered silicates. Good. Depending on the type, amount, particle size, crystallinity, and dispersion state of these impurities, it may be preferable to pure silicate, and such a complex is also included in the catalyst component (B).
The silicate to be used is not limited to a natural product, and may be an artificial synthetic product or may contain them.
珪酸塩の具体例としては、例えば、白水春雄著「粘土鉱物学」朝倉書店(1995年)に記載されている次のような層状珪酸塩が挙げられる。
すなわち、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト等のスメクタイト族、バーミキュライト等のバーミキュライト族、雲母、イライト、セリサイト、海緑石等の雲母族、アタパルジャイト、セピオライト、パリゴルスカイト、ベントナイト、パイロフィライト、タルク、緑泥石群等である。
珪酸塩は、主成分の珪酸塩が2:1型構造を有する珪酸塩であることが好ましく、スメクタイト族であることが更に好ましく、モンモリロナイトが特に好ましい。層間カチオンの種類は、特に限定されないが、工業原料として比較的容易に且つ安価に入手し得る観点から、アルカリ金属あるいはアルカリ土類金属を層間カチオンの主成分とする珪酸塩が好ましい。
Specific examples of the silicate include the following layered silicates described in Haruo Shiramizu “Clay Mineralogy” Asakura Shoten (1995).
That is, montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, stemite and other smectites, vermiculite and other vermiculites, mica, illite, sericite and sea chlorite and other mica, attapulgite, sepiolite and palygorskite , Bentonite, pyrophyllite, talc, chlorite group, etc.
The silicate is preferably a silicate in which the main component silicate has a 2: 1 type structure, more preferably a smectite group, and particularly preferably montmorillonite. The type of interlayer cation is not particularly limited, but a silicate containing an alkali metal or an alkaline earth metal as a main component of the interlayer cation is preferable from the viewpoint of being relatively easy and inexpensive to obtain as an industrial raw material.
(ii)イオン交換性層状珪酸塩の化学処理
触媒成分(B)のイオン交換性層状珪酸塩は、特に処理を行うことなくそのまま用いることができるが、化学処理を施すことが好ましい。ここでイオン交換性層状珪酸塩の化学処理とは、表面に付着している不純物を除去する表面処理と粘土の構造に影響を与える処理のいずれをも用いることができ、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理等が挙げられる。
(Ii) Chemical treatment of ion-exchangeable layered silicate The ion-exchangeable layered silicate of the catalyst component (B) can be used as it is without any particular treatment, but it is preferable to perform chemical treatment. Here, the chemical treatment of the ion-exchange layered silicate may be any of a surface treatment for removing impurities adhering to the surface and a treatment that affects the structure of the clay. Treatment, alkali treatment, salt treatment, organic matter treatment and the like.
<酸処理>:
酸処理は、表面の不純物を取り除くほか、結晶構造のAl、Fe、Mg等の陽イオンの一部または全部を溶出させることができる。
酸処理で用いられる酸は、好ましくは塩酸、硫酸、硝酸、リン酸、酢酸、シュウ酸から選択される。
処理に用いる塩類(次項で説明する)および酸は、2種以上であってもよい。塩類および酸による処理条件は、特には制限されないが、通常、塩類および酸濃度は、0.1〜50重量%、処理温度は、室温〜沸点、処理時間は、5分〜24時間の条件を選択して、イオン交換性層状珪酸塩から成る群より選ばれた少なくとも一種の化合物を構成している物質の少なくとも一部を溶出する条件で行うことが好ましい。また、塩類および酸は、一般的には水溶液で用いられる。
なお、以下の酸類、塩類を組み合わせたものを処理剤として用いてもよい。また、これら酸類、塩類の組み合わせであってもよい。
<Acid treatment>:
In addition to removing impurities on the surface, the acid treatment can elute some or all of cations such as Al, Fe, Mg, etc. in the crystal structure.
The acid used in the acid treatment is preferably selected from hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid and oxalic acid.
Two or more salts (described in the next section) and acid may be used for the treatment. The treatment conditions with salts and acids are not particularly limited. Usually, the salt and acid concentrations are 0.1 to 50% by weight, the treatment temperature is room temperature to boiling point, and the treatment time is 5 minutes to 24 hours. It is preferable to carry out the process under the condition of selecting and eluting at least a part of the substance constituting at least one compound selected from the group consisting of ion-exchangeable layered silicates. In addition, salts and acids are generally used in an aqueous solution.
In addition, you may use what combined the following acids and salts as a processing agent. Moreover, the combination of these acids and salts may be sufficient.
<塩類処理>:
塩類で処理される前の、イオン交換性層状珪酸塩の含有する交換可能な1族金属の陽イオンの好ましくは40%以上、より好ましくは60%以上を、下記に示す塩類より解離した陽イオンと、イオン交換することが好ましい。
このようなイオン交換を目的とした塩類処理で用いられる塩類は、1〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンと、ハロゲン原子、無機酸および有機酸から成る群より選ばれた少なくとも一種の陰イオンとから成る化合物であり、更に好ましくは、2〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンと、Cl、Br、I、F、PO4、SO4、NO3、CO3、C2O4、ClO4、OOCCH3、CH3COCHCOCH3、OCl2、O(NO3)2、O(ClO4)2、O(SO4)、OH、O2Cl2、OCl3、OOCH、OOCCH2CH3、C2H4O4およびC5H5O7等から成る群から選ばれる少なくとも一種の陰イオンとから成る化合物である。
<Salt treatment>:
Cations that are preferably 40% or more, more preferably 60% or more, of the exchangeable Group 1 metal cations contained in the ion-exchange layered silicate before being treated with salts, dissociated from the salts shown below. It is preferable to perform ion exchange.
The salt used in the salt treatment for the purpose of ion exchange is a group consisting of a cation containing at least one atom selected from the group consisting of group 1 to 14 atoms, a halogen atom, an inorganic acid, and an organic acid. A compound comprising at least one anion selected from the group consisting of at least one anion selected from the group consisting of group 2 to 14 atoms, Cl, Br, I, F, PO 4 , SO 4 , NO 3 , CO 3 , C 2 O 4 , ClO 4 , OOCCH 3 , CH 3 COCHCOCH 3 , OCl 2 , O (NO 3 ) 2 , O (ClO 4 ) 2 , O (SO 4 ) At least one anion selected from the group consisting of OH, O 2 Cl 2 , OCl 3 , OOCH, OOCCH 2 CH 3 , C 2 H 4 O 4 and C 5 H 5 O 7 Is a compound consisting of
このような塩類の好ましい具体例としては、LiF、LiCl、LiBr、LiI、Li2SO4、Li(CH3COO)、LiCO3、Li(C6H5O7)、LiCHO2、LiC2O4、LiClO4、Li3PO4、CaCl2、CaSO4、CaC2O4、Ca(NO3)2、Ca3(C6H5O7)2、MgCl2、MgBr2、MgSO4、Mg(PO4)2、Mg(ClO4)2、MgC2O4、Mg(NO3)2、Mg(OOCCH3)2、MgC4H4O4等が挙げられる。 Preferred examples of such salts, LiF, LiCl, LiBr, LiI , Li 2 SO 4, Li (CH 3 COO), LiCO 3, Li (C 6 H 5 O 7), LiCHO 2, LiC 2 O 4 , LiClO 4 , Li 3 PO 4 , CaCl 2 , CaSO 4 , CaC 2 O 4 , Ca (NO 3 ) 2 , Ca 3 (C 6 H 5 O 7 ) 2 , MgCl 2 , MgBr 2 , MgSO 4 , Mg (PO 4 ) 2 , Mg (ClO 4 ) 2 , MgC 2 O 4 , Mg (NO 3 ) 2 , Mg (OOCCH 3 ) 2 , MgC 4 H 4 O 4 and the like.
また、Ti(OOCCH3)4、Ti(CO3)2、Ti(NO3)4、Ti(SO4)2、TiF4、TiCl4、Zr(OOCCH3)4、Zr(CO3)2、Zr(NO3)4、Zr(SO4)2、ZrF4、ZrCl4、ZrOCl2、ZrO(NO3)2、ZrO(ClO4)2、ZrO(SO4)、HF(OOCCH3)4、HF(CO3)2、HF(NO3)4、HF(SO4)2、HFOCl2、HFF4、HFCl4、V(CH3COCHCOCH3)3、VOSO4、VOCl3、VCl3、VCl4、VBr3等が挙げられる。 Also, Ti (OOCCH 3 ) 4 , Ti (CO 3 ) 2 , Ti (NO 3 ) 4 , Ti (SO 4 ) 2 , TiF 4 , TiCl 4 , Zr (OOCCH 3 ) 4 , Zr (CO 3 ) 2 , Zr (NO 3 ) 4 , Zr (SO 4 ) 2 , ZrF 4 , ZrCl 4 , ZrOCl 2 , ZrO (NO 3 ) 2 , ZrO (ClO 4 ) 2 , ZrO (SO 4 ), HF (OOCCH 3 ) 4 , HF (CO 3 ) 2 , HF (NO 3 ) 4 , HF (SO 4 ) 2 , HFOCl 2 , HFF 4 , HFCl 4 , V (CH 3 COCHCOCH 3 ) 3 , VOSO 4 , VOCl 3 , VCl 3 , VCl 4 , VBr 3 and the like.
また、Cr(CH3COCHCOCH3)3、Cr(OOCCH3)2OH、Cr(NO3)3、Cr(ClO4)3、CrPO4、Cr2(SO4)3、CrO2Cl2、CrF3、CrCl3、CrBr3、CrI3、Mn(OOCCH3)2、Mn(CH3COCHCOCH3)2、MnCO3、Mn(NO3)2、MnO、Mn(ClO4)2、MnF2、MnCl2、Fe(OOCCH3)2、Fe(CH3COCHCOCH3)3、FeCO3、Fe(NO3)3、Fe(ClO4)3、FePO4、FeSO4、Fe2(SO4)3、FeF3、FeCl3、FeC6H5O7等が挙げられる。 Also, Cr (CH 3 COCHCOCH 3 ) 3 , Cr (OOCCH 3 ) 2 OH, Cr (NO 3 ) 3 , Cr (ClO 4 ) 3 , CrPO 4 , Cr 2 (SO 4 ) 3 , CrO 2 Cl 2 , CrF 3 , CrCl 3 , CrBr 3 , CrI 3 , Mn (OOCCH 3 ) 2 , Mn (CH 3 COCHCOCH 3 ) 2 , MnCO 3 , Mn (NO 3 ) 2 , MnO, Mn (ClO 4 ) 2 , MnF 2 , MnCl 2 , Fe (OOCCH 3 ) 2 , Fe (CH 3 COCHCOCH 3 ) 3 , FeCO 3 , Fe (NO 3 ) 3 , Fe (ClO 4 ) 3 , FePO 4 , FeSO 4 , Fe 2 (SO 4 ) 3 , FeF 3 FeCl 3 , FeC 6 H 5 O 7 and the like.
また、Co(OOCCH3)2、Co(CH3COCHCOCH3)3、CoCO3、Co(NO3)2、CoC2O4、Co(ClO4)2、Co3(PO4)2、CoSO4、CoF2、CoCl2、NiCO3、Ni(NO3)2、NiC2O4、Ni(ClO4)2、NiSO4、NiCl2、NiBr2等が挙げられる。
さらに、Zn(OOCCH3)2、Zn(CH3COCHCOCH3)2、ZnCO3、Zn(NO3)2、Zn(ClO4)2、Zn3(PO4)2、ZnSO4、ZnF2、ZnCl2、AlF3、AlCl3、AlBr3、AlI3、Al2(SO4)3、Al2(C2O4)3、Al(CH3COCHCOCH3)3、Al(NO3)3、AlPO4、GeCl4、GeBr4、GeI4等が挙げられる。
In addition, Co (OOCCH 3 ) 2 , Co (CH 3 COCHCOCH 3 ) 3 , CoCO 3 , Co (NO 3 ) 2 , CoC 2 O 4 , Co (ClO 4 ) 2 , Co 3 (PO 4 ) 2 , CoSO 4 , CoF 2 , CoCl 2 , NiCO 3 , Ni (NO 3 ) 2 , NiC 2 O 4 , Ni (ClO 4 ) 2 , NiSO 4 , NiCl 2 , NiBr 2 and the like.
Furthermore, Zn (OOCCH 3 ) 2 , Zn (CH 3 COCHCOCH 3 ) 2 , ZnCO 3 , Zn (NO 3 ) 2 , Zn (ClO 4 ) 2 , Zn 3 (PO 4 ) 2 , ZnSO 4 , ZnF 2 , ZnCl 2 , AlF 3 , AlCl 3 , AlBr 3 , AlI 3 , Al 2 (SO 4 ) 3 , Al 2 (C 2 O 4 ) 3 , Al (CH 3 COCHCOCH 3 ) 3 , Al (NO 3 ) 3 , AlPO 4 , GeCl 4 , GeBr 4 , GeI 4 and the like.
<アルカリ処理>:
酸、塩処理の他に、必要に応じて下記のアルカリ処理や有機物処理を行ってもよい。アルカリ処理で用いられる処理剤としては、LiOH、NaOH、KOH、Mg(OH)2、Ca(OH)2、Sr(OH)2、Ba(OH)2などが例示される。
<Alkali treatment>:
In addition to acid and salt treatment, the following alkali treatment or organic matter treatment may be performed as necessary. Examples of the treating agent used in the alkali treatment include LiOH, NaOH, KOH, Mg (OH) 2 , Ca (OH) 2 , Sr (OH) 2 , Ba (OH) 2 and the like.
<有機物処理>:
また、有機物処理に用いられる有機処理剤の例としては、トリメチルアンモニウム、トリエチルアンモニウム、N,N−ジメチルアニリニウム、トリフェニルホスホニウム等が挙げられる。
また、有機物処理剤を構成する陰イオンとしては、塩類処理剤を構成する陰イオンとして例示した陰イオン以外にも、例えば、ヘキサフルオロフォスフェート、テトラフルオロボレート、テトラフェニルボレートなどが例示されるが、これらに限定されるものではない。
<Organic treatment>:
Examples of the organic treatment agent used for the organic treatment include trimethylammonium, triethylammonium, N, N-dimethylanilinium, triphenylphosphonium, and the like.
Examples of the anion constituting the organic treatment agent include hexafluorophosphate, tetrafluoroborate, and tetraphenylborate other than the anion exemplified as the anion constituting the salt treatment agent. However, it is not limited to these.
また、これらの処理剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。これらの組み合わせは、処理開始時に添加する処理剤について組み合わせて用いてもよいし、処理の途中で添加する処理剤について、組み合わせて用いてもよい。また化学処理は、同一または異なる処理剤を用いて複数回行うことも可能である。
これらイオン交換性層状珪酸塩には、通常、吸着水および層間水が含まれる。本発明においては、これらの吸着水および層間水を除去して触媒成分(B)として使用するのが好ましい。
Moreover, these processing agents may be used independently and may be used in combination of 2 or more types. These combinations may be used in combination for the treatment agent added at the start of the treatment, or may be used in combination for the treatment agent added during the treatment. The chemical treatment can be performed a plurality of times using the same or different treatment agents.
These ion-exchange layered silicates usually contain adsorbed water and interlayer water. In the present invention, it is preferable to remove these adsorbed water and interlayer water and use them as the catalyst component (B).
イオン交換性層状珪酸塩の吸着水および層間水の加熱処理方法は、特に制限されないが、層間水が残存しないように、また、構造破壊を生じないよう条件を選ぶことが必要である。加熱時間は0.5時間以上、好ましくは1時間以上である。その際、除去した後の触媒成分(B)の水分含有率が、温度200℃、圧力1mmHgの条件下で2時間脱水した場合の水分含有率を0重量%とした時、3重量%以下、好ましくは1重量%以下であることが好ましい。 The heat treatment method of the ion-exchange layered silicate adsorbed water and interlayer water is not particularly limited, but it is necessary to select conditions so that interlayer water does not remain and structural destruction does not occur. The heating time is 0.5 hour or longer, preferably 1 hour or longer. At that time, the water content of the catalyst component (B) after the removal is 3% by weight or less when the water content when dehydrating for 2 hours under the conditions of a temperature of 200 ° C. and a pressure of 1 mmHg is 0% by weight, It is preferably 1% by weight or less.
以上のように、触媒成分(B)として特に好ましいものは、塩類処理及び/又は酸処理を行って得られた、水分含有率が3重量%以下の、イオン交換性層状珪酸塩である。 As described above, particularly preferable as the catalyst component (B) is an ion-exchange layered silicate having a water content of 3% by weight or less, which is obtained by performing a salt treatment and / or an acid treatment.
イオン交換性層状珪酸塩は、触媒形成または触媒として使用する前に、後述する有機アルミニウム化合物の触媒成分(C)で処理を行うことが可能で、好ましい。イオン交換性層状珪酸塩1gに対する触媒成分(C)の使用量に制限は無いが、通常20mmol以下、好ましくは0.5mmol以上、10mmol以下で行う。処理温度や時間の制限は無く、処理温度は、通常0℃以上、70℃以下、処理時間は10分以上、3時間以下で行う。処理後に洗浄することも可能で、好ましい。溶媒は後述する予備重合やスラリー重合で使用する溶媒と同様の炭化水素溶媒を使用する。 The ion-exchange layered silicate can be treated with a catalyst component (C) of an organoaluminum compound, which will be described later, before formation of a catalyst or use as a catalyst, which is preferable. Although there is no restriction | limiting in the usage-amount of the catalyst component (C) with respect to 1g of ion-exchange layered silicate, Usually, 20 mmol or less, Preferably it is 0.5 mmol or more and 10 mmol or less. There is no limitation on the treatment temperature and time, the treatment temperature is usually 0 ° C. or more and 70 ° C. or less, and the treatment time is 10 minutes or more and 3 hours or less. It is also possible and preferable to wash after the treatment. As the solvent, the same hydrocarbon solvent as that used in the preliminary polymerization and slurry polymerization described later is used.
また、触媒成分(B)は、平均粒径が5μm以上の球状粒子を用いるのが好ましい。粒子の形状が球状であれば、天然物あるいは市販品をそのまま使用してもよいし、造粒、分粒、分別等により粒子の形状および粒径を制御したものを用いてもよい。
ここで用いられる造粒法は、例えば攪拌造粒法、噴霧造粒法が挙げられるが、市販品を利用することもできる。
また、造粒の際に、有機物、無機溶媒、無機塩、各種バインダ−を用いてもよい。
上記のようにして得られた球状粒子は、重合工程での破砕や微粉の生成を抑制するためには0.2MPa以上、特に好ましくは0.5MPa以上の圧縮破壊強度を有することが望ましい。このような粒子強度の場合には、特に予備重合を行う場合に、粒子性状改良効果が有効に発揮される。
The catalyst component (B) is preferably spherical particles having an average particle size of 5 μm or more. If the particle shape is spherical, a natural product or a commercially available product may be used as it is, or a particle whose particle shape and particle size are controlled by granulation, sizing, fractionation, or the like may be used.
Examples of the granulation method used here include agitation granulation method and spray granulation method, but commercially available products can also be used.
Moreover, you may use organic substance, an inorganic solvent, inorganic salt, and various binders in the case of granulation.
The spherical particles obtained as described above desirably have a compressive fracture strength of 0.2 MPa or more, particularly preferably 0.5 MPa or more, in order to suppress crushing and generation of fine powder in the polymerization process. In the case of such particle strength, the effect of improving the particle properties is effectively exhibited especially when prepolymerization is performed.
(3)触媒成分(C)
触媒成分(C)は、有機アルミニウム化合物である。触媒成分(C)として用いられる有機アルミニウム化合物は、一般式:(AlR31 qZ3−q)p で示される化合物が適当である。
本発明では、この式で表される化合物を単独で、複数種混合してあるいは併用して使用することができることはいうまでもない。この式中、R31は、炭素数1〜20の炭化水素基を示し、Zは、ハロゲン、水素、アルコキシ基またはアミノ基を示す。qは1〜3の、pは1〜2の整数を各々表す。
R31としては、アルキル基が好ましく、またZは、それがハロゲンの場合には塩素が、アルコキシ基の場合には炭素数1〜8のアルコキシ基が、アミノ基の場合には炭素数1〜8のアミノ基が、好ましい。
(3) Catalyst component (C)
The catalyst component (C) is an organoaluminum compound. Organic aluminum compounds used as the catalyst component (C) has the general formula: (AlR 31 q Z 3- q) a compound represented by p is suitable.
In this invention, it cannot be overemphasized that the compound represented by this formula can be used individually, in mixture of multiple types or in combination. In this formula, R 31 represents a hydrocarbon group having 1 to 20 carbon atoms, and Z represents a halogen, hydrogen, an alkoxy group or an amino group. q represents an integer of 1 to 3, and p represents an integer of 1 to 2, respectively.
R 31 is preferably an alkyl group, and Z is a chlorine atom when it is a halogen atom, a C 1-8 alkoxy group when it is an alkoxy group, and a C 1 atom when it is an amino group. Eight amino groups are preferred.
有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリノルマルプロピルアルミニウム、トリノルマルブチルアルミニウム、トリイソブチルアルミニウム、トリノルマルヘキシルアルミニウム、トリノルマルオクチルアルミニウム、トリノルマルデシルアルミニウム、ジエチルアルミニウムクロライド、ジエチルアルミニウムセスキクロライド、ジエチルアルミニウムヒドリド、ジエチルアルミニウムエトキシド、ジエチルアルミニウムジメチルアミド、ジイソブチルアルミニウムヒドリド、ジイソブチルアルミニウムクロライド等が挙げられる。
これらのうち、好ましくは、p=1、q=3のトリアルキルアルミニウムおよびアルキルアルミニウムヒドリドである。さらに好ましくは、R31が炭素数1〜8のアルキル基であるトリアルキルアルミニウムである。
Specific examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, trinormalpropylaluminum, trinormalbutylaluminum, triisobutylaluminum, trinormalhexylaluminum, trinormaloctylaluminum, trinormaldecylaluminum, diethylaluminum chloride, diethylaluminum. Examples thereof include sesquichloride, diethylaluminum hydride, diethylaluminum ethoxide, diethylaluminum dimethylamide, diisobutylaluminum hydride, and diisobutylaluminum chloride.
Of these, trialkylaluminum and alkylaluminum hydride having p = 1 and q = 3 are preferable. More preferably, it is trialkylaluminum in which R 31 is an alkyl group having 1 to 8 carbon atoms.
(4)触媒の形成・予備重合について
触媒は、上記の各触媒成分(A)〜(C)を(予備)重合槽内で、同時にもしくは連続的に、あるいは一度にもしくは複数回にわたって、接触させることによって形成させることができる。
各成分の接触は、脂肪族炭化水素あるいは芳香族炭化水素溶媒中で行うのが普通である。接触温度は、特に限定されないが、−20℃から150℃の間で行うのが好ましい。接触順序としては、合目的的な任意の組み合わせが可能であるが、特に好ましいものを各成分について示せば、次の通りである。
触媒成分(C)を使用する場合、触媒成分(A)と触媒成分(B)を接触させる前に、触媒成分(A)と、あるいは触媒成分(B)と、または触媒成分(A)および触媒成分(B)の両方に触媒成分(C)を接触させること、または、触媒成分(A)と触媒成分(B)を接触させるのと同時に触媒成分(C)を接触させること、または、触媒成分(A)と触媒成分(B)を接触させた後に触媒成分(C)を接触させることが可能であるが、好ましくは、触媒成分(A)と触媒成分(B)を接触させる前に、触媒成分(C)といずれかに接触させる方法である。
また、各成分を接触させた後、脂肪族炭化水素あるいは芳香族炭化水素溶媒にて洗浄することが可能である。
(4) Catalyst formation / preliminary polymerization In the catalyst, the catalyst components (A) to (C) are brought into contact with each other in the (preliminary) polymerization tank simultaneously or continuously, or once or multiple times. Can be formed.
The contact of each component is usually carried out in an aliphatic hydrocarbon or aromatic hydrocarbon solvent. Although a contact temperature is not specifically limited, It is preferable to carry out between -20 degreeC and 150 degreeC. As the contact order, any desired combination can be used, but particularly preferable ones for each component are as follows.
When the catalyst component (C) is used, the catalyst component (A), the catalyst component (B), or the catalyst component (A) and the catalyst are brought into contact before the catalyst component (A) and the catalyst component (B) are brought into contact with each other. Contacting catalyst component (C) with both components (B), or contacting catalyst component (C) with catalyst component (A) and catalyst component (B), or catalyst component Although it is possible to contact the catalyst component (C) after bringing the catalyst component (B) into contact with (A), it is preferable that the catalyst component be brought into contact with the catalyst component (A) before contacting the catalyst component (B). It is a method of contacting any of the component (C).
Moreover, after contacting each component, it is possible to wash with an aliphatic hydrocarbon or an aromatic hydrocarbon solvent.
使用する触媒成分(A)、(B)および(C)の使用量は任意である。例えば、触媒成分(B)に対する触媒成分(A)の使用量は、触媒成分(B)1gに対し、好ましくは0.1μmol〜1,000μmol、特に好ましくは0.5μmol〜500μmolの範囲である。また触媒成分(A)に対する触媒成分(C)の量は、遷移金属のモル比で、好ましくは0.01〜5×106、特に好ましくは0.1〜1×104の範囲内が好ましい。 The amount of catalyst components (A), (B) and (C) used is arbitrary. For example, the amount of the catalyst component (A) used relative to the catalyst component (B) is preferably in the range of 0.1 μmol to 1,000 μmol, particularly preferably 0.5 μmol to 500 μmol, relative to 1 g of the catalyst component (B). The amount of the catalyst component (C) relative to the catalyst component (A) is preferably a transition metal molar ratio of preferably 0.01 to 5 × 10 6 , particularly preferably within a range of 0.1 to 1 × 10 4. .
前記成分[A−1](一般式(a1)で表される化合物)と前記成分[A−2](一般式(a1)で表される化合物)の使用割合は、ポリプロピレン樹脂(X)の前記特性を満たす範囲において任意であるが、各成分[A−1]と[A−2]の合計量に対する[A−1]の遷移金属のモル比で、好ましくは0.30以上、0.99以下である。
この割合を変化させることで、溶融物性と触媒活性のバランスを調整することが可能である。つまり、成分[A−1]からは、低分子量の末端ビニルマクロマーを生成し、成分[A−2]からは、一部マクロマーを共重合した高分子量体を生成する。したがって、成分[A−1]の割合を変化させることで、生成する重合体の平均分子量、分子量分布、分子量分布の高分子量側への偏り、非常に高い分子量成分、分岐(量、長さ、分布)を制御することができ、そのことにより、分岐指数g’や歪硬化度λmax、溶融張力、延展性といった溶融物性を制御することができる。
The component [A-1] (compound represented by the general formula (a1)) and the component [A-2] (compound represented by the general formula (a1)) are used in a proportion of the polypropylene resin (X). The molar ratio of the transition metal of [A-1] to the total amount of the components [A-1] and [A-2] is preferably within a range satisfying the above characteristics, but is preferably 0.30 or more, 0.0. 99 or less.
By changing this ratio, it is possible to adjust the balance between melt physical properties and catalyst activity. That is, from the component [A-1], a low molecular weight terminal vinyl macromer is produced, and from the component [A-2], a high molecular weight body obtained by copolymerizing a part of the macromer is produced. Therefore, by changing the ratio of the component [A-1], the average molecular weight, molecular weight distribution, bias of the molecular weight distribution toward the high molecular weight side, very high molecular weight component, branch (amount, length, Distribution) can be controlled, whereby the melt properties such as branching index g ′, strain hardening degree λmax, melt tension, and spreadability can be controlled.
ポリプロピレン樹脂(X)を製造するためには、モル比は好ましくは0.30以上が必要であり、より好ましくは0.40以上であり、更に好ましくは0.5以上である。また、上限に関しては好ましくは0.99以下であり、高い触媒活性で効率的にポリプロピレン樹脂(X)を得るためには、好ましくは0.95以下であり、更に好ましくは0.90以下の範囲である。
また、上記範囲で成分[A−1]を使用することにより、水素量に対する、平均分子量と触媒活性のバランスを調整することが可能である。
In order to produce the polypropylene resin (X), the molar ratio is preferably 0.30 or more, more preferably 0.40 or more, and further preferably 0.5 or more. Further, the upper limit is preferably 0.99 or less, and preferably 0.95 or less, more preferably 0.90 or less in order to efficiently obtain a polypropylene resin (X) with high catalytic activity. It is.
In addition, by using component [A-1] within the above range, it is possible to adjust the balance between the average molecular weight and the catalytic activity with respect to the amount of hydrogen.
触媒は、好ましくは、これにオレフィンを接触させて少量重合されることからなる予備重合処理に付される。予備重合処理を行うことにより、本重合を行った際に、ゲルの生成を防止できる。その理由としては、本重合を行った際の重合体粒子間で長鎖分岐が均一に分布させることができるためと考えられ、また、そのことにより溶融物性を向上することができる。 The catalyst is preferably subjected to a prepolymerization treatment which consists of contacting it with an olefin and polymerizing it in a small amount. By performing the prepolymerization treatment, gel formation can be prevented when the main polymerization is performed. The reason is considered to be that long-chain branches can be uniformly distributed among the polymer particles when the main polymerization is performed, and the melt physical properties can be improved thereby.
予備重合時に使用するオレフィンは、特に限定はないが、プロピレン、エチレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン、スチレン等を例示することができる。オレフィンのフィード方法は、オレフィンを反応槽に定速的にあるいは定圧状態になるように維持するフィード方法やその組み合わせ、段階的な変化をさせる等、任意の方法が可能である。
予備重合温度、時間は、特に限定されないが、各々−20℃〜100℃、5分〜24時間の範囲であることが好ましい。また、予備重合の量は、予備重合ポリマー量が触媒成分(B)に対し、重量比で好ましくは0.01〜100、さらに好ましくは0.1〜50である。また、予備重合時に触媒成分(C)を添加、又は追加することもできる。また、予備重合終了後に洗浄することも可能である。
The olefin used in the prepolymerization is not particularly limited, but propylene, ethylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, vinylcycloalkane, Styrene and the like can be exemplified. The olefin feed method may be any method such as a feed method for maintaining the olefin at a constant speed or in a constant pressure state, a combination thereof, or a stepwise change.
The prepolymerization temperature and time are not particularly limited, but are preferably in the range of −20 ° C. to 100 ° C. and 5 minutes to 24 hours, respectively. The amount of prepolymerization is preferably 0.01 to 100, more preferably 0.1 to 50 in terms of a weight ratio with respect to the catalyst component (B). Moreover, a catalyst component (C) can also be added or added at the time of prepolymerization. It is also possible to wash after the prepolymerization.
また、上記の各成分の接触の際もしくは接触の後に、ポリエチレン、ポリプロピレン等の重合体、シリカ、チタニア等の無機酸化物の固体を共存させる等の方法も可能である。 In addition, a method of coexisting a polymer such as polyethylene or polypropylene, or a solid of an inorganic oxide such as silica or titania, at the time of contacting or after contacting each of the above components is also possible.
(5)触媒の使用/プロピレン重合について
重合様式は、前記触媒成分(A)、触媒成分(B)および触媒成分(C)を含むオレフィン重合用触媒とモノマーが効率よく接触するならば、あらゆる様式を採用しうる。
具体的には、不活性溶媒を用いるスラリー法、不活性溶媒を実質的に用いずプロピレンを溶媒として用いる、所謂バルク法、溶液重合法あるいは実質的に液体溶媒を用いず各モノマーをガス状に保つ気相法などが採用できる。また、連続重合、回分式重合を行う方法も適用される。また、単段重合以外に、2段以上の多段重合することも可能である。
スラリー重合の場合は、重合溶媒として、ヘキサン、ヘプタン、ペンタン、シクロヘキサン、ベンゼン、トルエン等の飽和脂肪族又は芳香族炭化水素の単独又は混合物が用いられる。
(5) Use of Catalyst / Propylene Polymerization Any polymerization mode can be used as long as the olefin polymerization catalyst including the catalyst component (A), the catalyst component (B), and the catalyst component (C) is in efficient contact with the monomer. Can be adopted.
Specifically, a slurry method using an inert solvent, a so-called bulk method using a propylene as a solvent without using an inert solvent as a solvent, a solution polymerization method, or a monomer without using a liquid solvent substantially. A gas phase method can be used. Moreover, the method of performing continuous polymerization and batch type polymerization is also applied. In addition to single-stage polymerization, it is possible to carry out multistage polymerization of two or more stages.
In the case of slurry polymerization, a saturated aliphatic or aromatic hydrocarbon such as hexane, heptane, pentane, cyclohexane, benzene, toluene, or the like is used alone or as a polymerization solvent.
また、重合温度は、通常0℃以上150℃以下である。特に、バルク重合を用いる場合には、40℃以上が好ましく、更に好ましくは50℃以上である。また上限は80℃以下が好ましく、更に好ましくは75度以下である。
さらに、気相重合を用いる場合には、40℃以上が好ましく、更に好ましくは50℃以上である。また上限は100℃以下が好ましく、更に好ましくは90℃以下である。
重合圧力は、1.0MPa以上5.0MPa以下であることが好ましい。特に、バルク重合を用いる場合には、1.5MPa以上が好ましく、更に好ましくは2.0MPa以上である。また上限は4.0MPa以下が好ましく、更に好ましくは3.5MPa以下である。
The polymerization temperature is usually 0 ° C. or higher and 150 ° C. or lower. In particular, when bulk polymerization is used, the temperature is preferably 40 ° C or higher, more preferably 50 ° C or higher. The upper limit is preferably 80 ° C. or lower, and more preferably 75 ° C. or lower.
Furthermore, when using vapor phase polymerization, 40 degreeC or more is preferable, More preferably, it is 50 degreeC or more. The upper limit is preferably 100 ° C. or lower, more preferably 90 ° C. or lower.
The polymerization pressure is preferably 1.0 MPa or more and 5.0 MPa or less. In particular, when bulk polymerization is used, the pressure is preferably 1.5 MPa or more, more preferably 2.0 MPa or more. The upper limit is preferably 4.0 MPa or less, more preferably 3.5 MPa or less.
さらに、気相重合を用いる場合には、1.5MPa以上が好ましく、更に好ましくは1.7MPa以上である。また上限は2.5MPa以下が好ましく、更に好ましくは2.3MPa以下である。
さらに、分子量調節剤として、また活性向上効果のために、補助的に水素をプロピレンに対してモル比で、好ましくは1.0×10−6以上、1.0×10−2以下の範囲で用いることができる。
Furthermore, when using vapor phase polymerization, 1.5 MPa or more is preferable, and 1.7 MPa or more is more preferable. Further, the upper limit is preferably 2.5 MPa or less, and more preferably 2.3 MPa or less.
Furthermore, as a molecular weight regulator and for an activity improving effect, hydrogen is supplementarily in a molar ratio with respect to propylene, preferably in the range of 1.0 × 10 −6 or more and 1.0 × 10 −2 or less. Can be used.
また、使用する水素の量を変化させることで、生成する重合体の平均分子量の他に、分子量分布、分子量分布の高分子量側への偏り、非常に高い分子量成分、分岐(量、長さ、分布)を制御することができ、そのことにより、MFR、分岐指数、歪硬化度、溶融張力MT、延展性といった、長鎖分岐構造を有するポリプロピレンを特徴付ける溶融物性を制御することができる。
そこで水素は、プロピレンに対するモル比で、1.0×10−6以上で用いるのがよく、好ましくは1.0×10−5以上であり、さらに好ましくは1.0×10−4以上用いるのがよい。また上限に関しては、1.0×10−2以下で用いるのがよく、好ましくは0.9×10−2以下であり、更に好ましくは0.8×10−2以下である。
Also, by changing the amount of hydrogen used, in addition to the average molecular weight of the polymer to be produced, the molecular weight distribution, the deviation of the molecular weight distribution toward the high molecular weight side, very high molecular weight components, branching (amount, length, Distribution) can be controlled, whereby the melt physical properties characterizing polypropylene having a long chain branching structure such as MFR, branching index, strain hardening degree, melt tension MT, and spreadability can be controlled.
Therefore, hydrogen should be used at a molar ratio to propylene of 1.0 × 10 −6 or more, preferably 1.0 × 10 −5 or more, more preferably 1.0 × 10 −4 or more. Is good. Moreover, regarding an upper limit, it is good to use at 1.0 * 10 <-2> or less, Preferably it is 0.9 * 10 <-2> or less, More preferably, it is 0.8 * 10 <-2> or less.
また、プロピレンモノマー以外に、用途に応じて、プロピレンを除く炭素数2〜20のα−オレフィンコモノマー、例えば、エチレン及び/又は1−ブテンをコモノマーとして使用する共重合をおこなってもよい。
そこで、本発明に用いるポリプロピレン樹脂(X)として、触媒活性と溶融物性のバランスのよいものを得るためには、エチレン及び/又は1−ブテンを、プロピレンに対して15モル%以下で使用することが好ましく、より好ましくは10モル%以下であり、更に好ましくは7モル%以下である。
In addition to the propylene monomer, copolymerization using an α-olefin comonomer having 2 to 20 carbon atoms excluding propylene, for example, ethylene and / or 1-butene as a comonomer may be performed depending on the application.
Therefore, in order to obtain a polypropylene resin (X) used in the present invention having a good balance between catalytic activity and melt properties, ethylene and / or 1-butene should be used at 15 mol% or less with respect to propylene. Is more preferable, it is 10 mol% or less, More preferably, it is 7 mol% or less.
ここで例示した触媒、重合法を用いてプロピレンを重合すると、触媒成分[A−1]由来の活性種から、β−メチル脱離と一般に呼ばれる特殊な連鎖移動反応により、ポリマー片末端が主としてプロペニル構造を示し、所謂マクロマーが生成する。このマクロマーは、より高分子量を生成することができ、より共重合性がよい触媒成分[A−2]由来の活性種に取り込まれ、マクロマー共重合が進行すると考えられる。したがって、生成する長鎖分岐構造を有するポリプロピレン樹脂の分岐構造としては、櫛型鎖が主であると考えられる。 When propylene is polymerized using the catalyst and polymerization method exemplified here, one end of the polymer is mainly propenyl from the active species derived from the catalyst component [A-1] by a special chain transfer reaction generally called β-methyl elimination. The structure is shown and so-called macromers are produced. This macromer can generate a higher molecular weight and is taken into the active species derived from the catalyst component [A-2] having a better copolymerization property, and it is considered that the macromer copolymerization proceeds. Therefore, it is considered that the comb chain is the main branch structure of the polypropylene resin having a long chain branch structure to be generated.
II.プロピレン系樹脂(Y)
本発明の溶断シール用ポリプロピレン系樹脂組成物では、上記した長鎖分岐構造を有するポリプロピレン樹脂(X)とともに配合されるプロピレン系樹脂(Y)としては、メタロセン触媒を用いて重合された、ポリプロピレン及び/又はプロピレン・α−オレフィン共重合体を用いる。
プロピレン系樹脂(Y)は、ポリプロピレンのホモポリマーであってもよいし、プロピレンとエチレン及び/又は炭素数4〜20のα−オレフィンとの共重合体であってもよいし、またはそれらの複数の成分の混合物でも良い。プロピレンとエチレン及び/又は炭素数4〜20のα−オレフィンとの共重合体を用いる場合は、コモノマーとしてのエチレンやα−オレフィンの重量分率は、好ましくは5重量%まで、より好ましくは8重量%までのものが好適に用いられる。
II. Propylene resin (Y)
In the polypropylene resin composition for fusing seals of the present invention, as the propylene resin (Y) blended together with the polypropylene resin (X) having the long-chain branched structure described above, polypropylene polymerized using a metallocene catalyst, and A propylene / α-olefin copolymer is used.
The propylene-based resin (Y) may be a homopolymer of polypropylene, a copolymer of propylene and ethylene and / or an α-olefin having 4 to 20 carbon atoms, or a plurality thereof. A mixture of these components may also be used. When a copolymer of propylene and ethylene and / or an α-olefin having 4 to 20 carbon atoms is used, the weight fraction of ethylene or α-olefin as a comonomer is preferably up to 5% by weight, more preferably 8%. Those up to% by weight are preferably used.
プロピレン系樹脂(Y)のMFRは、特に限定されないが、好ましくは1〜50g/10分であり、より好ましくは3〜40g/10分、さらに好ましくは5〜30g/10分である。MFRが1〜50g/10分の範囲にあることで、ポリプロピレン樹脂(X)との相溶性が良いものとなり、共押出し時の溶融押出し加工特性が良好であり、延展性に優れ、高速での共溶融押出し加工が可能となる。 Although MFR of propylene-type resin (Y) is not specifically limited, Preferably it is 1-50 g / 10min, More preferably, it is 3-40 g / 10min, More preferably, it is 5-30 g / 10min. When the MFR is in the range of 1 to 50 g / 10 min, the compatibility with the polypropylene resin (X) is good, the melt-extrusion processing characteristics at the time of co-extrusion are good, the spreadability is excellent, and the speed is high. Co-melt extrusion is possible.
プロピレン系樹脂(Y)の融点は、好ましくは130〜170℃、より好ましくは135〜168℃、また、分子量分布はMw/Mnで好ましくは3.0〜10.0、より好ましくは3.2〜8.0の範囲のものが好適に用いることができる。
なお、融点は示差操作熱量測定(DSC)を用い、一旦200℃まで温度を上げて熱履歴を消去した後、10℃/分の降温速度で40℃まで温度を降下させ、再び昇温速度10℃/分にて測定した際の、吸熱ピークトップの温度とする。Mw/Mnは、前述と同じ方法によって求める。
The melting point of the propylene-based resin (Y) is preferably 130 to 170 ° C., more preferably 135 to 168 ° C., and the molecular weight distribution is preferably Mw / Mn, preferably 3.0 to 10.0, more preferably 3.2. The thing of the range of -8.0 can be used conveniently.
The melting point was determined by using differential operation calorimetry (DSC), once the temperature was raised to 200 ° C. to erase the thermal history, the temperature was lowered to 40 ° C. at a temperature lowering rate of 10 ° C./min, and the temperature rising rate was 10 again. The temperature at the top of the endothermic peak when measured at ° C / min. Mw / Mn is obtained by the same method as described above.
本発明では、クリーン性(ベタツキ、ブリードアウト、低溶出成分等)のために、プロピレン系樹脂(Y)は、メタロセン系触媒により製造されたものを必須とする。 In the present invention, the propylene-based resin (Y) must be produced with a metallocene-based catalyst for cleanliness (stickiness, bleed out, low elution components, etc.).
メタロセン触媒としては、(i)シクロペンタジエニル骨格を有する配位子を含む周期表第4族の遷移金属化合物(いわゆるメタロセン化合物)と、(ii)メタロセン化合物と反応して安定なイオン状態に活性化しうる助触媒と、必要により、(iii)有機アルミニウム化合物とからなる触媒であり、公知の触媒はいずれも使用できる。メタロセン化合物は、好ましくはプロピレンの立体規則性重合が可能な架橋型のメタロセン化合物であり、より好ましくはプロピレンのアイソ規則性重合が可能な架橋型のメタロセン化合物である。 The metallocene catalyst includes (i) a transition metal compound belonging to Group 4 of the periodic table (so-called metallocene compound) containing a ligand having a cyclopentadienyl skeleton, and (ii) a stable ionic state by reacting with the metallocene compound. A catalyst comprising an activatable cocatalyst and, if necessary, (iii) an organoaluminum compound, any known catalyst can be used. The metallocene compound is preferably a bridged metallocene compound capable of stereoregular polymerization of propylene, and more preferably a bridged metallocene compound capable of isoregular polymerization of propylene.
(i)メタロセン化合物としては、例えば、特開昭60−35007号、特開昭61−130314号、特開昭63−295607号、特開平1−275609号、特開平2−41303号、特開平2−131488号、特開平2−76887号、特開平3−163088号、特開平4−300887号、特開平4−211694号、特開平5−43616号、特開平5−209013号、特開平6−239914号、特表平7−504934号、特開平8−85708号の各公報に開示されているもの等が好ましく使用できる。 Examples of (i) metallocene compounds include JP-A-60-35007, JP-A-63-130314, JP-A-63-295607, JP-A-1-275609, JP-A-2-41303, and JP-A-2-41303. JP-A-2-131488, JP-A-2-76887, JP-A-3-163888, JP-A-4-30087, JP-A-4-21694, JP-A-5-43616, JP-A-5-209913, JP-A-6 No. 239914, JP-A-7-504934, JP-A-8-85708, etc. can be preferably used.
更に、具体的には、メチレンビス(2−メチルインデニル)ジルコニウムジクロリド、エチレンビス(2−メチルインデニル)ジルコニウムジクロリド、エチレン1,2−(4−フェニルインデニル)(2−メチル−4−フェニル−4H−アズレニル)ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリド、イソプロピリデン(4−メチルシクロペンタジエニル)(3−t−ブチルインデニル)ジルコニウムジクロリド、ジメチルシリレン(2−メチル−4−t−ブチル−シクロペンタジエニル)(3’−t−ブチル−5’−メチル−シクロペンタジエニル)ジルコニウムジクロリド、ジメチルシリレンビス(インデニル)ジルコニウムジクロリド、ジメチルシリレンビス(4,5,6,7−テトラヒドロインデニル)ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−メチル−4−フェニルインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−エチル−4−フェニルインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[4−(1−フェニル−3−メチルインデニル)]ジルコニウムジクロリド、ジメチルシリレン(フルオレニル)t−ブチルアミドジルコニウムジクロリド、メチルフェニルシリレンビス[1−(2−メチル−4,(1−ナフチル)−インデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−メチル−4,5−ベンゾインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−メチル−4−フェニル−4H−アズレニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−エチル−4−(4−クロロフェニル)−4H−アズレニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−エチル−4−ナフチル−4H−アズレニル)]ジルコニウムジクロリド、ジフェニルシリレンビス[1−(2−メチル−4−(4−クロロフェニル)−4H−アズレニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−エチル−4−(3−フルオロビフェニリル)−4H−アズレニル)]ジルコニウムジクロリド、ジメチルゲルミレンビス[1−(2−エチル−4−(4−クロロフェニル)−4H−アズレニル)]ジルコニウムジクロリド、ジメチルゲルミレンビス[1−(2−エチル−4−フェニルインデニル)]ジルコニウムジクロリドなどのジルコニウム化合物が例示できる。 More specifically, methylene bis (2-methylindenyl) zirconium dichloride, ethylenebis (2-methylindenyl) zirconium dichloride, ethylene 1,2- (4-phenylindenyl) (2-methyl-4-phenyl) -4H-azulenyl) zirconium dichloride, isopropylidene (cyclopentadienyl) (fluorenyl) zirconium dichloride, isopropylidene (4-methylcyclopentadienyl) (3-t-butylindenyl) zirconium dichloride, dimethylsilylene (2- Methyl-4-t-butyl-cyclopentadienyl) (3′-t-butyl-5′-methyl-cyclopentadienyl) zirconium dichloride, dimethylsilylenebis (indenyl) zirconium dichloride, dimethylsilylenebis (4,5 6,7-tetrahydroindenyl) zirconium dichloride, dimethylsilylene bis [1- (2-methyl-4-phenylindenyl)] zirconium dichloride, dimethylsilylene bis [1- (2-ethyl-4-phenylindenyl)] Zirconium dichloride, dimethylsilylenebis [4- (1-phenyl-3-methylindenyl)] zirconium dichloride, dimethylsilylene (fluorenyl) t-butylamidozirconium dichloride, methylphenylsilylenebis [1- (2-methyl-4, (1-naphthyl) -indenyl)] zirconium dichloride, dimethylsilylenebis [1- (2-methyl-4,5-benzoindenyl)] zirconium dichloride, dimethylsilylenebis [1- (2-methyl-4-phenyl-) 4H-azuleni ] Zirconium dichloride, dimethylsilylenebis [1- (2-ethyl-4- (4-chlorophenyl) -4H-azulenyl)] zirconium dichloride, dimethylsilylenebis [1- (2-ethyl-4-naphthyl-4H-azurenyl) ] Zirconium dichloride, diphenylsilylene bis [1- (2-methyl-4- (4-chlorophenyl) -4H-azulenyl)] zirconium dichloride, dimethylsilylene bis [1- (2-ethyl-4- (3-fluorobiphenyl) Ryl) -4H-azurenyl)] zirconium dichloride, dimethylgermylenebis [1- (2-ethyl-4- (4-chlorophenyl) -4H-azurenyl)] zirconium dichloride, dimethylgermylenebis [1- (2-ethyl) -4-phenylindenyl)] zirconium di Zirconium compounds such as chloride can be exemplified.
上記において、ジルコニウムをチタニウム、ハフニウムに置き換えた化合物も同様に使用できる。また、ジルコニウム化合物とハフニウム化合物等の混合物を使用することも好ましい。また、クロリドは他のハロゲン化合物、メチル、イソブチル、ベンジル等の炭化水素基、ジメチルアミド、ジエチルアミド等のアミド基、メトキシ基、フェノキシ基等のアルコキシド基、ヒドリド基等に置き換えることができる。
これらの内、インデニル基あるいはアズレニル基を珪素あるいはゲルミル基で架橋したメタロセン化合物が特に好ましい。
In the above, compounds in which zirconium is replaced with titanium or hafnium can be used in the same manner. It is also preferable to use a mixture of a zirconium compound and a hafnium compound. The chloride can be replaced with other halogen compounds, hydrocarbon groups such as methyl, isobutyl and benzyl, amide groups such as dimethylamide and diethylamide, alkoxide groups such as methoxy group and phenoxy group, hydride groups and the like.
Of these, metallocene compounds obtained by crosslinking an indenyl group or an azulenyl group with silicon or a germyl group are particularly preferable.
また、メタロセン化合物は、無機または有機化合物の担体に担持して使用してもよい。該担体としては、無機または有機化合物の多孔質化合物が好ましく、具体的には、イオン交換性層状珪酸塩、ゼオライト、SiO2、Al2O3、シリカアルミナ、MgO、ZrO2、TiO2、B2O3、CaO、ZnO、BaO、ThO2、等の無機化合物、多孔質のポリオレフィン、スチレン・ジビニルベンゼン共重合体、オレフィン・アクリル酸共重合体等からなる有機化合物、またはこれらの混合物が挙げられる。 The metallocene compound may be used by being supported on an inorganic or organic compound carrier. The carrier is preferably an inorganic or organic porous compound. Specifically, ion-exchange layered silicate, zeolite, SiO 2 , Al 2 O 3 , silica alumina, MgO, ZrO 2 , TiO 2 , B Examples include inorganic compounds such as 2 O 3 , CaO, ZnO, BaO, and ThO 2 , organic compounds composed of porous polyolefin, styrene / divinylbenzene copolymer, olefin / acrylic acid copolymer, and the like, or a mixture thereof. It is done.
(ii)メタロセン化合物と反応して安定なイオン状態に活性化しうる助触媒としては、有機アルミニウムオキシ化合物(たとえば、アルミノキサン化合物)、イオン交換性層状珪酸塩、ルイス酸、ホウ素含有化合物、イオン性化合物、フッ素含有有機化合物等が好ましく挙げられる。 (Ii) As a co-catalyst that can be activated to a stable ionic state by reacting with a metallocene compound, an organoaluminum oxy compound (for example, an aluminoxane compound), an ion-exchange layered silicate, a Lewis acid, a boron-containing compound, an ionic compound Preferred examples include fluorine-containing organic compounds.
(iii)有機アルミニウム化合物としては、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、ジアルキルアルミニウムハライド、アルキルアルミニウムセスキハライド、アルキルアルミニウムジハライド、アルキルアルミニウムハイドライド、有機アルミニウムアルコキサイド等が好ましく挙げられる。 (Iii) Examples of organoaluminum compounds include trialkylaluminum such as triethylaluminum, triisopropylaluminum, triisobutylaluminum, dialkylaluminum halide, alkylaluminum sesquihalide, alkylaluminum dihalide, alkylaluminum hydride, organoaluminum alkoxide. Preferably mentioned.
プロピレン系樹脂(Y)の製造方法については、特に制限はなく、従来公知のスラリー重合法、バルク重合法、気相重合法等のいずれでも製造可能であり、また、範囲内であれば、多段重合法を利用して、ポリプロピレン及びプロピレン・α−オレフィン共重合体を製造することも可能である。 The production method of the propylene-based resin (Y) is not particularly limited, and can be produced by any of the conventionally known slurry polymerization method, bulk polymerization method, gas phase polymerization method, and the like. It is also possible to produce polypropylene and a propylene / α-olefin copolymer using a polymerization method.
また、プロピレン系樹脂(Y)としては、市販のものを用いることができ、例えば、日本ポリプロ(株)製の商品名「ウィンテック」(登録商標)シリーズのものを、適宜用いることができる。 Moreover, as a propylene-type resin (Y), a commercially available thing can be used, For example, the thing of the brand name "Wintec" (trademark) series by Nippon Polypro Co., Ltd. can be used suitably.
III.その他成分
本発明の溶断シール用ポリプロピレン系樹脂組成物には、必要に応じて、ポリプロピレン樹脂(X)及びプロピレン系樹脂(Y)以外のその他の樹脂(例えば、ポリエチレン系重合体、各種エラストマー等)、また、ブロッキング防止剤、酸化防止剤、耐候安定剤、帯電防止剤、離型剤、難燃剤、ワックス、防かび剤、抗菌剤、フィラー、発泡剤などの添加剤を配合してもよい。
III. Other components In the polypropylene resin composition for fusing seals of the present invention, other resins other than the polypropylene resin (X) and the propylene resin (Y) (for example, polyethylene polymers, various elastomers, etc.) are optionally included. In addition, additives such as an antiblocking agent, an antioxidant, a weather resistance stabilizer, an antistatic agent, a release agent, a flame retardant, a wax, an antifungal agent, an antibacterial agent, a filler, and a foaming agent may be blended.
IV.溶融押出し加工
本発明の溶断シール用ポリプロピレン系樹脂組成物は、中間層を介したその両表面に共押出しにて積層され、使用される。
IV. Melt Extrusion Processing The polypropylene resin composition for fusing and sealing of the present invention is used by being laminated on both surfaces via an intermediate layer by coextrusion.
中間層としては、共押出し可能な樹脂であれば何でも良く、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、エチレン・酢酸ビニル共重合体鹸化物、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリプロピレン、ポリ4−メチル−1―ペンテン、ポリカーボネート樹脂、ポリアミド6、ポリアミド66、ポリアミド6・66、ポリアミド12等ポリアミド樹脂などの熱可塑性樹脂が挙げられるが、中でもポリプロピレンが好ましい。
また、最終の形態としては、熱可塑性樹脂フィルム又はシートが好ましく、一軸もしくは二軸延伸が施されていても良く、特に二軸延伸ポリプロピレンが好ましい。
The intermediate layer may be any resin that can be co-extruded, specifically, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, saponified ethylene / vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, Thermoplastic resins such as polyethylene, polypropylene, poly-4-methyl-1-pentene, polycarbonate resin, polyamide 6, polyamide 66, polyamide 6.66, polyamide 12 and other polyamide resins can be mentioned, among which polypropylene is preferable.
The final form is preferably a thermoplastic resin film or sheet, may be uniaxially or biaxially stretched, and is particularly preferably biaxially stretched polypropylene.
好ましい最終の形態として、形成されたポリプロピレンフィルムの厚みは、通常1〜100μm、好ましくは3〜80μm、特に好ましくは10〜60μmである。
また、得られた積層体には、さらに、金属蒸着加工、コロナ放電処理加工、印刷加工等の各種フィルム加工処理を施すことができる。
As a preferable final form, the thickness of the formed polypropylene film is usually 1 to 100 μm, preferably 3 to 80 μm, particularly preferably 10 to 60 μm.
The obtained laminate can be further subjected to various film processing such as metal vapor deposition, corona discharge treatment, and printing.
V.用途
本発明に係る溶断シール用ポリプロピレン系フィルムは、共押出しにて積層されたフィルムを製袋機で袋状にした場合、シール強度が向上する。
そして、本発明に係るポリプロピレン系フィルムは、溶断シールに用いられることが好ましい。
また、本発明に係るポリプロピレン系フィルムを、溶断して、溶断シール袋を形成することが好ましい。
V. Applications When the polypropylene film for fusing sealing according to the present invention is formed into a bag shape by a bag making machine, a film laminated by coextrusion is improved in sealing strength.
And it is preferable that the polypropylene film which concerns on this invention is used for a fusing seal.
Moreover, it is preferable to melt-melt the polypropylene film according to the present invention to form a melt-sealed bag.
以下、本発明を実施例によって具体的に説明するが、本発明は、これらの実施例によって限定されるものではない。
なお、実施例および比較例において、ポリプロピレン系樹脂組成物、各プロピレン系樹脂の物性は、下記の評価方法に従って、測定、評価し、使用した樹脂として、下記のものを用いた。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, the properties of polypropylene resin compositions and propylene resins were measured and evaluated according to the following evaluation methods, and the following resins were used.
1.評価方法
(1)メルトフローレートMFR:
JIS K7210:1999のA法、条件M(230℃、2.16kg荷重)に準拠して測定した。単位はg/10分である。
(2)溶融張力MT:
東洋精機製作所製キャピログラフを用いて、以下の条件で測定した。
・キャピラリー:直径2.0mm、長さ40mm
・シリンダー径:9.55mm
・シリンダー押出速度:20mm/分
・引き取り速度:4.0m/分
・温度:230℃
MTが極めて高い場合には、引き取り速度4.0m/分では、樹脂が破断してしまう場合があり、このような場合には、引取り速度を下げ、引き取りのできる最高の速度における張力をMTとする。単位はグラムである。
1. Evaluation method (1) Melt flow rate MFR:
Measured in accordance with JIS K7210: 1999, Method A, Condition M (230 ° C., 2.16 kg load). The unit is g / 10 minutes.
(2) Melt tension MT:
It measured on the following conditions using the Toyo Seiki Seisakusho Capillograph.
・ Capillary: Diameter 2.0mm, length 40mm
・ Cylinder diameter: 9.55mm
・ Cylinder extrusion speed: 20 mm / min ・ Pickup speed: 4.0 m / min ・ Temperature: 230 ° C.
When the MT is extremely high, the resin may break at a take-up speed of 4.0 m / min. In such a case, the take-up speed is lowered and the tension at the highest speed at which the take-up can be taken is MT. And The unit is gram.
(3)分子量分布Mw/MnおよびMz/Mw:
前述した方法に従って、GPC測定により求めた。
(4)25℃パラキシレン可溶成分量(CXS):
明細書中記載の方法で測定した。
(5)CFC40℃可溶分:
クロス分別法によって、下記の条件により測定した。
装置;三菱化学製 CFC・T150A型
カラム;昭和電工製 AD80M/S 3本
濃度;40mg/10ml
溶媒;o−ジクロロベンゼン
本発明に用いる、ポリプロピレン及び/又はプロピレン・α−オレフィン共重合体からなるプロピレン系樹脂(Y)のCFCによる40℃可溶分は、3.0重量%以下、好ましくは2.5重量%以下である。
ここで、CFC(クロス分別クロマトグラフ)は、ポリマーの結晶性分布を調べる有力な方法であり、o−ジクロルベンゼンを溶媒として40℃以下で溶出したものを用いた。
温度40℃以下の溶出物は、いわゆる非晶性のアタクチックポリプロピレンに相当し、この溶出量が多すぎると、フィルムの“べたつきやブリードアウト”等の原因となる。
(3) Molecular weight distributions Mw / Mn and Mz / Mw:
It was determined by GPC measurement according to the method described above.
(4) 25 ° C. paraxylene soluble component amount (CXS):
It was measured by the method described in the specification.
(5) CFC 40 ° C. soluble matter:
The measurement was carried out by the cross fractionation method under the following conditions.
Equipment: Mitsubishi Chemical CFC / T150A type column; Showa Denko AD80M / S 3 concentration: 40mg / 10ml
Solvent; o-dichlorobenzene The 40 ° C. soluble content by CFC of the propylene-based resin (Y) made of polypropylene and / or propylene / α-olefin copolymer used in the present invention is 3.0% by weight or less, preferably 2.5% by weight or less.
Here, CFC (cross fractionation chromatograph) is an effective method for examining the crystallinity distribution of a polymer, and one eluted with o-dichlorobenzene at 40 ° C. or lower was used.
The eluate having a temperature of 40 ° C. or lower corresponds to so-called amorphous atactic polypropylene, and if this elution amount is too large, it may cause “stickiness or bleed out” of the film.
(6)mm分率:
日本電子社製、GSX−400、FT−NMRを用い、前述したとおり、特開平2009−275207号公報の段落[0053]〜[0065]に記載の方法で測定した。
単位は%である。
(7)分岐度g’:
前述したように、示差屈折計(RI)、粘度検出器(Viscometer)、光散乱検出器(MALLS)を検出器として備えたGPCによって求めた。
(8)歪み硬化度λmax:
伸張粘度測定は以下の条件で行った。
・装置:Rheometorics社製Ares
・冶具:ティーエーインスツルメント社製Extentional Viscosity Fixture
・測定温度:180℃
・歪み速度:0.1/sec
・試験片の作成:プレス成形して18mm×10mm、厚さ0.7mm、のシートを作成する。
λmaxの算出法の詳細は、前述した通りである。
(6) mm fraction:
As described above, measurement was performed by using the method described in paragraphs [0053] to [0065] of JP-A No. 2009-275207 using JSX Corporation GSX-400 and FT-NMR.
The unit is%.
(7) Degree of branching g ′ :
As described above, it was determined by GPC equipped with a differential refractometer (RI), a viscosity detector (Viscometer), and a light scattering detector (MALLS) as detectors.
(8) Strain hardening degree λmax:
The extensional viscosity was measured under the following conditions.
・ Device: Ares manufactured by Rheometrics
・ Jig: EXTENSIONAL VISUALITY FIXTURE, manufactured by TA Instruments
・ Measurement temperature: 180 ℃
-Strain rate: 0.1 / sec
-Preparation of test piece: A sheet of 18 mm x 10 mm and a thickness of 0.7 mm is formed by press molding.
The details of the method of calculating λmax are as described above.
(9)融点:
示差操作熱量計(DSC)を用い、一旦200℃まで温度を上げて熱履歴を消去した後、10℃/分の降温速度で40℃まで温度を降下させ、再び昇温速度10℃/分にて測定した際の、吸熱ピークトップの温度を融点とした。
(10)溶断ヒートシール強度:
得られたフィルムを製袋し、シール部が評点間の中心になる様に15mm幅の短冊を作製後、JIS K7127(1999)「プラスチック−引張特性の試験方法−第3部:フィルム及びシートの試験条件」に記載の方法に準拠して、溶断シール強度を測定した。
(9) Melting point:
Using a differential operating calorimeter (DSC), once the temperature was raised to 200 ° C. and the heat history was erased, the temperature was lowered to 40 ° C. at a rate of 10 ° C./min, and again the temperature rising rate was 10 ° C./min. The temperature at the top of the endothermic peak was measured as the melting point.
(10) Fusing heat seal strength:
The obtained film is made into a bag, and a strip having a width of 15 mm is prepared so that the seal portion is at the center between the scores. Then, JIS K7127 (1999) “Plastics—Testing method of tensile properties—Part 3: Film and sheet The fusing seal strength was measured according to the method described in “Test Conditions”.
(11)フィルムの剥離性[官能試験]:クリーン性の評価
巻取り機に巻取られたフィルムを、A4サイズにカットし、本発明の溶断シール用ポリプロピレン系樹脂組成物を積層した層同士が重なった状態において、硫酸紙を介して、ガラス板で挟んだ後、15kgの荷重を掛け、タバイギアオーブン内に40℃雰囲気下で7日間静置した。
その後、静置した後に手で剥離し、剥がし易さを評価した。評価基準は、次のとおりで、○以上を合格とした。
◎:容易に剥離が可能。
○:剥がす際に若干の抵抗を感じる。
△:剥がす際にかなりの抵抗を感じる。
×:剥がれない。
(11) Peelability of film [Sensory test]: Evaluation of cleanness The layers of the film wound up by a winder cut into A4 size and laminated with the polypropylene resin composition for fusing seal of the present invention In the overlapped state, after being sandwiched by a glass plate through sulfuric acid paper, a load of 15 kg was applied and left in a Tabai gear oven in an atmosphere of 40 ° C. for 7 days.
Then, after leaving still, it peeled by hand and evaluated the ease of peeling. The evaluation criteria are as follows, and a pass of ○ or higher was accepted.
A: Easy peeling is possible.
○: A slight resistance is felt when peeling.
Δ: A considerable resistance is felt when peeling.
X: Not peeled off.
2.使用材料
(1)長鎖分岐構造を有するポリプロピレン樹脂(X)
下記の製造例1で製造した重合体(PP−5)を用いた。
2. Materials used (1) Polypropylene resin having a long-chain branched structure (X)
The polymer (PP-5) produced in Production Example 1 below was used.
[製造例1(PP−5の製造)]
<触媒成分(A)の合成例1>
ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル}]ハフニウムの合成:(成分[A−1](錯体1)の合成):
[Production Example 1 (Production of PP-5)]
<Synthesis example 1 of catalyst component (A)>
Synthesis of dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-i-propylphenyl) indenyl}] hafnium: (component [A-1] (complex 1 ) Synthesis):
(i)4−(4−i−プロピルフェニル)インデンの合成
500mlのガラス製反応容器に、4−i−プロピルフェニルボロン酸15g(91mmol)、ジメトキシエタン(DME)200mlを加え、炭酸セシウム90g(0.28mol)と水100mlの溶液を加え、4−ブロモインデン13g(67mmol)、テトラキストリフェニルホスフィノパラジウム5g(4mmol)を順に加え、80℃で6時間加熱した。
放冷後、反応液を蒸留水500ml中に注ぎ、分液ロートに移しジイソプロピルエーテルで抽出した。エーテル層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、4−(4−i−プロピルフェニル)インデンの無色液体15.4g(収率99%)を得た。
(I) Synthesis of 4- (4-i-propylphenyl) indene To a 500 ml glass reaction vessel, 15 g (91 mmol) of 4-i-propylphenylboronic acid and 200 ml of dimethoxyethane (DME) were added, and 90 g of cesium carbonate ( 0.28 mol) and 100 ml of water were added, 13 g (67 mmol) of 4-bromoindene and 5 g (4 mmol) of tetrakistriphenylphosphinopalladium were added in this order, and the mixture was heated at 80 ° C. for 6 hours.
After allowing to cool, the reaction solution was poured into 500 ml of distilled water, transferred to a separatory funnel, and extracted with diisopropyl ether. The ether layer was washed with saturated brine and dried over sodium sulfate. Sodium sulfate was filtered, the solvent was distilled off under reduced pressure, and the residue was purified by a silica gel column to obtain 15.4 g (yield 99%) of 4- (4-i-propylphenyl) indene as a colorless liquid.
(ii)2−ブロモ−4−(4−i−プロピルフェニル)インデンの合成
500mlのガラス製反応容器に4−(4−i−プロピルフェニル)インデン15.4g(67mmol)、蒸留水7.2ml、DMSO 200mlを加え、ここにN−ブロモスクシンイミド17g(93mmol)を徐々に加えた。そのまま室温で2時間撹拌し、反応液を氷水500ml中に注ぎ入れ、トルエン100mlで3回抽出した。トルエン層を飽和食塩水で洗浄し、p−トルエンスルホン酸2g(11mmol)を加え、水分を除去しながら3時間加熱還流した。反応液を放冷後、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、2−ブロモ−4−(4−i−プロピルフェニル)インデンの黄色液体19.8g(収率96%)を得た。
(Ii) Synthesis of 2-bromo-4- (4-i-propylphenyl) indene In a 500 ml glass reaction vessel, 15.4 g (67 mmol) of 4- (4-i-propylphenyl) indene, 7.2 ml of distilled water DMSO (200 ml) was added, and N-bromosuccinimide (17 g, 93 mmol) was gradually added thereto. The mixture was stirred at room temperature for 2 hours, poured into 500 ml of ice water, and extracted three times with 100 ml of toluene. The toluene layer was washed with saturated brine, 2 g (11 mmol) of p-toluenesulfonic acid was added, and the mixture was heated to reflux for 3 hours while removing moisture. The reaction mixture was allowed to cool, washed with saturated brine, and dried over sodium sulfate. Sodium sulfate was filtered, the solvent was distilled off under reduced pressure, and the residue was purified with a silica gel column to obtain 19.8 g (yield 96%) of 2-bromo-4- (4-i-propylphenyl) indene as a yellow liquid. .
(iii)2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデンの合成
500mlのガラス製反応容器に、2−メチルフラン6.7g(82m1mol)、DME100mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.59mol/Lのn−ブチルリチウム−n−ヘキサン溶液51ml(81mmol)を滴下し、そのまま3時間撹拌した。−70℃に冷却し、そこにトリイソプロピルボレート20ml(87mmol)とDME50mlの溶液を滴下した。滴下後、徐々に室温に戻しながら一夜撹拌した。
反応液に蒸留水50mlを加え加水分解した後、炭酸カリウム223gと水100mlの溶液、2−ブロモ−4−(4−i−プロピルフェニル)インデン19.8gg(63mmol)を順に加え、80℃で加熱し、低沸分を除去しながら3時間反応させた。
放冷後、反応液を蒸留水300ml中に注ぎ、分液ロートに移しジイソプロピルエーテルで3回抽出した、エーテル層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデンの無色液体19.6g(収率99%)を得た。
(Iii) Synthesis of 2- (2-methyl-5-furyl) -4- (4-i-propylphenyl) indene To a 500 ml glass reaction vessel, 6.7 g (82 ml mol) of 2-methylfuran and 100 ml of DME were added. The solution was cooled to -70 ° C in a dry ice-methanol bath. To this, 51 ml (81 mmol) of a 1.59 mol / L n-butyllithium-n-hexane solution was added dropwise and stirred as it was for 3 hours. The solution was cooled to −70 ° C., and a solution of 20 ml (87 mmol) of triisopropyl borate and 50 ml of DME was added dropwise thereto. After dropping, the mixture was stirred overnight while gradually returning to room temperature.
The reaction solution was hydrolyzed by adding 50 ml of distilled water, and then a solution of 223 g of potassium carbonate and 100 ml of water and 19.8 gg (63 mmol) of 2-bromo-4- (4-i-propylphenyl) indene were added in that order at 80 ° C. The mixture was heated and reacted for 3 hours while removing low-boiling components.
After allowing to cool, the reaction solution was poured into 300 ml of distilled water, transferred to a separatory funnel and extracted three times with diisopropyl ether. The ether layer was washed with saturated brine and dried over sodium sulfate. Sodium sulfate was filtered off, the solvent was distilled off under reduced pressure, and the residue was purified with a silica gel column to obtain 19.6 g of 2- (2-methyl-5-furyl) -4- (4-i-propylphenyl) indene as a colorless liquid ( Yield 99%).
(iv)ジメチルビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)シランの合成
500mlのガラス製反応容器に、2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデン9.1g(29mmol)、THF200mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに、1.66mol/Lのn−ブチルリチウム−ヘキサン溶液17ml(28mmol)を滴下し、そのまま3時間撹拌した。−70℃に冷却し、1−メチルイミダゾール0.1ml(2mmol)、ジメチルジクロロシラン1.8g(14mmol)を順に加え、徐々に室温に戻しながら一夜撹拌した。
反応液に蒸留水を加え、分液ロートに移し食塩水で中性になるまで洗浄し、硫酸ナトリウムを加え反応液を乾燥させた。硫酸ナトリウムを濾過し、溶媒を減圧留去して、シリカゲルカラムで精製し、ジメチルビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)シランの淡黄色固体8.6g(収率88%)を得た。
(Iv) Synthesis of dimethylbis (2- (2-methyl-5-furyl) -4- (4-i-propylphenyl) indenyl) silane In a 500 ml glass reaction vessel, 2- (2-methyl-5- Furyl) -4- (4-i-propylphenyl) indene (9.1 g, 29 mmol) and THF (200 ml) were added, and the mixture was cooled to -70 ° C in a dry ice-methanol bath. To this, 17 ml (28 mmol) of a 1.66 mol / L n-butyllithium-hexane solution was added dropwise and stirred as it was for 3 hours. The mixture was cooled to −70 ° C., 0.1 ml (2 mmol) of 1-methylimidazole and 1.8 g (14 mmol) of dimethyldichlorosilane were sequentially added, and the mixture was stirred overnight while gradually returning to room temperature.
Distilled water was added to the reaction solution, transferred to a separatory funnel and washed with brine until neutral, and sodium sulfate was added to dry the reaction solution. Sodium sulfate was filtered, the solvent was distilled off under reduced pressure, and the residue was purified with a silica gel column, and dimethylbis (2- (2-methyl-5-furyl) -4- (4-i-propylphenyl) indenyl) silane pale 8.6 g (88% yield) of a yellow solid was obtained.
(v)ジメチルシリレンビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)ハフニウムジクロライドの合成
500mlのガラス製反応容器に、ジメチルビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)シラン8.6g(13mmol)、ジエチルエーテル300mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.66mol/Lのn−ブチルリチウム−n−ヘキサン溶液15ml(25mmol)を滴下し、3時間撹拌した。反応液の溶媒を減圧で留去し、トルエン400ml、ジエチルエーテル40mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。そこに、四塩化ハフニウム4.0g(13mmol)を加えた。その後、徐々に室温に戻しながら一夜撹拌した。
溶媒を減圧留去し、ジクロロメタン−ヘキサンで再結晶を行い、ジメチルシリレンビス(2−(2−メチル−5−フリル)−4−(4−i−プロピルフェニル)インデニル)ハフニウムジクロライドのラセミ体を黄色結晶として7.6g(収率65%)得た。
得られたラセミ体についての1H−NMRによる同定値を以下に記す。
1H−NMR(C6D6)同定結果:
ラセミ体:δ0.95(s,6H),δ1.10(d,12H),δ2.08(s,6H),δ2.67(m,2H),δ5.80(d,2H),δ6.37(d,2H),δ6.74(dd,2H),δ7.07(d,2H),δ7.13(d,4H),δ7.28(s,2H),δ7.30(d,2H),δ7.83(d,4H)。
(V) Synthesis of dimethylsilylenebis (2- (2-methyl-5-furyl) -4- (4-i-propylphenyl) indenyl) hafnium dichloride Into a 500 ml glass reaction vessel, dimethylbis (2- (2 -Methyl-5-furyl) -4- (4-i-propylphenyl) indenyl) silane (8.6 g, 13 mmol) and diethyl ether (300 ml) were added, and the mixture was cooled to -70 ° C in a dry ice-methanol bath. To this, 15 ml (25 mmol) of a 1.66 mol / L n-butyllithium-n-hexane solution was added dropwise and stirred for 3 hours. The solvent of the reaction solution was distilled off under reduced pressure, 400 ml of toluene and 40 ml of diethyl ether were added, and the solution was cooled to −70 ° C. in a dry ice-methanol bath. Thereto was added 4.0 g (13 mmol) of hafnium tetrachloride. Thereafter, the mixture was stirred overnight while gradually returning to room temperature.
The solvent was distilled off under reduced pressure and recrystallized from dichloromethane-hexane to obtain a racemic dimethylsilylenebis (2- (2-methyl-5-furyl) -4- (4-i-propylphenyl) indenyl) hafnium dichloride. As a yellow crystal, 7.6 g (yield 65%) was obtained.
The identified value by 1 H-NMR of the obtained racemates are described below.
1 H-NMR (C6D6) identification result:
Racemate: δ 0.95 (s, 6H), δ 1.10 (d, 12H), δ 2.08 (s, 6H), δ 2.67 (m, 2H), δ 5.80 (d, 2H), δ6. 37 (d, 2H), δ 6.74 (dd, 2H), δ 7.07 (d, 2H), δ 7.13 (d, 4H), δ 7.28 (s, 2H), δ 7.30 (d, 2H) ), Δ 7.83 (d, 4H).
<触媒成分(A)の合成例2>
rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成:(成分[A−1](錯体2)の合成):
rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成は、特開平11―240909号公報の実施例1に記載の方法と同様にして、実施した。
<Synthesis example 2 of catalyst component (A)>
Synthesis of rac-dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium: (synthesis of component [A-1] (complex 2)):
The synthesis of rac-dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium is carried out according to the method described in Example 1 of JP-A-11-240909. It carried out like.
<触媒合成例1>
(i)イオン交換性層状珪酸塩の化学処理
セパラブルフラスコ中で蒸留水2,264gに96%硫酸(668g)を加えその後、層状珪酸塩としてモンモリロナイト(水沢化学社製ベンクレイSL:平均粒径19μm)400gを加えた。このスラリーを90℃で210分加熱した。この反応スラリーに蒸留水4,000gを加えた後に、ろ過したところ、ケーキ状固体810gを得た。
次に、セパラブルフラスコ中に、硫酸リチウム432g、蒸留水1,924gを加え硫酸リチウム水溶液としたところへ、上記ケーキ状固体を全量投入した。このスラリーを室温で120分反応させた。このスラリーに蒸留水4Lを加えた後にろ過し、更に蒸留水でpH5〜6まで洗浄し、ろ過を行ったところ、ケーキ状固体760gを得た。
得られた固体を窒素気流下100℃で一昼夜予備乾燥後、直径53μm以上の粗大粒子を除去し、更に200℃、2時間、減圧乾燥することにより、化学処理スメクタイト220gを得た。
この化学処理スメクタイトの組成は、Al:6.45重量%、Si:38.30重量%、Mg:0.98重量%、Fe:1.88重量%、Li:0.16重量%であり、Al/Si=0.175[mol/mol]であった。
<Catalyst synthesis example 1>
(I) Chemical treatment of ion-exchange layered silicate In a separable flask, 96% sulfuric acid (668 g) was added to 2,264 g of distilled water, and then montmorillonite (Menzawa Chemical Co., Ltd. Benclay SL: average particle size 19 μm) as a layered silicate ) 400 g was added. The slurry was heated at 90 ° C. for 210 minutes. When 4,000 g of distilled water was added to the reaction slurry and filtered, 810 g of a cake-like solid was obtained.
Next, 432 g of lithium sulfate and 1,924 g of distilled water were added to the separable flask to make a lithium sulfate aqueous solution, and the entire amount of the cake-like solid was charged. The slurry was reacted at room temperature for 120 minutes. 4 L of distilled water was added to this slurry, followed by filtration, and further washing with distilled water to pH 5-6, followed by filtration to obtain 760 g of a cake-like solid.
The obtained solid was preliminarily dried overnight at 100 ° C. under a nitrogen stream, and then coarse particles having a diameter of 53 μm or more were removed.
The composition of this chemically treated smectite is Al: 6.45 wt%, Si: 38.30 wt%, Mg: 0.98 wt%, Fe: 1.88 wt%, Li: 0.16 wt%, Al / Si = 0.175 [mol / mol].
(ii)触媒調製及び予備重合
3つ口フラスコ(容積1L)中に、上で得られた化学処理スメクタイト20gを入れ、ヘプタン(132mL)を加えてスラリーとし、これにトリイソブチルアルミニウム(25mmol:濃度143mg/mLのヘプタン溶液を68.0mL)を加えて1時間攪拌後、ヘプタンで残液率が1/100になるまで洗浄し、全容量を100mLとなるようにヘプタンを加えた。
また、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例1で作製したrac−ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−i−プロピルフェニル)インデニル}]ハフニウム(210μmol)をトルエン(42mL)に溶解し(溶液1)、更に、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例2で作製したrac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム(90μmol)をトルエン(18mL)に溶解した(溶液2)。
先ほどの化学処理スメクタイトが入った1Lフラスコにトリイソブチルアルミニウム(0.84mmol:濃度143mg/mLのヘプタン溶液を1.2mL)を加えた後、上記溶液1を加えて20分間室温で撹拌した。その後更にトリイソブチルアルミニウム(0.36mmol:濃度143mg/mLのヘプタン溶液を0.50mL)を加えた後、上記溶液2を加えて、1時間室温で攪拌した。
その後、ヘプタンを338mL追加し、このスラリーを、1Lオートクレーブに導入した。
オートクレーブの内部温度を40℃にしたのち、プロピレンを10g/時の速度でフィードし、4時間40℃を保ちつつ予備重合を行った。その後、プロピレンフィードを止めて、1時間残重合を行った。得られた触媒スラリーの上澄みをデカンテーションで除去した後、残った部分に、トリイソブチルアルミニウム(6mmol:濃度143mg/mLのヘプタン溶液を17.0mL)を加えて5分攪拌した。
この固体を1時間減圧乾燥することにより、乾燥予備重合触媒52.8gを得た。予備重合倍率(予備重合ポリマー量を固体触媒量で除した値)は1.64であった。
以下、このものを「予備重合触媒1」という。
(Ii) Catalyst preparation and prepolymerization In a three-necked flask (volume: 1 L), 20 g of the chemically treated smectite obtained above was added, and heptane (132 mL) was added to form a slurry, which was triisobutylaluminum (25 mmol: concentration) 143 mg / mL heptane solution (68.0 mL) was added, and the mixture was stirred for 1 hour, washed with heptane until the residual liquid ratio became 1/100, and heptane was added so that the total volume became 100 mL.
In another flask (volume: 200 mL), rac-dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl)-] prepared in Synthesis Example 1 of the catalyst component (A) was used. 4- (4-i-propylphenyl) indenyl}] hafnium (210 μmol) is dissolved in toluene (42 mL) (solution 1), and the catalyst component (A) is synthesized in another flask (volume 200 mL). Rac-dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium (90 μmol) prepared in Example 2 was dissolved in toluene (18 mL) (solution 2 ).
Triisobutylaluminum (0.84 mmol: 1.2 mL of a heptane solution with a concentration of 143 mg / mL) was added to a 1 L flask containing the chemically treated smectite, and then the above solution 1 was added and stirred at room temperature for 20 minutes. Thereafter, triisobutylaluminum (0.36 mmol: 0.50 mL of a heptane solution having a concentration of 143 mg / mL) was added, and then the above solution 2 was added and stirred at room temperature for 1 hour.
Thereafter, 338 mL of heptane was added, and this slurry was introduced into a 1 L autoclave.
After the internal temperature of the autoclave was set to 40 ° C., propylene was fed at a rate of 10 g / hour, and prepolymerization was performed while maintaining the temperature at 40 ° C. for 4 hours. Thereafter, propylene feed was stopped and residual polymerization was carried out for 1 hour. After removing the supernatant of the resulting catalyst slurry by decantation, triisobutylaluminum (6 mmol: 17.0 mL of a heptane solution having a concentration of 143 mg / mL) was added to the remaining portion and stirred for 5 minutes.
This solid was dried under reduced pressure for 1 hour to obtain 52.8 g of a dry prepolymerized catalyst. The prepolymerization ratio (value obtained by dividing the amount of prepolymerized polymer by the amount of solid catalyst) was 1.64.
Hereinafter, this is referred to as “preliminary polymerization catalyst 1”.
<重合>
内容積200リットルの攪拌式オートクレーブ内をプロピレンで十分に置換した後、十分に脱水した液化プロピレン40kgを導入した。これに水素3.8リットル(標準状態の体積として)、トリイソブチルアルミニウム・n−ヘプタン溶液470ml(0.12mol)を加えた後、内温を70℃まで昇温した。次いで、予備重合触媒1を2.8g(予備重合ポリマーを除いた重量で)、アルゴンで圧入して重合を開始させ、内部温度を70℃に維持した。2時間経過後に、エタノールを100ml圧入し、未反応のプロピレンをパージし、オートクレーブ内を窒素置換することにより重合を停止した。
得られたポリマーを90℃窒素気流下で1時間乾燥し、17.4kgの重合体(以下、「PP−5」という)を得た。
触媒活性は、6210(g−PP/g−cat)であった。MFRは1.0g/10分であった。
<Polymerization>
After sufficiently replacing the inside of the stirring autoclave having an internal volume of 200 liters with propylene, 40 kg of sufficiently dehydrated liquefied propylene was introduced. To this was added 3.8 liters of hydrogen (as a standard volume) and 470 ml (0.12 mol) of a triisobutylaluminum / n-heptane solution, and the internal temperature was raised to 70 ° C. Next, 2.8 g of the prepolymerized catalyst 1 (by weight excluding the prepolymerized polymer) was injected with argon to initiate polymerization, and the internal temperature was maintained at 70 ° C. After 2 hours, 100 ml of ethanol was injected, purged of unreacted propylene, and the inside of the autoclave was purged with nitrogen to terminate the polymerization.
The obtained polymer was dried at 90 ° C. under a nitrogen stream for 1 hour to obtain 17.4 kg of a polymer (hereinafter referred to as “PP-5”).
The catalytic activity was 6210 (g-PP / g-cat). The MFR was 1.0 g / 10 minutes.
上記で製造したPP−5[長鎖分岐構造を有するポリプロピレン樹脂成分(X)]の性状を表1に示す。 Table 1 shows the properties of PP-5 [polypropylene resin component (X) having a long chain branched structure] produced above.
(2)プロピレン系樹脂(Y)
プロピレン系樹脂(Y)としては、以下のポリプロピレン(PP−2)、(PP−3)、(PP−4)を使用した。
PP−2;
日本ポリプロ(株)製、商品名ウィンテック(登録商標)WFX4
メタロセン触媒によるプロピレン−エチレンランダム共重合体
MFR=7g/10分、曲げ弾性率=750MPa、ビカット軟化温度=110℃、融点=125℃
PP−3;
日本ポリプロ(株)製、商品名ウィンテック(登録商標)WFW4
メタロセン触媒によるプロピレン−エチレンランダム共重合体
MFR=7g/10分、曲げ弾性率=1000MPa、ビカット軟化温度=125℃、融点=135℃
PP−4;
日本ポリプロ(株)製、商品名ウィンテック(登録商標)WFX6
メタロセン触媒によるプロピレン−エチレンランダム共重合体
MFR=2g/10分、曲げ弾性率=700MPa、ビカット軟化温度=110℃、融点=125℃
(2) Propylene resin (Y)
As the propylene-based resin (Y), the following polypropylenes (PP-2), (PP-3), and (PP-4) were used.
PP-2;
Product name Wintech (registered trademark) WFX4, manufactured by Nippon Polypro Co., Ltd.
Propylene-ethylene random copolymer by metallocene catalyst MFR = 7 g / 10 min, flexural modulus = 750 MPa, Vicat softening temperature = 110 ° C., melting point = 125 ° C.
PP-3;
Product name Wintech (registered trademark) WFW4, manufactured by Nippon Polypro Co., Ltd.
Propylene-ethylene random copolymer by metallocene catalyst MFR = 7 g / 10 min, flexural modulus = 1000 MPa, Vicat softening temperature = 125 ° C., melting point = 135 ° C.
PP-4;
Product name Wintech (registered trademark) WFX6, manufactured by Nippon Polypro Co., Ltd.
Propylene-ethylene random copolymer by metallocene catalyst MFR = 2 g / 10 min, flexural modulus = 700 MPa, Vicat softening temperature = 110 ° C., melting point = 125 ° C.
(3)その他の樹脂
また、その他の樹脂として、以下のポリプロピレン(PP−1)を使用した。
PP−1;
日本ポリプロ(株)製、商品名ノバテック(登録商標)FX4G
チーグラー触媒によるプロピレン・エチレン・ブテンランダム共重合体
MFR=5g/10分、曲げ弾性率=590MPa、ビカット軟化温度=100℃、
融点=128℃
(3) Other resin Moreover, the following polypropylene (PP-1) was used as another resin.
PP-1;
Product name Novatec (registered trademark) FX4G, manufactured by Nippon Polypro Co., Ltd.
Propylene / ethylene / butene random copolymer by Ziegler catalyst MFR = 5 g / 10 min, flexural modulus = 590 MPa, Vicat softening temperature = 100 ° C.
Melting point = 128 ° C.
また、PP−1〜PP−4の主な性状を表2に示す。 The main properties of PP-1 to PP-4 are shown in Table 2.
[実施例1〜9、比較例1〜4]
実施例1では、PP−5:10重量部とPP−2:90重量部をヘンシェルミキサーで混合した後、スクリュー径50mmΦの押出機にて220℃の温度で溶融押出してペレット化した。得られたペレットを、両表層の口径30mmの押出機に投入し、ポリプロピレン(日本ポリプロ(株)製、商品名:ノバテック(登録商標)FL203D)の中間層を介して幅300mmのTダイから、樹脂温度240℃で共押出し後、30℃に設定した冷却ロールにて固化させ、原反を得た。
その原反を、100℃に設定した縦延伸機にて縦方向に5倍延伸し、160℃に設定した横延伸機にて横方向に7倍延伸させ、表層1μm/中間層18μm/表層1μm、全体厚さ20μmの二軸延伸ポリプロピレンフィルムを得た。
得られた二軸延伸ポリプロピレンフィルムの品質を評価した。結果を表3に示す。
実施例2〜9及び比較例1〜4では、表3に示す配合割合で、実施例1と同様に、二軸延伸ポリプロピレンフィルムを得た。
得られた二軸延伸ポリプロピレンフィルムの品質を評価した。結果を表3に示す。
[Examples 1 to 9, Comparative Examples 1 to 4]
In Example 1, PP-5: 10 parts by weight and PP-2: 90 parts by weight were mixed with a Henschel mixer, and then melt-extruded at a temperature of 220 ° C. with an extruder having a screw diameter of 50 mmΦ to be pelletized. The obtained pellets were put into an extruder with a diameter of 30 mm on both surface layers, and from a T-die having a width of 300 mm through an intermediate layer of polypropylene (manufactured by Nippon Polypro Co., Ltd., trade name: Novatec (registered trademark) FL203D), After co-extrusion at a resin temperature of 240 ° C., it was solidified with a cooling roll set at 30 ° C. to obtain a raw fabric.
The original fabric was stretched 5 times in the machine direction by a longitudinal stretching machine set at 100 ° C., and stretched 7 times in the transverse direction by a transverse stretching machine set at 160 ° C., and the surface layer was 1 μm / intermediate layer 18 μm / surface layer 1 μm. A biaxially stretched polypropylene film having an overall thickness of 20 μm was obtained.
The quality of the obtained biaxially stretched polypropylene film was evaluated. The results are shown in Table 3.
In Examples 2 to 9 and Comparative Examples 1 to 4, biaxially stretched polypropylene films were obtained in the same manner as in Example 1 at the blending ratios shown in Table 3.
The quality of the obtained biaxially stretched polypropylene film was evaluated. The results are shown in Table 3.
本発明の溶断シール用ポリプロピレン系樹脂組成物を用いた実施例1〜9は、表3に示すように、溶断シール強度が高く、かつクリーン性(ベタツキ、ブリードアウト、低溶出成分等)に優れたものである。
一方、比較例1〜4では、実施例1〜9と対比して、溶断シール強度が低い。特に、実施例1〜3は、比較例2に対比して、また、実施例4〜6は、比較例3に対比して、さらに、実施例7〜9は、比較例4に対比して、いずれも、溶断シール強度に優れている。
As shown in Table 3, Examples 1 to 9 using the polypropylene resin composition for fusing seals of the present invention have high fusing seal strength and excellent cleanliness (stickiness, bleed out, low elution components, etc.). It is a thing.
On the other hand, in Comparative Examples 1 to 4, the fusing seal strength is low as compared with Examples 1 to 9. In particular, Examples 1 to 3 are compared to Comparative Example 2, Examples 4 to 6 are compared to Comparative Example 3, and Examples 7 to 9 are compared to Comparative Example 4. , Both are excellent in fusing seal strength.
本発明の溶断シール用ポリプロピレン系樹脂組成物は、溶断シール強度が高く、かつクリーン性(ベタツキ、ブリードアウト、低溶出成分等)に優れたものである。そのため、溶断シール用OPPフィルムや溶断シール袋として、好適に用いることができ、産業上の利用性は極めて高いものである。 The polypropylene resin composition for fusing seal of the present invention has high fusing seal strength and excellent cleanliness (stickiness, bleed out, low elution component, etc.). Therefore, it can be suitably used as an OPP film for fusing sealing or a fusing sealing bag, and industrial applicability is extremely high.
Claims (7)
特性(X−i):MFRが0.1〜30.0g/10分である。
特性(X−ii):25℃パラキシレン可溶成分量(CXS)がポリプロピレン樹脂(X)全量に対して5.0重量%未満である。
特性(X−iii):13C−NMRによるプロピレン単位3連鎖のmm分率が95%以上である。
特性(X−iv):GPCによる分子量分布Mw/Mnが3.0〜10.0、且つMz/Mwが2.5〜10.0である。
特性(X−v):絶対分子量Mabsが100万における分岐指数g’は、0.30以上1.00未満である。
特性(X−vi):溶融張力(MT)(単位:g)は、
log(MT)≧−0.9×log(MFR)+0.7 または MT≧15
のいずれかを満たす。 Polypropylene resin (X) having the following properties (Xi) to (X-vi) and having a long chain branched structure (X) 3 to 50% by weight, and polymerized using a metallocene catalyst, and / or Or the propylene-type resin (Y) 50 to 97 weight% which consists of a propylene * alpha-olefin copolymer is contained, The polypropylene-type resin composition for fusing seals characterized by the above-mentioned.
Characteristic (Xi): MFR is 0.1 to 30.0 g / 10 min.
Property (X-ii): 25 degreeC paraxylene soluble component amount (CXS) is less than 5.0 weight% with respect to polypropylene resin (X) whole quantity.
Characteristic (X-iii): mm fraction of propylene unit 3 chain by 13 C-NMR is 95% or more.
Characteristic (X-iv): GPC molecular weight distribution Mw / Mn is 3.0 to 10.0, and Mz / Mw is 2.5 to 10.0.
Characteristic (Xv): The branching index g ′ when the absolute molecular weight Mabs is 1 million is 0.30 or more and less than 1.00.
Characteristic (X-vi): Melt tension (MT) (unit: g) is
log (MT) ≧ −0.9 × log (MFR) +0.7 or MT ≧ 15
Satisfy one of the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013189032A JP2015054919A (en) | 2013-09-12 | 2013-09-12 | Polypropylene resin composition for fusion cutting seal and polypropylene film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013189032A JP2015054919A (en) | 2013-09-12 | 2013-09-12 | Polypropylene resin composition for fusion cutting seal and polypropylene film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015054919A true JP2015054919A (en) | 2015-03-23 |
Family
ID=52819548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013189032A Pending JP2015054919A (en) | 2013-09-12 | 2013-09-12 | Polypropylene resin composition for fusion cutting seal and polypropylene film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015054919A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017014450A (en) * | 2015-07-06 | 2017-01-19 | 日本ポリプロ株式会社 | Polyolefin resin composition for extrusion laminate |
JP2017014449A (en) * | 2015-07-06 | 2017-01-19 | 日本ポリプロ株式会社 | Polyolefin resin composition for extrusion laminate |
JP2017057247A (en) * | 2015-09-14 | 2017-03-23 | 日本ポリプロ株式会社 | Polypropylene resin composition for film for capacitor |
WO2017221985A1 (en) * | 2016-06-24 | 2017-12-28 | 王子ホールディングス株式会社 | Biaxially stretched polypropylene film, metallized film, and capacitor |
JP2018154949A (en) * | 2017-03-21 | 2018-10-04 | 日本ポリプロ株式会社 | Polypropylene fiber |
JP7519153B2 (en) | 2020-04-17 | 2024-07-19 | アールエム東セロ株式会社 | Biaxially oriented polypropylene film for heat sealing |
JP7519152B2 (en) | 2020-04-17 | 2024-07-19 | アールエム東セロ株式会社 | Biaxially oriented polypropylene film and packaging material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004027215A (en) * | 2002-05-09 | 2004-01-29 | Sumitomo Chem Co Ltd | Polypropylene-based resin composition for heat-shrinking film, method for producing the resin composition, and the heat-shrinking film |
JP2007253349A (en) * | 2006-03-20 | 2007-10-04 | Gunze Ltd | Biaxially oriented polypropylene film and packaging bag |
JP2011236375A (en) * | 2010-05-13 | 2011-11-24 | Japan Polypropylene Corp | Method for producing propylene-based polymer having long chain branching |
JP2013010890A (en) * | 2011-06-30 | 2013-01-17 | Japan Polypropylene Corp | Polypropylene resin composition and foamed sheet |
JP2013027977A (en) * | 2011-07-26 | 2013-02-07 | Gunze Ltd | Opp film for fusion-cut sealing and fusion-cut sealing bag |
-
2013
- 2013-09-12 JP JP2013189032A patent/JP2015054919A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004027215A (en) * | 2002-05-09 | 2004-01-29 | Sumitomo Chem Co Ltd | Polypropylene-based resin composition for heat-shrinking film, method for producing the resin composition, and the heat-shrinking film |
JP2007253349A (en) * | 2006-03-20 | 2007-10-04 | Gunze Ltd | Biaxially oriented polypropylene film and packaging bag |
JP2011236375A (en) * | 2010-05-13 | 2011-11-24 | Japan Polypropylene Corp | Method for producing propylene-based polymer having long chain branching |
JP2013010890A (en) * | 2011-06-30 | 2013-01-17 | Japan Polypropylene Corp | Polypropylene resin composition and foamed sheet |
JP2013027977A (en) * | 2011-07-26 | 2013-02-07 | Gunze Ltd | Opp film for fusion-cut sealing and fusion-cut sealing bag |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017014450A (en) * | 2015-07-06 | 2017-01-19 | 日本ポリプロ株式会社 | Polyolefin resin composition for extrusion laminate |
JP2017014449A (en) * | 2015-07-06 | 2017-01-19 | 日本ポリプロ株式会社 | Polyolefin resin composition for extrusion laminate |
JP2017057247A (en) * | 2015-09-14 | 2017-03-23 | 日本ポリプロ株式会社 | Polypropylene resin composition for film for capacitor |
WO2017221985A1 (en) * | 2016-06-24 | 2017-12-28 | 王子ホールディングス株式会社 | Biaxially stretched polypropylene film, metallized film, and capacitor |
JPWO2017221985A1 (en) * | 2016-06-24 | 2019-03-28 | 王子ホールディングス株式会社 | Biaxially stretched polypropylene film, metallized film, and capacitor |
JP2018154949A (en) * | 2017-03-21 | 2018-10-04 | 日本ポリプロ株式会社 | Polypropylene fiber |
JP7519153B2 (en) | 2020-04-17 | 2024-07-19 | アールエム東セロ株式会社 | Biaxially oriented polypropylene film for heat sealing |
JP7519152B2 (en) | 2020-04-17 | 2024-07-19 | アールエム東セロ株式会社 | Biaxially oriented polypropylene film and packaging material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6481279B2 (en) | Polypropylene resin composition for sealant and film comprising the same | |
JP6089765B2 (en) | Polypropylene resin foam sheet and thermoformed article | |
JP6064668B2 (en) | Polypropylene resin composition and foam sheet | |
JP4553966B2 (en) | Propylene polymer | |
JP5624851B2 (en) | Polypropylene resin composition for foam sheet molding and foam sheet | |
JP6209953B2 (en) | Polypropylene resin composition for forming inflation film and method for producing film | |
JP6098274B2 (en) | Propylene-ethylene copolymer resin composition and film | |
JP5342915B2 (en) | Polypropylene thermoforming sheet and its deep-drawn molded body | |
JP5211012B2 (en) | Crystalline polypropylene resin composition | |
JP2013010890A (en) | Polypropylene resin composition and foamed sheet | |
JP2015054919A (en) | Polypropylene resin composition for fusion cutting seal and polypropylene film | |
JP5862486B2 (en) | Polypropylene resin composition for extrusion lamination and laminate | |
JP4990218B2 (en) | Propylene resin composition and molded article thereof | |
JP5849913B2 (en) | Polypropylene resin composition for extrusion lamination and laminate | |
JP5124517B2 (en) | Polypropylene blow molding | |
JP5297834B2 (en) | Polypropylene foam film | |
JP6213176B2 (en) | Polypropylene resin composition for extrusion lamination and laminate | |
JP5286147B2 (en) | Polypropylene deep-drawn body | |
JP5880369B2 (en) | Polypropylene resin composition for extrusion lamination and laminate | |
JP2017101229A (en) | Biaxially stretched polypropylene sheet | |
JP6790946B2 (en) | Polypropylene fiber | |
JP6213180B2 (en) | Polypropylene resin composition for extrusion lamination and laminate | |
JP6213179B2 (en) | Polypropylene resin composition for extrusion lamination and laminate | |
JP5915502B2 (en) | Polypropylene resin composition for profile extrusion molding and molding using the same | |
JP2009299024A (en) | Propylene-based composite resin composition and extruded product using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20150513 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170321 |