JP2015044908A - Conductive composition and heat insulating conductive member - Google Patents
Conductive composition and heat insulating conductive member Download PDFInfo
- Publication number
- JP2015044908A JP2015044908A JP2013175742A JP2013175742A JP2015044908A JP 2015044908 A JP2015044908 A JP 2015044908A JP 2013175742 A JP2013175742 A JP 2013175742A JP 2013175742 A JP2013175742 A JP 2013175742A JP 2015044908 A JP2015044908 A JP 2015044908A
- Authority
- JP
- Japan
- Prior art keywords
- resin beads
- conductive
- average particle
- heat insulating
- particle diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、導電性組成物およびこれを用いて得られる、断熱導電部材に関する。より詳細には、樹脂ビーズおよび導電材料を含む導電性組成物と、これを成形して得られる、断熱導電部材に関する。 The present invention relates to a conductive composition and a heat insulating conductive member obtained using the conductive composition. More specifically, the present invention relates to a conductive composition including resin beads and a conductive material, and a heat insulating conductive member obtained by molding the conductive composition.
従来、高い導電性が求められる用途に用いる材料としては、金属や炭素材料が用いられてきた。中でも炭素材料は、高分子材料との複合化により成形加工性の自由度が向上したことにより、導電性が要求される各分野で用いられている(特許文献1)。 Conventionally, metals and carbon materials have been used as materials used in applications requiring high conductivity. Among these, carbon materials are used in various fields where electrical conductivity is required due to the improvement in freedom of molding processability by compounding with polymer materials (Patent Document 1).
ところで、金属や炭素材料は導電性に優れると同時に、熱伝導性も高い。このため、これらを用いて、導電性に優れ、かつ熱伝導性が低い部材を製造した例はあまり知られていない。 By the way, metals and carbon materials are excellent in conductivity, and at the same time have high thermal conductivity. For this reason, the example which manufactured the member excellent in electroconductivity and low heat conductivity using these is not known so much.
優れた導電性と、低い熱伝導性が同時に要求される部材としては例えば、燃料電池用断熱板が挙げられる。燃料電池は通常、複数の単セルを積層した燃料電池スタックを有する。積層された単セルのうち、燃料電池スタックの端部に位置するものでは、外部への放熱が大きいため、スタック内のセル間で温度が均一にならず、発電性能が低下してしまうことが知られている。このため、端部のセルと、燃料電池スタック以外の部材との間に、断熱性を有する部材を設置することで、セル内の温度を均一に保つ必要がある。この断熱部材は、セルで発電された電気を外部の部材に伝えるために、高い導電性を有することも求められる。また寸法に誤差があると、燃料電池内部での電気伝導が悪化するため、高い寸法精度が必要であり、さらには運転温度付近においてその寸法精度を維持する、耐熱性も求められる。加えて、自動車など、運転中に振動が加わる用途に用いられる燃料電池用断熱板においては、機械特性が良好であることが求められる。 An example of a member that is required to have both excellent conductivity and low thermal conductivity is a fuel cell heat insulating plate. A fuel cell usually has a fuel cell stack in which a plurality of single cells are stacked. Among the stacked single cells, those located at the end of the fuel cell stack have large heat dissipation to the outside, so the temperature is not uniform among the cells in the stack, and the power generation performance may be reduced. Are known. For this reason, it is necessary to keep the temperature in the cell uniform by installing a member having heat insulation between the cell at the end and the member other than the fuel cell stack. This heat insulating member is also required to have high conductivity in order to transmit electricity generated by the cell to an external member. In addition, if there is an error in the dimensions, electrical conduction inside the fuel cell deteriorates, so high dimensional accuracy is required, and heat resistance that maintains the dimensional accuracy near the operating temperature is also required. In addition, in a heat insulating plate for a fuel cell that is used for an application such as an automobile where vibration is applied during operation, it is required that the mechanical characteristics are good.
燃料電池用断熱板においては金属製の波形状板で構成されるものが知られている(特許文献2)。この断熱版は金属製であるが、波形形状であるため、断熱用空気層がセルと外部の部材との間に形成され、断熱性を付与することができるものである。 As a heat insulating plate for a fuel cell, a heat insulating plate made of a metal corrugated plate is known (Patent Document 2). Although this heat insulating plate is made of metal but has a corrugated shape, an air layer for heat insulation is formed between the cell and an external member, and heat insulation can be imparted.
金属製断熱板は、上記の通り複雑な形状を有しているため、量産が難しく、また断熱性も期待されるほどには発揮されない。 Since the metal heat insulating plate has a complicated shape as described above, mass production is difficult, and heat insulating properties are not exhibited as expected.
そこで、本発明は上記の問題点に着目してなされたものであり、その目的は、導電性、機械特性に優れるだけでなく、平板形状であっても、断熱性、特に貫通方向の熱伝導率が小さい、断熱導電部材ならびに、その製造方法を提供することにある。 Therefore, the present invention has been made paying attention to the above-mentioned problems, and its purpose is not only excellent in conductivity and mechanical properties, but also in a flat plate shape, it has heat insulation properties, particularly heat conduction in the penetration direction. An object of the present invention is to provide a heat insulating conductive member having a low rate and a method for manufacturing the same.
本発明は、下記[1]〜[7]に関する。
[1]
熱伝導率が0.5W/m・K以下で平均粒子径が50〜500μmの樹脂ビーズA 100質量部に対し、
平均粒子径が前記樹脂ビーズAの平均粒子径より小さく、1nm〜200μmである粒子と、平均繊維径が前記樹脂ビーズAの平均粒子径より小さく、1nm〜200μmである繊維とからなる群より選ばれる導電材料B 15.5〜70質量部
を含む導電性組成物。
[2]
前記樹脂ビーズAおよび前記導電材料Bの合計100質量部に対して0.1〜30質量部のバインダー樹脂Cをさらに含む、[1]または[2]に記載の導電性組成物。
[3]
導電材料Bが薄片状の粒子である[1]または[2]に記載の導電性組成物。
[4]
樹脂ビーズAがアクリル樹脂ビーズであり、バインダー樹脂Cがエポキシ樹脂である、[2]に記載の導電性組成物。
[5]
[1]〜[4]のいずれか1項に記載の導電性組成物を成形して得られる、断熱導電部材。
[6]
燃料電池のセル端部に設けられる部材である、[5]に記載の断熱導電部材。
[7]
熱伝導率が0.5W/m・K以下で平均粒子径が50〜500μmの樹脂ビーズA 100質量部と、
平均粒子径が前記樹脂ビーズAの平均粒子径より小さく、1nm〜200μmである粒子と、平均繊維径が前記樹脂ビーズAの平均粒子径より小さく、1nm〜200μmである繊維とからなる群より選ばれる導電材料B 15.5〜70質量部
とをドライブレンドした後、加熱圧縮成形することを特徴とする、断熱導電部材の製造方法。
The present invention relates to the following [1] to [7].
[1]
For 100 parts by mass of resin beads A having a thermal conductivity of 0.5 W / m · K or less and an average particle diameter of 50 to 500 μm,
Selected from the group consisting of particles having an average particle diameter smaller than the average particle diameter of the resin beads A and 1 nm to 200 μm and fibers having an average fiber diameter smaller than the average particle diameter of the resin beads A and 1 nm to 200 μm. A conductive composition containing 15.5 to 70 parts by mass of conductive material B.
[2]
The conductive composition according to [1] or [2], further including 0.1 to 30 parts by mass of a binder resin C with respect to 100 parts by mass in total of the resin beads A and the conductive material B.
[3]
The conductive composition according to [1] or [2], wherein the conductive material B is flaky particles.
[4]
The conductive composition according to [2], wherein the resin beads A are acrylic resin beads and the binder resin C is an epoxy resin.
[5]
A heat-insulating conductive member obtained by molding the conductive composition according to any one of [1] to [4].
[6]
The heat insulating conductive member according to [5], which is a member provided at a cell end of the fuel cell.
[7]
100 parts by mass of resin beads A having a thermal conductivity of 0.5 W / m · K or less and an average particle size of 50 to 500 μm;
Selected from the group consisting of particles having an average particle diameter smaller than the average particle diameter of the resin beads A and 1 nm to 200 μm and fibers having an average fiber diameter smaller than the average particle diameter of the resin beads A and 1 nm to 200 μm. A method for producing a heat-insulating conductive member, comprising dry blending 15.5 to 70 parts by mass of a conductive material B to be heated and then compression-molding.
本発明の導電性組成物を用いると、優れた導電性と、低い熱伝導率を兼ね備えた断熱導電部材を、容易に得ることができる。本発明の導電性組成物を用いて得られた断熱導電部材は、固体高分子形燃料電池のセルスタック端部の断熱などに、好適に用いることができる。 When the conductive composition of the present invention is used, a heat insulating conductive member having both excellent conductivity and low thermal conductivity can be easily obtained. The heat insulating conductive member obtained by using the conductive composition of the present invention can be suitably used for heat insulation of the cell stack end of the polymer electrolyte fuel cell.
以下、本発明の実施に形態について説明する。
[導電性組成物]
本発明の導電性組成物は、樹脂ビーズAおよび導電材料Bを少なくとも含み、必要に応じてさらにバインダー樹脂Cを含む。
Embodiments of the present invention will be described below.
[Conductive composition]
The conductive composition of the present invention includes at least resin beads A and a conductive material B, and further includes a binder resin C as necessary.
<樹脂ビーズA>
樹脂ビーズAの熱伝導率は0.5W/m・K以下であり、好ましくは0.4W/m・K以下であり、より好ましくは0.3W/m・K以下である。樹脂ビーズAの熱伝導率がこの範囲であると、導電材料Bの添加量を増やしても、低い熱伝導率を有する断熱導電部材を得ることができるため、優れた導電性と、低い熱伝導率を両立した断熱導電部材を得やすい。樹脂ビーズAの熱伝導率は低ければ低いほど好ましいが、通常は0.05W/m・K以上である。
<Resin beads A>
The thermal conductivity of the resin beads A is 0.5 W / m · K or less, preferably 0.4 W / m · K or less, more preferably 0.3 W / m · K or less. If the thermal conductivity of the resin beads A is within this range, a heat insulating conductive member having a low thermal conductivity can be obtained even if the amount of the conductive material B added is increased. It is easy to obtain a heat-insulating conductive member that satisfies both rates. The thermal conductivity of the resin beads A is preferably as low as possible, but is usually 0.05 W / m · K or more.
樹脂ビーズAの熱伝導率は、十分に充填された厚み1cmのビーズ層の熱伝導率を、熱線法により測定して求める。熱伝導率の測定には例えば、京都電子工業株式会社製の迅速熱伝導率計QTM−500等を用いることができる。
樹脂ビーズAは、中空構造や多孔質構造を有していると、ビーズ中に空気層を含み、熱伝導率が低いビーズとなるため、好ましい。
The thermal conductivity of the resin beads A is obtained by measuring the thermal conductivity of a sufficiently filled 1 cm thick bead layer by a hot wire method. For example, a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Industry Co., Ltd. can be used for measuring the thermal conductivity.
It is preferable that the resin beads A have a hollow structure or a porous structure because the beads contain an air layer and have low thermal conductivity.
また樹脂ビーズAは、加熱プレスにより断熱導電部材を成形する際に強度を保持していられるように、耐熱性が高いことが好ましい。耐熱性の目安としては、ガラス転移点温度(Tg)が110℃以上、熱分解温度が200℃以上であることが好ましい。ガラス転移点温度はJIS K7121に従い、標準状態で試料を調整した上、補外ガラス転移開始温度として求める。熱分解温度は、JIS K7120に準拠して行った熱重量測定で、最初の質量減少の開始温度として求める。樹脂ビーズAのガラス転移点温度および熱分解温度は、高ければ高いどよいが、通常、300℃以下である。 Moreover, it is preferable that the resin beads A have high heat resistance so that the strength can be maintained when the heat insulating conductive member is formed by heating press. As a measure of heat resistance, it is preferable that the glass transition temperature (Tg) is 110 ° C. or higher and the thermal decomposition temperature is 200 ° C. or higher. The glass transition temperature is determined as an extrapolated glass transition start temperature after adjusting the sample in a standard state according to JIS K7121. The thermal decomposition temperature is obtained as a starting temperature of the first mass reduction by thermogravimetry performed according to JIS K7120. The higher the glass transition temperature and the thermal decomposition temperature of the resin beads A, the better, but usually it is 300 ° C. or lower.
また、ビーズ自身が部分的に軟化し融着すると、多量のバインダーを用いることなく、機械的強度に優れた断熱導電部材が得られるため、熱可塑性樹脂からなるビーズであることが好ましい。 Further, when the beads themselves are partially softened and fused, a heat insulating conductive member having excellent mechanical strength can be obtained without using a large amount of binder, and thus beads made of a thermoplastic resin are preferable.
樹脂ビーズAの材質の具体例としては、ポリメタクリル酸メチル(以下PMMAと言う)、架橋ポリスチレン樹脂が挙げられ、好ましくはPMMAである。また架橋されていると、ビーズの強度や耐熱性が向上するため、好ましい。 Specific examples of the material of the resin beads A include polymethyl methacrylate (hereinafter referred to as PMMA) and a crosslinked polystyrene resin, and PMMA is preferable. Crosslinking is preferable because the strength and heat resistance of the beads are improved.
樹脂ビーズAの平均粒子径は、50〜500μmであり、好ましくは100〜400μmであり、より好ましくは150〜350μmである。樹脂ビーズAの平均粒子径はレーザー回折式粒度分布測定装置を用いて体積基準で測定する。 The average particle diameter of the resin beads A is 50 to 500 μm, preferably 100 to 400 μm, and more preferably 150 to 350 μm. The average particle size of the resin beads A is measured on a volume basis using a laser diffraction particle size distribution measuring device.
<導電材料B>
本発明の導電性組成物は、上記樹脂ビーズA 100質量部に対し、15.5〜70質量部、好ましくは15.5〜40質量部、より好ましくは15.5〜25質量部の導電材料Bを含む。
上記導電材料Bとしては、例えば黒鉛または金属からなる粒子および繊維が挙げられ、腐食に強く、軽量であることから、好ましくは黒鉛である。
<Conductive material B>
The conductive composition of the present invention is 15.5 to 70 parts by weight, preferably 15.5 to 40 parts by weight, more preferably 15.5 to 25 parts by weight with respect to 100 parts by weight of the resin beads A. B is included.
Examples of the conductive material B include particles and fibers made of graphite or metal, and are preferably graphite because they are resistant to corrosion and lightweight.
粒子状の導電材料Bの平均粒子径および、繊維状の導電材料Bの平均繊維径は、樹脂ビーズAの平均粒子径より小さく、かつ1nm〜200μm、好ましくは1μm〜100μm、より好ましくは10μm〜100μmである。また導電材料Bが繊維である場合、平均繊維径に対する平均繊維長の比は、5以上であるものが好ましく、10以上であるものがより好ましい。また平均繊維径に対する平均繊維長の比は、通常、10000以下である。導電材料Bの平均粒子径は、レーザー回折式粒度分布計を用いて、体積基準で求める。平均繊維径および平均繊維長は、透過型電子顕微鏡で100〜1000個の繊維を観察し、算術平均して求めることができる。 The average particle diameter of the particulate conductive material B and the average fiber diameter of the fibrous conductive material B are smaller than the average particle diameter of the resin beads A and are 1 nm to 200 μm, preferably 1 μm to 100 μm, more preferably 10 μm to 100 μm. When the conductive material B is a fiber, the ratio of the average fiber length to the average fiber diameter is preferably 5 or more, and more preferably 10 or more. The ratio of the average fiber length to the average fiber diameter is usually 10,000 or less. The average particle diameter of the conductive material B is obtained on a volume basis using a laser diffraction particle size distribution meter. The average fiber diameter and average fiber length can be determined by observing 100 to 1000 fibers with a transmission electron microscope and arithmetically averaging them.
導電材料Bは、薄片状粒子または繊維であると、上記樹脂ビーズAの粒子間の隙間に入り込み、断熱導電部材の全体にわたって導電パスが形成されやすいため好ましい。薄片状の導電材料Bの例としては、鱗片状黒鉛が挙げられる。
また、導電材料Bが黒鉛である場合、ホウ素ドープされた黒鉛であると、断熱導電部材に、特に優れた導電性が付与されるため、好ましい。
The conductive material B is preferably flaky particles or fibers because the conductive material B easily enters a gap between the particles of the resin beads A and easily forms a conductive path over the entire heat insulating conductive member. Examples of the flaky conductive material B include flaky graphite.
In addition, when the conductive material B is graphite, it is preferable that the boron-doped graphite is provided with particularly excellent conductivity to the heat insulating conductive member.
<バインダー樹脂>
導電性組成物は、上記樹脂ビーズA及び導電材料Bの合計100質量部に対し、好ましくは0.1〜30質量部、より好ましくは0.3〜15質量部、さらに好ましくは0.5〜5質量部のバインダー樹脂Cを含む。
バインダー樹脂Cは、熱可塑性樹脂および熱硬化性樹脂のいずれでもよいが、熱硬化性樹脂であることが好ましい。
バインダー樹脂Cは、樹脂ビーズAと導電材料Bをバインドし、断熱導電部材に圧縮強度を付与するために、接着力が強い方が好ましい。
<Binder resin>
The conductive composition is preferably 0.1 to 30 parts by mass, more preferably 0.3 to 15 parts by mass, and still more preferably 0.5 to 100 parts by mass with respect to a total of 100 parts by mass of the resin beads A and the conductive material B. 5 parts by weight of binder resin C is included.
The binder resin C may be either a thermoplastic resin or a thermosetting resin, but is preferably a thermosetting resin.
The binder resin C preferably binds the resin beads A and the conductive material B and has a strong adhesive force in order to impart compressive strength to the heat insulating conductive member.
バインダー樹脂Cは、樹脂ビーズAおよび導電材料Bと、均一に分散するものであると、少量の添加で効果を発揮するため好ましい。従って、バインダー樹脂Cとしては、低粘度の液状樹脂が好ましく、具体的にはJIS Z8803に準拠し、単一円筒型回転粘度計によりロータNo.4を用いて25℃において測定した粘度が、好ましくは0.5〜20Pa・s、より好ましくは1〜15Pa・sである。 It is preferable that the binder resin C is uniformly dispersed with the resin beads A and the conductive material B because the effect can be obtained with a small amount of addition. Therefore, the binder resin C is preferably a low-viscosity liquid resin. Specifically, in accordance with JIS Z8803, the rotor no. The viscosity measured at 25 ° C. using 4 is preferably 0.5 to 20 Pa · s, more preferably 1 to 15 Pa · s.
また断熱導電部材を固体高分子形燃料電池のセル端部の断熱に用いる場合、バインダー樹脂Cは、その硬化物のガラス転移点温度が、固体高分子形燃料電池の作動上限温度の110℃以上であることが望ましい。硬化物のガラス転移点温度は高ければ高いほどよいが、通常、300℃以下である。ガラス転移点温度の測定方法は、上述の樹脂ビーズAのガラス転移点温度の測定と同様である。 When the heat insulating conductive member is used for heat insulation of the cell end of the polymer electrolyte fuel cell, the binder resin C has a glass transition temperature of a cured product of 110 ° C. or more of the upper limit temperature of the polymer electrolyte fuel cell. It is desirable that The higher the glass transition temperature of the cured product, the better, but it is usually 300 ° C. or lower. The measurement method of the glass transition temperature is the same as the measurement of the glass transition temperature of the resin beads A described above.
バインダー樹脂Cは、上述の樹脂ビーズAと相溶性のあるものであることが好ましい。相溶性のある樹脂ビーズAと、バインダー樹脂Cまたはその前駆体との組合せとしては例えば、PMMAなどのアクリル樹脂と、エポキシ樹脂との組み合わせが挙げられる。
バインダー樹脂Cの具体例としては、例えばエポキシ樹脂およびフェノール樹脂などが挙げられ、好ましくはエポキシ樹脂である。
The binder resin C is preferably compatible with the resin beads A described above. Examples of the combination of the compatible resin beads A and the binder resin C or a precursor thereof include a combination of an acrylic resin such as PMMA and an epoxy resin.
Specific examples of the binder resin C include, for example, an epoxy resin and a phenol resin, and an epoxy resin is preferable.
<その他の成分>
本発明の導電性組成物は、上記A〜Cの各成分の他に、断熱性組成物、あるいは導電性組成物に含まれる公知の添加剤等を含んでもよい。
<Other ingredients>
The conductive composition of the present invention may contain, in addition to the above components A to C, a heat insulating composition, a known additive contained in the conductive composition, and the like.
<導電性組成物の製造方法>
導電性組成物は、例えば、上述の各成分を、一般的に用いられている混合機、又は混練機を使用し、均一に混合させる。上記混合機、又は混練機としては、ロール、押出機、ニーダー、バンバリーミキサー、ヘンシェルミキサー、プラネタリーミキサー等が挙げられる。混合の際は樹脂ビーズAと導電材料Bをあらかじめドライブレンドしそれぞれを均一に分散させた材料を用いると、樹脂ビーズAの隙間に導電材料Bが入り込み、断熱導電部材の全体にわたって、導電材料Bが均一なネットワークを形成しやすくなるため、導電性と断熱性とに優れた部材が得られ、好ましい。混練工程ではバインダー樹脂Cを均一に分散させるために、混練工程を複数回、好ましくは3回以上に分けて行い、材料を取りだし再度、混練機に投入する方法を用いる。導電性組成物の生産性の観点から、混練工程は通常、4回以下である。
<Method for producing conductive composition>
In the conductive composition, for example, the above-described components are uniformly mixed using a generally used mixer or kneader. Examples of the mixer or kneader include a roll, an extruder, a kneader, a Banbury mixer, a Henschel mixer, and a planetary mixer. At the time of mixing, if a material in which the resin beads A and the conductive material B are previously dry-blended and uniformly dispersed is used, the conductive material B enters the gap between the resin beads A, and the conductive material B is spread over the entire heat insulating conductive member. Since it becomes easy to form a uniform network, the member excellent in electroconductivity and heat insulation is obtained, and it is preferable. In the kneading step, in order to uniformly disperse the binder resin C, a method is used in which the kneading step is performed a plurality of times, preferably three times or more, the material is taken out and charged again into the kneader. From the viewpoint of productivity of the conductive composition, the kneading step is usually 4 times or less.
[断熱導電部材]
本発明の断熱導電部材は、上述の導電性組成物を成形することにより得られる。その組成は、上述のバインダー樹脂Cが熱硬化性樹脂である場合、成形後はその硬化物になるほかは、上述の導電性組成物の組成と同様である。また断熱導電部材の形状に特に制限は無いが、断熱導電部材の製造を容易にする観点から、平板状であることが好ましい。
[Insulated conductive member]
The heat-insulating conductive member of the present invention is obtained by molding the above-described conductive composition. The composition is the same as the composition of the conductive composition described above except that when the binder resin C is a thermosetting resin, it becomes a cured product after molding. Moreover, there is no restriction | limiting in particular in the shape of a heat insulation conductive member, However, From a viewpoint of making manufacture of a heat insulation conductive member easy, it is preferable that it is flat form.
<断熱導電部材の製造方法>
断熱導電部材を成形する方法としては、特に限定されるものではなく、導電性組成物の成形に用いられる公知の方法で成形することができる。具体的には圧縮成形等の方法が用いられる。例えば、樹脂ビーズAとして、熱可塑性樹脂ビーズを用い、バインダー樹脂Cとして熱硬化性樹脂を用いて、圧縮成形機で加熱しながら成形および熱硬化を行う。次いで、成形品を圧縮したまま冷却し、10〜60℃とすることによって、樹脂ビーズAを融着した状態で固化させ、断熱導電部材を得ると、厚み精度の良い断熱導電部材を得ることができる。加熱の温度条件は、樹脂ビーズAの熱分解温度以下で行なうことが好ましい。
<Method of manufacturing a heat insulating conductive member>
It does not specifically limit as a method to shape | mold a heat insulation electrically-conductive member, It can shape | mold by the well-known method used for shaping | molding of an electroconductive composition. Specifically, a method such as compression molding is used. For example, a thermoplastic resin bead is used as the resin bead A, a thermosetting resin is used as the binder resin C, and molding and thermosetting are performed while heating with a compression molding machine. Next, the molded product is cooled while being compressed, and the temperature is set to 10 to 60 ° C. so that the resin beads A are solidified in a fused state to obtain a heat insulating conductive member. it can. It is preferable to perform the heating temperature condition below the thermal decomposition temperature of the resin beads A.
<導電性>
断熱導電部材は、その体積固有抵抗が500mΩ・cm以下であることが好ましく、300mΩ・cm以下であることがさらに好ましい。体積固有抵抗は小さいほど好ましいが、通常は50mΩ・cm以上である。体積固有抵抗は、JIS K7194に準拠した四探針法で測定することができる。
<Conductivity>
The heat insulating conductive member preferably has a volume specific resistance of 500 mΩ · cm or less, and more preferably 300 mΩ · cm or less. The volume resistivity is preferably as small as possible, but is usually 50 mΩ · cm or more. The volume resistivity can be measured by a four-probe method according to JIS K7194.
断熱導電部材は、貫通方向の抵抗率(貫通方向の体積固有抵抗をあらわす)が5.5Ω・cm以下であることが好ましく、4.0Ω・cm以下であることがさらに好ましい。貫通方向の抵抗率は、小さいほどよいが、通常は0.5mΩ・cm以上である。貫通方向の抵抗率は、試験片を、銅板に金メッキした電極(100mm×50mm×0.3mm)で挟み、0.5MPaの荷重を加え、1Aの定電流を貫通方向に流して、金メッキ電極間の電圧を測定することによって抵抗を測定(測定値:Raとする)する。これから、次式により、貫通方向の抵抗率を算出する。
貫通方向の抵抗率=Ra×(試験片の面積)/(試験片の厚さ)
試験片の形状は20mm×20mm×4mmであることが好ましく、断熱導電部材から切り出した、または断熱導電部材の製造に用いたのと同じ導電性組成物から、同様の成形条件で作製したものを用いる。断熱導電部材の形状などの理由で、上記形状の試験片を用意できない場合、適宜大きさを調整した板状とすることができる。
The heat insulating conductive member preferably has a resistivity in the penetration direction (representing a volume resistivity in the penetration direction) of 5.5 Ω · cm or less, and more preferably 4.0 Ω · cm or less. The resistivity in the penetration direction is preferably as small as possible, but is usually 0.5 mΩ · cm or more. The resistivity in the penetration direction is determined by sandwiching the test piece between the gold-plated electrodes (100 mm x 50 mm x 0.3 mm) on the copper plate, applying a 0.5 MPa load, and passing a constant current of 1 A in the penetration direction. The resistance is measured by measuring the voltage (measured value: Ra). From this, the resistivity in the penetration direction is calculated by the following equation.
Resistivity in penetration direction = Ra × (area of test piece) / (thickness of test piece)
It is preferable that the shape of the test piece is 20 mm × 20 mm × 4 mm, and the one prepared from the same conductive composition cut out from the heat insulating conductive member or used for manufacturing the heat insulating conductive member under the same molding conditions. Use. When the test piece of the said shape cannot be prepared for reasons, such as the shape of a heat insulation electrically-conductive member, it can be set as the plate shape which adjusted the magnitude | size suitably.
[熱伝導性]
断熱導電部材は、板厚方向(貫通方向)の熱伝導率が1.0W/m・K以下であることが好ましく、0.5W/m・K以下であることがさらに好ましい。熱伝導率が1.0W/m・Kより大きくなると、例えば燃料電池スタック端部の断熱部材として用いた場合、上記スタック内の温度勾配ができてしまい好ましくない。熱伝導率は、米国規格ASTM E1530に準拠して、好ましくは50mm×50mm×4mmの試験片について測定を行う。断熱導電部材の形状などの理由により、この形状の試験片が用意できない場合は、適宜大きさを変更してもよい。
[Thermal conductivity]
The heat insulating conductive member preferably has a thermal conductivity in the thickness direction (through direction) of 1.0 W / m · K or less, and more preferably 0.5 W / m · K or less. When the thermal conductivity is greater than 1.0 W / m · K, for example, when used as a heat insulating member at the end of the fuel cell stack, a temperature gradient in the stack is formed, which is not preferable. The thermal conductivity is preferably measured on a test piece of 50 mm × 50 mm × 4 mm in accordance with US standard ASTM E1530. When a test piece having this shape cannot be prepared due to the shape of the heat insulating conductive member, the size may be changed as appropriate.
[機械特性]
また上記断熱導電部材は、JIS K7181に準拠して圧縮特性を測定した際に、3MPaの圧縮荷重下での圧縮変形が、試験片の厚みの2%以下であることが好ましく、1%以下であることがより好ましい。圧縮変形は小さいほど好ましいが、通常は上記試験条件で0.1%以上である。試験片は、断熱導電部材を50mm×50mm×4mmに切削したものであることが好ましいが、断熱導電部材の形状などにより、この通りの試験片を作製できない場合は、適宜大きさを変更したり、断熱導電部材の製造に用いたのと同じ導電性組成物を用いて、同じ成形条件で成形したものを用いてもよい。
[Mechanical properties]
In addition, when the compressive properties are measured in accordance with JIS K7181, the heat insulating conductive member preferably has a compressive deformation under a compressive load of 3 MPa of 2% or less of the thickness of the test piece, preferably 1% or less. More preferably. The smaller the compressive deformation, the better, but usually 0.1% or more under the above test conditions. It is preferable that the test piece is obtained by cutting the heat insulating conductive member into 50 mm × 50 mm × 4 mm. However, if the test piece cannot be produced according to the shape of the heat insulating conductive member, the size of the test piece may be changed as appropriate. Alternatively, the same conductive composition used for the production of the heat insulating conductive member may be used which is molded under the same molding conditions.
以下、本発明を実施例により更に詳細に説明するが、本発明は実施例になんら限定されるものではない。
(実施例1)
[ホウ素ドープ黒鉛の作製]
鱗片状の天然黒鉛としてブラジル産鱗片状天然黒鉛Micrograf99860HPに炭化ホウ素(B4C)0.6kgを加え、ヘンシェルミキサー(登録商標)にて800rpmで5分間混合した。これを内径40cm、容積40リットルの蓋付き黒鉛ルツボに封入し、黒鉛ヒーターを用いた黒鉛化炉に入れてアルゴンガス雰囲気下2,900℃の温度で黒鉛化した。これを放冷後、粉末を取り出し、14kgの粉末を得た。得られた黒鉛微粉は平均粒子径20.5μm、ホウ素含有量1.3質量%であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to an Example at all.
(Example 1)
[Production of boron-doped graphite]
As scale-like natural graphite, 0.6 kg of boron carbide (B 4 C) was added to Brazil-made scale-like natural graphite Micrograf 99860HP, and mixed with a Henschel mixer (registered trademark) at 800 rpm for 5 minutes. This was sealed in a graphite crucible with a lid having an inner diameter of 40 cm and a volume of 40 liters, placed in a graphitization furnace using a graphite heater, and graphitized at a temperature of 2,900 ° C. in an argon gas atmosphere. After standing to cool, the powder was taken out to obtain 14 kg of powder. The obtained graphite fine powder had an average particle size of 20.5 μm and a boron content of 1.3% by mass.
[ポリメタクリル酸メチル微粒子]
積水化成品工業社製の多中空架橋ポリメタクリル酸メチル(PMMA)粒子(中空度合27%,平均粒子径200μm)を準備した。このPMMA粒子の熱伝導率は0.13W/m・Kであった。
[Polymethyl methacrylate fine particles]
Multi-hollow crosslinked polymethyl methacrylate (PMMA) particles (hollowness 27%, average particle size 200 μm) manufactured by Sekisui Plastics Co., Ltd. were prepared. The thermal conductivity of the PMMA particles was 0.13 W / m · K.
[エポキシ樹脂]
バインダー樹脂前駆体として、スリーボンド社製のエポキシ樹脂2210を用意した。
[Epoxy resin]
As a binder resin precursor, an epoxy resin 2210 manufactured by Three Bond Co., Ltd. was prepared.
[混合]
前述のホウ素含有黒鉛微粉9.5g、多中空PMMA粒子60gを秤量した。
秤量した黒鉛とPMMA粒子を袋に入れ、袋を充分振とうすることにより、ドライブレンドを行なった。黒鉛とPMMA粒子が均一に分散したところで、前述のエポキシ樹脂2210 0.8gを黒鉛-PMMA粒子混合物中に秤量した。秤量した各材料を、ラボプラストミル(東洋精機社製,型式50C150)に投入して、15rpmで室温で4分間混練し、導電性組成物を得た。実施例で用いたホウ素含有黒鉛微粉、PMMA粒子、エポキシ樹脂の量をそれぞれ表1に示す。
[mixture]
The aforementioned boron-containing graphite fine powder 9.5 g and multi-hollow PMMA particles 60 g were weighed.
Weighed graphite and PMMA particles were put into a bag, and the bag was sufficiently shaken to perform dry blending. When graphite and PMMA particles were uniformly dispersed, 0.8 g of the aforementioned epoxy resin 2210 was weighed into the graphite-PMMA particle mixture. Each weighed material was put into a lab plast mill (manufactured by Toyo Seiki Co., Ltd., Model 50C150) and kneaded at 15 rpm at room temperature for 4 minutes to obtain a conductive composition. Table 1 shows the amounts of boron-containing graphite fine powder, PMMA particles, and epoxy resin used in the examples.
[成形]
上記の混合工程で得られた導電性組成物を、平板金型(寸法100mm×100mm×4mm厚)に40g投入して、50t油圧成形プレス(渡辺機械製作所社製)で135℃、圧力50tで15分間、加圧加熱した後に、圧力50tをかけたまま45℃まで冷却することで、断熱導電部材を得た。
[Molding]
40 g of the conductive composition obtained in the above mixing step is put into a flat plate mold (dimensions 100 mm × 100 mm × 4 mm thickness), and 135 ° C. and pressure 50 t with a 50 t hydraulic forming press (manufactured by Watanabe Machine Seisakusho). After heat-pressing for 15 minutes, the heat-insulating conductive member was obtained by cooling to 45 ° C. while applying a pressure of 50 t.
[導電性、熱伝導性、圧縮特性の測定]
得られた断熱導電部材について、上述の方法により貫通方向の抵抗率、熱伝導性および圧縮特性を測定した。これらの測定結果を表1に示す。
[Measurement of conductivity, thermal conductivity and compression characteristics]
About the obtained heat insulation electrically-conductive member, the resistivity, thermal conductivity, and compression characteristic of the penetration direction were measured by the above-mentioned method. These measurement results are shown in Table 1.
(実施例2)
実施例1において、エポキシ樹脂の使用量を、表1に示す通り変更した以外は、実施例1と同様にして断熱導電部材を作製した。
その後、得られた断熱導電部材を用いて、実施例1と同様にして導電性、熱伝導性、圧縮特性について測定した。測定結果を表1に示す。
(Example 2)
In Example 1, a heat insulating conductive member was produced in the same manner as in Example 1 except that the amount of the epoxy resin used was changed as shown in Table 1.
Then, using the obtained heat insulating conductive member, the conductivity, thermal conductivity, and compression characteristics were measured in the same manner as in Example 1. The measurement results are shown in Table 1.
(比較例1)
実施例1の「混合」工程において、黒鉛の秤量(含有量)を、表1に示すように、8.9gにした以外は、実施例1と同様にして断熱導電部材を作製した。
その後、得られた断熱導電部材について、実施例1と同様にして導電性、熱伝導性、圧縮特性について測定した。測定結果を表1に示す。
(Comparative Example 1)
A heat-insulating conductive member was produced in the same manner as in Example 1 except that the weight (content) of graphite was 8.9 g as shown in Table 1 in the “mixing” step of Example 1.
Then, about the obtained heat insulation electrically-conductive member, it carried out similarly to Example 1, and measured about electroconductivity, thermal conductivity, and the compression characteristic. The measurement results are shown in Table 1.
Claims (7)
平均粒子径が前記樹脂ビーズAの平均粒子径より小さく、1nm〜200μmである粒子と、平均繊維径が前記樹脂ビーズAの平均粒子径より小さく、1nm〜200μmである繊維とからなる群より選ばれる導電材料B 15.5〜70質量部
を含む導電性組成物。 For 100 parts by mass of resin beads A having a thermal conductivity of 0.5 W / m · K or less and an average particle diameter of 50 to 500 μm,
Selected from the group consisting of particles having an average particle diameter smaller than the average particle diameter of the resin beads A and 1 nm to 200 μm and fibers having an average fiber diameter smaller than the average particle diameter of the resin beads A and 1 nm to 200 μm. A conductive composition containing 15.5 to 70 parts by mass of conductive material B.
平均粒子径が前記樹脂ビーズAの平均粒子径より小さく、1nm〜200μmである粒子と、平均繊維径が前記樹脂ビーズAの平均粒子径より小さく、1nm〜200μmである繊維とからなる群より選ばれる導電材料B 15.5〜70質量部
とをドライブレンドした後、加熱圧縮成形することを特徴とする、断熱導電部材の製造方法。 100 parts by mass of resin beads A having a thermal conductivity of 0.5 W / m · K or less and an average particle size of 50 to 500 μm;
Selected from the group consisting of particles having an average particle diameter smaller than the average particle diameter of the resin beads A and 1 nm to 200 μm and fibers having an average fiber diameter smaller than the average particle diameter of the resin beads A and 1 nm to 200 μm. A method for producing a heat-insulating conductive member, comprising dry blending 15.5 to 70 parts by mass of a conductive material B to be heated and then compression-molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013175742A JP2015044908A (en) | 2013-08-27 | 2013-08-27 | Conductive composition and heat insulating conductive member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013175742A JP2015044908A (en) | 2013-08-27 | 2013-08-27 | Conductive composition and heat insulating conductive member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015044908A true JP2015044908A (en) | 2015-03-12 |
Family
ID=52670692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013175742A Pending JP2015044908A (en) | 2013-08-27 | 2013-08-27 | Conductive composition and heat insulating conductive member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015044908A (en) |
-
2013
- 2013-08-27 JP JP2013175742A patent/JP2015044908A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Si et al. | Enhancing thermal conductivity via conductive network conversion from high to low thermal dissipation in polydimethylsiloxane composites | |
Radzuan et al. | The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites | |
Lee et al. | Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells | |
JP3850427B2 (en) | Carbon fiber bonded body and composite material using the same | |
JP3720044B1 (en) | Composite material | |
Basuli et al. | Electrical properties and electromagnetic interference shielding effectiveness of multiwalled carbon nanotubes‐reinforced EMA nanocomposites | |
Sulong et al. | Rheological and mechanical properties of carbon nanotube/Graphite/SS316L/polypropylene nanocomposite for a conductive polymer composite | |
JP5814688B2 (en) | Thermally conductive resin composition and heat dissipation material containing the same | |
Weng et al. | Preparation and properties of boron nitride/epoxy composites with high thermal conductivity and electrical insulation | |
CN101870812A (en) | Conductive nylon 66 material and preparation method thereof | |
Mun et al. | Thermal and electrical properties of epoxy composite with expanded graphite-ceramic core-shell hybrids | |
Saadat et al. | Expanded and nano-structured carbonaceous graphite for high performance anisotropic fuel cell polymer composites | |
JP2001126744A (en) | Separator for fuel cell and fabricating method therefor | |
WO2018131566A1 (en) | Separator for fuel cells and method for producing same | |
Russo et al. | Thermal conductivity and dielectric properties of polypropylene‐based hybrid compounds containing multiwalled carbon nanotubes | |
Bühler et al. | Highly conductive polypropylene‐based composites for bipolar plates for polymer electrolyte membrane fuel cells | |
Almazrouei et al. | Robust surface-engineered tape-cast and extrusion methods to fabricate electrically-conductive poly (vinylidene fluoride)/carbon nanotube filaments for corrosion-resistant 3D printing applications | |
Li et al. | High-performance epoxy resin/silica coated flake graphite composites for thermal conductivity and electrical insulation | |
JP5224860B2 (en) | Fuel cell separator and method for producing the same | |
Zhang et al. | Influence of rigid particles on thermal conductivity enhancement of polydimethylsiloxane composite during spatial confining forced network assembly | |
JP2015044908A (en) | Conductive composition and heat insulating conductive member | |
JP2020139018A (en) | Carbon member for cell and method of manufacturing the same, bipolar plate for redox flow cell, and separator for fuel cell | |
Yan et al. | Strategy for Constructing Epoxy Composites with High Effective Thermal Conductive Capability Based on Three-Dimensional Cellulose and Multiwalled Carbon Nanotube Network | |
JP2004119346A (en) | Molding material for solid polymer type fuel cell separator, its manufacturing method and solid polymer type fuel cell separator | |
JP5939543B2 (en) | Method for producing porous carbon material |