Nothing Special   »   [go: up one dir, main page]

JP2015041458A - Battery separator - Google Patents

Battery separator Download PDF

Info

Publication number
JP2015041458A
JP2015041458A JP2013171198A JP2013171198A JP2015041458A JP 2015041458 A JP2015041458 A JP 2015041458A JP 2013171198 A JP2013171198 A JP 2013171198A JP 2013171198 A JP2013171198 A JP 2013171198A JP 2015041458 A JP2015041458 A JP 2015041458A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
polyolefin
mass
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013171198A
Other languages
Japanese (ja)
Inventor
展章 廣田
Nobuaki Hirota
展章 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2013171198A priority Critical patent/JP2015041458A/en
Publication of JP2015041458A publication Critical patent/JP2015041458A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

【課題】本発明の課題は、湿式不織布を親水化処理した電池用セパレータに関し、不織布の製造安定性が良好で、電池製造時のショートによる不良発生率を低減すると共に、保液性に優れ、長寿命である電池用セパレータを提供することにある。【解決手段】繊維径5μmを超え、捲縮を有するポリオレフィン系芯鞘型複合繊維の含有率が、不織布を構成する繊維の85質量%を超えて含有され、かつ不織布を構成する繊維の25質量%以上が繊維径5μmを超え、8μm未満である湿式不織布を親水化処理したことを特徴とする電池用セパレータであり、不織布の親水化処理としてスルホン化処理がより好ましく用いられる。【選択図】なしAn object of the present invention is to provide a battery separator in which a wet non-woven fabric is subjected to a hydrophilic treatment, which has good production stability of the non-woven fabric, reduces a defect occurrence rate due to a short circuit during battery production, and has excellent liquid retention. It is to provide a battery separator having a long life. SOLUTION: The content of the polyolefin-based core-sheath type composite fiber having a fiber diameter of 5 μm and having a crimp is more than 85% by mass of the fiber constituting the nonwoven fabric, and 25% by mass of the fiber constituting the nonwoven fabric. % Of the fiber diameter is more than 5 μm and less than 8 μm, the wet nonwoven fabric is hydrophilically treated, and the sulfonation treatment is more preferably used as the hydrophilic treatment of the nonwoven fabric. [Selection diagram] None

Description

本発明は、ニッケル−カドミウム電池、ニッケル−亜鉛電池、ニッケル−水素電池等のアルカリ二次電池に好適に使用できる電池用セパレータに関する。   The present invention relates to a battery separator that can be suitably used for alkaline secondary batteries such as nickel-cadmium batteries, nickel-zinc batteries, and nickel-hydrogen batteries.

ニッケル−カドミウム電池やニッケル−水素電池等のアルカリ二次電池は、充放電特性、過充放電特性に優れ、長寿命で繰り返し使用できるため、コードレス電話、ノートパソコン、オーディオ機器等の小型電子機器の他、電動工具、電動自転車等の小型動力用途、ハイブリッド自動車、電気自動車等の大型動力用途等にも広く使用されている。このアルカリ二次電池に用いられている電池用セパレータの役割としては、正極と負極の分離、短絡の防止、電解液(高濃度アルカリ性水溶液)の吸液及び保持、また、電極反応により生じるガスの透過等が挙げられる。   Alkaline secondary batteries such as nickel-cadmium batteries and nickel-hydrogen batteries have excellent charge / discharge characteristics and overcharge / discharge characteristics, and can be used repeatedly with a long service life. Therefore, they can be used in small electronic devices such as cordless phones, laptop computers, and audio equipment. In addition, it is widely used for small power applications such as electric tools and electric bicycles, and large power applications such as hybrid cars and electric cars. The role of the battery separator used in the alkaline secondary battery is to separate the positive electrode and the negative electrode, prevent short circuit, absorb and retain the electrolyte (high concentration alkaline aqueous solution), and prevent the gas generated by the electrode reaction. For example, transmission.

従来、電池用セパレータとしては、一般に不織布が用いられてきた。ニッケル−カドミウム電池では、電解液に濡れやすく、その保液量が大きく、しかも電解液を含んだ状態で電気抵抗の低いポリアミド系繊維からなる不織布が使用されてきた。しかし、ニッケル−水素電池では、ポリアミド系繊維の加水分解による分解生成物が自己放電を促進してしまうために、耐アルカリ性及び耐酸化性に優れたポリオレフィン系繊維を主体とする不織布が主として使用されている。   Conventionally, a nonwoven fabric has generally been used as a battery separator. In a nickel-cadmium battery, a nonwoven fabric made of a polyamide fiber that is easily wetted by an electrolyte, has a large amount of liquid retention, and has a low electrical resistance in a state containing the electrolyte has been used. However, in nickel-hydrogen batteries, the decomposition products of polyamide fiber hydrolysis promote self-discharge, so nonwoven fabrics mainly composed of polyolefin fibers with excellent alkali resistance and oxidation resistance are mainly used. ing.

一方、ポリオレフィン系繊維を主体とする不織布は親水性が低いため、スルホン化処理、親水性単量体のグラフト処理、コロナ放電処理、界面活性剤付与処理等が施されるのが一般的である。   On the other hand, since nonwoven fabrics mainly composed of polyolefin fibers have low hydrophilicity, they are generally subjected to sulfonation treatment, hydrophilic monomer grafting treatment, corona discharge treatment, surfactant application treatment, and the like. .

このうち、スルホン化処理は、発煙硫酸や濃硫酸あるいは三酸化硫黄ガス等によって不織布にスルホン酸基を導入する方法である。スルホン化処理を施した不織布は電解液の吸液性や保液性が優れると共に、電池の自己放電反応を抑制する効果が見られる。   Of these, the sulfonation treatment is a method of introducing sulfonic acid groups into the nonwoven fabric with fuming sulfuric acid, concentrated sulfuric acid, sulfur trioxide gas or the like. The nonwoven fabric subjected to the sulfonation treatment is excellent in the ability to absorb and retain the electrolyte, and has the effect of suppressing the self-discharge reaction of the battery.

スルホン化処理に用いられる不織布としては、乾式不織布又は湿式不織布が用いられるが、電池の高容量化や内部短絡防止のため、地合の均一性に優れる不織布が求められる。地合の均一性の良さを考慮すると、一般的に乾式不織布よりも湿式不織布が優れている。ポリオレフィン系繊維は、耐アルカリ性や耐酸化性に優れるため、電池の長寿命化に有効であるが、ポリオレフィン系繊維のみからなる不織布の製造は比較的難しい。特に湿式不織布の製造においては、加熱乾燥時の面割れ等が生じやすく、地合が不均一になる問題や製造安定性に劣るという問題があった。このため、ポリオレフィン系繊維と湿熱接着性に優れたエチレン−ビニルアルコール共重合体繊維を併用し、製造安定性を改善する試みが行われてきた(例えば、特許文献1参照)。しかしながら、エチレン−ビニルアルコール共重合体繊維に導入されたスルホン酸基は強アルカリ電解液中で劣化しやすい。そこでポリオレフィン系繊維の熱挙動を制御することにより、不織布の製造安定性を改善する試みがなされてきた(例えば、特許文献2参照)。   As the nonwoven fabric used for the sulfonation treatment, a dry nonwoven fabric or a wet nonwoven fabric is used. However, a nonwoven fabric excellent in uniformity of formation is required in order to increase the battery capacity and prevent internal short circuit. Considering good uniformity of formation, wet nonwoven fabrics are generally superior to dry nonwoven fabrics. Polyolefin fibers are excellent in alkali resistance and oxidation resistance, and are effective in extending the life of batteries. However, it is relatively difficult to produce a nonwoven fabric made only of polyolefin fibers. In particular, in the production of wet nonwoven fabrics, there are problems such as surface cracks during heating and drying, resulting in uneven formation and poor production stability. For this reason, attempts have been made to improve production stability by using polyolefin fibers and ethylene-vinyl alcohol copolymer fibers excellent in wet heat adhesion (see, for example, Patent Document 1). However, the sulfonic acid group introduced into the ethylene-vinyl alcohol copolymer fiber tends to deteriorate in the strong alkaline electrolyte. Therefore, attempts have been made to improve the production stability of nonwoven fabrics by controlling the thermal behavior of polyolefin fibers (see, for example, Patent Document 2).

また、ポリオレフィン系芯鞘型複合繊維を主体とするポリオレフィン系不織布は、過乾燥となり、熱融着性のポリオレフィン系芯鞘型複合繊維の溶融が進み過ぎると、不織布の伸縮性や引裂強度が低下する傾向があり、セパレータとして使用した場合、電池製造時に、電極板のバリがセパレータを突き抜けてショートしたり、電極板の端部とセパレータが接している部分でセパレータが断裂したりして、ショートが発生し、電池製造の歩留まりが低下するという問題があった。   In addition, polyolefin nonwoven fabrics mainly composed of polyolefin core-sheath composite fibers are over-dried, and if the heat-fusible polyolefin core-sheath composite fibers are excessively melted, the stretchability and tear strength of the nonwoven fabrics decrease. When used as a separator, when the battery is manufactured, the burrs of the electrode plate may penetrate the separator and cause a short circuit, or the separator may tear at the part where the end of the electrode plate and the separator are in contact with each other. Occurs, and the yield of battery manufacturing is reduced.

特開平7−142047号公報JP 7-1442047 A 特開2011−210701号公報JP 2011-210701 A

本発明の課題は、湿式不織布を親水化処理した電池用セパレータに関し、不織布の製造安定性が良好で、電池製造時のショートによる不良発生率を低減すると共に、保液性に優れ、長寿命である電池用セパレータを提供することにある。   An object of the present invention relates to a battery separator obtained by hydrophilizing a wet nonwoven fabric, the manufacturing stability of the nonwoven fabric is good, the occurrence rate of defects due to a short circuit during battery manufacturing is reduced, the liquid retention is excellent, and the life is long. An object is to provide a battery separator.

この課題を解決するために鋭意検討を行った結果、下記解決手段を見出した。   As a result of intensive studies to solve this problem, the following means for solving were found.

(1)繊維径5μmを超え、捲縮を有するポリオレフィン系芯鞘型複合繊維の含有率が、不織布を構成する繊維の85質量%を超えて含有され、かつ不織布を構成する繊維の25質量%以上が繊維径5μmを超え、8μm未満である湿式不織布を親水化処理したことを特徴とする電池用セパレータであり、
(2)不織布の親水化処理がスルホン化処理であることを特徴とする電池用セパレータ。
(1) The content of the polyolefin-based core-sheath composite fiber having a fiber diameter exceeding 5 μm and having crimps is more than 85 mass% of the fibers constituting the nonwoven fabric, and 25 mass% of the fibers constituting the nonwoven fabric A battery separator characterized by hydrophilizing a wet nonwoven fabric having a fiber diameter of more than 5 μm and less than 8 μm,
(2) A battery separator, wherein the hydrophilic treatment of the nonwoven fabric is a sulfonation treatment.

本発明において、繊維径5μmを超え、捲縮を有するポリオレフィン系芯鞘型複合繊維を、不織布を構成する繊維の85質量%を超えて含有させ、かつ、不織布を構成する繊維の25質量%以上を、5μmを超えて8μm未満である繊維とすることにより、湿式抄造における加熱乾燥時の不織布の面割れを抑制することができ、得られた湿式不織布を親水化処理することにより、電解液の保液性に優れ、電池製造工程でのセパレータの破れによるショート率を低減し、長寿命である電池用セパレータを得ることができる。   In the present invention, the polyolefin core-sheath composite fiber having a fiber diameter exceeding 5 μm and having crimps is contained in an amount exceeding 85 mass% of the fibers constituting the nonwoven fabric, and 25 mass% or more of the fibers constituting the nonwoven fabric. By making the fiber into a fiber that exceeds 5 μm and less than 8 μm, surface cracking of the nonwoven fabric during heat drying in wet papermaking can be suppressed, and by hydrophilizing the obtained wet nonwoven fabric, A battery separator that has excellent liquid retention, reduces the short-circuit rate due to breakage of the separator in the battery manufacturing process, and has a long life can be obtained.

本発明で使用する捲縮を有するポリオレフィン系芯鞘型複合繊維における芯成分と鞘成分の組合せとしては、芯成分がポリプロピレン、鞘成分が高密度ポリエチレンの組合せ、芯成分がポリプロピレン、鞘成分が中密度ポリエチレンの組合せ、芯成分がポリプロピレン、鞘成分が低密度ポリエチレンの組合せ、芯成分がポリエチレン、鞘成分が直鎖状低密度ポリエチレンの組合せ、芯成分がポリプロピレン、鞘成分がエチレン−プロピレン共重合体の組合せ、芯成分がポリプロピレン、鞘成分がポリブテン−1の組合せ等が挙げられる。これら捲縮を有するポリオレフィン系芯鞘型複合繊維の中でも、芯成分がポリプロピレン、鞘成分が高密度ポリエチレンの組合せである芯鞘型複合繊維が抄造性に優れ、強度の高い不織布が得られるため好ましく用いられる。   As a combination of the core component and the sheath component in the polyolefin-based core-sheath composite fiber having crimps used in the present invention, the core component is polypropylene, the sheath component is a combination of high-density polyethylene, the core component is polypropylene, and the sheath component is medium. Combination of density polyethylene, core component of polypropylene, sheath component of low density polyethylene, core component of polyethylene, sheath component of linear low density polyethylene, core component of polypropylene, sheath component of ethylene-propylene copolymer , A core component is polypropylene, and a sheath component is polybutene-1. Among these polyolefin-based core-sheath type composite fibers having crimps, a core-sheath type composite fiber in which the core component is a combination of polypropylene and the sheath component is high-density polyethylene is preferable because it has excellent papermaking properties and a high strength nonwoven fabric is obtained. Used.

前記芯成分がポリプロピレン、鞘成分が高密度ポリエチレンであるポリオレフィン系芯鞘型複合繊維において、芯成分のポリプロピレンは、繊維物性を調整するため、必要に応じて高密度ポリエチレンやポリメチルペンテン等の他のポリオレフィンを混合することができる。前記ポリプロピレン以外のポリオレフィンの混合比率としては、芯成分の10質量%以下であることが好ましい。また、鞘成分の高密度ポリエチレンについても、繊維物性を調節するため、必要に応じてポリプロピレンやエチレン−プロピレン共重合体等の他のポリオレフィンを混合することができる。前記高密度ポリエチレン以外のポリオレフィンの混合比率としては、鞘成分の10質量%以下であることが好ましい。   In the polyolefin core-sheath composite fiber in which the core component is polypropylene and the sheath component is high-density polyethylene, the core component polypropylene adjusts the physical properties of the fiber, so that other than high-density polyethylene, polymethylpentene, etc. The polyolefin can be mixed. The mixing ratio of the polyolefin other than polypropylene is preferably 10% by mass or less of the core component. In addition, for the high density polyethylene of the sheath component, other polyolefins such as polypropylene and ethylene-propylene copolymer can be mixed as necessary in order to adjust the fiber physical properties. The mixing ratio of the polyolefin other than the high-density polyethylene is preferably 10% by mass or less of the sheath component.

本発明に使用される捲縮を有するポリオレフィン系芯鞘型複合繊維の繊維長は特に限定されないが、繊維径は5μmを超える繊維が使用される。不織布強度と製造性等から、繊維長は1mm以上20mm以下が好ましい。繊維長が1mm未満の場合には、不織布の十分な機械的強度が得られない場合がある。繊維長が20mmを超えた場合には、地合不良となり、良好な不織布が形成できなくなる場合がある。特に、湿式不織布では、分散時の繊維同士の異常な絡みが発生し、均一な分散状態にならず、地合不良となる場合がある。繊維径は5μmを超えるものであれば特に限定されないが、5μmを超え、20μm以下が好ましい。   The fiber length of the crimped polyolefin-based core-sheath composite fiber used in the present invention is not particularly limited, but a fiber having a fiber diameter exceeding 5 μm is used. The fiber length is preferably 1 mm or more and 20 mm or less from the nonwoven fabric strength and manufacturability. When the fiber length is less than 1 mm, sufficient mechanical strength of the nonwoven fabric may not be obtained. If the fiber length exceeds 20 mm, formation may be poor and a good nonwoven fabric may not be formed. In particular, in a wet nonwoven fabric, abnormal entanglement between fibers at the time of dispersion may occur, and a uniform dispersion state may not occur, resulting in poor formation. Although it will not specifically limit if a fiber diameter exceeds 5 micrometers, it exceeds 5 micrometers and 20 micrometers or less are preferable.

本発明に使用される捲縮を有するポリオレフィン系芯鞘型複合繊維の捲縮数及び捲縮率は特に限定されないが、捲縮数については、繊維25mm当たり1個以上25個以下が好ましく、繊維25mm当たり3個以上15個以下がより好ましい。また捲縮率については、1%以上20%以下が好ましく、5%以上15%以下がより好ましい。尚、本発明で使用する「捲縮数」及び「捲縮率」は、JIS L 1015で規定される「けん縮数」及び「けん縮率」を表す。   The number of crimps and the crimp rate of the polyolefin-based core-sheath composite fiber having crimps used in the present invention are not particularly limited, but the number of crimps is preferably 1 to 25 per 25 mm fiber, More preferably, 3 or more and 15 or less per 25 mm. The crimp rate is preferably 1% to 20%, and more preferably 5% to 15%. The “crimp number” and “crimp rate” used in the present invention represent “crimp number” and “crimp rate” defined by JIS L 1015.

本発明に使用される捲縮を有するポリオレフィン系芯鞘型複合繊維と併用して使用可能な他の繊維としては、ポリエチレン繊維、ポリプロピレン繊維等の単一成分からなるポリオレフィン繊維、2種類以上の異なるポリオレフィンの混合物からなる混合ポリオレフィン繊維、2種類以上の異なるオレフィンの共重合体からなる共重合ポリオレフィン繊維、ポリエチレン、ポリプロピレン、共重合ポリオレフィン等の樹脂を適宜組み合わせた、サイドバイサイド型、分割性複合型ポリオレフィン繊維、脂肪族ポリアミド繊維、芳香族ポリアミド繊維、半芳香族ポリアミド繊維、エチレン−ビニルアルコール共重合体繊維、ポリビニルアルコール繊維、ポリエチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリアクリロニトリル繊維等が挙げられるが、ポリエチレン繊維、ポリプロピレン繊維等の単一成分からなるポリオレフィン繊維、2種類以上の異なるポリオレフィンの混合物からなる混合ポリオレフィン繊維、2種類以上の異なるオレフィンの共重合体からなる共重合ポリオレフィン繊維、ポリエチレン、ポリプロピレン、共重合ポリオレフィン等の樹脂を適宜組み合わせた、サイドバイサイド型、分割性複合型ポリオレフィン繊維等のポリオレフィン系繊維が好ましい。   Examples of other fibers that can be used in combination with the crimped polyolefin-based sheath-core composite fiber used in the present invention include polyolefin fibers composed of a single component such as polyethylene fibers and polypropylene fibers, and two or more different types. Side-by-side type, splittable composite type polyolefin fiber that is a suitable combination of mixed polyolefin fiber made of a mixture of polyolefins, copolymerized polyolefin fiber made of a copolymer of two or more different olefins, polyethylene, polypropylene, copolymerized polyolefin, etc. , Aliphatic polyamide fiber, aromatic polyamide fiber, semi-aromatic polyamide fiber, ethylene-vinyl alcohol copolymer fiber, polyvinyl alcohol fiber, polyethylene terephthalate fiber, polybutylene terephthalate fiber, polyacrylonitrile Polyolefin fiber consisting of a single component such as polyethylene fiber or polypropylene fiber, mixed polyolefin fiber consisting of a mixture of two or more different polyolefins, copolymer consisting of a copolymer of two or more different olefins Polyolefin fibers such as side-by-side and splittable composite polyolefin fibers, which are suitably combined with resins such as polyolefin fibers, polyethylene, polypropylene, and copolymerized polyolefins, are preferred.

これらの捲縮を有するポリオレフィン系芯鞘型複合繊維と併用して使用可能なポリオレフィン系繊維の繊維長は特に限定されないが、繊維径は5μmを超える繊維が使用される。不織布強度と製造性等から、繊維長は1mm以上20mm以下が好ましい。また、分割性複合繊維をリファイナーにより細分化して使用することもできる。繊維長が1mm未満の場合には、不織布の十分な機械的強度が得られない場合がある。繊維長が20mmを超えた場合には、地合不良となり、良好な不織布が形成できなくなる場合がある。特に、湿式不織布では、分散時の繊維同士の異常な絡みが発生し、均一な分散状態にならず、地合不良となる場合がある。繊維径は5μmを超えるものであれば特に限定されないが、5μmを超え、20μm以下が好ましい。   The fiber length of the polyolefin fiber that can be used in combination with the polyolefin core-sheath composite fiber having these crimps is not particularly limited, but a fiber having a fiber diameter exceeding 5 μm is used. The fiber length is preferably 1 mm or more and 20 mm or less from the nonwoven fabric strength and manufacturability. Further, the splittable conjugate fiber can be used after being refined by a refiner. When the fiber length is less than 1 mm, sufficient mechanical strength of the nonwoven fabric may not be obtained. If the fiber length exceeds 20 mm, formation may be poor and a good nonwoven fabric may not be formed. In particular, in a wet nonwoven fabric, abnormal entanglement between fibers at the time of dispersion may occur, and a uniform dispersion state may not occur, resulting in poor formation. Although it will not specifically limit if a fiber diameter exceeds 5 micrometers, it exceeds 5 micrometers and 20 micrometers or less are preferable.

これらの捲縮を有するポリオレフィン系芯鞘型複合繊維と併用して使用可能なポリオレフィン系繊維以外の繊維の繊維径、繊維長は特に限定されないが、不織布強度と製造性等から、繊維径は1μm以上20μm以下が好ましく、繊維長は1mm以上20mm以下が好ましい。また、分割性複合繊維をリファイナーにより細分化して使用することもできる。繊維長が1mm未満の場合には、不織布の十分な機械的強度が得られない場合がある。繊維長が20mmを超えた場合には、地合不良となり、良好な不織布が形成できなくなる場合がある。特に、湿式不織布では、分散時の繊維同士の異常な絡みが発生し、均一な分散状態にならず、地合不良となる場合がある。   The fiber diameter and fiber length of fibers other than polyolefin fibers that can be used in combination with the polyolefin core-sheath composite fibers having these crimps are not particularly limited, but the fiber diameter is 1 μm from the strength of nonwoven fabric and manufacturability. The fiber length is preferably 20 μm or less, and the fiber length is preferably 1 mm or more and 20 mm or less. Further, the splittable conjugate fiber can be used after being refined by a refiner. When the fiber length is less than 1 mm, sufficient mechanical strength of the nonwoven fabric may not be obtained. If the fiber length exceeds 20 mm, formation may be poor and a good nonwoven fabric may not be formed. In particular, in a wet nonwoven fabric, abnormal entanglement between fibers at the time of dispersion may occur, and a uniform dispersion state may not occur, resulting in poor formation.

本発明において、繊維径5μmを超え、捲縮を有するポリオレフィン系芯鞘型複合繊維を、不織布を構成する繊維の85質量%を超えて含有する。また捲縮を有するポリオレフィン系芯鞘型複合繊維を含め、不織布を構成する全繊維の25質量%以上が5μmを超え、8μm未満の繊維径を有する繊維であることを特徴とするが、繊維径5μmを超え、捲縮を有するポリオレフィン系芯鞘型複合繊維の含有率は不織布を構成する繊維の95質量%以上がより好ましい。   In the present invention, the polyolefin core-sheath composite fiber having a fiber diameter exceeding 5 μm and having crimps is contained in excess of 85% by mass of the fibers constituting the nonwoven fabric. The fiber diameter is characterized in that 25% by mass or more of all the fibers constituting the nonwoven fabric including the crimped polyolefin core-sheath composite fiber are fibers having a fiber diameter of more than 5 μm and less than 8 μm. The content of the polyolefin-based core-sheath composite fiber that exceeds 5 μm and has crimps is more preferably 95% by mass or more of the fibers constituting the nonwoven fabric.

本発明において、繊維ウェブを形成する湿式抄造法としては、従来公知の方法、例えば、水平長網方式、傾斜ワイヤー型短網方式、円網方式、及び短網・円網コンビネーション方式のように複数組み合わせたコンビネーション方式等が挙げられる。本発明において、湿式不織布を電池用セパレータとして使用する場合、ピンホールや欠点を防止するため、短網・円網又は円網・円網を組み合わせたコンビネーション方式が好ましい。   In the present invention, as the wet papermaking method for forming the fiber web, there are a plurality of conventionally known methods such as a horizontal long net method, an inclined wire type short net method, a circular net method, and a short net / circular net combination method. A combination combination method is available. In the present invention, when a wet nonwoven fabric is used as a battery separator, in order to prevent pinholes and defects, a combination system combining a short net / round net or a round net / round net is preferable.

繊維ウェブから不織布を製造する方法としては、熱融着繊維である捲縮を有するポリオレフィン系芯鞘型複合繊維を含有するウェット状態の繊維ウェブを加熱乾燥させると同時に繊維同士の熱融着を生じさせる。この加熱乾燥方式として、ヤンキードライヤーと熱風フード式乾燥機を組み合わせた方法が用いられる。   As a method for producing a nonwoven fabric from a fiber web, a wet fiber web containing a polyolefin core-sheath composite fiber having crimps, which is a heat-bonded fiber, is heated and dried, and at the same time, heat-bonding of the fibers occurs. Let As this heat drying method, a method combining a Yankee dryer and a hot air hood dryer is used.

本発明の電池用セパレータは、上記のようにして得られた湿式不織布に親水化処理を施すことにより、電解液との親和性を付与する。親水化処理としては、界面活性剤付与処理、コロナ放電処理、フッ素ガス処理、親水性単量体のグラフト重合処理、スルホン化処理等が挙げられる。   The battery separator of the present invention imparts affinity with an electrolytic solution by subjecting the wet nonwoven fabric obtained as described above to a hydrophilic treatment. Examples of the hydrophilic treatment include surfactant application treatment, corona discharge treatment, fluorine gas treatment, hydrophilic monomer graft polymerization treatment, sulfonation treatment, and the like.

界面活性剤付与処理としては、例えば、アニオン系界面活性剤又はノニオン系界面活性剤を溶液中に不織布を浸漬したり、この溶液を不織布に塗布もしくはスプレーしたりすることにより、親水性を付与することができる。   As the surfactant application treatment, for example, an anionic surfactant or a nonionic surfactant is immersed in a nonwoven fabric, or hydrophilicity is imparted by applying or spraying the solution onto the nonwoven fabric. be able to.

コロナ放電処理としては、高電圧発生機に接続した電極と、シリコンゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム等でカバーした金属ロール間に適度の間隔を設け、高周波で数千から数万Vの電圧をかけ、高圧コロナを発生させ、この間隔に不織布を適度な速度で走らせ、不織布にコロナで生成したオゾン、あるいは、酸化窒素を反応させて、カルボニル基、カルボキシル基、ヒドロキシル基、ペルオキシド基を生成させ、親水性を付与することができる。   For corona discharge treatment, an appropriate interval is provided between the electrode connected to the high voltage generator and the metal roll covered with silicon rubber, chlorosulfonated polyethylene rubber, ethylene propylene rubber, etc., and several thousand to tens of thousands V at high frequency. The high voltage corona is generated, the nonwoven fabric is run at an appropriate speed during this interval, and ozone or nitrogen oxide generated in the corona is reacted with the nonwoven fabric to react with the carbonyl group, carboxyl group, hydroxyl group, peroxide group. Can be generated to impart hydrophilicity.

フッ素ガス処理としては、例えば、不活性ガス(例えば、窒素ガス、アルゴンガス等)で希釈したフッ素ガスと、酸素ガス、二酸化炭素ガス及び二酸化硫黄ガスから選択される少なくとも1種類のガスとの混合ガスに不織布を曝すことにより、不織布の繊維表面にスルホン酸基、カルボニル基、カルボキシル基、スルホフルオライド基、水酸基等を導入し、親水性を付与することができる。   As the fluorine gas treatment, for example, a mixture of fluorine gas diluted with an inert gas (for example, nitrogen gas, argon gas, etc.) and at least one gas selected from oxygen gas, carbon dioxide gas, and sulfur dioxide gas is used. By exposing the nonwoven fabric to gas, a sulfonic acid group, a carbonyl group, a carboxyl group, a sulfofluoride group, a hydroxyl group, or the like can be introduced to the fiber surface of the nonwoven fabric to impart hydrophilicity.

親水性単量体のグラフト重合処理としては、親水性単量体として、例えば、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、ビニルピリジン、ビニルピロリドン、あるいはスチレンを使用できる。これら親水性単量体の重合方法としては、これらの親水性単量体と重合開始剤を含む溶液中に不織布を浸漬して加熱する方法、不織布に親水性単量体を塗布して放射線を照射する方法、不織布に放射線を照射して親水性単量体と接触させる方法、増感剤を含む親水性単量体溶液を不織布に塗布して紫外線を照射する方法等が挙げられる。   In the graft polymerization treatment of the hydrophilic monomer, for example, acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, vinyl pyridine, vinyl pyrrolidone, or styrene can be used as the hydrophilic monomer. As a method for polymerizing these hydrophilic monomers, a method in which a nonwoven fabric is immersed in a solution containing these hydrophilic monomers and a polymerization initiator and heated, a hydrophilic monomer is applied to the nonwoven fabric and radiation is applied. Examples include a method of irradiating, a method of irradiating a nonwoven fabric with radiation and bringing it into contact with a hydrophilic monomer, and a method of applying a hydrophilic monomer solution containing a sensitizer to a nonwoven fabric and irradiating ultraviolet rays.

スルホン化処理としては、特に限定されないが、例えば、発煙硫酸、熱濃硫酸、クロロ硫酸等からなる溶液中に不織布を浸漬しスルホン酸基を導入する液相(溶液)法や、二酸化硫黄ガス、三酸化硫黄ガス等を不織布に曝しスルホン酸基を導入する気相(ガス)法が挙げられる。   Although it does not specifically limit as a sulfonation process, For example, the liquid phase (solution) method which immerses a nonwoven fabric in the solution which consists of fuming sulfuric acid, hot concentrated sulfuric acid, chlorosulfuric acid, etc., introduces a sulfonic acid group, sulfur dioxide gas, There is a gas phase (gas) method in which sulfur trioxide gas or the like is exposed to a nonwoven fabric to introduce a sulfonic acid group.

本発明の電池用セパレータにおいては、気相処理法によるスルホン化処理がより好ましい。液相処理法によるスルホン化処理は、反応条件の設定が難しく、反応時間を長くし過ぎた場合や温度を高くし過ぎた場合に、不織布が炭化、収縮、フィルム化しやすいという問題がある。また、多量の強酸性廃液が出るという問題がある。   In the battery separator of the present invention, sulfonation treatment by a gas phase treatment method is more preferable. The sulfonation treatment by the liquid phase treatment method has a problem that it is difficult to set reaction conditions, and when the reaction time is excessively long or the temperature is excessively high, the nonwoven fabric is easily carbonized, contracted, and formed into a film. There is also a problem that a large amount of strongly acidic waste liquid is produced.

本発明の電池用セパレータにおいては、電解液との親和性を更に向上させるために、スルホン化処理後の不織布にコロナ放電処理を施すことや、界面活性剤を付与することができる。用いられる界面活性剤としては、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルカンスルホン酸塩、リン酸エステル塩、長鎖脂肪酸塩、β−ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩、特殊芳香族スルホン酸ホルマリン縮合物のナトリウム塩、特殊ポリカルボン酸型高分子界面活性剤等の陰イオン界面活性剤;ポリオキシエチレンアルキルエーテル類、ポリオキシアルキレン誘導体類、ポリオキシアルキレンアルケニルエーテル類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、ポリオキシエチレンソルビトール脂肪酸エステル類、グリセリン脂肪酸エステル類、ポリオキシエチレン脂肪酸エステル類、ポリオキシエチレン硬化ヒマシ油類等の非イオン性界面活性剤が挙げられる。これらの界面活性剤は、含浸、塗布、スプレーした後、乾燥することにより不織布に付与することができ、界面活性剤の付与量は、スルホン化処理後の不織布に対して、0.1質量%以上1.0質量%以下が好ましい。   In the battery separator of the present invention, in order to further improve the affinity with the electrolytic solution, the non-woven fabric after the sulfonation treatment can be subjected to a corona discharge treatment or a surfactant can be added. Surfactants used include alkyl sulfates, polyoxyethylene alkyl ether sulfates, alkylbenzene sulfonates, dialkyl sulfosuccinates, alkyl diphenyl ether disulfonates, alkane sulfonates, phosphate esters, long chains Anionic surfactants such as fatty acid salt, sodium salt of β-naphthalenesulfonic acid formalin condensate, sodium salt of special aromatic sulfonic acid formalin condensate, special polycarboxylic acid type polymer surfactant; polyoxyethylene alkyl ether , Polyoxyalkylene derivatives, polyoxyalkylene alkenyl ethers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, glycerin Fatty acid esters, polyoxyethylene fatty acid esters, nonionic surfactants of polyoxyethylene hardened castor oils and the like. These surfactants can be applied to the nonwoven fabric by impregnation, coating, spraying and drying, and the amount of the surfactant applied is 0.1% by mass relative to the nonwoven fabric after the sulfonation treatment. The content is preferably 1.0% by mass or less.

本発明の電池用セパレータにおいては、必要に応じて、スーパーカレンダーや熱カレンダー処理により、厚みを調整して用いられる。本発明の電池用セパレータの目付は、30g/m以上100g/m以下の範囲が好ましく、厚みは、60μm以上250μm以下の範囲が好ましい。電池用セパレータの目付及び厚みは、適用する電池の特性に応じて、適宜選択できる。ここで目付は、JIS P 8124に規定されている坪量を表し、厚みはJIS P 8118に規定される厚さを表す。また、本発明の電池用セパレータの最大細孔径は1μm以上50μm以下の範囲が好ましい。最大細孔径が50μmを超えて大きくなると、短絡しやすくなり、電池製造時の不良率が大きくなる場合がある。最大細孔径が1μm未満では、酸素ガス透過性やイオン導電性が低下する場合がある。ここで、最大細孔径はJIS K 3832に規定されるバブルポイント法による最大細孔径を表す。 In the battery separator of the present invention, the thickness is adjusted by super calendering or thermal calendering as necessary. The basis weight of the battery separator of the present invention is preferably in the range of 30 g / m 2 to 100 g / m 2 , and the thickness is preferably in the range of 60 μm to 250 μm. The basis weight and thickness of the battery separator can be appropriately selected according to the characteristics of the applied battery. Here, the basis weight represents the basis weight defined in JIS P 8124, and the thickness represents the thickness defined in JIS P 8118. The maximum pore diameter of the battery separator of the present invention is preferably in the range of 1 μm to 50 μm. When the maximum pore diameter is larger than 50 μm, short-circuiting is likely to occur, and the defect rate during battery manufacture may increase. When the maximum pore diameter is less than 1 μm, oxygen gas permeability and ionic conductivity may be lowered. Here, the maximum pore diameter represents the maximum pore diameter according to the bubble point method defined in JIS K3832.

以下、本発明を実施例により更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example.

(実施例1)
芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮性を有するポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm、捲縮数5、捲縮率10%)70質量部と芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮性を有するポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm、捲縮数3、捲縮率5%)30質量部とを、パルパーの水中で離解、分散させ、アジテーターで緩やかに撹拌して均一な抄造用スラリーを調製した。この抄造用スラリーを円網抄紙機による湿式抄造法を用いてウェブを形成し、138℃に設定されたヤンキードライヤーと140℃の熱風を熱風フード中に送風して乾燥させると共に、ポリオレフィン系芯鞘型複合繊維の鞘部分を熱溶融接着させた。
Example 1
Polyolefin core-sheath type composite fiber having a core component of polypropylene and a sheath component of high-density polyethylene and having crimpability (fineness 0.8 dtex, fiber length 5 mm, crimp number 5, crimp rate 10%) 70 mass Polyolefin core-sheath type composite fiber having a core and a core component of polypropylene and a sheath component of high-density polyethylene and having crimpability (fineness 0.3 dtex, fiber length 5 mm, number of crimps 3, crimp rate 5%) 30 parts by mass was disaggregated and dispersed in water of a pulper, and gently stirred with an agitator to prepare a uniform papermaking slurry. A web is formed from the papermaking slurry by a wet papermaking method using a circular paper machine, and a Yankee dryer set at 138 ° C. and hot air at 140 ° C. are blown into a hot air hood and dried. The sheath portion of the mold composite fiber was heat-melt bonded.

このようにして得られた不織布に対して、三酸化硫黄ガスを含む75℃の乾燥空気中で、25秒間スルホン化処理を行い、2.5質量%の水酸化ナトリウム水溶液で中和し、イオン交換水で十分洗浄し、次いで、界面活性剤として、アルキルジフェニルエーテルジスルホン酸ナトリウムを、スルホン化処理後の不織布に対して0.3質量%となるようにスプレー塗布し、乾燥後、スーパーカレンダー処理により厚み調整して、硫黄含有率0.62質量%、厚さ120μm、目付53.5g/mの電池用セパレータを得た。 The nonwoven fabric thus obtained was sulfonated for 25 seconds in 75 ° C. dry air containing sulfur trioxide gas, neutralized with a 2.5% by mass aqueous sodium hydroxide solution, Wash thoroughly with exchange water, then spray-apply sodium alkyldiphenyl ether disulfonate as a surfactant to 0.3% by mass with respect to the non-woven fabric after sulfonation treatment, and after drying, by super calender treatment The thickness was adjusted to obtain a battery separator having a sulfur content of 0.62% by mass, a thickness of 120 μm, and a basis weight of 53.5 g / m 2 .

(実施例2)
繊維の配合を、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm、捲縮数5、捲縮率10%)70質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm、捲縮数3、捲縮率5%)25質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有さないポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm)5質量部とした以外は、実施例1と同様にして、不織布を製造した。この不織布に、実施例1と同様にして、スルホン化処理を行い、硫黄含有率0.60質量%、厚さ121μm、目付53.6g/mの電池用セパレータを得た。
(Example 2)
Polyolefin core-sheath composite fiber having a core composition of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness 0.8 dtex, fiber length 5 mm, crimp number 5, crimp ratio 10) %) Polyolefin core-sheath composite fiber having a core component of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness of 0.3 dtex, fiber length of 5 mm, crimp number of 3, crimps) 5% by mass) 25 parts by mass of the core component is polypropylene, the sheath component is high-density polyethylene, and there is no crimped polyolefin-based core-sheath composite fiber (fineness 0.3 dtex, fiber length 5 mm) 5 parts by mass A nonwoven fabric was produced in the same manner as in Example 1 except that. The nonwoven fabric was subjected to sulfonation treatment in the same manner as in Example 1 to obtain a battery separator having a sulfur content of 0.60% by mass, a thickness of 121 μm, and a basis weight of 53.6 g / m 2 .

(実施例3)
繊維の配合を、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm、捲縮数5、捲縮率10%)70質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm、捲縮数3、捲縮率5%)20質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有さないポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm)10質量部とした以外は、実施例1と同様にして、不織布を製造した。この不織布に、実施例1と同様にして、スルホン化処理を行い、硫黄含有率0.63質量%、厚さ119μm、目付53.2g/mの電池用セパレータを得た。
Example 3
Polyolefin core-sheath composite fiber having a core composition of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness 0.8 dtex, fiber length 5 mm, crimp number 5, crimp ratio 10) %) Polyolefin core-sheath composite fiber having a core component of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness of 0.3 dtex, fiber length of 5 mm, crimp number of 3, crimps) 5%) Polyolefin core-sheath type composite fiber (fineness 0.3 dtex, fiber length 5 mm) 10 parts by mass with 20 parts by mass and polypropylene as the core component, high density polyethylene as the sheath component and no crimp A nonwoven fabric was produced in the same manner as in Example 1 except that. The nonwoven fabric was subjected to sulfonation treatment in the same manner as in Example 1 to obtain a battery separator having a sulfur content of 0.63% by mass, a thickness of 119 μm, and a basis weight of 53.2 g / m 2 .

(実施例4)
繊維の配合を、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm、捲縮数5、捲縮率10%)60質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm、捲縮数3、捲縮率5%)26質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有さないポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)14質量部とした以外は、実施例1と同様にして、不織布を製造した。この不織布に、実施例1と同様にして、スルホン化処理を行い、硫黄含有率0.65質量%、厚さ120μm、目付53.5g/mの電池用セパレータを得た。
Example 4
Polyolefin core-sheath composite fiber having a core composition of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness 0.8 dtex, fiber length 5 mm, crimp number 5, crimp ratio 10) %) Polyolefin core-sheath type composite fiber (fineness 0.3 dtex, fiber length 5 mm, crimp number 3, crimp) 5%) 26 parts by mass, and the core component is polypropylene, the sheath component is high-density polyethylene, and there is no crimped polyolefin-based core-sheath composite fiber (fineness 0.8 dtex, fiber length 5 mm) 14 parts by mass A nonwoven fabric was produced in the same manner as in Example 1 except that. The nonwoven fabric was subjected to sulfonation treatment in the same manner as in Example 1 to obtain a battery separator having a sulfur content of 0.65 mass%, a thickness of 120 μm, and a basis weight of 53.5 g / m 2 .

(実施例5)
繊維の配合を、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm、捲縮数5、捲縮率10%)70質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm、捲縮数3、捲縮率5%)20質量部と、捲縮を有さないポリプロピレン単一繊維(繊度0.3dtex、繊維長5mm)10質量部とした以外は、実施例1と同様にして、不織布を製造した。この不織布に、実施例1と同様にして、スルホン化処理を行い、硫黄含有率0.65質量%、厚さ120μm、目付53.5g/mの電池用セパレータを得た。
(Example 5)
Polyolefin core-sheath composite fiber having a core composition of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness 0.8 dtex, fiber length 5 mm, crimp number 5, crimp ratio 10) %) Polyolefin core-sheath composite fiber having a core component of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness of 0.3 dtex, fiber length of 5 mm, crimp number of 3, crimps) A non-woven fabric was produced in the same manner as in Example 1 except that 20 parts by mass) and 10 parts by mass of polypropylene single fiber (fineness 0.3 dtex, fiber length 5 mm) having no crimp were used. The nonwoven fabric was subjected to sulfonation treatment in the same manner as in Example 1 to obtain a battery separator having a sulfur content of 0.65 mass%, a thickness of 120 μm, and a basis weight of 53.5 g / m 2 .

(実施例6)
繊維の配合を、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm、捲縮数15、捲縮率15%)70質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm、捲縮数15、捲縮率15%)20質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有さないポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm)10質量部とした以外は、実施例1と同様にして、不織布を製造した。この不織布に、実施例1と同様にして、スルホン化処理を行い、硫黄含有率0.61質量%、厚さ120μm、目付53.1g/mの電池用セパレータを得た。
(Example 6)
Polyolefin-based sheath-sheath composite fiber having a core component of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness of 0.8 dtex, fiber length of 5 mm, number of crimps of 15, crimp rate of 15) %) Polyolefin core-sheath composite fiber having a core component of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness of 0.3 dtex, fiber length of 5 mm, crimp number of 15, crimps) 15%) Polyolefin core-sheath type composite fiber (fineness 0.3 dtex, fiber length 5 mm) 10 parts by mass with 20 parts by mass and polypropylene as the core component, high density polyethylene as the sheath component and no crimp A nonwoven fabric was produced in the same manner as in Example 1 except that. The nonwoven fabric was subjected to sulfonation treatment in the same manner as in Example 1 to obtain a battery separator having a sulfur content of 0.61% by mass, a thickness of 120 μm, and a basis weight of 53.1 g / m 2 .

(実施例7)
繊維の配合を、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm、捲縮数2、捲縮率4%)60質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm、捲縮数3、捲縮率5%)26質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有さないポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)14質量部とした以外は、実施例1と同様にして、不織布を製造した。この不織布に、実施例1と同様にして、スルホン化処理を行い、硫黄含有率0.65質量%、厚さ120μm、目付53.5g/mの電池用セパレータを得た。
(Example 7)
Polyolefin core-sheath composite fiber having a core composition of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness 0.8 dtex, fiber length 5 mm, crimp number 2, crimp ratio 4) %) Polyolefin core-sheath type composite fiber (fineness 0.3 dtex, fiber length 5 mm, crimp number 3, crimp) 5%) 26 parts by mass, and the core component is polypropylene, the sheath component is high-density polyethylene, and there is no crimped polyolefin-based core-sheath composite fiber (fineness 0.8 dtex, fiber length 5 mm) 14 parts by mass A nonwoven fabric was produced in the same manner as in Example 1 except that. The nonwoven fabric was subjected to sulfonation treatment in the same manner as in Example 1 to obtain a battery separator having a sulfur content of 0.65 mass%, a thickness of 120 μm, and a basis weight of 53.5 g / m 2 .

(実施例8)
繊維の配合を、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm、捲縮数17、捲縮率20%)60質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm、捲縮数3、捲縮率5%)26質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有さないポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)14質量部とした以外は、実施例1と同様にして、不織布を製造した。この不織布に、実施例1と同様にして、スルホン化処理を行い、硫黄含有率0.62質量%、厚さ120μm、目付53.3g/mの電池用セパレータを得た。
(Example 8)
Polyolefin core-sheath composite fiber having a core composition of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness of 0.8 dtex, fiber length of 5 mm, number of crimps of 17, crimp rate of 20) %) Polyolefin core-sheath type composite fiber (fineness 0.3 dtex, fiber length 5 mm, crimp number 3, crimp) 5%) 26 parts by mass, and the core component is polypropylene, the sheath component is high-density polyethylene, and there is no crimped polyolefin-based core-sheath composite fiber (fineness 0.8 dtex, fiber length 5 mm) 14 parts by mass A nonwoven fabric was produced in the same manner as in Example 1 except that. The nonwoven fabric was subjected to sulfonation treatment in the same manner as in Example 1 to obtain a battery separator having a sulfur content of 0.62% by mass, a thickness of 120 μm, and a basis weight of 53.3 g / m 2 .

(実施例9)
実施例3で得られた不織布を、アクリル酸50質量部、ベンゾフェノン0.5質量部、ポリオキシエチレンラウリルエーテル1質量部、イオン交換水48.5質量部からなる処理液に浸漬した後、脱酸素下で低圧水銀灯を使用して185nm及び254nmの短波長紫外線を1分間照射してグラフト重合処理を行った後、このグラフト処理した不織布を十分に水洗、乾燥した後、スーパーカレンダー処理により厚み調整して、グラフト率7.5%、厚さ120μm、目付55.2g/mの電池用セパレータを得た。
Example 9
The nonwoven fabric obtained in Example 3 was immersed in a treatment solution consisting of 50 parts by mass of acrylic acid, 0.5 parts by mass of benzophenone, 1 part by mass of polyoxyethylene lauryl ether, and 48.5 parts by mass of ion-exchanged water, and then removed. After carrying out graft polymerization treatment by irradiating short wavelength ultraviolet rays of 185 nm and 254 nm for 1 minute using a low pressure mercury lamp under oxygen, this grafted nonwoven fabric is washed thoroughly with water and dried, and then the thickness is adjusted by super calender treatment. Thus, a battery separator having a graft ratio of 7.5%, a thickness of 120 μm, and a basis weight of 55.2 g / m 2 was obtained.

(実施例10)
実施例3で得られた不織布を、混合ガス処理器へ導入し、処理器内を真空置換後、25℃、ガス組成がフッ素ガス2体積%、酸素ガス8体積%、二酸化硫黄ガス8体積%、窒素ガス82体積%からなる混合ガスを処理器に導入し、1気圧として、90秒間フッ素ガス処理を実施した。このフッ素化処理した不織布を十分に水洗、乾燥した後、スーパーカレンダー処理により厚み調整して、厚さ121μm、目付52.6g/mの電池用セパレータを得た。
(Example 10)
The nonwoven fabric obtained in Example 3 was introduced into a mixed gas processing device, and after the inside of the processing device was vacuum replaced, 25 ° C., gas composition was 2% by volume of fluorine gas, 8% by volume of oxygen gas, and 8% by volume of sulfur dioxide gas. Then, a mixed gas consisting of 82% by volume of nitrogen gas was introduced into the processor, and the fluorine gas treatment was performed for 90 seconds at 1 atm. This non-woven fabric subjected to the fluorination treatment was sufficiently washed with water and dried, and then the thickness was adjusted by supercalender treatment to obtain a battery separator having a thickness of 121 μm and a basis weight of 52.6 g / m 2 .

(比較例1)
繊維の配合を、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有さないポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)100質量部とした以外は、実施例1と同様にして、不織布を製造した。この不織布に、実施例1と同様にして、スルホン化処理を行い、硫黄含有率0.60質量%、厚さ121μm、目付53.6g/mの電池用セパレータを得た。
(Comparative Example 1)
The composition of the fiber was changed to 100 parts by mass of a polyolefin core / sheath composite fiber (fineness 0.8 dtex, fiber length 5 mm) having a core component of polypropylene and a sheath component of high density polyethylene and having no crimp. A nonwoven fabric was produced in the same manner as in Example 1. The nonwoven fabric was subjected to sulfonation treatment in the same manner as in Example 1 to obtain a battery separator having a sulfur content of 0.60% by mass, a thickness of 121 μm, and a basis weight of 53.6 g / m 2 .

(比較例2)
繊維の配合を、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm、捲縮数5、捲縮率10%)70質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm、捲縮数3、捲縮率5%)14質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有さないポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm)16質量部とした以外は、実施例1と同様にして、不織布を製造した。この不織布に、実施例9と同様にして、グラフト重合処理を行い、スーパーカレンダー処理により厚み調整し、グラフト率7.8%、厚さ120μm、目付55.4g/mの電池用セパレータを得た。
(Comparative Example 2)
Polyolefin core-sheath composite fiber having a core composition of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness 0.8 dtex, fiber length 5 mm, crimp number 5, crimp ratio 10) %) Polyolefin core-sheath composite fiber having a core component of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness of 0.3 dtex, fiber length of 5 mm, crimp number of 3, crimps) (Rate 5%) 14 parts by mass, and the core component is polypropylene, the sheath component is high-density polyethylene, and there is no crimped polyolefin core-sheath composite fiber (fineness 0.8 dtex, fiber length 5 mm) 16 parts by mass A nonwoven fabric was produced in the same manner as in Example 1 except that. The nonwoven fabric was subjected to graft polymerization treatment in the same manner as in Example 9, and the thickness was adjusted by supercalender treatment to obtain a battery separator having a graft ratio of 7.8%, a thickness of 120 μm, and a basis weight of 55.4 g / m 2. It was.

(比較例3)
繊維の配合を、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm、捲縮数5、捲縮率10%)85質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm、捲縮数3、捲縮率5%)5質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有さないポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm)10質量部とした以外は、実施例1と同様にして、不織布を製造した。この不織布に、実施例10と同様にして、フッ素ガス処理を行い、スーパーカレンダー処理により厚み調整し、厚さ119μm、目付53.2g/mの電池用セパレータを得た。
(Comparative Example 3)
Polyolefin core-sheath composite fiber having a core composition of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness 0.8 dtex, fiber length 5 mm, crimp number 5, crimp ratio 10) %) Polyolefin core-sheath composite fiber having a core component of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness of 0.3 dtex, fiber length of 5 mm, crimp number of 3, crimps) 5% by mass) and 5 parts by mass of a core component of polypropylene, a sheath component of high-density polyethylene, and 10 parts by mass of a polyolefin-based core-sheath type composite fiber (fineness 0.3 dtex, fiber length 5 mm) having no crimp. A nonwoven fabric was produced in the same manner as in Example 1 except that. The nonwoven fabric was treated with fluorine gas in the same manner as in Example 10, and the thickness was adjusted by supercalendering to obtain a battery separator having a thickness of 119 μm and a basis weight of 53.2 g / m 2 .

(比較例4)
繊維の配合を、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.8dtex、繊維長5mm、捲縮数5、捲縮率10%)85質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有するポリオレフィン系芯鞘型複合繊維(繊度0.15dtex、繊維長3mm、捲縮数3、捲縮率5%)5質量部と、芯成分がポリプロピレンで、鞘成分が高密度ポリエチレンであり、捲縮を有さないポリオレフィン系芯鞘型複合繊維(繊度0.3dtex、繊維長5mm)10質量部とした以外は、実施例1と同様にして、不織布を製造した。この不織布に、実施例10と同様にして、フッ素ガス処理を行い、スーパーカレンダー処理により厚み調整し、厚さ120μm、目付54.1g/mの電池用セパレータを得た。
(Comparative Example 4)
Polyolefin core-sheath composite fiber having a core composition of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness 0.8 dtex, fiber length 5 mm, crimp number 5, crimp ratio 10) %) Polyolefin core-sheath composite fiber having a core component of polypropylene and a sheath component of high-density polyethylene and having crimps (fineness of 0.15 dtex, fiber length of 3 mm, crimp number of 3, crimps) 5% by mass) and 5 parts by mass of a core component of polypropylene, a sheath component of high-density polyethylene, and 10 parts by mass of a polyolefin-based core-sheath type composite fiber (fineness 0.3 dtex, fiber length 5 mm) having no crimp. A nonwoven fabric was produced in the same manner as in Example 1 except that. The nonwoven fabric was treated with fluorine gas in the same manner as in Example 10, and the thickness was adjusted by supercalendering to obtain a battery separator having a thickness of 120 μm and a basis weight of 54.1 g / m 2 .

各実施例及び比較例における[硫黄含有率]の測定方法を説明する。スルホン化処理された電池セパレータから直径35mmの試料を採取し、イオン交換水200mL中で10分間、2回洗浄し、60℃で10分間乾燥して測定用試料を作製した。この試料をホルダーにセットして、蛍光X線装置(装置名:ZSX Primus II、Rhターゲット、50kV−50mA、(株)リガク製)で全元素測定を行った。硫黄含有率は、測定値を半定量分析法であるSQX計算することで算出し、スルホン化処理量を質量%で見積もった。   A method for measuring [sulfur content] in each example and comparative example will be described. A sample with a diameter of 35 mm was taken from the sulfonated battery separator, washed twice in 200 mL of ion exchange water for 10 minutes, and dried at 60 ° C. for 10 minutes to prepare a measurement sample. This sample was set in a holder, and all elemental measurements were performed with a fluorescent X-ray apparatus (device name: ZSX Primus II, Rh target, 50 kV-50 mA, manufactured by Rigaku Corporation). The sulfur content was calculated by calculating the measured value by SQX, which is a semi-quantitative analysis method, and the sulfonation treatment amount was estimated by mass%.

各実施例及び比較例における[グラフト率]の測定方法を説明する。グラフト重合処理前の不織布から200mm×250mmの試料片を採取し、水分平衡状態の質量(P)を測定した。次にグラフト重合処理後の電池用セパレータから200mm×250mmの試料片を採取し、水分平衡状態の質量(P)を測定した。次の式(1)よりグラフト率を算出し、グラフト重合処理の効率の指標とした。 A method for measuring [graft rate] in each example and comparative example will be described. A sample piece of 200 mm × 250 mm was taken from the nonwoven fabric before the graft polymerization treatment, and the mass (P 1 ) in a water equilibrium state was measured. Next, a sample piece of 200 mm × 250 mm was taken from the battery separator after the graft polymerization treatment, and the mass (P 2 ) in a water equilibrium state was measured. The graft ratio was calculated from the following formula (1) and used as an index of the efficiency of the graft polymerization treatment.

グラフト率(%)=(P−P)/P×100 (1) Graft ratio (%) = (P 2 −P 1 ) / P 1 × 100 (1)

<評価>
実施例及び比較例で得られた不織布及び電池用セパレータについて、下記の評価を行い、結果を表1に示した。
<Evaluation>
The following evaluation was performed about the nonwoven fabric and battery separator obtained by the Example and the comparative example, and the result was shown in Table 1.

[面割れの評価]
湿式抄造における加熱乾燥時の不織布の面割れの評価は以下のようにして実施した。抄造した不織布の巻き取り1500mを検査し、1500m中に全く面割れがない場合を「◎」、1500m中に長さ50mm未満の面割れが1個以上3個以下あった場合を「○」、1500m中に長さ50mm以上100mm未満の面割れが1個以上3個以下あった場合を「△」、長さにかかわらず、1500m中に4個以上の面割れがあった場合を「×」で表した。
[Evaluation of surface cracks]
Evaluation of the surface cracking of the nonwoven fabric during heat drying in wet papermaking was performed as follows. Inspecting the rolled-up non-woven fabric of 1500 m, “◎” indicates that there is no surface crack in 1500 m, and “○” indicates that there are 1 to 3 surface cracks in a length of less than 50 mm in 1500 m. “△” indicates that there are 1 or more and 3 or less surface cracks in a length of 50 to 100 mm, and “x” indicates that there are 4 or more surface cracks in a length of 1500 m regardless of the length. Expressed in

[引張強さ及び破断伸びの評価]
水分平衡状態のスルホン化処理前の不織布から、巻き取りの流れ方向250mm、幅方向50mmの試料を10枚切り取り、JIS P 8113に準じて、卓上型材料試験機(装置名:STA−1150、(株)オリエンテック製)を用いて、引張強さ及び破断伸びを測定し、10枚の平均値を不織布の引張強さ及び破断伸びとした。
[Evaluation of tensile strength and elongation at break]
Ten samples having a flow direction of 250 mm and a width direction of 50 mm were cut out from the nonwoven fabric before the sulfonation treatment in a water equilibrium state, and a tabletop material testing machine (apparatus name: STA-1150, ( Tensile strength and breaking elongation were measured, and the average value of 10 sheets was taken as the tensile strength and breaking elongation of the nonwoven fabric.

[保液性の評価]
厚み調整済みの電池用セパレータから、100mm角の試験片をとり、水分平衡状態の質量(W)を測定した後、比重1.3の水酸化カリウム水溶液に30分間浸漬する。その後、水酸化カリウム水溶液中から引き上げ、10分後の質量(W)を測定し、次の式(2)より保液率を算出した。
[Evaluation of liquid retention]
A 100 mm square test piece is taken from the battery separator whose thickness has been adjusted, and after measuring the mass (W 1 ) in a water equilibrium state, it is immersed in an aqueous potassium hydroxide solution having a specific gravity of 1.3 for 30 minutes. Then, pulled up from aqueous potassium hydroxide solution, the mass after 10 minutes (W 2) was measured to calculate the liquid retention ratio by the following equation (2).

保液率(%)=(W−W)/W×100 (2) Liquid retention (%) = (W 2 −W 1 ) / W 1 × 100 (2)

[電池の作製とショート率の評価]
電極の集電体として、発泡ニッケル基材を用いたペースト式水酸化ニッケル正極(40mm幅)と、ニッケルメッキパンチングメタル基材を用いた水素吸蔵合金負極(40mm幅)を1枚ずつ用い、これらの電極の間に、43mm幅の実施例及び比較例で得られた電池用セパレータを介在させて、電池構成機を用いて巻き取り、渦巻状極板群を作製した。該渦巻状極板群を円筒形の金属ケースに収納した後、1N水酸化リチウムを含む7N水酸化カリウム水溶液を主体とするアルカリ電解液を一定量注入した後、安全弁付きの封印蓋を取り付けて、公称容量が1.7Ahの単3形密閉式ニッケル水素電池をそれぞれ2000個作製した。その後、正極と負極との間に240Vの電圧を印加し、電気抵抗が1kΩを超えるものを正常とし、電気抵抗が1kΩ以下のものを不良とみなし、電池製造時のショート率とした。0.05%未満を「◎」、0.05%以上0.10%未満を「○」、0.10%以上0.15%未満を「△」、0.15%以上を「×」として評価した。
[Battery fabrication and short rate evaluation]
As the electrode current collector, a paste type nickel hydroxide positive electrode (40 mm width) using a foamed nickel base material and a hydrogen storage alloy negative electrode (40 mm width) using a nickel-plated punching metal base material are used one by one. A battery separator obtained in the 43 mm-wide Example and Comparative Example was interposed between the electrodes, and wound up using a battery construction machine to produce a spiral electrode group. After the spiral electrode plate group is stored in a cylindrical metal case, a certain amount of alkaline electrolyte mainly composed of 7N potassium hydroxide aqueous solution containing 1N lithium hydroxide is injected, and then a sealing lid with a safety valve is attached. 2000 AA sealed nickel-metal hydride batteries each having a nominal capacity of 1.7 Ah were produced. Thereafter, a voltage of 240 V was applied between the positive electrode and the negative electrode, and those having an electric resistance exceeding 1 kΩ were regarded as normal, those having an electric resistance of 1 kΩ or less were regarded as defective, and the short-circuit rate at the time of battery production was determined. Less than 0.05% is “◎”, 0.05% or more and less than 0.10% is “◯”, 0.10% or more and less than 0.15% is “△”, and 0.15% or more is “×”. evaluated.

[自己放電特性の評価]
上記のようにして製造した電池のうち、正常な電池を各電池用セパレータについて10個選別した。電池の化成のため、25℃において、170mA(0.1C)の電流で15時間充電し、1.7A(1C)の電流で端子電圧が0.8Vになるまで放電するという充放電を4回繰り返した。得られた化成済みの電池10個を用い、25℃で、1.7A(1C)の電流で充電し、満充電に達した後、電池電圧が10mV低下した時点で充電を1時間休止させ、次に340mA(0.2C)の電流で終止電圧が1.0Vになるまで放電させたときの放電容量を測定しQとする。そして、同様に1.7A(1C)の電流で充電してから、60℃の恒温槽中にて7日間保存し、その後25℃で6時間放冷し、同様に340mA(0.2C)の電流で放電させたときの放電容量を測定してQとし、次の式(3)から容量維持率を算出した。容量維持率の値が大きいほど、自己放電特性が優れることを示す。
[Evaluation of self-discharge characteristics]
Of the batteries produced as described above, 10 normal batteries were selected for each battery separator. Charge and discharge 4 times at 25 ° C for 15 hours at a current of 170 mA (0.1 C) and discharge at 1.7 A (1 C) until the terminal voltage reaches 0.8 V for battery formation. Repeated. Using the obtained 10 formed batteries, charging at 25 ° C. with a current of 1.7 A (1 C), reaching full charge, and when the battery voltage drops by 10 mV, charging is suspended for 1 hour, then final voltage at a current of 340 mA (0.2 C) to the measured Q 1 the discharge capacity when discharged until 1.0 V. Similarly, the battery was charged with a current of 1.7 A (1 C), then stored in a thermostatic bath at 60 ° C. for 7 days, then allowed to cool at 25 ° C. for 6 hours, and similarly 340 mA (0.2 C) of and Q 2 to measure the discharge capacity when discharged at a current was calculated capacity retention rate from the following equation (3). It shows that self-discharge characteristic is excellent, so that the value of a capacity | capacitance maintenance factor is large.

容量維持率(%)=Q/Q×100 (3) Capacity maintenance ratio (%) = Q 2 / Q 1 × 100 (3)

[電池寿命の評価]
上記のようにして製造した電池のうち、正常な電池を各電池用セパレータについて10個選別した。電池の化成のため、25℃において、170mA(0.1C)の電流で15時間充電し、1.7A(1C)の電流で端子電圧が0.8Vになるまで放電するという充放電を4回繰り返した。得られた化成済みの電池10個を用い、40℃で、1.7A(1C)の電流で1.2時間充電し、次に1.7A(1C)の電流で終止電圧が1.0Vになるまで放電させるという充放電サイクルを繰り返し、電池の寿命を評価した。300サイクル未満を「×」、300サイクル以上500サイクル未満を「△」、500サイクル以上750サイクル未満を「○」、750サイクル以上を「◎」で表した。
[Evaluation of battery life]
Of the batteries produced as described above, 10 normal batteries were selected for each battery separator. Charge and discharge 4 times at 25 ° C for 15 hours at a current of 170 mA (0.1 C) and discharge at 1.7 A (1 C) until the terminal voltage reaches 0.8 V for battery formation. Repeated. Using the obtained 10 converted batteries, the battery is charged with a current of 1.7 A (1 C) at 40 ° C. for 1.2 hours, and then the final voltage is 1.0 V with a current of 1.7 A (1 C). The battery life was evaluated by repeating the charge / discharge cycle of discharging until the battery was discharged. Less than 300 cycles are represented by “x”, 300 cycles or more and less than 500 cycles are represented by “Δ”, 500 cycles or more and less than 750 cycles are represented by “◯”, and 750 cycles or more are represented by “◎”.

Figure 2015041458
Figure 2015041458

実施例1〜10の結果から、繊維径5μmを超え、捲縮を有するポリオレフィン系芯鞘型複合繊維の含有率が、不織布を構成する繊維の85質量%を超えて含有され、かつ不織布を構成する繊維の25質量%以上が繊維径5μmを超え、8μm未満とすることにより、湿式抄造時の不織布の加熱乾燥における面割れを抑制することができ、得られた湿式不織布を親水化処理したセパレータを用いることにより、電池製造時のショート率を低減し、保液性に優れ、長寿命化できる。中でも、実施例1、2は、捲縮を有するポリオレフィン系芯鞘型複合繊維の含有率がより好ましい範囲内であり、優れている。   From the results of Examples 1 to 10, the fiber diameter exceeds 5 μm, the content of the crimped polyolefin-based core-sheath composite fiber exceeds 85 mass% of the fibers constituting the nonwoven fabric, and constitutes the nonwoven fabric. By making 25% by mass or more of the fibers to be processed exceed the fiber diameter of 5 μm and less than 8 μm, it is possible to suppress surface cracks in the heat drying of the nonwoven fabric during wet papermaking, and the separator obtained by hydrophilizing the obtained wet nonwoven fabric By using this, the short-circuit rate at the time of battery production can be reduced, the liquid retention is excellent, and the life can be extended. Among them, Examples 1 and 2 are excellent because the content of the polyolefin-based core-sheath composite fiber having crimps is in a more preferable range.

実施例4と実施例7、8を比較すると、実施例7は捲縮を有するポリオレフィン系芯鞘型複合繊維の捲縮数、捲縮率が低く、実施例4に比べると、面割れ、ショート率、保液性がやや劣る。一方、実施例8は捲縮を有するポリオレフィン系芯鞘型複合繊維の捲縮数、捲縮率が高く、実施例4に比べると、抄造時の地合がやや悪く、面割れ、ショート率がやや劣る。また実施例3と実施例9、10を比較すると、親水化処理がスルホン化処理である実施例3の方が、グラフト処理である実施例9、フッ素化処理である実施例10より、容量維持率が高く、電池寿命も優れている。実施例9と実施例10を比較すると、グラフト処理である実施例9の方が保液率、容量維持率が高く優れている。   When Example 4 is compared with Examples 7 and 8, Example 7 has a low number of crimps and a low crimp rate of the polyolefin core-sheath type composite fiber having crimps. Rate and liquid retention are slightly inferior. On the other hand, in Example 8, the number of crimps and the crimp rate of the polyolefin core-sheath composite fiber having crimps are high. Compared with Example 4, the formation at the time of papermaking is slightly worse, and the surface cracking and short circuit rate are lower. Somewhat inferior. In addition, comparing Example 3 with Examples 9 and 10, the capacity of Example 3 in which the hydrophilization treatment is sulfonation treatment is higher than that of Example 9 in which grafting treatment is performed and Example 10 in which fluorination treatment is performed. The rate is high and the battery life is also excellent. When Example 9 and Example 10 are compared, Example 9 which is a grafting process has a higher liquid retention rate and capacity retention rate and is superior.

一方、比較例の結果から、本発明の条件を満足していない場合、種々の性能が劣る結果であった。例えば、捲縮を有さないポリオレフィン系芯鞘型複合繊維のみからなる比較例1では、面割れが多発し、ショート率が高く、保液率も低かった。比較例2では、捲縮を有するポリオレフィン系芯鞘型複合繊維の含有率、及び5μmを超え、8μm未満の繊維の含有率が本発明の条件を満たさず、例えば実施例9と比較して、面割れ、ショート率、保液率が劣る結果であった。比較例3、4では、5μmを超え、8μm未満の繊維の含有率が本発明の条件を満たさず、例えば実施例10と比較して面割れ、ショート率、電池寿命が劣っている。更に、比較例4では、繊維径5μm以下の捲縮を有するポリオレフィン系芯鞘型複合繊維の含有しており、抄造用スラリー調製時に繊維のよれが発生し、不織布の地合が悪化した。   On the other hand, from the results of the comparative examples, when the conditions of the present invention were not satisfied, various performances were inferior. For example, in Comparative Example 1 consisting only of a polyolefin-based core-sheath type composite fiber having no crimp, surface cracks frequently occurred, the short-circuit rate was high, and the liquid retention rate was low. In Comparative Example 2, the content of the polyolefin-based core-sheath composite fiber having crimps, and the content of fibers exceeding 5 μm and less than 8 μm do not satisfy the conditions of the present invention. For example, compared with Example 9, The results were inferior in surface cracking, short-circuit rate, and liquid retention rate. In Comparative Examples 3 and 4, the fiber content of more than 5 μm and less than 8 μm does not satisfy the conditions of the present invention, and, for example, the surface cracking, short circuit rate, and battery life are inferior as compared with Example 10. Furthermore, in Comparative Example 4, the polyolefin core-sheath composite fiber having a crimp with a fiber diameter of 5 μm or less was contained, the fibers were twisted during preparation of the papermaking slurry, and the nonwoven fabric was deteriorated.

本発明の活用例としては、ニッケル−カドミウム二次電池、ニッケル−水素二次電池等のアルカリ二次電池用セパレータが挙げられる。また、リチウムイオン電池セパレータ、キャパシタ用セパレータ、溶融塩電池用セパレータにも利用することができる。   Examples of utilization of the present invention include separators for alkaline secondary batteries such as nickel-cadmium secondary batteries and nickel-hydrogen secondary batteries. It can also be used for lithium ion battery separators, capacitor separators, and molten salt battery separators.

Claims (2)

繊維径5μmを超え、捲縮を有するポリオレフィン系芯鞘型複合繊維の含有率が、不織布を構成する繊維の85質量%を超えて含有され、かつ不織布を構成する繊維の25質量%以上が繊維径5μmを超え、8μm未満である湿式不織布を親水化処理したことを特徴とする電池用セパレータ。   The content of the polyolefin core-sheath composite fiber having a fiber diameter exceeding 5 μm and having crimps exceeds 85 mass% of the fibers constituting the nonwoven fabric, and 25 mass% or more of the fibers constituting the nonwoven fabric are fibers. A battery separator characterized by hydrophilizing a wet nonwoven fabric having a diameter of more than 5 μm and less than 8 μm. 不織布の親水化処理がスルホン化処理であることを特徴とする請求項1記載の電池用セパレータ。   The battery separator according to claim 1, wherein the hydrophilic treatment of the nonwoven fabric is a sulfonation treatment.
JP2013171198A 2013-08-21 2013-08-21 Battery separator Pending JP2015041458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013171198A JP2015041458A (en) 2013-08-21 2013-08-21 Battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013171198A JP2015041458A (en) 2013-08-21 2013-08-21 Battery separator

Publications (1)

Publication Number Publication Date
JP2015041458A true JP2015041458A (en) 2015-03-02

Family

ID=52695514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013171198A Pending JP2015041458A (en) 2013-08-21 2013-08-21 Battery separator

Country Status (1)

Country Link
JP (1) JP2015041458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200621A1 (en) * 2020-03-31 2021-10-07 三菱製紙株式会社 Non-woven fabric for supporting solid electrolyte, and solid electrolyte sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200621A1 (en) * 2020-03-31 2021-10-07 三菱製紙株式会社 Non-woven fabric for supporting solid electrolyte, and solid electrolyte sheet
EP4130370A4 (en) * 2020-03-31 2024-04-17 Mitsubishi Paper Mills Limited NON-WOVEN FABRIC FOR SUPPORTING SOLID ELECTROLYTE AND SOLID ELECTROLYTE SHEET

Similar Documents

Publication Publication Date Title
JP2001155709A (en) Battery separator
JPWO2004038833A1 (en) Separator for organic electrolyte battery, manufacturing method thereof, and organic electrolyte battery incorporating the same
JP5927295B2 (en) Fiber using olefin resin, nonwoven fabric using the fiber, separator for alkaline storage battery
JP4800527B2 (en) Non-woven fabric, battery using the non-woven fabric, and capacitor using the non-woven fabric
JP4814392B1 (en) Battery separator
JP2015041458A (en) Battery separator
US20140042661A1 (en) Method of forming a battery separator and secondary battery
JP2006269384A (en) Alkaline battery separator
JP2015046346A (en) Separator for molten salt battery
JP2015041579A (en) Method for manufacturing battery separator
JP2014173200A (en) Method for manufacturing nonwoven fabric, nonwoven fabric and separator for battery
JP3772018B2 (en) Alkaline battery separator
JP2014197470A (en) Separator for alkali battery use
JPH1167182A (en) Separator for alkaline battery and manufacture thereof
JP4814399B2 (en) Battery separator
JP5128035B2 (en) Battery separator and battery using the same
JP2014182978A (en) Cell separator
JP2003109569A (en) Battery separator
JP2015041457A (en) Non-woven fabric for battery separator
JP2014156662A (en) Method for producing nonwoven fabric, nonwoven fabric and separator for battery
JP4058202B2 (en) Alkaline battery
JP2015041551A (en) Non-woven fabric for battery separator
JP2014170692A (en) Separator for alkaline battery
JP2011054544A (en) Separator for power storage device
JP2000353509A (en) Alkaline battery separator