Nothing Special   »   [go: up one dir, main page]

JP2014234545A - Method of manufacturing granulation raw material for sintering - Google Patents

Method of manufacturing granulation raw material for sintering Download PDF

Info

Publication number
JP2014234545A
JP2014234545A JP2013118551A JP2013118551A JP2014234545A JP 2014234545 A JP2014234545 A JP 2014234545A JP 2013118551 A JP2013118551 A JP 2013118551A JP 2013118551 A JP2013118551 A JP 2013118551A JP 2014234545 A JP2014234545 A JP 2014234545A
Authority
JP
Japan
Prior art keywords
raw material
particles
sintering
scraper
granulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013118551A
Other languages
Japanese (ja)
Other versions
JP5910831B2 (en
Inventor
隆英 樋口
Takahide Higuchi
隆英 樋口
直幸 竹内
Naoyuki Takeuchi
直幸 竹内
主代 晃一
Koichi Nushishiro
晃一 主代
大山 伸幸
Nobuyuki Oyama
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013118551A priority Critical patent/JP5910831B2/en
Publication of JP2014234545A publication Critical patent/JP2014234545A/en
Application granted granted Critical
Publication of JP5910831B2 publication Critical patent/JP5910831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Glanulating (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology preventing production of coarse pseudo-particle with uneven particle size and weak bond strength in a granulation raw material for sintering, and granulating pseudo-particle having uniform size.SOLUTION: In a method of manufacturing granulation raw material for sintering through a mixture step of adding moisture to blended raw material containing iron ore hard to be granulated and mixing the resultant material in a drum mixer and a granulation step of granulating the blended raw material after the mixture in a pan pelletizer, in the granulation step, while cracking the coarse pseudo-particle in a blended raw material rolling layer piling up in the pan pelletizer concurrently with scraping of deposits by a scraper with a cracking function, the coarse pseudo particle is re-granulated to a particle of appropriate size.

Description

本発明は、DL式焼結機に供給するための焼結用造粒原料の製造方法に関する。   The present invention relates to a method for producing a granulating raw material for sintering to be supplied to a DL type sintering machine.

焼結鉱は、複数銘柄の粉状の鉄鉱石(以下、単に「鉱石」とも言う)に、石灰石、珪石、蛇紋岩等の副原料粉と、ダスト、スケール、返鉱等の雑原料と、粉コークス等の固体燃料とを適量づつ配合した焼結用配合原料に、水分を添加して混合・造粒し、造粒原料を焼結機に装入して焼成することによって得られる。造粒時、配合原料は、水分を含むことで互いに凝集して擬似粒子となる。この擬似粒子化した焼結用造粒原料を焼結機に装入することにより焼結機上では良好な通気を確保することが可能となって焼結が円滑に進むことが知られている。
なお、焼結用鉄鉱石は、近年、高品質鉄鉱石の枯渇による低品位化、例えばスラグ成分の増加や微粉化の傾向が顕著であり、アルミナ含有量の増大、微粉比率の増大による造粒性の悪いものが多くなっている。その一方で、高炉で使用する焼結鉱としては、高炉での溶銑製造コストの低減やCO発生量の低減という観点から低スラグ比、高被還元性、高強度のものが求められている。
Sintered ore consists of multiple brands of powdered iron ore (hereinafter also referred to simply as “ores”), auxiliary raw material powders such as limestone, quartzite, and serpentine, and miscellaneous raw materials such as dust, scale, and return minerals, It is obtained by adding moisture to a blended raw material for sintering in which an appropriate amount of solid fuel such as powder coke is blended, mixing and granulating, and charging the granulated raw material into a sintering machine and firing. At the time of granulation, the blended raw materials aggregate with each other and become pseudo particles by containing moisture. It is known that by introducing the pseudo granulated raw material for sintering into a sintering machine, it is possible to ensure good ventilation on the sintering machine and the sintering proceeds smoothly. .
In recent years, iron ore for sintering has been prone to lower grades due to depletion of high-quality iron ore, for example, an increase in slag components and pulverization, and granulation due to an increase in alumina content and an increase in the fine powder ratio. There are a lot of bad things. On the other hand, sintered ore used in the blast furnace is required to have a low slag ratio, high reducibility, and high strength from the viewpoint of reducing hot metal production cost in the blast furnace and reducing CO 2 generation amount. .

近年の焼結用鉄鉱石を取り巻くこのような環境の下で、ペレットフィードと呼ばれるペレット用高品位鉄鉱石である難造粒性の微粉鉄鉱石を使って、高品質の焼結鉱を製造するための技術が提案されている。例えば、こうした従来技術の1つに、Hybrid Pelletized Sinter法(以下、「HPS法」という)がある。この技術は、ペレットフィードのような微粉鉄鉱石を多量に含む配合原料をドラムミキサーとペレタイザーとを使って造粒することにより、低スラグ比・高被還元性の焼結鉱を製造しようというものである(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5)。   In such an environment surrounding the recent iron ore for sintering, high-quality sintered ore is produced by using highly granulated iron ore, which is a high-grade iron ore for pellets called pellet feed. Techniques for this have been proposed. For example, one such conventional technique is the Hybrid Pelletized Sinter method (hereinafter referred to as “HPS method”). This technology is intended to produce sintered ore with low slag ratio and high reducibility by granulating a raw material containing a large amount of fine iron ore such as pellet feed using a drum mixer and pelletizer. (Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Literature 5).

特許文献1:特公平2−4658号公報
特許文献2:特公平6−21297号公報
特許文献3:特公平6−21298号公報
特許文献4:特公平6−21299号公報
特許文献5:特公平6−60358号公報
Patent Literature 1: Japanese Patent Publication No. 2-4658 Patent Literature 2: Japanese Patent Publication No. 6-21297 Patent Literature 3: Japanese Patent Publication No. 6-21298 Patent Literature 4: Japanese Patent Publication No. 6-21299 Patent Literature 5: Japan Patent Publication No. 6-60358

しかしながら、ペレットフィードである微粉鉄鉱石を多量に含む配合原料を造粒すると、個々の微粉鉄鉱石が水分を優先的に吸収するため、混合工程や造粒工程において、微粉同士が単に凝集しただけにすぎないものや、核粒子のまわりに微粉が付着した形態の粒径の不揃いな粗大な擬似粒子が生成するという問題があった。その原因は、ペレットフィードのような微粉鉄鉱石は、濡れ性が同じであれば、比表面積の大きい細粒ほど水分を吸収しやすく、かつ粉体間に多くの水分を保持しやすいためと考えられている。   However, when granulating raw materials containing a large amount of fine iron ore that is pellet feed, each fine iron ore absorbs moisture preferentially, so in the mixing process and granulation process, the fine powder simply aggregated. However, there is a problem that coarse pseudo-particles having irregular particle sizes in a form in which fine particles are attached around the core particles are generated. The reason for this is that fine iron ore such as pellet feed is more likely to absorb moisture and retain more moisture between powders as long as it has the same wettability, as long as the wettability is the same. It has been.

このように、粒径が不揃いで結合強度の弱い粗大な擬似粒子が生成すると、粒度分布が広くなるため、これを焼結機のパレット上へ充填すると、図1(a)、(b)に示すように緻密な充填構造となり、嵩密度が大きくなる。しかも、このような粗大な擬似粒子は、焼結機のパレット上に一定の層厚で堆積させると、該擬似粒子に荷重(圧縮力)が加わり圧壊されやすいため、空隙率が下がり、ひいては通気性の悪化を招いて焼結機操業の阻害要因になり、焼結時間が長くなったり焼結鉱の製造歩留まりが低下して生産性が低下するおそれがある。
さらには、造粒に用いられるバインダーである生石灰の使用量を増加せざるを得なくなり、焼結鉱製造コストの増大を招くことや、後工程において粉コークス等の固体燃料を被覆する際に、焼結原料全体としての粉コークス等の賦存状態が不均一となり、燃焼や着熱が不均一となって焼成速度が低下するという点に問題があった。
In this way, when coarse pseudo-particles having irregular particle sizes and weak bond strength are generated, the particle size distribution becomes wide. When this is filled on the pallet of the sintering machine, the results shown in FIGS. 1 (a) and 1 (b) are obtained. As shown, a dense packing structure is obtained, and the bulk density is increased. Moreover, if such coarse pseudo-particles are deposited on the pallet of the sintering machine with a certain layer thickness, a load (compressive force) is applied to the pseudo-particles and is easily crushed. As a result, the sintering process becomes a hindrance to the operation of the sintering machine, and there is a possibility that the sintering time becomes longer or the production yield of the sintered ore is lowered and the productivity is lowered.
Furthermore, it is unavoidable to increase the amount of quicklime used as a binder used for granulation, leading to an increase in the production cost of sintered ore, and when coating solid fuel such as powdered coke in the subsequent process, There was a problem in that the existing state of the powdered coke as a whole of the sintered raw material became non-uniform, combustion and heat receiving became non-uniform, and the firing rate was reduced.

このような問題に対しては、予備造粒技術を採用するとよいことが知られている。例えば、特許第2790008号には粒径0.5mm以下の部分が30wt%以上の焼結原料を造粒するに際して、該原料を予め高速攪拌羽根を内蔵した混合機を用いて実質的に破砕することなく剪断力を与えながら混合し、この混合の際に焼結原料の含水量を6.5〜10.0%とする焼結原料の事前処理方法が開示されている。   It is known that a pre-granulation technique should be adopted for such a problem. For example, in Patent No. 2790008, when a sintered raw material having a particle size of 0.5 mm or less is 30 wt% or more is granulated, the raw material is substantially crushed using a mixer that has a high-speed stirring blade previously incorporated. There is disclosed a pretreatment method for a sintering raw material in which mixing is performed while applying a shearing force, and the water content of the sintering raw material is 6.5 to 10.0% during this mixing.

この処理方法は、鉄鉱石粉を破砕するのではなく剪断力を加えること、及び水分の均一化と吸収水分の粒子表面への染み出しを促進することにより、粒度分布の均一化を図る技術である。しかし、高速攪拌羽根を内蔵した混合機を用いる方法では、混合機に装入された全ての配合原料にこの処理を施す必要が生じて設備規模が大きくなる問題点があり、また、処理速度を上げようと滞留時間を短くすると水分均一化に必要な時間を十分に確保できなくなる問題点があった。さらには、破砕することなく剪断力を与えながら混合したのち造粒される際に、細粒あるいは微粉同士が再凝集して結合強度の弱い粗大な擬似粒子となることもあり、上述した問題の解決は不十分であった。   This treatment method is a technique for homogenizing the particle size distribution by applying shearing force instead of crushing the iron ore powder, and promoting the homogenization of moisture and the exudation of absorbed moisture to the particle surface. . However, in the method using a mixer with a built-in high-speed stirring blade, there is a problem that it is necessary to perform this treatment on all the blended raw materials charged in the mixer, resulting in a problem that the equipment scale becomes large. If the residence time is shortened so as to increase the time, there is a problem that it is impossible to secure a sufficient time required for water homogenization. Furthermore, when granulating after mixing while giving shearing force without crushing, fine particles or fine powders may reagglomerate to become coarse pseudo particles with low bonding strength, which is the problem described above. The solution was inadequate.

そこで、本発明は、従来技術の抱える上記問題を解決するため、難造粒性の微粉鉄鉱石を含む焼結用原料を用いて焼結用造粒原料を製造するに当たって、細粒や微粉が凝集して微粉鉄鉱石を多く含む結合強度の弱い粗大な擬似粒子になるのを阻止し、大きさが比較的揃った(均一な大きさ)擬似粒子を造粒する技術を提案するものである。   Therefore, in order to solve the above-mentioned problems of the prior art, the present invention produces fine granule and fine powder in the production of a granulation raw material for sintering using a raw material for sintering containing hardly granulated fine iron ore. Proposes technology to granulate pseudo-particles that are relatively uniform in size (uniform size) by preventing aggregation and coarse pseudo-particles with a weak bond strength that contain a large amount of fine iron ore. .

即ち、本発明は、図1(c)で示すように、微粉や細粒同士が凝集または、核粒子のまわりに微粉が付着した構造の、粒径が比較的揃うと共に粒度分布の狭い擬似粒子からなる焼結用造粒原料を有利に製造する方法を提案するものであり、これによって焼結用造粒原料を焼結機のパレット上に装入したときに形成される原料充填層の充填密度の低減と、通気性の向上に伴う焼成時間の短縮を実現し、焼結生産性を向上させることを目的とするものである。   That is, as shown in FIG. 1 (c), the present invention has a structure in which fine particles and fine particles are aggregated or fine particles are adhered around the core particles, and the pseudo particles have a relatively uniform particle size and a narrow particle size distribution. A method for advantageously producing a granulated raw material for sintering comprising a raw material packed layer formed when the granulated raw material for sintering is loaded on a pallet of a sintering machine is proposed. The object is to reduce the density and shorten the firing time associated with the improvement of the air permeability and improve the sintering productivity.

上記目的を達成するため、本発明では、難造粒性の微粉鉄鉱石粉を含む配合原料を用いて焼結用造粒原料を製造する工程において、細粒や微粉が凝集して結合強度の弱い粗大な擬似粒子が発生し、大きな粒度分布をもつことで、焼結機の操業時に、パレット上の原料充填層の通気性を悪化させるという問題を克服できる方法を提案することを目指した。そのための方法として、本発明では、粒径の大きな擬似粒子を選択的に解砕しながら造粒を続けることにより、結合強度の弱い粗大な擬似粒子が発生するのを阻止し、粒径が比較的揃った粒度分布の小さい擬似粒子を製造する方法を開発することに成功した。   In order to achieve the above object, in the present invention, in the step of producing a granulated raw material for sintering using a blended raw material containing a difficult-to-granulate fine iron ore powder, fine particles and fine powder aggregate to weaken the bond strength. The aim was to propose a method that can overcome the problem of aggravating the air permeability of the raw material packed bed on the pallet when the sintering machine is operated by generating coarse pseudo-particles and having a large particle size distribution. As a method for this, in the present invention, by continuing the granulation while selectively pulverizing the pseudo particles having a large particle size, the generation of coarse pseudo particles having a weak bond strength is prevented, and the particle size is compared. We have succeeded in developing a method for producing pseudo-particles with a uniform particle size distribution.

すなわち、本発明は、難造粒性の鉄鉱石を含む配合原料に水分を添加してドラムミキサーにて混合する混合工程と、混合後の配合原料をパンペレタイザーにて造粒する造粒工程とを経て焼結用造粒原料を製造する方法において、前記造粒工程で、パンペレタイザー内に滞留する配合原料転動層にある粗大な擬似粒子を、該パンペレタイザー内の壁面スクレーパーおよび/または底面スクレーパーからなる解砕機能付きスクレーパーによって付着物の掻き落しと同時に解砕しつつ、適正粒子の大きさに再造粒することを特徴とする焼結用造粒原料の製造方法を提案する。   That is, the present invention includes a mixing step of adding moisture to a blended raw material containing hardly granulated iron ore and mixing with a drum mixer, and a granulating step of granulating the blended raw material with a pan pelletizer In the method for producing a granulated raw material for sintering, coarse spurious particles in the blended raw material rolling layer staying in the pan pelletizer in the granulating step are converted into a wall scraper and / or a bottom surface in the pan pelletizer. A method for producing a granulating raw material for sintering is proposed, which comprises re-granulating to the appropriate particle size while scraping off the deposits simultaneously with scraping with a crushing function comprising a scraper.

本発明のより好ましい解決手段は、
(1)前記解砕機能付きスクレーパーは、前記配合原料転動層の滞留位置に向かって移動調節可能であること、
(2)前記解砕機能付きスクレーパーは、前記配合原料転動層の滞留位置、およびドラムミキサーからパンペレタイザーへ配合原料を供給するための移送用ベルトコンベアの排出端直下位置に向かってそれぞれ移動調整可能であること、
(3)前記解砕機能付きスクレーパーの回転数が、8〜300rpmであること、
(4)前記粗大な擬似粒子は、核粒子に微粉および/または細粒が付着した粒子、または微粉および/または細粒が凝集した粒子であること、
(5)前記適正粒子の大きさが、JIS Z8801に規定の16メッシュ篩上〜4メッシュ篩下であること、
(6)前記粗大な擬似粒子は、粒径10mm以上の粒子であること、
(7)前記解砕は、前記解砕機能付きスクレーパーの回転によって粗大な擬似粒子を圧壊することにより行うこと、
(8)前記造粒工程の後に、この工程を経て製造された擬似粒子にコークス粉を付着させる工程を有すること、
である。
A more preferable solution of the present invention is as follows:
(1) The scraper with a crushing function can be moved and adjusted toward the residence position of the blended raw material rolling layer,
(2) The scraper with the crushing function is adjusted to move toward the residence position of the blended raw material rolling layer and the position directly below the discharge end of the transfer belt conveyor for supplying the blended raw material from the drum mixer to the pan pelletizer. Being possible,
(3) The rotation speed of the scraper with a crushing function is 8 to 300 rpm,
(4) The coarse pseudo-particles are particles in which fine particles and / or fine particles are attached to core particles, or particles in which fine particles and / or fine particles are aggregated,
(5) The size of the appropriate particles is from 16 mesh sieve to 4 mesh sieve as defined in JIS Z8801.
(6) The coarse pseudo particles are particles having a particle size of 10 mm or more.
(7) The crushing is performed by crushing coarse pseudo particles by rotation of the scraper with a crushing function,
(8) having a step of attaching coke powder to the pseudo particles produced through this step after the granulation step;
It is.

本発明に係る焼結用造粒原料の製造方法によれば、ペレットフィードのような高品位であるが難造粒性の微粉鉄鉱石をも焼結鉱製造用原料として使用することができるようになり、低スラグ比で高被還元性、高強度の鉄鉱石を有利に製造することができる。そして、このような焼結用造粒原料を、高炉用原料とすることにより、高炉内に装入する塊コークスの使用量を低減させることができるようになり、高炉からのCO2発生量の大幅な削減と、生産性の向上が期待できる。しかも、高炉でのスラグ発生量が低減するため、環境への負荷を軽減させることができる。 According to the method for producing a granulated raw material for sintering according to the present invention, it is possible to use high-grade but hardly granulated fine iron ore such as pellet feed as a raw material for producing sintered ore. Therefore, it is possible to advantageously produce iron ore with a low slag ratio and high reducibility and high strength. And by using such a granulation raw material for sintering as a raw material for a blast furnace, it becomes possible to reduce the amount of lump coke charged into the blast furnace, and to reduce the amount of CO 2 generated from the blast furnace. Significant reductions and productivity improvements can be expected. Moreover, since the amount of slag generated in the blast furnace is reduced, the load on the environment can be reduced.

また、本発明に係る製造方法によれば、焼結用造粒原料の粒径がほぼ均一になり、焼結機のパレット上への装入密度が小さくなって、原料充填層(焼結ベット)の通気性の改善を図れると共に、焼結原料全体としての粉コークス等の固体燃料の賦存状態が均一となり、燃焼速度の向上によって焼成時間が短縮し、歩留まりおよび焼結生産性を向上させることができる。   Further, according to the manufacturing method of the present invention, the particle diameter of the granulation raw material for sintering becomes substantially uniform, the charging density on the pallet of the sintering machine becomes small, and the raw material packed bed (sintered bed) ), And the existence of solid fuel such as coke breeze as a whole of the sintering raw material becomes uniform, and the burning rate is shortened by improving the burning rate, thereby improving the yield and sintering productivity. be able to.

さらに、本発明に係る製造方法よれば、粉コークスの使用量の低減が可能となり、焼結鉱製造時のCO発生量の低減が可能になると共に、造粒時に使用される生石灰(バインダー)の使用量を削減することができるため、焼結鉱の製造コストを低減させることができる。 Furthermore, according to the production method of the present invention, the amount of powder coke used can be reduced, the amount of CO 2 generated during the production of sintered ore can be reduced, and quick lime (binder) used during granulation. Therefore, the production cost of the sintered ore can be reduced.

従来の原料充填層(a)、(b)と、本発明の原料充填層(c)の模式図である。It is a schematic diagram of the conventional raw material filling layer (a), (b) and the raw material filling layer (c) of this invention. 擬似粒子の構造(a)、(b)と、従来の焼結用造粒原料の製造プロセス(c)の模式図である。It is a schematic diagram of the manufacturing process (c) of the structure (a) and (b) of a pseudo particle, and the conventional granulation raw material for sintering. 従来の造粒工程(a)と、本発明の造粒工程の一実施形態(b)、(c)を示す略線図である。It is an approximate line figure showing one embodiment (b) and (c) of the conventional granulation process (a) and the granulation process of the present invention. 本発明の造粒工程の他の実施形態を示す略線図である。It is a basic diagram which shows other embodiment of the granulation process of this invention. 従来法と本発明法により造粒した粒子の粒度分布と造粒水分率の測定結果である。It is a measurement result of the particle size distribution and granulation moisture content of the particles granulated by the conventional method and the present invention method.

図2は、代表的な擬似粒子の構造を示すものである。図2(a)は、ペレットフィード使用時に形成される擬似粒子のうち、鉄鉱石の細粒あるいは微粉同士が水分を介して凝集した、微粉鉄鉱石を多く含む結合強度の弱い粗大な擬似粒子の例(凝集粒子)を示すものであり、これに対し、図2(b)は、核粒子のまわりに微粉や細粒が付着した構造の擬似粒子の例であり、一般的に図2(b)の擬似粒子の方が強度が大きく粒径が揃ったものになる。なお、微粉鉄鉱石としては、通常の配合原料をそのまま用いても微粉としての挙動は同じであり、またペレットフィードを製造する過程で発生する残渣であるテーリング鉱を使用することも可能である。   FIG. 2 shows the structure of a typical pseudo particle. FIG. 2 (a) is a diagram of pseudo-particles of coarse pseudo-particles formed by using pellet feed, in which fine or fine particles of iron ore are agglomerated with each other through moisture, and which contain a large amount of fine iron ore and have low bonding strength. An example (aggregated particle) is shown, whereas FIG. 2 (b) is an example of a pseudo particle having a structure in which fine particles or fine particles are attached around a core particle. ) Pseudo particles are stronger and have a uniform particle size. In addition, as a fine iron ore, even if it uses a normal compounding raw material as it is, the behavior as a fine powder is the same, and it is also possible to use tailing ore which is a residue generated in the process of producing a pellet feed.

一般的な焼結用造粒原料の製造プロセスフローは、図2(c)に示すように、配合槽1から切り出された配合原料である鉄鉱石粉および副原料粉をまず、ドラムミキサー2にて混合した後(混合工程)、パンペレタイザー3に送給して造粒処理し(造粒工程)、さらに別のドラムミキサー4により粉コークス等の固体燃料や必要に応じて用いられる副原料をコーティングして焼結鉱製造用の原料である焼結用造粒原料が製造される。なお、混合工程および造粒工程ではそれぞれ水分を添加して所定の造粒水分になるように調整することで、所定の擬似粒子が得られる。   As shown in FIG. 2 (c), a general manufacturing process flow of a granulation raw material for sintering is performed by first mixing iron ore powder and auxiliary raw material powder, which are mixed raw materials cut out from the mixing tank 1, with a drum mixer 2. After mixing (mixing process), it is fed to the pan pelletizer 3 and granulated (granulation process), and further coated with a solid fuel such as coke breeze and other auxiliary materials as needed. Thus, a granulating raw material for sintering, which is a raw material for manufacturing sintered ore, is manufactured. In the mixing step and the granulating step, predetermined pseudo particles can be obtained by adding water and adjusting to obtain predetermined granulated moisture.

ところで、パンペレタイザー3は、上部に配合原料を滞留させる皿状の容器(パン)を有し、該容器は30〜70°程度に傾斜した状態で反時計回りに回転するように構成されている。パンペレタイザー3の容器内に装入された配合原料は、造粒用水分を加えつつ、上方位置に持ち上げられ、やがて自重により下方に向かって落下する運動を繰り返し、これによって次第に大きな粒子に成長し造粒されることになる。したがって、パンペレタイザー3内では、配合原料は渦状に転動して滞留することになり、渦中心の表層付近には、前記粗大な擬似粒子が多く偏在することになる。これは、転動粒子同士の篩い分け効果(パーコレーション)により、細粒が下層に、粗粒が上層に偏析する現象によるものである。   By the way, the bread pelletizer 3 has a dish-like container (bread) in which the blended raw material is retained in the upper part, and the container is configured to rotate counterclockwise while being inclined at about 30 to 70 °. . The compounding raw material charged in the container of the pan pelletizer 3 is lifted to the upper position while adding moisture for granulation, and then repeatedly moves downward due to its own weight, thereby gradually growing into larger particles. It will be granulated. Therefore, in the pan pelletizer 3, the blended raw material rolls and stays in a vortex, and a large amount of the coarse pseudo particles are unevenly distributed near the surface layer of the vortex center. This is due to the phenomenon that fine particles segregate in the lower layer and coarse particles segregate in the upper layer due to the sieving effect (percolation) between the rolling particles.

本発明では、このようなパンペレタイザー3内に装入された配合原料の、望ましくは粗大な擬似粒子のみを解砕しつつさらに造粒を続けて、好適な粒径の擬似粒子を製造することを目的とし、ドラムミキサー4による上記混合工程やパンペレタイザー3による上記造粒工程において生成した配合原料中の、パンペレタイザー内に滞留している配合原料転動層にある粗粒化した擬似粒子、即ち、図2(b)に示す核粒子に微粉および/または細粒が付着した粒子、または図2(a)に示す微粉および/または細粒が凝集した粒子について、一定以上の大きさを有するものを、解砕機能付きのスクレーパーを使って解砕しつつ、適正粒子の大きさに再造粒する(以下、「解砕造粒」とも言う。)ことを特徴としている。   In the present invention, it is preferable to continue the granulation while preferably crushing only the coarse pseudo particles of the blended raw material charged in the pan pelletizer 3 to produce pseudo particles having a suitable particle size. For the purpose of the above, in the blended raw material generated in the mixing step by the drum mixer 4 and the granulating step by the pan pelletizer 3, coarse-grained pseudo particles in the blended raw material rolling layer staying in the pan pelletizer, That is, the particles having fine particles and / or fine particles attached to the core particles shown in FIG. 2B or the particles having fine particles and / or fine particles aggregated as shown in FIG. The material is characterized by being re-granulated to an appropriate particle size (hereinafter also referred to as “crush granulation”) while being crushed using a scraper with a crushing function.

なお、粗大な擬似粒子とは、例えば、粒径が10mm以上、好ましくは8mm以上の核粒子に細粒や微粉が付着した擬似粒子、あるいは細粒や微粉が水分を介して凝集して粗粒化した擬似粒子であり、このような擬似粒子は、水分含有率が高く、変形しやすい低強度な粒子のため、比較的容易に解砕(圧壊)することができる。   The coarse pseudo particles are, for example, pseudo particles in which fine particles or fine powder adhere to core particles having a particle size of 10 mm or more, preferably 8 mm or more, or fine particles or fine particles agglomerated through moisture and coarse particles. Such pseudo particles have a high moisture content and are low-strength particles that are easily deformed. Therefore, they can be crushed (collapsed) relatively easily.

本発明によれば、配合原料中に含まれる粗大な擬似粒子が、パンペレタイザー内において解砕機能付きスクレーパーによって解砕され、これによって発生した細粒や微粉が、やがて核粒子に付着するか、互いに凝集することで、適正な大きさを有する、例えば、JIS Z8801に規定の16メッシュ篩上〜4メッシュ篩下の大きさの粒径の揃った擬似粒子を再造粒することができる。また、JIS Z8801に規定の16メッシュ篩上〜4メッシュ篩下の擬似粒子とは、粒径1.0mm以上、4.75mm未満の粒子が該当する(以下、単に粒径1.0mm〜4.75mmの中間粒子と言う。)。
なお、焼結鉱製造用の原料としては、この粒径1.0mm〜4.75mmの中間粒子からなる粒径の揃った擬似粒子を用いることが好ましく、この範囲内とすることで、焼結機のパレット上に堆積させた際の充填層(焼結ベッド)の装入嵩密度が小さくなり、生産性を向上させることができる。
According to the present invention, coarse pseudo particles contained in the raw material are crushed by a scraper with a crushing function in a pan pelletizer, and fine particles and fine powder generated thereby eventually adhere to the core particles, By agglomerating each other, pseudo particles having an appropriate size, for example, having a particle size of 16 mesh sieve to 4 mesh sieve as defined in JIS Z8801, can be re-granulated. Further, the pseudo particles under 16 mesh sieve to 4 mesh sieve specified in JIS Z8801 correspond to particles having a particle size of 1.0 mm or more and less than 4.75 mm (hereinafter simply referred to as 1.0 to 4. 75mm intermediate particles.)
In addition, as a raw material for sintered ore production, it is preferable to use pseudo particles having a uniform particle size composed of intermediate particles having a particle size of 1.0 mm to 4.75 mm. The bulk density of the packed bed (sintered bed) when deposited on the pallet of the machine is reduced, and the productivity can be improved.

ところで、解砕機能付きスクレーパーSは、従来より、図3(a)に示すように、パンペレタイザー3の底面および壁面に付着する配合原料を除去するために設けられている壁面スクレーパー5および底面スクレーパー6を用いてなり、該スクレーパー5、6をパンペレタイザー3内の配合原料転動層の滞留位置に向かって移動調節可能に設けることが好ましい。
なお、壁面スクレーパー5および底面スクレーパー6は、通常、10〜40rpm程度の回転数で回転し、その回転によってパンペレタイザー3の底面や壁面に付着した配合原料を掻き落すように構成されている。パンペレタイザー3の底面や壁面に配合原料が付着すると、パンの内容積、即ち原料の保有量が下がり、パン内の原料滞留時間が短縮して造粒能力が低下するため除去が必要とされている。
By the way, as shown in FIG. 3A, the scraper S with a crushing function has conventionally been provided with a wall surface scraper 5 and a bottom surface scraper that are provided to remove the blended raw material adhering to the bottom surface and the wall surface of the pan pelletizer 3. 6 and the scrapers 5 and 6 are preferably provided so that the movement of the scrapers 5 and 6 toward the staying position of the mixed raw material rolling layer in the pan pelletizer 3 can be adjusted.
In addition, the wall surface scraper 5 and the bottom surface scraper 6 are usually configured to rotate at a rotation speed of about 10 to 40 rpm, and to scrape off the mixed raw material adhering to the bottom surface and the wall surface of the pan pelletizer 3 by the rotation. If the blended raw material adheres to the bottom surface or wall surface of the bread pelletizer 3, the internal volume of the bread, that is, the amount of the raw material is reduced, and the retention time of the raw material in the bread is shortened, so that the granulation ability is reduced, so that removal is required. Yes.

本発明では、この壁面スクレーパー5および底面スクレーパー6の少なくとも一方からなる解砕機能付きスクレーパーSを、図3(b)および図3(c)に例示するように、パンペレタイザー3内の配合原料転動層の滞留位置の、とくに、粗大な擬似粒子の密集領域となる表層部にオーバーラップするように移動調節可能に配設し、該解砕機能付きスクレーパーSを、好ましくは8〜300rpmの回転数で高速回転させる。なお、解砕機能付きスクレーパーSの回転数は、8rpm未満の場合、原料がスクレーパーSの羽根(解砕機能部分)に付着し、解砕能力の低下を招くことが懸念される。また、300rpm超になると、擬似粒子が過度に解砕されて微粉化するおそれや、解砕機能付きスクレーパーSの回転によって配合原料の流れが阻害され、スクレーパーSと擬似粒子との接触数(接触確率)が減少して粗大な擬似粒子を効果よく解砕することができないおそれがある。   In the present invention, the scraper S with a crushing function composed of at least one of the wall surface scraper 5 and the bottom surface scraper 6 is mixed with the blended raw material in the pan pelletizer 3 as illustrated in FIGS. 3 (b) and 3 (c). The scraper S with a crushing function is preferably rotated at a speed of 8 to 300 rpm. The scraper S with a crushing function is disposed so as to overlap with the surface layer portion, which is a dense region of coarse pseudo-particles. Rotate at high speed with numbers. In addition, when the rotation speed of the scraper S with a crushing function is less than 8 rpm, there is a concern that the raw material adheres to the blades (crushing function part) of the scraper S and causes a reduction in the crushing ability. Further, if it exceeds 300 rpm, the pseudo particles may be excessively crushed and pulverized, or the flow of the blended raw material may be inhibited by the rotation of the scraper S with a crushing function, and the number of contacts between the scraper S and the pseudo particles (contact (Probability) may be reduced, and coarse pseudo particles may not be effectively crushed.

本発明によれば、パンペレタイザー3内の配合原料転動層中に存在する、粒径が10mmを越えるような肥大化した粗大な擬似粒子が、解砕機能付きスクレーパーSによって解砕されると共に、粗大な擬似粒子の内部に局在化していた水分が解放されて配合原料に効率よく再分配されて水分の均一化が図られることになり、パンペレタイザー3内による造粒によって粒度分布が小さく、粒径の比較的揃った焼結機用の造粒原料を製造することができる。   According to the present invention, the coarse pseudo particles enlarged in the compounding raw material rolling layer in the pan pelletizer 3 and having a particle size exceeding 10 mm are crushed by the scraper S with a crushing function. Then, the water localized in the coarse pseudo-particles is released and efficiently redistributed to the blended raw material to make the water uniform, and the particle size distribution is reduced by granulation in the pan pelletizer 3. It is possible to produce a granulation raw material for a sintering machine having a relatively uniform particle size.

また、発明者らの研究によれば、従来のHPS法では、ペレットフィードのような難造粒性の微粉鉄鉱石を多量に含む配合原料を使用すると、それをドラムミキサーで混合した時点で既に、核粒子となる大きめの粒子に微粉や細粒が付着したり、微粉や細粒同士が凝集して、粒径の不揃いな粗大な擬似粒子が形成されること、そして、このような粗大な擬似粒子は、パンペレタイザー内部において、その転動運動による衝撃によって一部は破壊されるものの、大部分は造粒の進行によってさらに粒子径が増大(肥大化)していくことがわかった。   In addition, according to the research by the inventors, in the conventional HPS method, when a blended raw material containing a large amount of hardly granulated fine iron ore such as pellet feed is used, it has already been mixed with a drum mixer. In addition, fine particles or fine particles adhere to large particles that become core particles, or fine particles or fine particles aggregate together to form coarse pseudo particles with irregular particle sizes, and such coarse particles Although some of the pseudo particles are destroyed by the impact of the rolling motion inside the pan pelletizer, most of the pseudo particles are found to further increase in size (enlarge) as the granulation progresses.

そこで、本発明の他の実施形態として、図4に示すように、解砕機能付きスクレーパーSを、パンペレタイザー3内の配合原料転動層の滞留位置と共に、パンペレタイザー3内の、ベルトコンベア10の排出端直下位置に移動調節可能に設けることが好ましい。
これによれば、パンペレタイザー3へ装入する時点で既に配合原料中に含まれている粗大な擬似粒子(ドラムミキサー2での混合工程で発生した粗大な擬似粒子)が、パンペレタイザー3での造粒に先立って一定の粒径以下に解砕されるため、造粒の進行によって該擬似粒子が増大(肥大化)することがなく、たとえ、その後の造粒過程で粗大な擬似粒子が発生したとしても、それを配合原料転動層の滞留位置に設けた解砕機能付きスクレーパーSによって解砕することができるので、粗大な擬似粒子を確実に解砕し、粒子強度が大きく、粒度分布の小さく粒径の揃った擬似粒子を造粒することができる。
Therefore, as another embodiment of the present invention, as shown in FIG. 4, a scraper S with a crushing function, together with the staying position of the mixed raw material rolling layer in the pan pelletizer 3, the belt conveyor 10 in the pan pelletizer 3. It is preferable that it is provided at a position directly below the discharge end so that the movement can be adjusted.
According to this, coarse pseudo particles (coarse pseudo particles generated in the mixing process in the drum mixer 2) already contained in the blended raw material at the time of charging into the pan pelletizer 3 are Prior to granulation, the particles are crushed to a certain particle size or less, so that the pseudo particles do not increase (enlarge) due to the progress of granulation, even if coarse particles are generated in the subsequent granulation process. Even so, it can be crushed by the scraper S with a crushing function provided at the staying position of the blended raw material rolling layer, so that the coarse pseudo-particles can be crushed reliably, the particle strength is large, and the particle size distribution Can be granulated.

なお、上記のようにして解砕造粒された擬似粒子は、パンペレタイザーから溢流してベルトコンベア上に排出された後、その表面に、さらに別のドラムミキサーを用いてコークス粉等の固体燃料や必要に応じて用いられる副原料をコーティングすることにより、焼結鉱製造用の原料である焼結用造粒原料となる。   The pseudo particles pulverized and granulated as described above overflow from the pan pelletizer and are discharged onto the belt conveyor, and then, on the surface thereof, a solid fuel such as coke powder using another drum mixer. Further, by coating the auxiliary material used as necessary, it becomes a granulated raw material for sintering which is a raw material for producing sintered ore.

したがって、本発明の方法に基づいて製造した焼結用造粒原料を用いて焼結鉱を製造すると、焼結鉱製造歩留まりや焼結鉱の強度の向上も期待できる。また、本発明の適用により製造された焼結用造粒原料では、比較的均一な粒度となるため、固体燃料としてコーティングされる粉コークスの賦存状態も適正化されることになる。なお、粉コークスの外装造粒を実施しない場合には、粉コークスや石灰石の均一混合を図るためには造粒前の均一混合が必要となるが、本発明の場合、このような負担も軽減される。   Therefore, when a sintered ore is manufactured using the granulation raw material for sintering manufactured based on the method of the present invention, an improvement in the yield of sintered ore and the strength of the sintered ore can be expected. Moreover, since the granulation raw material for sintering manufactured by application of this invention becomes a comparatively uniform particle size, the existence state of the powder coke coated as a solid fuel will also be optimized. In addition, when not implementing external granulation of powder coke, uniform mixing before granulation is required to achieve uniform mixing of powder coke and limestone. Is done.

また、本発明に係る方法は、解砕のための別ラインの増設が不要であり、パンペレタイザー内に既設の壁面スクレーパーおよび/または底面スクレーパーを利用するだけの、シンプルな設備構成となる。   Further, the method according to the present invention does not require an additional line for crushing, and has a simple equipment configuration in which an existing wall scraper and / or bottom scraper is used in the pan pelletizer.

本実施例では、鉄鉱石中の40mass%についてはペレットフィードを配合するという条件において、従来のHPS法をベースとし、壁面スクレーパー(図3(b):本発明1)または底面スクレーパー(図3(c):本発明2)を配合原料転動層の滞留位置に移動可能に配設し、該スクレーパーによって解砕を行いながら連続造粒を行った。
なお、従来のHPS法においては、壁面スクレーパーを回転数:40rpm、底面スクレーパーを回転数:10rpmで回転させ、一方、本発明1および2においては、各スクレーパーを滞留配合原料の転動領域まで移動させ、回転数:200rpmで高速回転させた。
上記のようにして製造した各造粒原料について、粗大擬似粒子(粒径10mm以上)の割合、およびこれを用いて焼結鉱を製造した際の焼結生産性について測定した結果を表1に示す。この結果より、本発明の適用によって(本発明1および本発明2)、粗大擬似粒子の生成割合が減少し、焼結生産性を向上させることができることが確認された。
In this example, 40 mass% in the iron ore is based on the conventional HPS method on the condition that the pellet feed is blended, and the wall surface scraper (FIG. 3B: Invention 1) or the bottom scraper (FIG. 3 ( c): The present invention 2) was disposed so as to be movable to the residence position of the blended raw material rolling layer, and continuous granulation was performed while crushing with the scraper.
In the conventional HPS method, the wall scraper is rotated at 40 rpm and the bottom scraper is rotated at 10 rpm. On the other hand, in the present inventions 1 and 2, each scraper is moved to the rolling region of the staying blended raw material. And rotated at a high speed of 200 rpm.
Table 1 shows the results of measuring the ratio of coarse pseudo-particles (particle size of 10 mm or more) and the sintering productivity when a sintered ore was produced using each of the granulated raw materials manufactured as described above. Show. From this result, it was confirmed that by applying the present invention (present invention 1 and present invention 2), the generation ratio of coarse pseudo-particles can be reduced and the sintering productivity can be improved.

Figure 2014234545
Figure 2014234545

また、本実施例にあたり、従来法により造粒した際のパンペレタイザー内部の状態を観察したところ、パンペレタイザーの壁面・底面に付着した配合原料が、運転時間の経過に伴って次第に成長する様子が確認された。そこで、この付着物について絶乾水分計を用いて含水率を測定したところ、装入原料の平均含水率よりも高く、パンペレタイザーの壁面・底面において、微粉や細粒が水分を介して凝集し、強度の低い粗大な擬似粒子が形成されていることがわかった。
この点に関し、本発明1および2において、パンペレタイザー内部の状態を観察したところ、従来法よりもパンペレタイザーの壁面・底面に付着した配合原料の、運転時間の増加に伴う成長が低下し、粗大な擬似粒子の形成を抑制することができることが確認できた。
In addition, in this example, when the state of the inside of the pan pelletizer when it was granulated by the conventional method was observed, it seems that the blended raw material attached to the wall surface / bottom surface of the pan pelletizer gradually grows as the operation time elapses. confirmed. Therefore, when the moisture content of this deposit was measured using an absolutely dry moisture meter, it was higher than the average moisture content of the charged raw material, and fine powder and fine particles aggregated on the wall and bottom of the pan pelletizer via moisture. It was found that coarse pseudo particles with low strength were formed.
In this regard, in the present inventions 1 and 2, when the state of the inside of the pan pelletizer was observed, the growth of the blended raw material adhering to the wall surface / bottom surface of the pan pelletizer was lower than that of the conventional method, and the coarseness was increased. It was confirmed that the formation of simple pseudo particles can be suppressed.

さらに、本発明の効果を検証するため、造粒水分量を7.2%として同一の造粒時間にて造粒粒子を採取し、粒度分布ごとの水分量を測定した。その結果を図5に示す。この結果によれば、従来法を用いた造粒粒子においては、粒径10mm以上の粗粒を多く含む、粒径8mm以上の含水率の高い粗粒の生成比率が高く、変形し易い低強度の造粒粒子が多く含まれていることがわかる。これに対し、本発明法による造粒粒子では、粗粒の生成割合が減少する一方、平均含水率に近い中間粒子(1.0mm〜4.75mm)の比率が増加し、粒径の均一な造粒粒子を製造することができた。   Furthermore, in order to verify the effect of the present invention, granulated particles were collected at the same granulation time with a granulated water content of 7.2%, and the water content for each particle size distribution was measured. The result is shown in FIG. According to this result, the granulated particles using the conventional method have a high generation ratio of coarse particles having a large particle size of 8 mm or more, including many coarse particles having a particle size of 10 mm or more, and are easily deformed and have low strength. It can be seen that a lot of granulated particles are contained. On the other hand, in the granulated particles according to the method of the present invention, while the ratio of coarse particles is decreased, the ratio of intermediate particles (1.0 mm to 4.75 mm) close to the average moisture content is increased, and the particle size is uniform. Granulated particles could be produced.

本発明に係る方法は、焼結用造粒原料の製造のみならず、高炉用焼結鉱の製造技術としても適用が可能である。   The method according to the present invention can be applied not only to the production of a granulated raw material for sintering, but also to the production technique of sintered ore for blast furnace.

1 配合槽
2 ドラムミキサー
3 パンペレタイザー
4 ドラムミキサー
5 壁面スクレーパー
6 底面スクレーパー
10 ベルトコンベア
S 解砕機能付きスクレーパー
DESCRIPTION OF SYMBOLS 1 Mixing tank 2 Drum mixer 3 Pamp pelletizer 4 Drum mixer 5 Wall surface scraper 6 Bottom surface scraper 10 Belt conveyor S Scraper with a crushing function

Claims (9)

難造粒性の鉄鉱石を含む配合原料に水分を添加してドラムミキサーにて混合する混合工程と、混合後の配合原料をパンペレタイザーにて造粒する造粒工程とを経て焼結用造粒原料を製造する方法において、
前記造粒工程で、パンペレタイザー内に滞留する配合原料転動層にある粗大な擬似粒子を、該パンペレタイザー内の壁面スクレーパーおよび/または底面スクレーパーからなる解砕機能付きスクレーパーによって付着物の掻き落しと同時に解砕しつつ適正粒子の大きさに再造粒することを特徴とする焼結用造粒原料の製造方法。
Sintering through a mixing process in which water is added to a blended raw material containing difficult-to-granulate iron ore and mixed with a drum mixer, and a granulated process in which the blended raw material is granulated with a pan pelletizer In the method of manufacturing the grain raw material,
In the granulation step, coarse pseudo particles in the mixed raw material rolling layer staying in the pan pelletizer are scraped off by a scraper having a crushing function including a wall surface scraper and / or a bottom surface scraper in the pan pelletizer. A method for producing a granulating raw material for sintering, characterized by re-granulating to the appropriate particle size while simultaneously crushing.
前記解砕機能付きスクレーパーは、前記配合原料転動層の滞留位置に向かって移動調節可能であることを特徴とする請求項1に記載の焼結用造粒原料の製造方法。 The method for producing a granulated raw material for sintering according to claim 1, wherein the scraper with a crushing function can be moved and adjusted toward a residence position of the blended raw material rolling layer. 前記解砕機能付きスクレーパーは、前記配合原料転動層の滞留位置、およびドラムミキサーからパンペレタイザーへ配合原料を供給するための移送用ベルトコンベアの排出端直下位置に向かってそれぞれ移動調節可能であることを特徴とする請求項1に記載の焼結用造粒原料の製造方法。 The scraper with a crushing function can be adjusted to move toward the residence position of the blended material rolling layer and the position directly below the discharge end of the transfer belt conveyor for supplying the blended material from the drum mixer to the pan pelletizer. The manufacturing method of the granulation raw material for sintering of Claim 1 characterized by the above-mentioned. 前記解砕機能付きスクレーパーの回転数が、8〜300rpmであることを特徴とする請求項1〜3のいずれか1項に記載の焼結用造粒原料の製造方法。 The method for producing a granulated raw material for sintering according to any one of claims 1 to 3, wherein the number of revolutions of the scraper with a crushing function is 8 to 300 rpm. 前記粗大な擬似粒子は、核粒子に微粉および/または細粒が付着した粒子、または微粉および/または細粒が凝集した粒子であることを特徴とする請求項1〜4のいずれか1項に記載の焼結用造粒原料の製造方法。 The coarse pseudo-particle is a particle in which fine powder and / or fine particles are attached to a core particle, or a particle in which fine powder and / or fine particles are aggregated, according to any one of claims 1 to 4. The manufacturing method of the granulation raw material for a description of description. 前記適正粒子の大きさが、JIS Z8801に規定の16メッシュ篩上〜4メッシュ篩下であることを特徴とする請求項1〜5のいずれか1項に記載の焼結用造粒原料の製造方法。 The production of the granulated raw material for sintering according to any one of claims 1 to 5, wherein the size of the appropriate particles is from above 16 mesh sieve to below 4 mesh sieve as defined in JIS Z8801. Method. 前記粗大な擬似粒子は、粒径10mm以上の粒子であることを特徴とする請求項1〜5のいずれか1項に記載の焼結用造粒原料の製造方法。 The method for producing a granulated raw material for sintering according to any one of claims 1 to 5, wherein the coarse pseudo particles are particles having a particle diameter of 10 mm or more. 前記解砕は、前記解砕機能付きスクレーパーの回転によって粗大な擬似粒子を圧壊することにより行うことを特徴とする請求項1〜7のいずれか1項に記載の焼結用造粒原料の製造方法。 The granulation raw material for sintering according to any one of claims 1 to 7, wherein the crushing is performed by crushing coarse pseudo particles by rotation of the scraper with a crushing function. Method. 前記造粒工程の後に、この工程を経て製造された擬似粒子にコークス粉を付着させる工程を有することを特徴とする請求項1〜8のいずれか1項に記載の焼結用造粒原料の製造方法。 The granulation raw material for sintering according to any one of claims 1 to 8, further comprising a step of adhering coke powder to pseudo particles produced through this step after the granulation step. Production method.
JP2013118551A 2013-06-05 2013-06-05 Method for producing granulated raw material for sintering Active JP5910831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013118551A JP5910831B2 (en) 2013-06-05 2013-06-05 Method for producing granulated raw material for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013118551A JP5910831B2 (en) 2013-06-05 2013-06-05 Method for producing granulated raw material for sintering

Publications (2)

Publication Number Publication Date
JP2014234545A true JP2014234545A (en) 2014-12-15
JP5910831B2 JP5910831B2 (en) 2016-04-27

Family

ID=52137471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013118551A Active JP5910831B2 (en) 2013-06-05 2013-06-05 Method for producing granulated raw material for sintering

Country Status (1)

Country Link
JP (1) JP5910831B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160961A (en) * 2014-02-26 2015-09-07 Jfeスチール株式会社 Method of and device for producing sintering material
JP7107472B1 (en) * 2021-04-08 2022-07-27 Jfeスチール株式会社 Pelletizing method for powder raw material and method for producing sintered ore
WO2022215584A1 (en) * 2021-04-08 2022-10-13 Jfeスチール株式会社 Particulate raw material granulation method and sintered ore production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157763A (en) * 1995-11-29 1997-06-17 Nippon Steel Corp Pretreatment of sintering raw material
JPH09279259A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Production of sintered ore
JP2004183031A (en) * 2002-12-02 2004-07-02 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore
JP2008519158A (en) * 2004-11-04 2008-06-05 コンパニア バレ ド リオ ドセ Equipment for removing oversized pellets from granulation discs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157763A (en) * 1995-11-29 1997-06-17 Nippon Steel Corp Pretreatment of sintering raw material
JPH09279259A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Production of sintered ore
JP2004183031A (en) * 2002-12-02 2004-07-02 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore
JP2008519158A (en) * 2004-11-04 2008-06-05 コンパニア バレ ド リオ ドセ Equipment for removing oversized pellets from granulation discs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160961A (en) * 2014-02-26 2015-09-07 Jfeスチール株式会社 Method of and device for producing sintering material
JP7107472B1 (en) * 2021-04-08 2022-07-27 Jfeスチール株式会社 Pelletizing method for powder raw material and method for producing sintered ore
WO2022215584A1 (en) * 2021-04-08 2022-10-13 Jfeスチール株式会社 Particulate raw material granulation method and sintered ore production method

Also Published As

Publication number Publication date
JP5910831B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5569658B2 (en) Method for producing granulated raw material for sintering, apparatus for producing the same, and method for producing sintered ore for blast furnace
JP5910831B2 (en) Method for producing granulated raw material for sintering
JP5954546B2 (en) Method for producing granulated raw material for sintering
JP6132114B2 (en) Method for producing granulated raw material for sintering
JP2016191122A (en) Method for producing sintered ore
JP6468367B2 (en) Method for producing sintered ore
CN107849633B (en) The manufacturing method of sinter
JP2014201763A (en) Method for producing granulation raw material for sintering
JP4205242B2 (en) Granulation method of sintering raw material
TW201339319A (en) Method for manufacturing pseudo-particles for sintered ore manufacture, and method for manufacturing sintered ore
JP5846402B1 (en) Production equipment for granulating raw materials for sintering
JP6256728B2 (en) Production equipment for granulating raw materials for sintering
JP6020823B2 (en) Method for producing granulated raw material for sintering
JP5928731B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP5979382B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP5983949B2 (en) Method for producing granulated raw material for sintering
TWI468522B (en) Method for producing granulation material for sintering, producing apparatus thereof, and method for producing sinter ore for blast furnace
JP6954236B2 (en) Manufacturing method and manufacturing equipment for coal interior sintered ore
JP2003277838A (en) High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JP7047645B2 (en) Sintered ore manufacturing method
JP2000303121A (en) Pretreatment of sintering raw material
JPH0693346A (en) Method for pre-granulating sintering raw material
JPH05247547A (en) Method for pelletizing coarse and fine particulate substance mixture and production of sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160315

R150 Certificate of patent or registration of utility model

Ref document number: 5910831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250