JP2014223234A - Ac potential therapy device - Google Patents
Ac potential therapy device Download PDFInfo
- Publication number
- JP2014223234A JP2014223234A JP2013104767A JP2013104767A JP2014223234A JP 2014223234 A JP2014223234 A JP 2014223234A JP 2013104767 A JP2013104767 A JP 2013104767A JP 2013104767 A JP2013104767 A JP 2013104767A JP 2014223234 A JP2014223234 A JP 2014223234A
- Authority
- JP
- Japan
- Prior art keywords
- positive
- negative
- voltage
- wave
- transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrotherapy Devices (AREA)
Abstract
Description
本発明は、交流電位治療器に係り、特に昇圧トランスに入力する正弦波交流の発生手段の改良に関する。 The present invention relates to an AC potential treatment device, and more particularly to improvement of a means for generating a sine wave AC input to a step-up transformer.
従来の交流電位治療器としては、例えば特許第2609574号公報(特許文献1)に記載のような商用交流昇圧トランスの2次コイルに設けた正電圧ブリーダ回路により、生体印加交流の正電圧と負電圧との波高値比率を1対3に設定した交流電位治療器が周知であるし、実開昭61−118346号公報(特許文献2)・特開2006−239032号公報(特許文献3)のような、矩形波発振回路の増幅出力を昇圧トランスの1次コイルに供給し、このトランスの高圧2次コイルにダイオードと抵抗を接続して矩形波高電圧を得る電位治療器が周知である。 As a conventional AC potential treatment device, for example, a positive voltage bleeder circuit provided in a secondary coil of a commercial AC step-up transformer as described in Japanese Patent No. 2609574 (Patent Document 1) uses a positive voltage and a negative voltage applied to a living body. An AC potential treatment device in which the ratio of the peak value to the voltage is set to 1: 3 is well known, and Japanese Patent Application Laid-Open No. 61-118346 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2006-239032 (Patent Document 3). Such a potential therapy device is known in which an amplified output of a rectangular wave oscillation circuit is supplied to a primary coil of a step-up transformer, and a diode and a resistor are connected to the high voltage secondary coil of the transformer to obtain a rectangular wave high voltage.
前記特許文献1(特許第2609574号公報)は、交流高電圧を生体に印加して治療を実行する際に、交流正電圧と負電圧との波高値比率を1対3に設定した交流電位治療器であり、健康な人体内におけるイオンの理想的な存在比率に等しい割合で生体に交流電位を印加できるが、この特許文献1は、その段落0009における唯一の実施例記載のように、商用電源による交流を昇圧トランスの入力としているので、生体印加交流としても、我が国では50Hzまたは60Hz限定となる。 Patent Document 1 (Japanese Patent No. 2609574) discloses an alternating-current potential treatment in which a peak value ratio between an alternating positive voltage and a negative voltage is set to 1: 3 when an alternating high voltage is applied to a living body to perform treatment. Although an AC potential can be applied to a living body at a rate equal to the ideal abundance ratio of ions in a healthy human body, Patent Document 1 discloses a commercial power source as described in the only example in paragraph 0009 thereof. Since the alternating current is input to the step-up transformer, the biologically applied alternating current is limited to 50 Hz or 60 Hz in Japan.
近年、国内において、上記特許文献1の交流電位治療器による電位治療を実行している多数患者の中には、富士川と糸魚川を境として西の60Hz地域における複数患者から、「東の50Hz地域での電位治療よりも、こちらの方が治療効果の有効性と速効性に優れているようだ」という声がチラホラ聞こえつつ有るし、50Hz地域の複数患者のなかには、「今一つ物足りない」という声も多少出始めている。 In recent years, among a large number of patients who are performing potential therapy with the AC potential therapy device of Patent Document 1 in Japan, several patients in the 60 Hz region west of Fuji River and Itoi River have been described as “in the 50 Hz region in the east. It seems that this treatment is more effective and quicker than the potential treatment, ”and there are some voices saying“ I'm not satisfied with it ”among multiple patients in the 50Hz region. It is starting to appear.
一方、前記実開昭61−118346号公報および特開2006−239032号公報(特許文献2・3)は、共に発振回路を有する電位治療器だから、生体印加交流は商用電源周波数に限定されない反面、これら各文献は、それぞれ唯一の実施例記載のように、矩形波発振回路で得た矩形波信号をそのまま出力増幅して昇圧トランスの1次コイルに入力し、その2次コイルに生じた矩形波の高圧出力電圧からこれら各公報第2図のような矩形波に近い波形の生体印加交流電圧を得ている。 On the other hand, since the Japanese Utility Model Publication No. 61-118346 and Japanese Patent Application Laid-Open No. 2006-239032 (Patent Documents 2 and 3) are both potential treatment devices having an oscillation circuit, the living body applied alternating current is not limited to the commercial power supply frequency, In each of these documents, as described in the only examples, the rectangular wave signal obtained by the rectangular wave oscillation circuit is output and amplified as it is, and is input to the primary coil of the step-up transformer, and the rectangular wave generated in the secondary coil. The biologically applied AC voltage having a waveform close to a rectangular wave as shown in FIG.
したがって、これら各文献2・3における矩形波出力増幅回路にB級ブッシュプル増幅回路を用いたとしても、効率が最大で50%以下の低効率であるという本質的な問題点が有るし、各文献2・3の入・出力は、共に矩形波電圧だから、商用電源に対応した心材と捲線で作った現用一般安価な昇圧トランスを用いると、トランスに無用な唸り音が生じ易いし、トランスが過熱し易いという本質的な大きい問題点が有る。
Therefore, even if the class B bush-pull amplifier circuit is used for the rectangular wave output amplifier circuit in each of these
さらに、上記各特許文献2・3の高圧矩形波出力による生体印加交流には、有害無用なリンギングとか、オーバーシュートやプリシュートが生じ易いので、滑らかに変化する正弦波を用いた生体印加交流による電位治療に比して、これら各特許文献2・3は、電位治療後に湯当たりのような不快感が残り易いし、電位治療効果の有効性と速効性に乏しく、生体拒否反応も生じるという根源的で切実な問題点が有る。
Furthermore, the living body impressed alternating current by the high-voltage rectangular wave output of each of the above-mentioned
各特許文献1〜3による従来例の他に、特開2009−279024号公報(特許文献4)のように、スイッチングインバータにより高周波成分を含む交流波形を生成し、この交流出力をフィルタ回路を経て昇圧トランスの1次コイルに交互に供給するとした電位治療器とか、特開2011−24859号公報(特許文献5)のように、2系統の高周波パルスを2個の昇圧用パルストランスに各別入力し、各パルストランスの高圧2次コイルにそれぞれダイオードと平滑コンデンサと電極とを接続した電位治療器も周知である。 In addition to the conventional examples according to Patent Documents 1 to 3, an alternating current waveform including a high frequency component is generated by a switching inverter as disclosed in Japanese Patent Application Laid-Open No. 2009-279024 (Patent Document 4), and this alternating current output is passed through a filter circuit. An electric potential treatment device that alternately supplies the primary coil of the step-up transformer or two high-frequency pulses that are separately input to the two step-up pulse transformers as disclosed in Japanese Patent Application Laid-Open No. 2011-24859 (Patent Document 5). A potential treatment device in which a diode, a smoothing capacitor, and an electrode are connected to the high-voltage secondary coil of each pulse transformer is also well known.
前記特開2009−279024号公報(特許文献4)は、出願人が直接出願の公開特許公報であり、周知事項や願望事項を手書きマンガ図面と共に断片的に羅列しているだけで、この文献4の意図する処は、結局、その段落0011の記載から、昇圧トランスの1次コイルに加える交流出力回路として、パルス幅変調による現用一般のD級オーディオアンプを用いた電位治療器であると読み取れるが、肝心な具体回路に関する記載が一切無いから、これでは当業者がこの特開公報を見ても、上記電位治療器を作れず、実施できないという本質的な大きい問題点が有る。 JP-A-2009-279024 (Patent Document 4) is an open patent publication directly filed by the applicant, and only the known matters and desires are listed together with handwritten manga drawings. After all, it can be read from the description in paragraph 0011 that the potential treatment device uses a current class D audio amplifier based on pulse width modulation as an AC output circuit applied to the primary coil of the step-up transformer. However, since there is no description regarding the essential concrete circuit, even if those skilled in the art look at this Japanese Patent Laid-Open Publication, there is an essential problem that the potential treatment device cannot be made and cannot be implemented.
D級オーディオアンプには、直列2個のパワーMOS・FETやバイポーラトランジスタ等の導通制御素子を2列用いたフルブリッジ回路構成のアンプと、直列2個の導通制御素子を1列だけ用いたハーフブリッジ回路構成のアンプが存在し、上記ハーフブリッジ構成のD級オーディオアンプは、部品点数少なく安価に使用できるが、復調用チョークコイルの自己誘導電流等による「バス・ポンピング」(Bass・Pumping)現象に起因する電源電圧変動が大きいという根源的で切実な問題点が有り、上記フルブリッジ回路構成のD級オーディオアンプは、上記問題点は軽減できるが、使用部品点数がハーフブリッジ構成の2倍要するという互いに相容れない根源的な問題点が有ることは、上記特許文献4には全く記載が無く、示唆すらも無いのである。 Class D audio amplifiers include an amplifier with a full-bridge circuit configuration using two series of conduction control elements such as two power MOS FETs and bipolar transistors in series, and a half using only one series of two series conduction control elements. There is an amplifier with a bridge circuit configuration, and the half-bridge class D audio amplifier can be used inexpensively with a small number of components. However, the “bus pumping” phenomenon due to the self-induced current of the demodulation choke coil, etc. The class D audio amplifier with the full bridge circuit configuration can alleviate the above problem but requires twice as many parts as the half bridge configuration. The above-mentioned patent document 4 has no description at all and suggests that there are fundamental problems that are incompatible with each other. Et al. Is also the no.
すなわち、ハーフブリッジ構成のD級オーディオアンプは、負荷(昇圧トランス)ドライブ時に、復調用チョークコイル出力側から流出しようとする自己誘導電流をコイル出力側から入力側に戻すことで、前記「バス・ポンピング」現象に起因する電源電圧変動を抑制するための通常、フリー・ホィーリング・ダイオード(Free・Wheelling・Diode)と称する高周波特性に優れたダイオードを音声その他の音響による低周波信号電流が流れるアンプ回路内に、この低周波信号に歪みを与えること無く接続できる箇所が無く、上記現象による電源電圧の変動を払拭できないという根源的で切実な問題点が有ることも、上記特許文献4には全く記載が無い。 That is, the class D audio amplifier having a half-bridge configuration returns the self-induction current, which is about to flow out from the demodulation choke coil output side, to the input side from the coil output side when driving a load (step-up transformer). An amplifier circuit in which a low-frequency signal current caused by sound or other sound flows through a diode having excellent high-frequency characteristics, usually called a free wheeling diode, to suppress fluctuations in power supply voltage caused by a "pumping" phenomenon The above-mentioned Patent Document 4 also has a fundamental and serious problem that there is no portion that can be connected without distorting the low-frequency signal, and the fluctuation of the power supply voltage due to the above phenomenon cannot be eliminated. There is no.
現用一般的なハーフブリッジ構成のD級オーディオアンプは、負荷(昇圧トランス)を200Hz以下の低域周波数でバスドライブ(Bass・Drive)する時には、前記「バス・ポンピング」現象による電源電圧の変動も大きくなり、その程度は、上記周波数が低い程・負荷インピーダンスが小さい程・直流電源と負荷に接続したバスコンデンサとの値がそれぞれ小さい程・デューティ比が25%の時と75%の時に、前記有害無用な「バス・ポンピング」現象による電源電圧の変動が増大し、電位治療器の動作が著しく不安定になることも、上記特許文献4には全く記載が無く、示唆すらも無い。 The class D audio amplifier of the current general half-bridge configuration is subject to fluctuations in the power supply voltage due to the “bus pumping” phenomenon when the load (step-up transformer) is bus-driven at a low frequency of 200 Hz or less. The degree is larger as the frequency is lower, the load impedance is smaller, the value of the DC capacitor and the bus capacitor connected to the load is smaller, respectively, when the duty ratio is 25% and 75%, There is no description or suggestion in Patent Document 4 that the fluctuation of the power supply voltage due to the harmful and unnecessary “bus pumping” phenomenon increases and the operation of the potential treatment device becomes extremely unstable.
ただし、寄生ダイオードを有するパワーMOS・FET等の直列2個のスイッチング素子を2列用いた一般的なフルブリッジ回路構成のD級オーディオアンプでは、前記「バス・ポンピング」現象を上記寄生ダイオードにより、ある程度抑制できるが、上記寄生ダイオードは、前記フリー・ホィーリング・ダイオードと大きく異なり、高周波特性が悪く、逆回復時間が長いので、復調用チョークコイルの自己誘導電流をその復調出力端から入力端に確実には戻せず、特に負荷(昇圧トランス)を60〜200Hz程度の低域周波数でバスドライブする時は、前記段落0012で述べたように、「バス・ポンピング」現象による電源電圧の変動を完全には払拭できないという根源的で切実な問題点と、寄生ダイオード作用を有するパワーMOS・FETは、一般に発熱が大で、厳重な放熱が必要であるという問題点とは、上記特許文献4には全く記載が無いのである。 However, in a class D audio amplifier having a general full-bridge circuit configuration using two series of switching elements such as power MOS / FET having a parasitic diode in two rows, the “bus pumping” phenomenon is caused by the parasitic diode. Although the parasitic diode is largely different from the free wheeling diode, the high-frequency characteristics are poor and the reverse recovery time is long. Therefore, the self-induced current of the demodulation choke coil is reliably transmitted from the demodulation output terminal to the input terminal. In particular, when the load (step-up transformer) is bus-driven at a low frequency of about 60 to 200 Hz, as described in the paragraph 0012, the fluctuation of the power supply voltage due to the “bus pumping” phenomenon is completely eliminated. Power MOS with parasitic diode action and fundamental problems that cannot be wiped out FET is generally exotherm large, the problem that it is necessary strict heat dissipation, have no described at all in Patent Document 4.
一方、特開2011−24859号公報(特許文献5)は、その段落0020と0022に記載のように、2系統の高周波スイッチングパルスをそれぞれ2個の昇圧用高周波パルストランスに各別入力し、一方のパルストランスの高圧2次コイルに接続したダイオードおよび抵抗と平滑コンデンサとの並列回路で正の高圧パルス電圧を得ると共に、他方のパルストランスの高圧2次コイルに接続したダイオードおよび抵抗と平滑コンデンサとの並列回路で負の高圧パルス電圧を得た後、これら各高圧パルス電圧を二つの電極にそれぞれ保護抵抗を経て各別供給する電位治療器である。 On the other hand, Japanese Patent Laid-Open No. 2011-24859 (Patent Document 5), as described in paragraphs 0020 and 0022, inputs two high-frequency switching pulses to two boosting high-frequency pulse transformers, respectively, A positive high voltage pulse voltage is obtained by a parallel circuit of a diode, a resistor and a smoothing capacitor connected to the high voltage secondary coil of the pulse transformer, and a diode, a resistor and a smoothing capacitor connected to the high voltage secondary coil of the other pulse transformer After the negative high voltage pulse voltage is obtained by the parallel circuit, each of these high voltage pulse voltages is supplied to the two electrodes through protective resistors, respectively, and is supplied separately.
したがって、この特許文献5は、単一電極では生体に対して高圧交流を印加できないという根源的な大きい問題点が有るし、滑らかに変化する正弦波を用いた生体印加交流による電位治療に比して、この特許文献5は、電位治療後に湯当たりのような不快感が残り易いという根源的で切実な問題点が有る。 Therefore, this Patent Document 5 has a fundamental problem that a single electrode cannot apply a high-voltage alternating current to a living body, and is compared with a potential treatment by a living body-applied alternating current using a sine wave that changes smoothly. Thus, Patent Document 5 has a fundamental and serious problem that unpleasant feeling such as hot water is likely to remain after electric potential treatment.
また、上記特許文献5では、単一電極の電位治療器に比して、パルス昇圧トランスを初めとして、その高圧2次コイルに接続したダイオード・平滑コンデンサとか、生体保護用ハイメグ抵抗や電極などの高価な高圧用電気部品をそれぞれ2倍数ずつ必要とするので、特許文献5は、加工性悪く高価になるという本質的かつ大きい問題点が有る。 Further, in Patent Document 5, as compared with a single-electrode potential treatment device, a pulse boosting transformer, a diode / smoothing capacitor connected to the high-voltage secondary coil, a Himmeg resistor for bioprotection, an electrode, etc. Since expensive high-voltage electric parts are required twice each, Patent Document 5 has an essential and large problem that it becomes expensive due to poor workability.
本発明の目的は、交流電位治療器の昇圧トランスに入力する60Hz〜200Hz程度の正弦波交流を効率よく発生させることに有る。 An object of the present invention is to efficiently generate a sinusoidal alternating current of about 60 Hz to 200 Hz that is input to a step-up transformer of an alternating potential treatment device.
交流高電圧を生体に印加して治療を実行する電位治療器を構成するに当たり、60Hz〜200Hz程度の正弦低周波信号から得た位相が互いに180°異なる2系統の正弦半波信号で、各別にパルス幅変調した2系統の幅変調済高周波パルスにより、前記低周波信号よりも充分大きい正負の各直流電圧をそれぞれスイッチング素子で各別交互にスイッチング制御することで、前記素子の出力端から互いに180°異なる正負2系統の幅変調済増幅パルス出力を得た後、これら各パルス出力をそれぞれ2個のチョークコイルと2個のフリー・ホィーリング・ダイオードと単一共通のコンデンサとを含む2系統の復調回路で各別交互に復調することで、位相が互いに180°異なる正負2系統の復調済正弦半波出力を得ると共に、これら正負の正弦半波出力を昇圧トランスの1次コイルに交互に供給することで、トランス2次コイルに発生した高圧正弦波交流を正電圧ブリーダ回路により正電圧と負電圧との波高値比率が1対3の生体印加交流となしたことで達成できた。 In constructing a potential treatment device that applies an alternating high voltage to a living body to perform treatment, two sine half-wave signals that differ from each other by 180 ° in phase obtained from a sine low-frequency signal of about 60 Hz to 200 Hz are separately provided. By switching the positive and negative DC voltages sufficiently larger than the low-frequency signal by the switching elements alternately by the two width-modulated high-frequency pulses that have been subjected to pulse width modulation, the switching elements are alternately switched to each other from the output ends of the elements. ° After obtaining two different positive and negative width modulated amplified pulse outputs, each of these pulse outputs is demodulated in two ways including two choke coils, two free wheeling diodes and a single common capacitor. By demodulating each circuit alternately, two positive and negative demodulated sine half-wave outputs whose phases are 180 ° different from each other are obtained. By alternately supplying the half-wave output to the primary coil of the step-up transformer, the high-voltage sine wave alternating current generated in the transformer secondary coil has a peak value ratio of positive voltage to negative voltage of 1: 3 by a positive voltage bleeder circuit. This was achieved by the fact that the living body applied AC.
ただし、上記復調回路としては、前記正負2系統のパルス出力端間に負電圧側から正電圧側に向けて導通する直列2個のフリー・ホィーリング・ダイオードを接続し、これら各ダイオードの他端間に接続した直列2個のチョークコイルの相互接続部を前記各ダイオードの相互接続部に共通単一のコンデンサを経て接続すると共に、この接続部を接地した2系統の復調回路を用いてもよい。 However, as the demodulating circuit, two free wheeling diodes connected in series from the negative voltage side to the positive voltage side are connected between the pulse output terminals of the two positive and negative systems, and between the other ends of these diodes. An interconnecting portion of two series choke coils connected to each other may be connected to the interconnecting portion of each diode through a common single capacitor, and two demodulating circuits having the connecting portion grounded may be used.
この発明によれば、周波数が60Hz〜200Hz程度で、実効値が5ボルト程度の正弦低周波信号から得た位相が互いに180°異なる2系統の正弦半波信号で、各別にパルス幅変調した波高値が5ボルト程度の2系統の幅変調済高周波パルスにより、前記低周波信号よりも充分大きい、例えば135ボルト程度の直流正電圧と直流負電圧とを各別に印加した2個のスイッチング素子を各別交互にスイッチング制御することで、各素子の出力端から位相が互いに180°異なる例えば135ボルト程度の正負2系統の幅変調済増幅パルス出力を95%以上の高効率で取り出せるし、商用電源周波数に関係なく、何処でも常に上記各出力の復調出力で昇圧トランスをドライブできるから、交流電位治療器としてのランニングコストを大幅に削減でき、省エネ効果が大きい。 According to the present invention, two systems of sine half-wave signals having a frequency of about 60 Hz to about 200 Hz and having an effective value of about 5 volts and having phases different from each other by 180 ° are obtained by using pulse width modulated waves. Two switching elements, each having a DC positive voltage and a DC negative voltage, each of which is sufficiently larger than the low-frequency signal, for example, about 135 volts, are applied by two width-modulated high-frequency pulses having a high value of about 5 volts. By alternately controlling the switching, the output of the amplitude-modulated pulse of two positive and negative systems with a phase difference of 180 ° from the output end of each element, for example, about 135 volts, can be taken out with a high efficiency of 95% or more. Regardless of where the step-up transformer can always be driven by the demodulated output of each of the above outputs, the running cost as an AC potential treatment device is greatly reduced. Yes, it has a great energy saving effect.
また、本発明では、60Hz〜200Hz程度で位相が互いに180°異なる正負2系統の復調済正弦半波出力を昇圧トランスの1次コイルに、例えば実効値が95〜100ボルト程度で交互に供給できるから、この昇圧トランスを上記周波数範囲と電圧で使用する場合には、商用電源周波数(50または60Hzの正弦波)と電圧(実効値が100ボルト)に対応した現用一般の珪素鋼板コア材を用いた安価な昇圧トランスを改変せずにそのまま採用でき、オーディオ周波数用の高価な珪素鋼板コア材が不要だから、本発明による交流電位治療器は、その製造コストの削減効果が著しく大きい。 Further, in the present invention, two demodulated sine half-wave outputs of positive and negative systems whose phases are different from each other by 180 ° at about 60 Hz to 200 Hz can be alternately supplied to the primary coil of the step-up transformer, for example, at an effective value of about 95 to 100 volts. Therefore, when using this step-up transformer in the above frequency range and voltage, use a general silicon steel sheet core material that is compatible with commercial power supply frequency (50 or 60 Hz sine wave) and voltage (effective value is 100 volts). Since the inexpensive step-up transformer can be used as it is, and an expensive silicon steel core material for audio frequencies is not required, the AC potential treatment device according to the present invention has a significant effect of reducing the manufacturing cost.
さらに本発明による復調回路は、復調動作中のチョークコイルの出力端に生じる自己誘導電流を、共通単一のコンデンサを経て2個のフリー・ホィーリング・ダイオードに交互に分流させつつ、休止中のコイルに影響を与えずに、上記動作中のコイルの入力端だけに各別交互に効率よく確実に戻せるので、60Hz〜200Hz程度の低周波数で昇圧トランスをバスドライブする時にも、有害無用な前記バス・ポンピング現象を確実に防止でき、この現象による電源電圧の変動を確実に抑制除去できたという優れた効果も有る。 Furthermore, the demodulating circuit according to the present invention is configured such that a self-induced current generated at the output end of a choke coil during demodulation operation is alternately shunted to two free wheeling diodes through a common single capacitor, In this way, even when the step-up transformer is bus-driven at a low frequency of about 60 Hz to 200 Hz, the harmful and useless bus -The pumping phenomenon can be reliably prevented, and the power supply voltage fluctuation caused by this phenomenon can be reliably suppressed and removed.
より具体的には、本発明による上記単一のコンデンサは、各ダイオードの相互接続部と共に接地してあるので、各チョークコイルと共に正負2系統のローパスフィルタを構成できるから、コンデンサ本来のパルス幅変調済パルスを復調する作用を初めとして、前記のように復調動作中のコイルに生じた自己誘導電流を各ダイオードを各別交互に経て上記動作中コイルの入力端に交互に戻す自己誘導電流通電作用との計二つの作用を1個だけのコンデンサで全部賄えるから、上記各ダイオードにそれぞれ並列のコンデンサを各別に用いたこの種の復調回路よりも、加工性良く安価に実施できるという効果も有る。 More specifically, since the single capacitor according to the present invention is grounded together with the interconnections of the diodes, it can form a positive and negative low-pass filter with each choke coil. Self-inductive current energization action that returns the self-inductive current generated in the demodulating coil as described above to the input terminal of the operating coil alternately through each diode alternately as described above Thus, there is also an effect that it can be implemented with good workability and at a lower cost than this type of demodulation circuit using capacitors in parallel with the respective diodes.
さらに詳しくは、前記正負2系統の幅変調済増幅パルス出力を得るための各スイッチング素子のオン期間には、それぞれ入力電圧の一部をチョークコイルに蓄積しつつ出力側への供給を抑え、上記素子のオフ期間に前記フリー・ホィーリング・ダイオードと、単一のコンデンサとを経由して各コイルの自己誘導電流をその出力側から入力側に戻せるし、上記各チョークコイルとダイオードおよび単一のコンデンサは、高周波パルスの方形波の変化分、つまり交流成分を小さくするローパスフィルターとして動作するので、滑らかに変化する正負2系統の復調済正弦半波出力を復調効率約95%以上と極めて高い効率で昇圧トランスの1次コイルに交互に供給でき、トランス2次コイルに高圧正弦波交流を発生させ得るから、消費電力の低減化が可能であるという優れた効果も奏し得た。 More specifically, during the ON period of each switching element for obtaining the positive and negative two-line width modulated amplified pulse output, the supply to the output side is suppressed while accumulating part of the input voltage in the choke coil. The self-induced current of each coil can be returned from the output side to the input side via the free wheeling diode and a single capacitor during the off period of the element. Operates as a low-pass filter that reduces the square wave of the high-frequency pulse, that is, the AC component, so that the demodulated sine half-wave output of two positive and negative lines that change smoothly can be demodulated at an extremely high efficiency of about 95% or more. Reduced power consumption because it can be supplied alternately to the primary coil of the step-up transformer and high-voltage sine wave AC can be generated in the transformer secondary coil Excellent effect that possible is also obtained exert.
また本発明では、60Hz〜200Hz程度の周波数、例えば70〜120Hz程度の周波数で滑らかに変化する正弦波高電圧から、健康な人体内における正負イオンの理想的な存在比率に等しい割合の正電圧と負電圧との波高値比率が1対3の生体印加交流を得て、この交流電圧を生体に印加できるので、商用電源周波数に関係なく、何処でも常に、治療効果の有効性と速効性に優れた交流電位治療が実行できると共に、生体拒否反応も著減できたという優れた効果も有る。 In the present invention, a positive voltage and a negative voltage equal to an ideal ratio of positive and negative ions in a healthy human body from a sine wave high voltage that smoothly changes at a frequency of about 60 Hz to 200 Hz, for example, a frequency of about 70 to 120 Hz. A living body applied alternating current with a peak value ratio of 1 to 3 can be obtained and this alternating voltage can be applied to the living body. Therefore, regardless of the commercial power supply frequency, the therapeutic effect is always highly effective and quick. In addition to being able to carry out AC potential therapy, there is also an excellent effect that living body rejection reaction can be remarkably reduced.
次に、本発明を実施するための形態例を図面と共に説明すると、本発明の交流電位治療器は、交流高電圧を生体に印加して治療を実行する電位治療器を構成するに当たり、先ず、図1に示す系統回路図のように、C・R発振回路・正帰還発振回路などを用いた現用一般の直流電源DCで動作する正弦低周波発生回路1から得た周波数が60Hz〜200Hz程度で実効値が5ボルト程度の正弦低周波信号を低周波トランスT1の1次コイルに入力する。 Next, an example of an embodiment for carrying out the present invention will be described with reference to the drawings. An AC potential treatment device of the present invention is a potential treatment device that performs treatment by applying an alternating high voltage to a living body. As shown in the system circuit diagram of FIG. 1, the frequency obtained from the sine low frequency generation circuit 1 that operates on a general DC power source DC using a C / R oscillation circuit, a positive feedback oscillation circuit, etc. is about 60 Hz to 200 Hz. A sine low frequency signal having an effective value of about 5 volts is input to the primary coil of the low frequency transformer T1.
そして、上記トランスT1における中点接地の2次コイルの両端A・Bに生じた図2のA・Bのような実効値が5ボルト程度で位相が互いに180°異なる2系統の正弦波電圧をそれぞれ同方向に接続したダイオードdで半波整流することで、図2のC・Dのような振幅が7ボルト程度で位相が互いに180°異なる2系統の正弦半波信号を得た後、これら各信号をそれぞれ図1のように前記直流電源DCで動作する現用一般のパルス幅変調回路2の各入力端C・Dに各別入力する。 Then, two sine wave voltages having effective values of about 5 volts and phases of 180.degree. That are different from each other by 180.degree. Are generated at both ends A and B of the middle grounded secondary coil in the transformer T1. After obtaining half-wave rectification by diodes d connected in the same direction, two sine half-wave signals having amplitudes of about 7 volts and phases different from each other by 180 ° are obtained as shown in FIG. As shown in FIG. 1, each signal is individually input to each input terminal C / D of the current general pulse width modulation circuit 2 which is operated by the DC power source DC.
一方、周波数が100KHz程度の三角波発振器等による前記直流電源DCで動作する現用一般的な高周波パルス発生回路3から得た繰り返し周波数が100KHz程度で振幅が5ボルト程度の高周波パルスを得ると共に、この高周波パルスを図1に示す前記パルス幅変調回路2を用い、前記2系統の正弦半波信号により、各別にパルス幅変調することで、図2のE・Fのようにほぼ櫛歯状波形で、振幅が5ボルト程度の位相が互いに180°異なる2系統の幅変調済高周波パルスを得る。
On the other hand, a high-frequency pulse having a repetition frequency of about 100 KHz and an amplitude of about 5 volts obtained from the current general-purpose high-frequency
その後、上記各パルスを図1のようにパルストランスPTまたは現用一般的なゲートドライブICを経て、パワーMOS・FETやバイポーラトランジスタ等の二つのスイッチング素子Q1・Q2の各ゲートやベース等の制御電極E・Fとソース(エミッタ)との間にそれぞれ各別に供給する。なお、上記ゲートドライブICとしては、米国フェアーチャイルド社製のIC・FAN7382N等が有り、これらのゲートドライブICをその接続仕様に基づき使用すればよい。 After that, each pulse is passed through a pulse transformer PT or a common gate drive IC as shown in FIG. 1, and control electrodes such as gates and bases of two switching elements Q1 and Q2 such as power MOS FET and bipolar transistor. Each is supplied separately between EF and the source (emitter). As the gate drive IC, there is an IC FAN 7382N manufactured by Fairchild Inc. in the United States, and these gate drive ICs may be used based on the connection specifications.
次いで、図1のように前記直流電源DCから得た正負2系統の直流電圧、例えばプラス130ボルト程度の直流電圧+Vとマイナス130ボルト程度の直流電圧−Vとを、それぞれ前記二つのスイッチング素子Q1・Q2のドレインとソース(コレクタとエミッタ)に図1のように各別印加する。 Next, as shown in FIG. 1, two positive and negative DC voltages obtained from the DC power source DC, for example, a DC voltage + V of about plus 130 volts and a DC voltage −V of about minus 130 volts are respectively supplied to the two switching elements Q1. As shown in FIG. 1, the voltage is separately applied to the drain and source (collector and emitter) of Q2.
次いで、前記パルストランスPTを経て図1のように各素子Q1・Q2の前記制御電極E・Fとソース(エミッタ)との間に各別に加えた前記2系統の幅変調済高周波パルスにより、上記正負2系統の各直流電圧を上記二つのスイッチング素子Q1・Q2でスイッチング制御することで、各素子Q1・Q2のソース(エミッタ)等の出力端G・Hにそれぞれ位相が互いに180°異なり、波高値がプラス・マイナス各130ボルト程度の正負2系統の図2のG・Hのような幅変調済増幅パルス出力を発生させ得る。 Next, the two systems of width-modulated high frequency pulses added separately between the control electrodes E and F and the sources (emitters) of the elements Q1 and Q2 through the pulse transformer PT as shown in FIG. By switching the DC voltage of the positive and negative two systems with the two switching elements Q1 and Q2, the phases of the output terminals G and H such as the sources (emitters) of the elements Q1 and Q2 are different from each other by 180 degrees, A width-modulated amplified pulse output such as GH in FIG. 2 having two positive and negative systems each having a high value of about 130 volts can be generated.
また、上記各幅変調済増幅パルス出力を復調するに当たっては、図1における前記負電圧側のスイッチング素子Q2から正電圧側のスイッチング素子Q1に向けて導通する直列2個のフリー・ホィーリング・ダイオードD1・D2を上記各素子Q1・Q2に接続し、上記各ダイオードの他端G・H間に、図1のように互いに結合させずに接続した直列2個のチョークコイルL1・L2の相互接続部Iを、前記各ダイオードD1・D2の相互接続部d0 にコンデンサCを経て接続すると共に、この接続部d0 を接地して構成した正負2系統の復調回路4でそれぞれ前記正負2系統のパルス出力を各別に復調できる。 Further, in demodulating each width-modulated amplified pulse output, two free wheeling diodes D1 connected in series from the negative voltage side switching element Q2 to the positive voltage side switching element Q1 in FIG. D2 is connected to each of the elements Q1 and Q2, and the two choke coils L1 and L2 are connected in series between the other ends G and H of the diodes without being coupled to each other as shown in FIG. I is connected to the interconnecting part d0 of each of the diodes D1 and D2 via a capacitor C, and the positive and negative two-system pulse outputs are respectively output by the positive and negative two-system demodulating circuit 4 constructed by grounding the connecting part d0. Can be demodulated separately.
その結果、各コイルL1・L2の上記相互接続部Iに図2のIに示すような実効値が正負各130ボルト程度の正弦波による交流が発生するから、この交流を昇圧トランスTにおける1端接地の1次コイルt1 の他端に供給することで、トランス2次コイルt2 のホット側Jに図2のJのような10〜15キロボルト程度の高圧正弦波交流を発生させ得る。 As a result, an alternating current is generated at the interconnecting portion I of each of the coils L1 and L2 by a sine wave having an effective value of about 130 volts positive and negative as shown in I of FIG. By supplying the other end of the grounded primary coil t1, a high-voltage sine wave alternating current of about 10 to 15 kilovolts as shown in FIG. 2J can be generated on the hot side J of the transformer secondary coil t2.
より具体的には、図1のように前記各スイッチング素子Q1・Q2間を橋絡接続した直列2個のフリー・ホィーリング・ダイオードD1・D2の各他端G・Hにそれぞれ前記結線例のように接続した180μH程度で互いに結合させないチョークコイルL1・L2と、0.1μF程度のセラミックコンデンサやチタバリコンデンサCとをそれぞれ有する正負2系路の復調回路4の復調動作時には、この動作中の例えばコイルL1の出力側から流出しようとする自己誘導電流は、休止中のコイルL2の方向には、逆向きのダイオードD2により流れず、上記動作中のコイルL1の入力端だけに効率よく確実に戻せるので、上記休止中のコイルL2には悪影響を与えない。 More specifically, as shown in the above connection example, the other ends G and H of two free wheeling diodes D1 and D2 connected in series between the switching elements Q1 and Q2 as shown in FIG. At the time of demodulation operation of the demodulating circuit 4 having two positive and negative paths each having choke coils L1 and L2 which are connected to each other at about 180 μH and are not coupled to each other, and a ceramic capacitor and a titer variable capacitor C of about 0.1 μF, The self-inductive current that is about to flow out from the output side of the coil L1 does not flow in the direction of the coil L2 that is in a pause state, but can be efficiently and reliably returned only to the input end of the coil L1 that is operating. Therefore, there is no adverse effect on the inactive coil L2.
その後、今度は、他方のコイルL2が復調動作をする番となり、このコイルL2の出力側から流出しようとする自己誘導電流は、休止中のコイルL1の方向には、逆向きのダイオードD1により流れず、上記休止中のコイルL1には悪影響を与えずに、ダイオードD2とコンデンサCとの直列回路を経て上記動作中のコイルL2の入力端だけに効率よく確実に戻りつつ、各コイルL1・L2とコンデンサCとで構成した本来のローパスフィルタによる幅変調済パルスの復調作用で、前記正負2系統のパルス出力を各別交互に正しく復調できるから、昇圧トランスTを60〜200Hz程度の低域周波数でバスドライブする時にも、有害無用な「バス・ポンピング現象」は生ぜず、電源電圧の変動を確実に抑制払拭できた。 After that, this time, the other coil L2 starts to demodulate, and the self-induced current that is about to flow out from the output side of the coil L2 flows in the direction of the resting coil L1 by the diode D1 in the reverse direction. In addition, the coils L1 and L2 are efficiently and surely returned to only the input end of the operating coil L2 through the series circuit of the diode D2 and the capacitor C without adversely affecting the inactive coil L1. Since the pulse output of the two positive and negative systems can be demodulated alternately and correctly by the demodulating action of the width-modulated pulse by the original low-pass filter composed of the capacitor C and the capacitor C, the step-up transformer T has a low frequency of about 60 to 200 Hz. When driving on the bus, no harmful and unnecessary “bus pumping phenomenon” occurred, and fluctuations in the power supply voltage were reliably suppressed and eliminated.
次いで、前記昇圧トランスTにおける2次コイルt2 の1端は、アース取りハイメグ抵抗R0(5MΩ程度)を経て前記直流電源DCにおける現用一般の接地点に接続すると共に、上記2次コイルt2 の両端には、5〜10MΩ・10W程度の大型ハイメグ抵抗によるブリーダ抵抗R1とダイオードd1 との並列回路と、この並列回路に対して直列の大型ハイメグ抵抗によるブリーダ抵抗R2とダイオードd2 用いた正電圧ブリーダ回路5を接続すると共に、その相互接続部Kに図2のKのように生じた正電圧と負電圧との波高値比率が1対3の生体印加交流を大地と生体に対して絶縁配置した導電マットmに電流制限ハイメグ抵抗R3を経て供給する。 Next, one end of the secondary coil t2 in the step-up transformer T is connected to a common grounding point in the DC power source DC via a grounding high Meg resistor R0 (about 5 MΩ), and is connected to both ends of the secondary coil t2. Is a parallel circuit of a bleeder resistor R1 and a diode d1 with a large high Meg resistor of about 5 to 10 MΩ · 10 W, and a positive voltage bleeder circuit 5 using a bleeder resistor R2 and a diode d2 with a large high Meg resistor in series with this parallel circuit. 2 and a conductive mat in which a biologically applied alternating current with a peak value ratio of a positive voltage and a negative voltage generated as shown by K in FIG. m is supplied through a current limiting high-Meg resistor R3.
ただし、本発明による上記生体印加交流は、周波数が60Hz〜200Hz程度で滑らかに変化する高電圧の正弦波交流を前記各ブリーダ抵抗R1とR2との抵抗値比率を2対1に設定することで、波高値比率が1対3の生体印加交流となしたので、健康な人体内における正負イオンの理想的な存在比率に等しい割合の正電圧と負電圧との波高値比率が1対3の生体印加交流を生体に対して前記導電マットmに電流制限ハイメグ抵抗R3を経て供給印加できるので、商用電源周波数に関係なく、何処でも常に、上記周波数で滑らかに変化する生体印加交流で、常時治療効果の有効性と速効性とを大幅に促進でき、しかも生体拒否反応の発生を確実に防止できた。 However, the living body applied AC according to the present invention is a high voltage sine wave AC that changes smoothly at a frequency of about 60 Hz to 200 Hz by setting the resistance value ratio of the bleeder resistors R1 and R2 to 2: 1. Since the living body applied AC has a peak value ratio of 1: 3, a living body has a peak value ratio of positive voltage to negative voltage equal to the ideal existence ratio of positive and negative ions in a healthy human body. Since the applied alternating current can be supplied and applied to the conductive mat m via the current limiting Hi-Meg resistor R3 to the living body, regardless of the commercial power supply frequency, the living body applied alternating current always changes smoothly at the above frequency, and the therapeutic effect is always obtained. It was possible to greatly promote the effectiveness and fast-acting property of the medicine, and to reliably prevent the occurrence of a biological rejection reaction.
本発明による交流電位治療器は、前記導電マットmを用いる代わりに、生体患部に対して通電導子により接触加電する交流電位治療器としても、当然に利用できる。 Naturally, the AC potential treatment device according to the present invention can also be used as an AC potential treatment device that performs contact heating with respect to the affected part of the living body using a conducting conductor instead of using the conductive mat m.
1…正弦低周波発生回路 C…コンデンサ
2…パルス幅変調回路 Q1・Q2…スイッチング素子
3…高周波パルス発生回路 d・d1 ・d2 ・D1・D2…ダイオード
4…復調回路 R1〜R3・R0…ハイメグ抵抗
5…正電圧ブリーダ回路 T…昇圧トランス
T1…低周波トランス t1 …昇圧トランスの1次コイル
PT…パルストランス t2 …昇圧トランスの2次コイル
R…ゲート(ベース)入力抵抗 m…導電マット
L1・L2…チョークコイル
DESCRIPTION OF SYMBOLS 1 ... Sine low frequency generation circuit C ... Capacitor 2 ... Pulse width modulation circuit Q1 * Q2 ...
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013104767A JP2014223234A (en) | 2013-05-17 | 2013-05-17 | Ac potential therapy device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013104767A JP2014223234A (en) | 2013-05-17 | 2013-05-17 | Ac potential therapy device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014223234A true JP2014223234A (en) | 2014-12-04 |
Family
ID=52122434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013104767A Pending JP2014223234A (en) | 2013-05-17 | 2013-05-17 | Ac potential therapy device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014223234A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105107087A (en) * | 2015-08-26 | 2015-12-02 | 魏红月 | Electric wave therapeutic instrument |
-
2013
- 2013-05-17 JP JP2013104767A patent/JP2014223234A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105107087A (en) * | 2015-08-26 | 2015-12-02 | 魏红月 | Electric wave therapeutic instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9762119B2 (en) | Switch driving circuit, and power factor correction circuit having the same | |
JP5717010B2 (en) | AC potential treatment device | |
CN111509972A (en) | Interleaved switched capacitor converter | |
JP6378354B2 (en) | High frequency series AC voltage regulator | |
EP3681038B1 (en) | Transformer based gate drive circuit | |
CN110999075A (en) | High gain resonant amplifier for resistive output impedance | |
JP2005065497A (en) | Pulse width modulation soft switching control | |
KR100983684B1 (en) | Voltage generation circuit | |
JP5717014B1 (en) | AC potential treatment device | |
US7688044B2 (en) | Device for transforming and stabilizing a primary AC voltage for supplying an electric load | |
US9729136B2 (en) | Circuit arrangement and method for controlling semiconductor switching element | |
JP2014223234A (en) | Ac potential therapy device | |
JP3196922U (en) | AC potential treatment device | |
JP3198093U (en) | AC potential treatment device | |
El Iysaouy et al. | Impact of flyback transformer and switch parameters on efficiency of single stage photovoltaic microinverter | |
JP2014183912A (en) | Alternating current potential treatment device | |
JP3198094U (en) | AC potential treatment device | |
JP2015054105A (en) | Ac electric potential therapy device | |
JP3196923U (en) | AC potential treatment device | |
JP3196924U (en) | AC potential treatment device | |
JP5717013B2 (en) | AC potential treatment device | |
JP2014171637A (en) | Ac potential curing instrument | |
JP2014200612A (en) | Alternating current potential treatment device | |
JP2014239798A (en) | Ac potential therapy apparatus | |
CN210780595U (en) | Ultrasonic power supply for focused ultrasonic nucleic acid breaking instrument |