Nothing Special   »   [go: up one dir, main page]

JP2014203572A - Electrode for nonaqueous battery and method for manufacturing the same - Google Patents

Electrode for nonaqueous battery and method for manufacturing the same Download PDF

Info

Publication number
JP2014203572A
JP2014203572A JP2013076893A JP2013076893A JP2014203572A JP 2014203572 A JP2014203572 A JP 2014203572A JP 2013076893 A JP2013076893 A JP 2013076893A JP 2013076893 A JP2013076893 A JP 2013076893A JP 2014203572 A JP2014203572 A JP 2014203572A
Authority
JP
Japan
Prior art keywords
active material
electrode active
electrode
material layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013076893A
Other languages
Japanese (ja)
Other versions
JP6209844B2 (en
Inventor
俊祐 上垣
Toshisuke Kamigaki
俊祐 上垣
二郎 岸谷
Jiro Kishitani
二郎 岸谷
光弘 根上
Mitsuhiro Negami
光弘 根上
雅彦 勝
Masahiko Katsu
雅彦 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013076893A priority Critical patent/JP6209844B2/en
Publication of JP2014203572A publication Critical patent/JP2014203572A/en
Application granted granted Critical
Publication of JP6209844B2 publication Critical patent/JP6209844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a nonaqueous battery, suppressing crystal growth of a binder and excellent in shock resistance performance, and a method for manufacturing the electrode for a nonaqueous battery.SOLUTION: A method for manufacturing an electrode for a nonaqueous battery comprises the steps of: mixing a slurry raw material containing an electrode active material, a semi crystalline polymer, and a solvent to prepare a slurry solution; and subjecting a current collector on which the slurry solution has been coated to heat treatment at a temperature of a crystallization temperature or more and less than a melting point of the semi crystalline polymer, thereby forming an electrode active material layer on a surface of the current collector.

Description

本発明は、非水電池用電極に関する。   The present invention relates to a nonaqueous battery electrode.

現代社会でのエネルギーと環境保全との問題解決に関連して、産業界全体に対して二酸化炭素排出量の低減に期待が集まっており、その問題解決の一つとして注目されているのが電池である。なかでも、繰り返し使用可能な二次電池は、充放電率、自己放電率、負荷率放電特性、エネルギー密度などの点で他の電池を圧倒するため、電気自動車電源を中心として世界中で二次電池の研究開発を競っている。特に、リチウムイオン二次電池をはじめとする非水電解質二次電池は、携帯機器等だけでなく、ハイブリッド自動車(HEV)、電気自動車(EV)、および燃料電池自動車等の電動車両の電源装置にも利用されつつある。非水電解質二次電池は、一般的に、正極活物質等を集電体に塗布した正極と、負極活物質等を集電体に塗布した負極とが、セパレータに非水電解質液または非水電解質ゲルを保持した電解質層を介して接続された構成を有している。そして、例えばリチウムイオン等のイオンが電極活物質中に吸蔵・放出されることにより、電池の充放電反応が起こる。   In relation to solving the problems of energy and environmental conservation in modern society, expectations are gathered for the reduction of carbon dioxide emissions for the entire industry, and batteries are attracting attention as one of the solutions to these problems. It is. Among them, secondary batteries that can be used repeatedly are overwhelming with other batteries in terms of charge / discharge rate, self-discharge rate, load factor discharge characteristics, energy density, etc. Competing for battery research and development. In particular, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are used not only for portable devices, but also for power supply devices for electric vehicles such as hybrid vehicles (HEV), electric vehicles (EV), and fuel cell vehicles. Are also being used. A nonaqueous electrolyte secondary battery generally includes a positive electrode obtained by applying a positive electrode active material or the like to a current collector, and a negative electrode obtained by applying a negative electrode active material or the like to a current collector. It has the structure connected through the electrolyte layer holding electrolyte gel. Then, for example, ions such as lithium ions are occluded / released in the electrode active material, whereby a charge / discharge reaction of the battery occurs.

このような非水電解質二次電池の電極は、電極活物質として粉末状の金属、炭素材料、金属酸化物を通常使用している。そのため、前記電極を作製するために、バインダ(または結合剤や結着剤とも称する)である高分子材料を必要とし、一般的には、前記原料とバインダとを含む電極用スラリーを調製し、前記スラリーを真空乾燥させることで電極を作製している。しかし、電極中のバインダの量が少ないと、電極活物質成分が剥離しやすくなり、またバインダの量が多いと効率放電特性に影響を与える問題がある。   The electrode of such a non-aqueous electrolyte secondary battery usually uses a powdered metal, a carbon material, and a metal oxide as an electrode active material. Therefore, in order to produce the electrode, a polymer material that is a binder (or a binder or a binder) is required, and in general, an electrode slurry containing the raw material and the binder is prepared. The slurry is vacuum-dried to produce an electrode. However, when the amount of the binder in the electrode is small, the electrode active material component is easily peeled off, and when the amount of the binder is large, there is a problem of affecting the efficiency discharge characteristics.

そこで、このようなバインダに着目した技術として特許文献1が挙げられる。前記特許文献1には、バインダであるポリビニリデンフルオライドのγ相が所定の量含まれる電極を開示している。これにより、充放電特性および寿命特性が改善された電池用電極を製造できるとしている。   Therefore, Patent Document 1 is cited as a technique focusing on such a binder. Patent Document 1 discloses an electrode containing a predetermined amount of a γ phase of polyvinylidene fluoride as a binder. Thereby, it is said that the battery electrode with improved charge / discharge characteristics and life characteristics can be manufactured.

特開2005−72009号公報Japanese Patent Laid-Open No. 2005-72009

特許文献1の発明は、バインダとして高い融点の化合物を使用すると高い充放電特性を示すと開示されているが、電極中でのバインダ組成と充放電特性との関係が明らかになっていなかった従来技術に鑑みたものである(段落「0008」〜「0012」)。すなわち、バインダであるポリビニリデンフルオライドは、前記特許文献1の段落「0024」〜「0025」に記載されているように、α、β、γの3つの結晶相として存在することが知られている。より詳細には、溶融状態から冷却結晶化させると自発分極を持たないα型が生成し、これが最も安定と考えられている(S.L.Hsu,F.J.Lu,D.A.Waldman, and M.Muthukumar, Macromolecules 18,2583(1985))。また、170℃以上でγ型に転移し、高圧熱処理することでβ型に転移することが知られている(M.Kobayashi,K.Tashiro, and H.Tadokoro, Macromolecules 8,158(1978))。そのため、特許文献1に記載の電池用電極におけるポリビニリデンフルオライドのγ相の赤外線吸収ピーク分率が0.35〜1であるということは、バインダを170℃以上の熱処理をしたものであることが把握される。また、ポリビニリデンフルオライドの融点は130〜170℃程度であるため、特許文献1のバインダの熱処理は融点以上の温度で行ったものを使用、または80〜120℃の乾燥後に170℃以上で真空条件で熱処理していると考えられる(特許文献1の実施例1〜7参照)。しかし、このような融点温度以上で真空熱処理したバインダは結晶化しているため、前記バインダを含む電極の耐衝撃性能が低下し、安全性が損なわれるという問題がある。   The invention of Patent Document 1 is disclosed that when a compound having a high melting point is used as a binder, high charge / discharge characteristics are disclosed. However, the relationship between the binder composition in the electrode and the charge / discharge characteristics has not been clarified. This is in view of technology (paragraphs “0008” to “0012”). That is, it is known that polyvinylidene fluoride as a binder exists as three crystal phases of α, β, and γ, as described in paragraphs “0024” to “0025” of Patent Document 1. Yes. More specifically, when cooled and crystallized from a molten state, an α-type having no spontaneous polarization is formed, which is considered to be the most stable (SL Hsu, FJ Lu, DA Waldman). , And M. Muthukumar, Macromolecules 18, 2583 (1985)). In addition, it is known that it transitions to γ-type at 170 ° C. or higher and to β-type by high-pressure heat treatment (M. Kobayashi, K. Tashiro, and H. Tadokoro, Macromolecules 8, 158 (1978)). . Therefore, the fact that the infrared absorption peak fraction of the γ phase of polyvinylidene fluoride in the battery electrode described in Patent Document 1 is 0.35 to 1 means that the binder has been heat-treated at 170 ° C. or higher. Is grasped. Further, since the melting point of polyvinylidene fluoride is about 130 to 170 ° C., the heat treatment of the binder of Patent Document 1 is performed at a temperature higher than the melting point, or is vacuumed at 170 ° C. or higher after drying at 80 to 120 ° C. It is considered that the heat treatment is performed under the conditions (see Examples 1 to 7 in Patent Document 1). However, since the binder heat-treated at a temperature higher than the melting point is crystallized, there is a problem that the impact resistance performance of the electrode including the binder is lowered and the safety is impaired.

そこでかかる問題を解決するために、本発明は、バインダの結晶成長を低減し、耐衝撃性能に優れた非水電池用電極およびその製造方法を提供する。   Therefore, in order to solve such a problem, the present invention provides a nonaqueous battery electrode and a method for manufacturing the same, which reduces the crystal growth of the binder and has excellent impact resistance.

本発明者らは、真空条件で熱処理することなく所定の条件下での熱処理により、上記課題が解決できることを見出した。   The present inventors have found that the above-mentioned problems can be solved by heat treatment under predetermined conditions without heat treatment under vacuum conditions.

本発明に係る電極の製造方法は、真空環境下で熱処理を行う必要が無いため、生産効率の向上ならびにコストダウンに優れている。   Since the electrode manufacturing method according to the present invention does not require heat treatment in a vacuum environment, the production efficiency is improved and the cost is reduced.

本発明に係る電極は、バインダの結晶成長を低減し、耐衝撃性能に優れている。   The electrode according to the present invention reduces the crystal growth of the binder and is excellent in impact resistance.

扁平型(積層型)の双極型でない非水電解質二次電池の基本構成を示す断面概略図である。1 is a schematic cross-sectional view showing a basic configuration of a nonaqueous electrolyte secondary battery that is not a flat type (stacked type) bipolar type. 双極型非水電解質二次電池の基本構成を示す断面概略図である。1 is a schematic cross-sectional view showing a basic configuration of a bipolar nonaqueous electrolyte secondary battery. 本発明の好ましい実施形態の電極を拡大して表した断面概略図である。It is the cross-sectional schematic which expanded and represented the electrode of preferable embodiment of this invention. 本発明の好ましい実施形態である扁平な非水電解質二次電池の外観を表した斜視図である。It is a perspective view showing the appearance of a flat nonaqueous electrolyte secondary battery which is a preferred embodiment of the present invention. 本実施例において顕微レーザーラマン分光による電極断面の半結晶性高分子の結晶状態を示す像である。It is an image which shows the crystalline state of the semi-crystalline polymer of the electrode cross section by microscopic laser Raman spectroscopy in a present Example. 本実施例においてサイクル試験の実験結果を示す図である。It is a figure which shows the experimental result of a cycle test in a present Example. 本実施例において直流抵抗(DCR)の実験結果を示す図である。It is a figure which shows the experimental result of direct current | flow resistance (DCR) in a present Example. 本実施例においてインピーダンス解析の実験結果を示す図である。It is a figure which shows the experimental result of an impedance analysis in a present Example.

本発明の第一は、電極活物質、半結晶性高分子、および溶媒を含むスラリー原料を混合してスラリー溶液を調製する工程と、前記スラリー溶液を塗布した集電体を前記半結晶性高分子の結晶化温度以上融点未満で熱処理し前記集電体表面に電極活物質層を形成する工程と、を有する、非水電池用電極の製造方法である。   In the first aspect of the present invention, a slurry raw material containing an electrode active material, a semi-crystalline polymer, and a solvent is mixed to prepare a slurry solution, and the current collector coated with the slurry solution is mixed with the semi-crystalline high And a step of forming an electrode active material layer on the surface of the current collector by heat treatment at a temperature higher than the crystallization temperature of the molecule and lower than the melting point.

一般に非水系電解液電池の電極は、前記特許文献1でも示すように、水の電気分解を避けるため、真空環境下(100ppm以下)で熱処理を行ういわゆるパッチ式工程で電極を製造している。このような100ppm以下のドライ条件下で電極を製造する場合は、電極中の水分量は抑えることができる反面、バインダの結晶内における非晶部が多くなり結果としてサイクル寿命が短くなってしまうという問題がある。しかし、本発明の製造方法では、かかる問題を解決するとともに、真空環境下で熱処理を行う必要が無いため生産効率の向上ならびにコストダウンに優れた製造方法を提供できる。   In general, as shown in Patent Document 1, an electrode of a non-aqueous electrolyte battery is manufactured by a so-called patch-type process in which heat treatment is performed in a vacuum environment (100 ppm or less) in order to avoid electrolysis of water. When an electrode is manufactured under such dry conditions of 100 ppm or less, the amount of moisture in the electrode can be suppressed, but on the other hand, the amorphous part in the binder crystal increases and as a result, the cycle life is shortened. There's a problem. However, the manufacturing method of the present invention can solve such problems and can provide a manufacturing method excellent in improving production efficiency and reducing costs because it is not necessary to perform heat treatment in a vacuum environment.

また、本発明の第二は、集電体と、前記集電体の表面に形成され、かつ電極活物質、および半結晶性高分子を含む電極活物質層と、を有し、前記電極活物質層内に前記半結晶性高分子の低結晶性領域および前記半結晶性高分子の高結晶性領域が形成され、かつ前記低結晶性領域に対する前記高結晶性領域の面積比は1〜5である、非水電池用電極である。これにより、電極内が適度な結晶状態を維持しているため、リサイクル寿命に効果が期待することができる。また、耐衝撃性に優れた電極を提供することができる。   The second aspect of the present invention includes a current collector, and an electrode active material layer formed on a surface of the current collector and including an electrode active material and a semicrystalline polymer. A low crystalline region of the semicrystalline polymer and a high crystalline region of the semicrystalline polymer are formed in the material layer, and an area ratio of the high crystalline region to the low crystalline region is 1 to 5. This is an electrode for a non-aqueous battery. Thereby, since the inside of the electrode maintains an appropriate crystal state, it can be expected to have an effect on the recycling life. Moreover, the electrode excellent in impact resistance can be provided.

以下、便宜上本発明に係る電極の説明をした後、本発明に係る電極の製造方法について詳説する。本発明の好ましい実施形態として、まず非水電池の一例として非水電解質二次電池について説明するが、以下の実施形態のみには制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, for convenience, the electrode according to the present invention will be described, and then the electrode manufacturing method according to the present invention will be described in detail. As a preferred embodiment of the present invention, a non-aqueous electrolyte secondary battery will first be described as an example of a non-aqueous battery, but is not limited to the following embodiments. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.

非水電解質二次電池(例えば、リチウムイオン二次電池)の電解質の形態で区別した場合に、特に制限はない。例えば、非水電解液をセパレータに含浸させた液体電解質型電池、ポリマー電池とも称される高分子ゲル電解質型電池および固体高分子電解質(全固体電解質)型電池のいずれにも適用されうる。高分子ゲル電解質および固体高分子電解質に関しては、これらを単独で使用することもできるし、これら高分子ゲル電解質や固体高分子電解質をセパレータに含浸させて使用することもできる。   There is no particular limitation when distinguished by the form of the electrolyte of a non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery). For example, the present invention can be applied to any of a liquid electrolyte type battery in which a separator is impregnated with a nonaqueous electrolytic solution, a polymer gel electrolyte type battery also called a polymer battery, and a solid polymer electrolyte (all solid electrolyte) type battery. With respect to the polymer gel electrolyte and the solid polymer electrolyte, these can be used alone, or the polymer gel electrolyte or the solid polymer electrolyte can be used by impregnating the separator.

図1は、扁平型(積層型)の双極型ではない非水電解質二次電池(以下、単に「積層型電池」ともいう)の基本構成を模式的に表した断面概略図である。図1に示すように、本実施形態の積層型電池10aは、実際に充放電反応が進行する略矩形の発電要素21が、外装体である電池外装材29の内部に封止された構造を有する。ここで、発電要素21は、正極と、電解質層17と、負極とを積層した構成を有している。正極は、正極集電体11の両面に正極活物質層13が配置された構造を有する。負極は、負極集電体12の両面に負極活物質層15が配置された構造を有する。具体的には、1つの正極活物質層13とこれに隣接する負極活物質層15とが、電解質層17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。これにより、隣接する正極、電解質層および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10aは、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。   FIG. 1 is a schematic cross-sectional view schematically showing a basic configuration of a non-aqueous electrolyte secondary battery (hereinafter also simply referred to as “stacked battery”) that is not a flat type (stacked type) bipolar type. As shown in FIG. 1, the stacked battery 10 a of this embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a battery exterior material 29 that is an exterior body. Have. Here, the power generation element 21 has a configuration in which a positive electrode, an electrolyte layer 17, and a negative electrode are stacked. The positive electrode has a structure in which the positive electrode active material layer 13 is disposed on both surfaces of the positive electrode current collector 11. The negative electrode has a structure in which the negative electrode active material layers 15 are disposed on both surfaces of the negative electrode current collector 12. Specifically, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 13 and the negative electrode active material layer 15 adjacent thereto face each other with the electrolyte layer 17 therebetween. . Thereby, the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10a shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.

なお、発電要素21の両最外層に位置する最外層正極集電体には、いずれも片面のみに正極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層負極集電体が位置するようにし、該最外層負極集電体の片面または両面に負極活物質層が配置されているようにしてもよい。   In addition, although the positive electrode active material layer 13 is arrange | positioned only at one side in the outermost layer positive electrode collector located in both outermost layers of the electric power generation element 21, an active material layer may be provided in both surfaces. That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector. In addition, the arrangement of the positive electrode and the negative electrode is reversed from that in FIG. 1, so that the outermost layer negative electrode current collector is positioned on both outermost layers of the power generation element 21, and the outermost layer negative electrode current collector is disposed on one or both surfaces. A negative electrode active material layer may be disposed.

正極集電体11および負極集電体12は、各電極(正極および負極)と導通される正極集電板25および負極集電板27がそれぞれ取り付けられ、電池外装材29の端部に挟まれるようにして電池外装材29の外部に導出される構造を有している。正極集電板25および負極集電板27はそれぞれ、必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体11および負極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。   The positive electrode current collector 11 and the negative electrode current collector 12 are respectively attached with a positive electrode current collector plate 25 and a negative electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode), and are sandwiched between end portions of the battery exterior material 29. Thus, it has a structure led out of the battery exterior material 29. The positive electrode current collector plate 25 and the negative electrode current collector plate 27 are ultrasonically welded to the positive electrode current collector 11 and the negative electrode current collector 12 of each electrode, respectively, via a positive electrode lead and a negative electrode lead (not shown) as necessary. Or resistance welding or the like.

図2は、双極型非水電解質二次電池(以下、単に「双極型電池」ともいう)10bの基本構成を模式的に表した断面概略図である。図2に示す双極型電池10bは、実際に充放電反応が進行する略矩形の発電要素21が、電池外装材であるラミネートフィルム29の内部に封止された構造を有する。   FIG. 2 is a schematic cross-sectional view schematically showing a basic configuration of a bipolar nonaqueous electrolyte secondary battery (hereinafter also simply referred to as “bipolar battery”) 10b. The bipolar battery 10b shown in FIG. 2 has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate film 29 that is a battery exterior material.

図2に示すように、双極型電池10bの発電要素21は、集電体11の一方の面に電気的に結合した正極活物質層13が形成され、集電体11の反対側の面に電気的に結合した負極活物質層15が形成された複数の双極型電極23を有する。各双極型電極23は、電解質層17を介して積層されて発電要素21を形成する。なお、電解質層17は、基材としてのセパレータの面方向中央部に電解質が保持されてなる構成を有する。この際、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15とが電解質層17を介して向き合うように、各双極型電極23および電解質層17が交互に積層されている。すなわち、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15との間に電解質層17が挟まれて配置されている。   As shown in FIG. 2, the power generation element 21 of the bipolar battery 10 b has a positive electrode active material layer 13 that is electrically coupled to one surface of the current collector 11, and is formed on the opposite surface of the current collector 11. It has a plurality of bipolar electrodes 23 in which a negative electrode active material layer 15 that is electrically coupled is formed. Each bipolar electrode 23 is laminated via the electrolyte layer 17 to form the power generation element 21. The electrolyte layer 17 has a configuration in which an electrolyte is held at the center in the surface direction of a separator as a base material. At this time, the positive electrode active material layer 13 of one bipolar electrode 23 and the negative electrode active material layer 15 of another bipolar electrode 23 adjacent to the one bipolar electrode 23 face each other through the electrolyte layer 17. The bipolar electrodes 23 and the electrolyte layers 17 are alternately stacked. That is, the electrolyte layer 17 is interposed between the positive electrode active material layer 13 of one bipolar electrode 23 and the negative electrode active material layer 15 of another bipolar electrode 23 adjacent to the one bipolar electrode 23. ing.

隣接する正極活物質層13、電解質層17、および負極活物質層15は、一つの単電池層19を構成する。したがって、双極型電池10bは、単電池層19が積層されてなる構成を有するともいえる。また、電解質層17からの電解液の漏れによる液絡を防止する目的で、単電池層19の外周部にはシール部(絶縁層)31が配置されている。なお、発電要素21の最外層に位置する正極側の最外層集電体11aには、片面のみに正極活物質層13が形成されている。また、発電要素21の最外層に位置する負極側の最外層集電体11bには、片面のみに負極活物質層15が形成されている。ただし、正極側の最外層集電体11aの両面に正極活物質層13が形成されてもよい。同様に、負極側の最外層集電体11bの両面に負極活物質層15が形成されてもよい。   The adjacent positive electrode active material layer 13, electrolyte layer 17, and negative electrode active material layer 15 constitute one unit cell layer 19. Therefore, it can be said that the bipolar battery 10b has a configuration in which the single battery layers 19 are stacked. Further, for the purpose of preventing liquid junction due to leakage of the electrolytic solution from the electrolyte layer 17, a seal portion (insulating layer) 31 is disposed on the outer peripheral portion of the unit cell layer 19. A positive electrode active material layer 13 is formed only on one side of the positive electrode outermost layer current collector 11 a located in the outermost layer of the power generation element 21. The negative electrode active material layer 15 is formed only on one surface of the outermost current collector 11b on the negative electrode side located in the outermost layer of the power generation element 21. However, the positive electrode active material layer 13 may be formed on both surfaces of the outermost layer current collector 11a on the positive electrode side. Similarly, the negative electrode active material layer 15 may be formed on both surfaces of the outermost layer current collector 11b on the negative electrode side.

さらに、図2に示す双極型電池10bでは、正極側の最外層集電体11aに隣接するように正極集電板25が配置され、これが延長されて電池外装材であるラミネートフィルム29から導出している。一方、負極側の最外層集電体11bに隣接するように負極集電板27が配置され、同様にこれが延長されて電池の外装であるラミネートフィルム29から導出している。   Furthermore, in the bipolar battery 10b shown in FIG. 2, the positive electrode current collector plate 25 is disposed so as to be adjacent to the outermost layer current collector 11a on the positive electrode side, and this is extended and led out from the laminate film 29 which is a battery exterior material. ing. On the other hand, a negative electrode current collector plate 27 is disposed so as to be adjacent to the outermost layer current collector 11b on the negative electrode side.

図2に示す双極型電池10bにおいては、通常、各単電池層19の周囲にシール部31が設けられる。このシール部31は、電池内で隣り合う集電体11どうしが接触したり、発電要素21における単電池層19の端部の僅かな不揃いなどに起因する短絡が起こったりするのを防止する目的で設けられる。かようなシール部31の設置により、長期間の信頼性および安全性が確保され、高品質の双極型電池10bが提供されうる。   In the bipolar battery 10 b shown in FIG. 2, a seal portion 31 is usually provided around each single cell layer 19. The purpose of the seal portion 31 is to prevent the adjacent current collectors 11 in the battery from coming into contact with each other and a short circuit caused by a slight irregularity at the end of the unit cell layer 19 in the power generation element 21. Provided. By installing such a seal portion 31, long-term reliability and safety can be ensured, and a high-quality bipolar battery 10b can be provided.

なお、単電池層19の積層回数は、所望する電圧に応じて調節する。また、双極型電池10bでは、電池の厚みを極力薄くしても十分な出力が確保できれば、単電池層19の積層回数を少なくしてもよい。双極型電池10bでも、使用する際の外部からの衝撃、環境劣化を防止する必要がある。よって、発電要素21を電池外装材であるラミネートフィルム29に減圧封入し、正極集電板25および負極集電板27をラミネートフィルム29の外部に取り出した構造とするのがよい。   Note that the number of stacks of the unit cell layers 19 is adjusted according to a desired voltage. Further, in the bipolar battery 10b, the number of stacks of the single battery layers 19 may be reduced if a sufficient output can be ensured even if the battery is made as thin as possible. Even in the bipolar battery 10b, it is necessary to prevent external impact and environmental degradation during use. Therefore, the power generation element 21 is preferably sealed in a laminate film 29 that is a battery exterior material, and the positive electrode current collector plate 25 and the negative electrode current collector plate 27 are taken out of the laminate film 29.

図3は、図1および図2に示す非水電解質二次電池10a、10bに用いられる、好ましい実施形態の電極65を拡大して表す断面概略図である。   FIG. 3 is an enlarged schematic cross-sectional view showing a preferred embodiment of the electrode 65 used in the nonaqueous electrolyte secondary batteries 10 a and 10 b shown in FIGS. 1 and 2.

本実施形態の電極65は、集電体62上に形成されてなる電極活物質層63(正極活物質層、負極活物質層)を有する。また、電気デバイスとして非水二次電池を例示したが、これに制限されるわけではなく、他のタイプの二次電池(リチウムイオン二次電池)、さらには、一次電池にも適用できる。また、電池だけではなく、キャパシタにも適用できる。なお、本明細書中、「集電体」と記載する場合、正極集電体、負極集電体、双極型電池用集電体のすべてを指す場合もあるし、一つのみを指す場合もある。同様に、「電極活物質層」と記載する場合、正極活物質層、負極活物質層の両方を指す場合もあるし、片方のみを指す場合もある。同様に、「電極活物質」と記載する場合、正極活物質、負極活物質の両方を指す場合もあるし、片方のみを指す場合もある。   The electrode 65 of this embodiment has an electrode active material layer 63 (positive electrode active material layer, negative electrode active material layer) formed on the current collector 62. Moreover, although the non-aqueous secondary battery was illustrated as an electrical device, it is not necessarily restricted to this, It can apply also to another type secondary battery (lithium ion secondary battery), and also a primary battery. Moreover, it can be applied not only to batteries but also to capacitors. In addition, in this specification, when describing as “current collector”, it may indicate all of the positive electrode current collector, the negative electrode current collector, and the bipolar battery current collector, or may refer to only one. is there. Similarly, in the case of describing as “electrode active material layer”, both the positive electrode active material layer and the negative electrode active material layer may be indicated, or only one of them may be indicated. Similarly, when describing as "electrode active material", both a positive electrode active material and a negative electrode active material may be pointed out, and only one side may be pointed out.

以下、本実施形態の電極について、さらに詳細に説明する。   Hereinafter, the electrode of this embodiment will be described in more detail.

[集電体]
集電体を構成する材料に特に制限はないが、好適には金属が用いられる。具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅、その他合金等などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位の観点からは、アルミニウム、ステンレス、銅が好ましい。
[Current collector]
There is no particular limitation on the material constituting the current collector, but a metal is preferably used. Specifically, examples of the metal include aluminum, nickel, iron, stainless steel, titanium, copper, and other alloys. In addition to these, a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used. Moreover, the foil by which aluminum is coat | covered on the metal surface may be sufficient. Of these, aluminum, stainless steel, and copper are preferable from the viewpoints of electronic conductivity and battery operating potential.

集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1〜100μm程度である。   The size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used. There is no particular limitation on the thickness of the current collector. The thickness of the current collector is usually about 1 to 100 μm.

[電極活物質層(正極活物質層、負極活物質層)]
本実施形態の正極活物質層または負極活物質層は、電極活物質、および半結晶性高分子を含み、必要に応じて、半結晶性高分子以外のバインダ、界面活性剤、導電助剤、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
[Electrode active material layer (positive electrode active material layer, negative electrode active material layer)]
The positive electrode active material layer or the negative electrode active material layer of the present embodiment includes an electrode active material and a semicrystalline polymer, and if necessary, a binder other than the semicrystalline polymer, a surfactant, a conductive additive, It further includes other additives such as an electrolyte (polymer matrix, ion conductive polymer, electrolyte solution, etc.) and a lithium salt for enhancing ion conductivity.

また、本発明に係る電極活物質層内の半結晶性高分子は、低結晶性領域および高結晶性領域を形成し、かつ前記低結晶性領域に対する前記高結晶性領域の面積比は1〜5である。さらに、前記低結晶性領域に対する前記高結晶性領域の面積比は2〜5であることが好ましく、面積比が2.5〜3であることがより好ましい。電極活物質層内において半結晶性高分子の低結晶性領域(いわゆる非晶部)は、電解液を保持する効果を奏する反面膨潤し電池のサイクル寿命が低下することが知られている。しかし、本発明に係る電極内の半結晶性高分子が適度な低結晶性領域と高結晶性領域との割合(面積比は1〜5)で存在するためサイクル寿命の低下を抑制・防止することができる。   Further, the semicrystalline polymer in the electrode active material layer according to the present invention forms a low crystalline region and a high crystalline region, and an area ratio of the high crystalline region to the low crystalline region is 1 to 1. 5. Furthermore, the area ratio of the high crystalline region to the low crystalline region is preferably 2 to 5, and more preferably 2.5 to 3. It is known that the low crystalline region (so-called amorphous portion) of the semicrystalline polymer in the electrode active material layer swells while having the effect of retaining the electrolytic solution, thereby reducing the cycle life of the battery. However, since the semi-crystalline polymer in the electrode according to the present invention is present in an appropriate ratio of the low crystalline region and the high crystalline region (area ratio is 1 to 5), the reduction in cycle life is suppressed / prevented. be able to.

さらに、本発明に係る電極において、電極活物質層を堆積した集電体側に存在する半結晶性高分子の量が、当該集電体の対極側(電解質層と当接する側)に存在する半結晶性高分子の量より少ないことが好ましい。より好ましくは、半結晶性高分子は当該集電体の対極側(電解質層と当接する側)にのみ半結晶性高分子が存在する。特に好ましくは、半結晶性高分子は当該集電体の対極側(電解質層と当接する側)であって、かつ電極活物質層の表面部近傍にのみ存在する。   Further, in the electrode according to the present invention, the amount of the semi-crystalline polymer present on the current collector side on which the electrode active material layer is deposited is a half present on the counter electrode side (side in contact with the electrolyte layer) of the current collector. Preferably less than the amount of crystalline polymer. More preferably, the semicrystalline polymer is present only on the counter electrode side (the side in contact with the electrolyte layer) of the current collector. Particularly preferably, the semicrystalline polymer is present only on the counter electrode side (the side in contact with the electrolyte layer) of the current collector and in the vicinity of the surface portion of the electrode active material layer.

本明細書における「低結晶性領域」とは、X線回折ピークの半値幅w°がピーク強度hに対してw/h=3以上であり、XRD(Cu Kα)測定により決定している。また、本明細書における「高結晶性領域」とは、X開回折ピークの半値幅w°がピーク強度hに対してw/h=0.5以下であり、XRD(Cu Kα)測定により決定している。   The “low crystalline region” in the present specification has a half width w ° of the X-ray diffraction peak of w / h = 3 or more with respect to the peak intensity h, and is determined by XRD (Cu Kα) measurement. Further, the “high crystalline region” in the present specification means that the half width w ° of the X open diffraction peak is w / h = 0.5 or less with respect to the peak intensity h, and is determined by XRD (Cu Kα) measurement. doing.

低結晶性領域に対する高結晶性領域の面積比は、電子後方散乱パターン(Electron BackScattering Pattern:EBSP)や顕微レーザーラマン分光装置の解析など公知の測定方法で算出することができる。本明細書では、二次電池用電極を厚み方向に切断した後、前記電極の断面1μm当たりのバインダ面積から顕微レーザーラマン分光装置を用いて半結晶性高分子の低結晶性領域ピークおよび高結晶性領域ピークの占有比率を算出した。また、実施例では、電極における半結晶性高分子の低結晶性領域および高結晶性領域の面積の状態を画像解析で示している。 The area ratio of the high crystalline region to the low crystalline region can be calculated by a known measurement method such as an electron backscattering pattern (EBSP) or analysis by a microscopic laser Raman spectrometer. In this specification, after cutting the electrode for a secondary battery in the thickness direction, a low crystalline region peak and a high crystalline region of a semi-crystalline polymer are obtained from a binder area per 1 μm 2 of a cross section of the electrode using a microscopic laser Raman spectrometer. The occupation ratio of the crystalline region peak was calculated. In the examples, the state of the area of the low crystalline region and the high crystalline region of the semicrystalline polymer in the electrode is shown by image analysis.

本発明に係る電極活物質層中に含まれる半結晶性高分子の含有量は、電極活物質を活物質本来の活性を抑制しない量であれば特に限定されるものではないが、好ましくは活物質層に対して、1〜10質量%であり、より好ましくは3〜8質量%である。   The content of the semi-crystalline polymer contained in the electrode active material layer according to the present invention is not particularly limited as long as the electrode active material is an amount that does not suppress the original activity of the active material. It is 1-10 mass% with respect to a substance layer, More preferably, it is 3-8 mass%.

また、本発明に係る電極活物質層の成分(活物質、および半結晶性高分子(バインダとしての役割)、必要に応じて、その他のバインダ、導電助剤など)の組成は、前記電極活物質層を100質量部としたとき以下の通りである。前記半結晶性高分子の量は、好ましくは1〜10質量部であり、より好ましくは2〜8質量部である。前記電極活物質の量は、好ましくは70〜99質量部であり、より好ましくは75〜85質量部である。前記その他のバインダの量(バインダである半結晶性高分子以外の他のバインダも混合する場合)は、好ましくは1〜10質量部であり、より好ましくは2〜8質量部である。前記導電助剤の量は、好ましくは0〜10質量部であり、より好ましくは3〜7質量部である。   In addition, the composition of the electrode active material layer according to the present invention (active material, semi-crystalline polymer (role as a binder), and other binders, conductive assistants, etc., if necessary) is the electrode active material layer. When the material layer is 100 parts by mass, it is as follows. The amount of the semicrystalline polymer is preferably 1 to 10 parts by mass, more preferably 2 to 8 parts by mass. The amount of the electrode active material is preferably 70 to 99 parts by mass, and more preferably 75 to 85 parts by mass. The amount of the other binder (when a binder other than the semicrystalline polymer which is a binder is also mixed) is preferably 1 to 10 parts by mass, and more preferably 2 to 8 parts by mass. The amount of the conductive assistant is preferably 0 to 10 parts by mass, and more preferably 3 to 7 parts by mass.

電極活物質層中の成分がかような範囲であると適度な結晶性を備える電極になり、その効果発現させることができる。   When the component in the electrode active material layer is in such a range, an electrode having appropriate crystallinity is obtained, and the effect can be expressed.

本発明に係る電極活物質層の厚さは、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、好ましくは100〜200μm、より好ましくは100〜180μmである。   For the thickness of the electrode active material layer according to the present invention, conventionally known knowledge about the battery can be referred to as appropriate. For example, the thickness is preferably 100 to 200 μm, more preferably 100 to 180 μm.

(電極活物質)
正極活物質層は、放電時にイオンを吸蔵し、充電時にイオンを放出できる正極活物質を含むことが好ましい。正極活物質の例としては、リチウムと遷移金属との複合酸化物、遷移金属酸化物、遷移金属硫化物、PbO、AgO、またはNiOOHなどが好ましく挙げられ、これらは単独でもまたは2種以上混合しても用いることができる。
(Electrode active material)
The positive electrode active material layer preferably contains a positive electrode active material that can occlude ions during discharge and release ions during charge. Preferred examples of the positive electrode active material include composite oxides of lithium and transition metals, transition metal oxides, transition metal sulfides, PbO 2 , AgO, or NiOOH. These may be used alone or in combination of two or more. Even it can be used.

前記リチウムと遷移金属との複合酸化物の例としては、LiMnO、LiMnなどのLi−Mn系複合酸化物、LiCoOなどのLi−Co系複合酸化物、LiNiO、Li(Ni−Co−Mn)OなどのLi−Ni系複合酸化物、LiFeOなどのLi−Fe系複合酸化物、LiFePO4などのリチウムと遷移金属との複合リン酸化合物、またはリチウムと遷移金属との複合硫酸化合物などが好ましく挙げられる。前記遷移金属酸化物の例としては、V、MnO、VMoO、またはMoOなどが好ましく挙げられる。前記遷移金属硫化物の例としては、TiSまたはMoSなどが好ましく挙げられる。これら正極活物質は、単独でもまたは2種以上混合しても用いることができる。好ましくは、容量、出力特性の観点から、リチウムと遷移金属との複合酸化物が、正極活物質として用いられる。なお、上記以外の正極活物質が用いられてもよいことは勿論である。また、正極活物質層は、目的に応じて上記の任意成分(導電助剤、バインダ、または電解質などを含むことができる。 Examples of the composite oxide of lithium and transition metal include Li-Mn composite oxides such as LiMnO 2 and LiMn 2 O 4 , Li—Co composite oxides such as LiCoO 2 , LiNiO 2 , Li (Ni -Co-Mn) O 2 and other Li-Ni complex oxides, LiFeO 2 and other Li-Fe complex oxides, LiFePO4 and other complex phosphate compounds of lithium and transition metals, or lithium and transition metals Preferred examples include complex sulfuric acid compounds. Preferred examples of the transition metal oxide include V 2 O 5 , MnO 2 , V 2 MoO 8 , and MoO 3 . Preferred examples of the transition metal sulfide include TiS 2 and MoS 2 . These positive electrode active materials can be used alone or in admixture of two or more. Preferably, from the viewpoint of capacity and output characteristics, a composite oxide of lithium and a transition metal is used as the positive electrode active material. Of course, positive electrode active materials other than those described above may be used. In addition, the positive electrode active material layer can contain the above-described optional components (conducting aid, binder, electrolyte, or the like depending on the purpose.

負極活物質層は、負極活物質を含む。また、当該負極活物質層は、放電時にイオンを放出し、充電時にイオンを吸蔵できる負極活物質を含むことが好ましい。当該負極活物質としては、例えば、TiO、Ti、TiO、もしくはSnOなどの金属酸化物、グラファイト(黒鉛)、ソフトカーボン、ハードカーボン等の炭素材料、リチウム−遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料またはリチウム−遷移金属複合酸化物が、負極活物質として用いられる。また、正極活物質層は、目的に応じて上記の任意成分(導電助剤、バインダ、または電解質などを含むことができる。なお、上記以外の負極活物質が用いられてもよいことは勿論である。 The negative electrode active material layer includes a negative electrode active material. In addition, the negative electrode active material layer preferably includes a negative electrode active material that releases ions during discharging and can store ions during charging. Examples of the negative electrode active material include metal oxides such as TiO, Ti 2 O 3 , TiO 2 , or SnO 2 , carbon materials such as graphite (graphite), soft carbon, and hard carbon, and lithium-transition metal composite oxides. (For example, Li 4 Ti 5 O 12 ), metal materials, lithium alloy negative electrode materials, and the like. In some cases, two or more negative electrode active materials may be used in combination. Preferably, from the viewpoint of capacity and output characteristics, a carbon material or a lithium-transition metal composite oxide is used as the negative electrode active material. Further, the positive electrode active material layer can contain the above-mentioned optional components (conducting aid, binder, electrolyte, etc. depending on the purpose. Of course, other negative electrode active materials may be used. is there.

各活物質層に含まれるそれぞれの活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜100μm、より好ましくは1〜20μmである。また、前記平均粒子径とは、1次粒子の平均粒子径をいう。   Although the average particle diameter of each active material contained in each active material layer is not particularly limited, it is preferably 1 to 100 μm, more preferably 1 to 20 μm from the viewpoint of high output. Moreover, the said average particle diameter means the average particle diameter of a primary particle.

前記平均粒子径は、例えば、SEM観察、TEM観察により測定することができる。上記でいう平均粒子径は、粒子の形状が一様でない場合もあるため、絶対最大長で表すものとする。ここで、絶対最大長とは、単結合体の輪郭線上の任意の2点間の距離のうち、最大の長さLの平均をとるものとする。なお、値は単結合体10個から求めた平均値とする。   The average particle diameter can be measured, for example, by SEM observation or TEM observation. The average particle diameter mentioned above is expressed by the absolute maximum length because the shape of the particles may not be uniform. Here, the absolute maximum length is an average of the maximum length L among the distances between any two points on the outline of the single bond. The value is an average value obtained from 10 single bonds.

(半結晶性高分子)
正極活物質層および/または負極活物質層は、半結晶性高分子を含む。本発明に係る半結晶性高分子は、熱分析測定で多重融解挙動を示す高分子であって、かつバインダとしての役割を果たせば特に制限されることは無い。また、前記バインダの役割を有する半結晶性高分子は、以下の3つの点を満たすものであれば足りる。(1)塗工液を安定なスラリーに保つ(分散作用や増粘作用を有している)。(2)活物質粉末、導電フィラ粉末等の粒子同士を固着させ電極としての機械的強度を維持させ、かつ粒子同士の電気的接触を保つ。(3)集電体に対して接着力を維持する。
(Semicrystalline polymer)
The positive electrode active material layer and / or the negative electrode active material layer includes a semicrystalline polymer. The semi-crystalline polymer according to the present invention is not particularly limited as long as it is a polymer that exhibits multiple melting behavior in thermal analysis measurement and plays a role as a binder. Moreover, the semi-crystalline polymer having the role of the binder is sufficient if it satisfies the following three points. (1) Keep the coating liquid in a stable slurry (having a dispersing action and a thickening action). (2) Particles such as active material powder and conductive filler powder are fixed to each other to maintain mechanical strength as an electrode, and to keep electrical contact between the particles. (3) Maintaining adhesive strength with respect to the current collector.

そのため前記半結晶性高分子としては、例えば、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、およびポリブテンからなる群から選択される少なくとも1種、またはポリフッ化ビニリデンの水素原子が他のハロゲン元素にて置換された化合物も含むことが好ましい。   Therefore, as the semicrystalline polymer, for example, at least one selected from the group consisting of polybutylene terephthalate, polyethylene terephthalate, polyvinylidene fluoride, polyethylene, polypropylene, polymethylpentene, and polybutene, or hydrogen of polyvinylidene fluoride It is also preferable to include compounds in which atoms are substituted with other halogen elements.

本発明に係る半結晶性高分子の重量平均分子量(Mw)は、5000〜10000であることが好ましく、7000〜8000であることが好ましい。   The weight average molecular weight (Mw) of the semicrystalline polymer according to the present invention is preferably 5000 to 10000, and more preferably 7000 to 8000.

なお、本発明に係る分子量は、MSスペクトル法、光散乱法、液体クロマトグラフィー、ガスクロマトグラフィーなどで公知の方法で測定することができる。本明細書では、液クロマトグラフィーにより測定した分子量であり、以下で使用する種々の高分子も同様の方法で測定している。   In addition, the molecular weight based on this invention can be measured by well-known methods, such as MS spectrum method, a light-scattering method, a liquid chromatography, a gas chromatography. In this specification, it is the molecular weight measured by liquid chromatography, and various polymers used below are also measured by the same method.

本発明に係る半結晶性高分子の結晶化温度は、前記半結晶性高分子に応じて決められるものであるが、水分除去の観点から、100〜150℃の範囲の結晶化温度を有する半結晶性高分子を使用することが好ましい。   The crystallization temperature of the semicrystalline polymer according to the present invention is determined according to the semicrystalline polymer, but from the viewpoint of water removal, the crystallization temperature has a crystallization temperature in the range of 100 to 150 ° C. It is preferable to use a crystalline polymer.

本発明に係る半結晶性高分子のガラス転移温度は、前記半結晶性高分子に応じて決められるものであるが、生産環境の観点から、−50〜50℃の範囲のガラス転移温度を有する半結晶性高分子を使用することが好ましい。   The glass transition temperature of the semicrystalline polymer according to the present invention is determined according to the semicrystalline polymer, and has a glass transition temperature in the range of −50 to 50 ° C. from the viewpoint of production environment. It is preferable to use a semicrystalline polymer.

なお、本明細書における「結晶化温度」とは、DSC測定により多重融解を示す吸熱ピークであり高温側のピークのことであり、本明細書における「ガラス転移温度」とは、DSC測定により多重融解を示す吸熱ピークの内低温側である。   The “crystallization temperature” in the present specification is an endothermic peak showing multiple melting by DSC measurement and a peak on the high temperature side, and the “glass transition temperature” in this specification is multiple by DSC measurement. It is the low temperature side of the endothermic peak indicating melting.

本発明に係る半結晶性高分子の結晶化度は、10%以上60%以下が好ましく、40%以上60%以下がより好ましい。   The crystallinity of the semicrystalline polymer according to the present invention is preferably 10% or more and 60% or less, and more preferably 40% or more and 60% or less.

なお、ここでいう結晶化度は、重量結晶化度であり、1気圧25℃の条件で示差走査熱量測定(DSC)を用いて測定している。   The crystallinity referred to here is weight crystallinity, and is measured using differential scanning calorimetry (DSC) under the condition of 1 atm and 25 ° C.

(その他のバインダ)
正極活物質層および負極活物質層は、半結晶性高分子以外にその他のバインダを含んでもよい。電極活物質層に用いられる任意成分のバインダとしては、疎水性であれば、特に限定されないが、例えば、以下の材料が挙げられる。
(Other binders)
The positive electrode active material layer and the negative electrode active material layer may contain other binders in addition to the semicrystalline polymer. The binder of the optional component used for the electrode active material layer is not particularly limited as long as it is hydrophobic, and examples thereof include the following materials.

ポリエーテルニトリル、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリイミド、ポリアミド、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。中でも、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドであることがより好ましい。   Polyether nitrile, polytetrafluoroethylene, polyacrylonitrile, polyimide, polyamide, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene / butadiene rubber (SBR), ethylene / propylene / diene copolymer, styrene / butadiene / styrene Block copolymers and their hydrogenated products, thermoplastic polymers such as styrene / isoprene / styrene block copolymers and their hydrogenated products, tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene Fluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (E Fluorine resins such as TFE) and polyvinyl fluoride (PVF), vinylidene fluoride-hexafluoropropylene-based fluoro rubber (VDF-HFP-based fluoro rubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluoro rubber (VDF-) HFP-TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-PFP-TFE fluorine rubber) ), Vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluororubber (VDF-PFMVE-TFE fluororubber), vinylidene fluoride-chlorotrifluoroe Vinylidene fluoride-based fluorine rubbers such as Ren fluororubber (VDF-CTFE-based fluorine rubber), epoxy resins and the like. Among these, polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are more preferable.

これらの好適なバインダは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり活物質層に使用が可能となる。これらのバインダは、単独で用いてもよいし、2種以上を併用してもよい。   These suitable binders are excellent in heat resistance, have a very wide potential window, are stable at both the positive electrode potential and the negative electrode potential, and can be used for the active material layer. These binders may be used independently and may use 2 or more types together.

本発明に係る電極活物質層に含まれうるその他の添加剤としては、例えば、界面活性剤、導電助剤、電解質、イオン伝導性ポリマー等が挙げられる。   Examples of other additives that can be included in the electrode active material layer according to the present invention include surfactants, conductive assistants, electrolytes, and ion conductive polymers.

前記界面活性剤としては、公知のカチオン性界面活性剤、アニオン性界面活性剤、両性界面活性剤を使用することができる。   As the surfactant, known cationic surfactants, anionic surfactants, and amphoteric surfactants can be used.

前記導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。電極活物質層が導電助剤を含むと、前記電極活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。   The said conductive support agent means the additive mix | blended in order to improve the electroconductivity of a positive electrode active material layer or a negative electrode active material layer. Examples of the conductive auxiliary agent include carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber. When the electrode active material layer contains a conductive additive, an electronic network inside the electrode active material layer is effectively formed, which can contribute to the improvement of the output characteristics of the battery.

前記電解質としては、電解質塩(リチウム塩)が好ましく、具体的には、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。 The electrolyte is preferably an electrolyte salt (lithium salt), specifically, Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like. It is done.

前記イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。   Examples of the ion conductive polymer include polyethylene oxide (PEO) -based and polypropylene oxide (PPO) -based polymers.

また、本発明において、正極活物質層および負極活物質層中に含まれうる、導電助剤、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤の配合比は、特に限定されない。それらの配合比は、非水溶媒二次電池についての公知の知見を適宜参照することにより、調整されうる。   Further, in the present invention, conductive assistants, electrolytes (polymer matrix, ion conductive polymer, electrolytic solution, etc.), lithium salts for improving ion conductivity, etc. that can be contained in the positive electrode active material layer and the negative electrode active material layer, etc. The mixing ratio of the other additives is not particularly limited. Those blending ratios can be adjusted by appropriately referring to known knowledge about the non-aqueous solvent secondary battery.

[電極の製造方法]
本発明の第二は、電極活物質、半結晶性高分子、および溶媒を含むスラリー原料を混合してスラリー溶液を調製する工程(以下、工程1とも称する。)と、前記スラリー溶液を塗布した集電体を前記半結晶性高分子の結晶化温度以上融点未満で熱処理し前記集電体表面に電極活物質層を形成する工程(以下工程2とも称する)と、を有する、非水電池用電極の製造方法である。
[Electrode manufacturing method]
The second of the present invention is a step of preparing a slurry solution by mixing a slurry raw material containing an electrode active material, a semicrystalline polymer, and a solvent (hereinafter also referred to as step 1), and applying the slurry solution. And a step of heat-treating the current collector at a temperature equal to or higher than the crystallization temperature of the semicrystalline polymer and less than the melting point to form an electrode active material layer on the surface of the current collector (hereinafter also referred to as step 2). It is a manufacturing method of an electrode.

半結晶性高分子の結晶化温度以上融点未満の温度で集電体表面に形成された塗膜に熱をかけることにより、前記非水電池用電極内で半結晶性高分子の結晶化が進行する。しかし、融解まで至らない温度のため前記半結晶性高分子結晶成長を抑制することができる。これにより、半結晶性高分子の低結晶性領域に対する前記高結晶性領域の面積比が1〜5である電極を製造することができる。   Crystallization of the semicrystalline polymer proceeds in the nonaqueous battery electrode by applying heat to the coating film formed on the surface of the current collector at a temperature higher than the crystallization temperature of the semicrystalline polymer and lower than the melting point. To do. However, the semi-crystalline polymer crystal growth can be suppressed due to the temperature that does not lead to melting. Thereby, the electrode whose area ratio of the said high crystalline area | region with respect to the low crystalline area | region of a semicrystalline polymer is 1-5 can be manufactured.

また、本発明の製造方法では、真空環境下で熱処理を行う必要が無いため生産効率の向上ならびにコストダウンに優れた電極の製造方法を提供できる。すなわち、従来の非水電池用電極の製造方法では、スラリー溶液を調製した後、塗工、乾燥、プレス、スリット、真空熱処理、および電解液の注入の順で電極を製造していた。しかし、本発明では電極活物質層の結晶状態を制御する一定温度での熱処理を設けることで、真空環境下での熱処理を必要とせず、スラリー溶液を調製から注液までの工程を一貫して行うことができる。   In addition, since the manufacturing method of the present invention does not require heat treatment in a vacuum environment, it is possible to provide an electrode manufacturing method with improved production efficiency and cost reduction. That is, in the conventional method for producing an electrode for a non-aqueous battery, after preparing a slurry solution, the electrode is produced in the order of coating, drying, pressing, slitting, vacuum heat treatment, and electrolyte injection. However, in the present invention, by providing heat treatment at a constant temperature for controlling the crystal state of the electrode active material layer, heat treatment in a vacuum environment is not required, and the process from preparation of slurry solution to injection is consistently performed. It can be carried out.

以下、各工程について詳細に説明する。   Hereinafter, each step will be described in detail.

(工程1)
本発明に係る工程1は、電極活物質、半結晶性高分子、および溶媒を含むスラリー原料を混合してスラリー溶液を調製する。またスラリー原料には、必要により、界面活性剤、導電助剤、電解質、またはイオン伝導性ポリマー等の任意成分を適宜混合させてもよい。すなわち、本発明に係るスラリー原料ないしスラリー溶液は、電極活物質、溶媒、および半結晶性高分子(バインダーとしての役割)、必要に応じて、その他のバインダ、導電助剤など上述の任意成分を含む。
(Process 1)
In step 1 according to the present invention, a slurry raw material containing an electrode active material, a semicrystalline polymer, and a solvent is mixed to prepare a slurry solution. Moreover, you may mix suitably arbitrary components, such as surfactant, a conductive support agent, electrolyte, or an ion conductive polymer, with a slurry raw material as needed. That is, the slurry raw material or slurry solution according to the present invention comprises the above-mentioned optional components such as an electrode active material, a solvent, a semi-crystalline polymer (role as a binder), and other binders and conductive assistants as necessary. Including.

一般に、正極活物質層および負極活物質層を作製する際には、溶媒に層構成成分を添加・混合したいわゆるスラリー(塗工液)を使用する。前記溶媒を水系にすると、層構成成分の分散性は容易に担保できる。しかし、電極活物質層を作製した後、水が前記層内に残留しやすく、特に正極活物質や電解液への水分による悪影響が懸念される。そのため、スラリーの溶媒としては、極力非水系溶媒を用いて真空熱処理することに利点がある。しかし、スラリーの溶媒として非水系溶媒を使用すると、バインダ、活物質なども溶媒に溶解・分散しづらくなるという困難性がある。本発明の特徴の一つは、バインダを特定の非結晶性高分子にし、かつ当該非結晶性高分子を溶液から固化させる段階で当該高分子の結晶の程度を制御することで、バインダなどの溶解性・分散性による不均一の問題を補填するものである。   Generally, when producing a positive electrode active material layer and a negative electrode active material layer, a so-called slurry (coating liquid) obtained by adding and mixing layer constituents to a solvent is used. When the solvent is aqueous, the dispersibility of the layer constituents can be easily ensured. However, after the electrode active material layer is formed, water tends to remain in the layer, and there is a concern that the positive electrode active material or the electrolyte solution may be adversely affected by moisture. Therefore, there is an advantage in vacuum heat treatment using a non-aqueous solvent as much as possible as the solvent of the slurry. However, when a non-aqueous solvent is used as a solvent for the slurry, there is a difficulty that binders, active materials, and the like are difficult to dissolve and disperse in the solvent. One of the features of the present invention is that the binder is made into a specific non-crystalline polymer and the degree of crystal of the polymer is controlled at the stage of solidifying the non-crystalline polymer from the solution. This compensates for the problem of non-uniformity due to solubility and dispersibility.

本発明に係るスラリー溶液の調製方法、すなわち電極活物質、半結晶性高分子、溶媒および任意成分の混合方法や添加順序は特に制限されない。前記混合方法としては、それぞれを溶媒に予め分散/溶解させる、半結晶性高分子を溶解させる前にその他の成分を予め分散/溶解させる、電極活物質及び/又は導電助剤と予め混合しておく、スラリー製造途中段階で添加する、等といった方法が挙げられる。   The method for preparing the slurry solution according to the present invention, that is, the method for mixing the electrode active material, the semicrystalline polymer, the solvent, and the optional components and the order of addition are not particularly limited. As the mixing method, each of them is pre-dispersed / dissolved in a solvent, other components are pre-dispersed / dissolved before the semi-crystalline polymer is dissolved, and pre-mixed with an electrode active material and / or a conductive aid. And a method such as adding in the middle of slurry production.

本発明に係る溶媒としては、有機溶媒が好ましく、少なくとも電極活物質や半結晶性高分子を分散させることができる溶媒であれば特に制限されない。具体的には、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、シクロヘキサン、ヘキサンなどが用いられうる。   The solvent according to the present invention is preferably an organic solvent, and is not particularly limited as long as it can disperse at least an electrode active material and a semicrystalline polymer. Specifically, N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylformamide, cyclohexane, hexane and the like can be used.

本発明に係るスラリー溶液の組成は、溶媒を100質量部としたとき以下の通りである。前記スラリー溶液中の半結晶性高分子の量は、好ましくは1〜10質量部であり、より好ましくは1〜7質量部であり、さらに好ましくは1〜5質量部である。前記スラリー溶液中の電極活物質の量は、好ましくは80〜99質量部、より好ましくは85〜99質量部、さらに好ましくは85〜90質量部である。前記スラリー溶液中のその他のバインダの量(バインダである半結晶性高分子以外の他のバインダも混合する場合)は、好ましくは0.1〜3質量部、より好ましくは0.1〜2質量部である。前記スラリー溶液中の導電助剤の量は、好ましくは1〜5質量部、より好ましくは3〜5質量部、さらに好ましくは4〜5質量部である。かような組成を備えたスラリー溶液であると目的の電極を製造することができる。   The composition of the slurry solution according to the present invention is as follows when the solvent is 100 parts by mass. The amount of the semicrystalline polymer in the slurry solution is preferably 1 to 10 parts by mass, more preferably 1 to 7 parts by mass, and still more preferably 1 to 5 parts by mass. The amount of the electrode active material in the slurry solution is preferably 80 to 99 parts by mass, more preferably 85 to 99 parts by mass, and still more preferably 85 to 90 parts by mass. The amount of the other binder in the slurry solution (when the binder other than the semi-crystalline polymer as the binder is also mixed) is preferably 0.1 to 3 parts by mass, more preferably 0.1 to 2 parts by mass. Part. The amount of the conductive assistant in the slurry solution is preferably 1 to 5 parts by mass, more preferably 3 to 5 parts by mass, and still more preferably 4 to 5 parts by mass. If the slurry solution has such a composition, the target electrode can be produced.

また、換言すると、本発明に係るスラリー溶液は、0.5〜10質量%の半結晶性高分子を含むことが好ましい。   In other words, the slurry solution according to the present invention preferably contains 0.5 to 10% by mass of a semicrystalline polymer.

さらに、上記スラリー溶液の粘度は、25℃で、4000〜10000mPa・secが好ましく、6000〜8000mPa・secがより好ましい。スラリー溶液の粘度が上記範囲であると塗布量安定化という観点で好ましい。   Furthermore, the viscosity of the slurry solution is preferably 4000 to 10000 mPa · sec, more preferably 6000 to 8000 mPa · sec at 25 ° C. The viscosity of the slurry solution is preferably in the above range from the viewpoint of stabilizing the coating amount.

(工程2)
本発明に係る工程2は、スラリー溶液を塗布した集電体を半結晶性高分子の結晶化温度以上融点未満で熱処理し前記集電体表面に電極活物質層を形成する工程である。
(Process 2)
Step 2 according to the present invention is a step of forming an electrode active material layer on the surface of the current collector by heat-treating the current collector coated with the slurry solution at a temperature equal to or higher than the crystallization temperature of the semicrystalline polymer and lower than the melting point.

上記工程2において、スラリー溶液を集電体に塗布する方法としては、特に制限されることはなく、スクリーン印刷法、静電スプレーコート法、インクジェット法、ドクターブレード法、スプレー塗布、フローコーティング法などの公知の方法で集電体上に塗布することができる。また、得られる電極活物質層が所望の厚さを有するように、スラリー溶液の濃度、塗布回数、塗布スピードなどを適宜調整するとよい。   In the above step 2, the method of applying the slurry solution to the current collector is not particularly limited, and screen printing method, electrostatic spray coating method, ink jet method, doctor blade method, spray coating, flow coating method, etc. It can apply | coat on a collector with the well-known method of these. In addition, the concentration of the slurry solution, the number of coatings, the coating speed, and the like may be appropriately adjusted so that the obtained electrode active material layer has a desired thickness.

上記工程2において、スラリー溶液を塗布した塗膜に対して半結晶性高分子の結晶化温度以上融点未満で熱処理前に、前記熱処理とは別に乾燥工程を行うことが好ましい。   In the step 2, it is preferable to perform a drying step separately from the heat treatment before the heat treatment at a temperature higher than the crystallization temperature of the semicrystalline polymer and lower than the melting point with respect to the coating film coated with the slurry solution.

前記乾燥工程は、連続熱風乾燥炉で行うことが好ましい。連続熱風乾燥炉によりスラリー溶液を塗布した集電体を乾燥すると、後述するように短時間で塗膜の温度を上昇させることができるので短時間での熱硬化が可能となり熱処理の短時間化を行うことができる。具体的には、熱風による加熱によって80〜150℃の範囲内の一定の雰囲気温度に保持した雰囲気下にて該塗膜を加熱して乾燥する方法することが好ましい。また、熱風による加熱によって80〜150℃の範囲内の一定の雰囲気温度に保持した雰囲気下にて該塗膜を加熱して乾燥すると同時に後述の熱処理を行ってもよい。   The drying step is preferably performed in a continuous hot air drying furnace. When the current collector coated with the slurry solution is dried in a continuous hot air drying oven, the temperature of the coating film can be increased in a short time as described later. It can be carried out. Specifically, it is preferable to heat and dry the coating film in an atmosphere maintained at a constant atmospheric temperature within a range of 80 to 150 ° C. by heating with hot air. Moreover, you may perform the below-mentioned heat processing simultaneously with heating and drying this coating film in the atmosphere hold | maintained to the constant atmospheric temperature within the range of 80-150 degreeC by the heating with a hot air.

本発明に係る電極は、上記のようにスラリー溶液を塗布、乾燥を経て形成される。その乾燥工程において塗膜にかける熱も次のステップである熱処理におけるプレアニールの意味で重要であると考えられている。例えば、半結晶性高分子の一例であるPVdFを含む塗膜の場合、プレアニールすると結晶転移温度が変化することが報告されている。そのため、本発明の製造方法では、スラリー溶液を塗布した塗膜に対して半結晶性高分子の結晶化温度以上融点未満で熱処理前に乾燥工程を行うと、電極活物質層における半結晶性高分子の高結晶性領域と低結晶性領域との割合を制御しやすくなる。   The electrode according to the present invention is formed by applying and drying the slurry solution as described above. The heat applied to the coating film in the drying process is also considered important in terms of pre-annealing in the next heat treatment. For example, in the case of a coating film containing PVdF, which is an example of a semicrystalline polymer, it has been reported that the crystal transition temperature changes when pre-annealed. Therefore, in the production method of the present invention, when a drying process is performed on the coating film coated with the slurry solution before the heat treatment at a temperature higher than the crystallization temperature of the semicrystalline polymer and lower than the melting point, the semicrystalline high in the electrode active material layer is obtained. It becomes easy to control the ratio between the high crystalline region and the low crystalline region of the molecule.

さらに、より好ましくは、例えば、Nガスや不活性ガスによる連続熱風乾燥炉で乾燥工程を行うことが好ましい。集電体表面に形成されるスラリー溶液の塗膜は多孔質体であるため、効率的に熱を伝達することができ、空気より流動性が高く、かつ吸着性に優れているNガス等を用いて加熱することで伝熱効果を上げることが期待できる。なお、本発明に係る連続熱風乾燥炉は公知のものを使用でき、例えば特開平10−160345号公報などの熱風乾燥炉などが挙げられる。 More preferably, for example, the drying step is preferably performed in a continuous hot air drying furnace using N 2 gas or inert gas. Since the coating film of the slurry solution formed on the surface of the current collector is a porous body, it can efficiently transfer heat, has higher fluidity than air, and has excellent adsorptivity, such as N 2 gas. It can be expected that the heat transfer effect will be improved by heating with the use of. In addition, a well-known thing can be used for the continuous hot air drying furnace which concerns on this invention, For example, hot-air drying furnaces, such as Unexamined-Japanese-Patent No. 10-160345, etc. are mentioned.

さらに、より好ましくは、熱風乾燥に赤外線乾燥を併用して乾燥工程を行うことが好ましい。赤外線の輻射伝熱効果により、連続熱風乾燥に比べて、電極活物質層における半結晶性高分子の高結晶性領域と低結晶性領域との割合を制御しやすくなり、後述するプレスのプレス温度を下げることができる。   Furthermore, it is more preferable to perform the drying step using infrared drying in combination with hot air drying. Compared with continuous hot air drying, infrared radiation heat transfer effect makes it easier to control the ratio of the high and low crystalline regions of the semi-crystalline polymer in the electrode active material layer. Can be lowered.

また、前記乾燥工程の時間は、0.0005秒〜5分が好ましく、0.001秒〜5分がより好ましく、0.005秒〜1分であることがさらに好ましく、0.01秒〜30秒であることがよりさらに好ましい。   Moreover, 0.0005 second-5 minutes are preferable, as for the time of the said drying process, 0.001 second-5 minutes are more preferable, It is more preferable that it is 0.005 second-1 minute, 0.01 second-30 minutes Even more preferably, it is seconds.

本発明に係る熱処理は、上記乾燥工程を経た電極活物質塗膜に熱をかけて膜圧方向にプレスすることが好ましい。これにより、本発明に係る電池用電極が完成する。この際、熱処理条件を調節することにより、電極活物質層における半結晶性高分子の高結晶性領域と低結晶性領域との割合を制御できる。また、本発明に係る熱処理を半結晶性高分子の融点以上の温度にすると、電極活物質層内の半結晶性高分子が結晶化してしまい耐衝撃性能が低下する。一方、半結晶性高分子の結晶化温度未満の温度にすると、電極活物質層内の半結晶性高分子の非晶部が多くなりすぎるだけでなく電極活物質層を製造できない。   In the heat treatment according to the present invention, it is preferable to apply heat to the electrode active material coating film that has undergone the drying step and press it in the film pressure direction. Thereby, the battery electrode according to the present invention is completed. At this time, the ratio of the high crystalline region and the low crystalline region of the semicrystalline polymer in the electrode active material layer can be controlled by adjusting the heat treatment conditions. In addition, when the heat treatment according to the present invention is performed at a temperature equal to or higher than the melting point of the semicrystalline polymer, the semicrystalline polymer in the electrode active material layer is crystallized and the impact resistance is lowered. On the other hand, when the temperature is lower than the crystallization temperature of the semicrystalline polymer, not only does the amorphous portion of the semicrystalline polymer in the electrode active material layer increase, but the electrode active material layer cannot be produced.

前記熱処理の具体的な手段やプレス条件は、半結晶性高分子の結晶化温度以上半結晶性高分子の融点未満の条件で行う限り特に制限されない。また、熱処理後の電極活物質層の半結晶性高分子の高結晶性領域と低結晶性領域との割合が所望の値となるように、適宜調節されうる。プレス条件の具体的な形態としては、例えば、ホットプレス法、ロール法、またはカレンダーロールプレス法などが挙げられる。そのため、本発明に係る熱処理は、熱を加えながらプレスすることが好ましい。   Specific means and pressing conditions for the heat treatment are not particularly limited as long as the heat treatment is performed at a temperature not lower than the crystallization temperature of the semicrystalline polymer and lower than the melting point of the semicrystalline polymer. In addition, the ratio of the high crystalline region and the low crystalline region of the semicrystalline polymer of the electrode active material layer after the heat treatment can be appropriately adjusted so as to have a desired value. Specific examples of the pressing conditions include a hot press method, a roll method, a calendar roll press method, and the like. Therefore, the heat treatment according to the present invention is preferably pressed while applying heat.

そのため、前記プレス工程において、半結晶性高分子の結晶化温度以上であって前記半結晶性高分子の融点(Tm)未満の温度で熱を塗膜にかけることが好ましい。より詳細には、ロール法やホットプレス法によりプレスする場合、電極と直接接触するプレス面(またはロール面)の温度は、半結晶性高分子の結晶化温度以上であって前記半結晶性高分子の融点(Tm)未満であることが好ましい。   Therefore, in the pressing step, it is preferable to apply heat to the coating film at a temperature that is equal to or higher than the crystallization temperature of the semicrystalline polymer and less than the melting point (Tm) of the semicrystalline polymer. More specifically, in the case of pressing by a roll method or a hot press method, the temperature of the press surface (or roll surface) in direct contact with the electrode is equal to or higher than the crystallization temperature of the semicrystalline polymer, It is preferably less than the melting point (Tm) of the molecule.

これにより、電極内(塗膜内部)にて結晶化が進行するが、半結晶性高分子の融解まで至らない温度であるため、半結晶性高分子の結晶成長が抑制され、高結晶性領域と低結晶性領域との比率を所定範囲に調整できる。   As a result, crystallization proceeds in the electrode (inside the coating film), but because the temperature does not reach the melting of the semicrystalline polymer, the crystal growth of the semicrystalline polymer is suppressed, and the high crystalline region And the ratio of the low crystalline region can be adjusted within a predetermined range.

一般に、半結晶性高分子や結晶性高分子は、加熱や加温により結晶部分が壊れて流動性を示すようになるのが高分子の融解で,この温度を半結晶性高分子の融点(Tm)とするものである。また、高分子は融点(Tm)の多様性を示す特徴的性質を持っているため、それぞれの半結晶性高分子の具体的な値を特定することは難しい。例えば、本発明で使用できる半結晶性高分子の一例であるポリフッ化ビニリデン(PVdF)の融点(Tm)は、170℃前後の160℃〜180℃の融点帯を備えている。同様に、ポリブチレンテレフタレート(Tm 228℃)、ポリエチレンテレフタレート(Tm 260℃)、ポリフッ化ビニリデン(Tm 134℃〜170℃)、ポリエチレン(Tm 95〜140℃)、ポリプロピレン(Tm 165℃)、ポリメチルペンテン(Tm 230〜240℃)、およびポリブテン(Tm 160〜170℃)である。以上のことから、本発明の半結晶性高分子の融点(Tm)は、95〜240℃が好ましく、130〜240℃がより好ましく、160〜180℃がさらに好ましい。   In general, in semicrystalline polymers and crystalline polymers, the melting of the polymer causes the crystalline portion to break and become fluid by heating or heating, and this temperature is the melting point of the semicrystalline polymer ( Tm). Moreover, since the polymer has a characteristic property indicating a variety of melting points (Tm), it is difficult to specify a specific value of each semicrystalline polymer. For example, the melting point (Tm) of polyvinylidene fluoride (PVdF), which is an example of a semicrystalline polymer that can be used in the present invention, has a melting point band of about 160 ° C. to 180 ° C. Similarly, polybutylene terephthalate (Tm 228 ° C), polyethylene terephthalate (Tm 260 ° C), polyvinylidene fluoride (Tm 134 ° C to 170 ° C), polyethylene (Tm 95 to 140 ° C), polypropylene (Tm 165 ° C), polymethyl Pentene (Tm 230-240 ° C) and polybutene (Tm 160-170 ° C). From the above, the melting point (Tm) of the semicrystalline polymer of the present invention is preferably 95 to 240 ° C, more preferably 130 to 240 ° C, and further preferably 160 to 180 ° C.

一方、本発明に係る半結晶性高分子の結晶化温度は、上述したように、DSC測定により多重融解を示す吸熱ピークであり最も高温側のピークの温度をいい、100〜150℃の温度帯が好ましい。   On the other hand, as described above, the crystallization temperature of the semicrystalline polymer according to the present invention is an endothermic peak that exhibits multiple melting by DSC measurement and is the temperature of the highest temperature peak, and is a temperature range of 100 to 150 ° C. Is preferred.

なおスラリー溶液を塗布、乾燥を経て形成される電極を乾燥工程後に、樹脂層を介して積層した後に、プレスをしてもよい。樹脂層に用いられる材料としては、上記目的を達成できる絶縁性材料であって、充放電時に副反応(酸化還元反応)を起こさない材料であればよく、特に制限されないが、例えば、以下の材料が挙げられる。ポリエチレン(PE)、ポリプロピレン(PP)などのオレフィン系樹脂、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂、(メタ)アクリル系樹脂、アラミド等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン・ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドであることがより好ましい。これらの好適な樹脂層に用いられる材料は、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり樹脂層に使用が可能となる。これらの樹脂層に用いられる材料は、単独で用いてもよいし、2種以上を併用してもよい。しかし、樹脂層に用いられる材料がこれらに限定されないことはいうまでもない。これらのうち、例えば、ポリフッ化ビニリデン(PVdF)、メタアクリル系樹脂、オレフィン系樹脂などは、正極側、負極側のいずれの電位にも強いことから、いずれにも適用可能である。また、SBRなどは、負極電位に強いことから負極側に用いるのが好ましい。更に、PTFEなどは、正極電位に強いことから正極側に用いるのが好ましい。   In addition, you may press, after apply | coating a slurry solution and laminating | stacking the electrode formed through drying after a drying process through a resin layer. The material used for the resin layer is not particularly limited as long as it is an insulating material that can achieve the above-described purpose and does not cause a side reaction (oxidation-reduction reaction) at the time of charge and discharge. Is mentioned. Olefin resins such as polyethylene (PE) and polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC), ethylene-vinyl acetate copolymer, polychlorinated Vinyl, styrene / butadiene rubber (SBR), isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated products thereof, styrene / isoprene / styrene Thermoplastic polymers such as block copolymers and hydrogenated products thereof, polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), Lafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), ethylene / tetrafluoroethylene copolymer (ETFE), polychloro Fluoropolymers such as trifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF), vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber), Vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-HFP-TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF) PFP-based fluororubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-PFP-TFE-based fluororubber), vinylidene fluoride-perfluoromethylvinylether-tetrafluoroethylene-based fluororubber (VDF-PFMVE) -TFE fluorine rubber), vinylidene fluoride-chlorotrifluoroethylene fluorine rubber (VDF-CTFE fluorine rubber) and other vinylidene fluoride fluorine rubber, epoxy resin, (meth) acrylic resin, aramid, etc. . Among these, polyvinylidene fluoride, polyimide, styrene / butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are more preferable. The materials used for these suitable resin layers are excellent in heat resistance, have a very wide potential window, are stable at both the positive electrode potential and the negative electrode potential, and can be used for the resin layer. The material used for these resin layers may be used independently and may use 2 or more types together. However, it goes without saying that the material used for the resin layer is not limited thereto. Among these, for example, polyvinylidene fluoride (PVdF), methacrylic resin, olefinic resin, and the like can be applied to any of them because they are strong against both the positive electrode side and the negative electrode side. SBR or the like is preferably used on the negative electrode side because it is strong against the negative electrode potential. Furthermore, PTFE is preferably used on the positive electrode side because it is resistant to the positive electrode potential.

このような樹脂層を介在させてプレスすることで、電極活物質層に含まれる半結晶高分子が熱溶着されてセパレータと接着効果が得られる。その結果、積層工程における積層体のズレが防止できて生産性が向上する。   By pressing with such a resin layer interposed, the semi-crystalline polymer contained in the electrode active material layer is thermally welded to obtain an adhesive effect with the separator. As a result, the stack can be prevented from shifting in the stacking process, and the productivity is improved.

本発明に係るプレス工程の時間は、0.0005秒〜5分が好ましく、0.001秒〜5分がより好ましく、0.005秒〜1分であることがさらに好ましく、0.01秒〜30秒であることがよりさらに好ましい。   The time of the pressing step according to the present invention is preferably 0.0005 seconds to 5 minutes, more preferably 0.001 seconds to 5 minutes, further preferably 0.005 seconds to 1 minute, 0.01 seconds to More preferably, it is 30 seconds.

そのため、本発明に係る製造方法において、乾燥工程の時間と熱処理の時間との合計は、0.001秒〜10分が好ましく、0.001秒〜5分がより好ましく、0.01秒〜1分であることがさらに好ましい。   Therefore, in the production method according to the present invention, the total of the drying process time and the heat treatment time is preferably 0.001 seconds to 10 minutes, more preferably 0.001 seconds to 5 minutes, and 0.01 seconds to 1 More preferably, it is minutes.

本発明に係る熱処理を行った後、さらに冷却処理を行うことが好ましく、前記冷却処理は、空冷ブロアー装置を用いて、0.1〜2分で電極の表面温度を25℃に冷却し、前記電極を室温である25℃に維持することが好ましい。   After performing the heat treatment according to the present invention, it is preferable to further perform a cooling treatment. The cooling treatment is performed by cooling the surface temperature of the electrode to 25 ° C. in 0.1 to 2 minutes using an air-cooled blower device, and It is preferable to maintain the electrode at room temperature, 25 ° C.

以上のことから本発明に係る工程2についての好ましい実施形態は、集電体表面の少なくとも一方の面にスラリー溶液を塗布して塗膜を形成した後、80〜150℃で乾燥工程を行い、半結晶性高分子の結晶化温度以上融点未満で熱処理し電極活物質層を形成する工程である。また、乾燥工程を上述のようなコンベアで乾燥対象物を移動させながらガスを吹き付ける連続熱風乾燥炉を用いて行う場合は、塗膜に含まれる半結晶性高分子の結晶化温度や融点にも依存するが、温度を一定に保ちながら乾燥工程と熱処理を同時に行える。すなわち、コンベアで乾燥対象物である塗膜を形成した集電体を移動させながらガスを吹き付けて乾燥工程を行うと同時または直後に当該連続熱風乾燥炉内で乾燥工程の温度と熱処理温度を一定に保ちながらプレス工程を行うことができる。   From the above, a preferred embodiment of the step 2 according to the present invention is to apply a slurry solution to at least one surface of the current collector surface to form a coating film, and then perform a drying step at 80 to 150 ° C., This is a step of forming an electrode active material layer by heat treatment at a temperature equal to or higher than the crystallization temperature of the semicrystalline polymer and lower than the melting point. In addition, when the drying process is performed using a continuous hot air drying furnace in which gas is blown while moving the object to be dried on the conveyor as described above, the crystallization temperature and melting point of the semicrystalline polymer contained in the coating film are also affected. Although it depends, the drying process and the heat treatment can be performed simultaneously while keeping the temperature constant. That is, when the drying process is performed by blowing the gas while moving the current collector on which the coating film, which is the object to be dried, is moved on the conveyor, the temperature of the drying process and the heat treatment temperature are kept constant in the continuous hot air drying furnace at the same time or immediately after. The pressing process can be performed while keeping

これにより、真空環境下での熱処理を必要とせず、スラリー溶液を調製から注液までの工程を一貫して行うことができるため、従来の方法と比較して製造効率が大幅に改善される。   Thereby, since the heat treatment in a vacuum environment is not required and the process from preparation of the slurry solution to liquid injection can be performed consistently, the production efficiency is greatly improved as compared with the conventional method.

上記で説明したリチウムイオン二次電池は、電極に特徴を有する。以下、その他の主要な構成部材について説明する。   The lithium ion secondary battery described above is characterized by an electrode. Hereinafter, other main components will be described.

[電解質層]
電解質層を構成する電解質は、例えば、リチウムイオンのキャリヤーとしての機能を有する。電解質としては、かような機能を発揮できるものであれば特に制限されないが、液体電解質またはポリマー電解質が用いられる。
[Electrolyte layer]
The electrolyte constituting the electrolyte layer has, for example, a function as a lithium ion carrier. The electrolyte is not particularly limited as long as it can exhibit such a function, but a liquid electrolyte or a polymer electrolyte is used.

液体電解質は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有することが好ましい。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSO等の電極の活物質層に添加されうる化合物が同様に採用されうる。 The liquid electrolyte preferably has a form in which a lithium salt as a supporting salt is dissolved in an organic solvent as a plasticizer. Examples of the organic solvent used include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). As the lithium salt, Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF such 6, LiCF 3 SO 3 A compound that can be added to the active material layer of the electrode can be similarly employed.

一方、ポリマー電解質は、電解液を含むゲルポリマー電解質(ゲル電解質)と、電解液を含まない真性ポリマー電解質とに分類される。   On the other hand, the polymer electrolyte is classified into a gel polymer electrolyte containing an electrolytic solution (gel electrolyte) and an intrinsic polymer electrolyte containing no electrolytic solution.

ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、およびこれらの共重合体等が挙げられる。かようなポリアルキレンオキシド系ポリマーには、リチウム塩などの電解質塩がよく溶解しうる。   The gel polymer electrolyte has a configuration in which the liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer. The use of a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and the ion conductivity between the layers is easily cut off. Examples of the ion conductive polymer used as the matrix polymer (host polymer) include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. In such polyalkylene oxide polymers, electrolyte salts such as lithium salts can be well dissolved.

真性ポリマー電解質は、上記のマトリックスポリマーにリチウム塩が溶解してなる構成を有し、有機溶媒を含まない。したがって、電解質として真性ポリマー電解質を用いることで電池からの液漏れの心配がなく、電池の信頼性が向上し得る。   The intrinsic polymer electrolyte has a structure in which a lithium salt is dissolved in the above matrix polymer and does not contain an organic solvent. Therefore, by using an intrinsic polymer electrolyte as the electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability can be improved.

ゲル電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。これらの電解質は、1種単独であってもよいし、2種以上を組み合わせてもよい。   The matrix polymer of the gel electrolyte or the intrinsic polymer electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure. In order to form a crosslinked structure, thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator. A polymerization treatment may be performed. These electrolytes may be used alone or in combination of two or more.

なお、電解質層が液体電解質やゲル電解質から構成される場合には、電解質層にセパレータを用いてもよい。セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレンといったポリオレフィンやポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)等の炭化水素、ガラス繊維などからなる微多孔膜が挙げられる。   In addition, when an electrolyte layer is comprised from a liquid electrolyte or a gel electrolyte, you may use a separator for an electrolyte layer. Specific examples of the separator include a microporous film made of a polyolefin such as polyethylene or polypropylene, a hydrocarbon such as polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, or the like.

[シール部]
シール部31は、図2に示す双極型電池10bに特有の部材であり、電解質層17の漏れを防止する目的で単電池層19の外周部に配置されている。このほかにも、電池内で隣り合う集電体同士が接触したり、積層電極の端部の僅かな不ぞろいなどによる短絡が起こったりするのを防止することもできる。図2に示す形態において、シール部31は、隣接する2つの単電池層19を構成するそれぞれの集電体11で挟持され、電解質層17の基材であるセパレータの外周縁部を貫通するように、単電池層19の外周部に配置されている。シール部31の構成材料としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、エポキシ樹脂、ゴム、ポリイミドなどが挙げられる。なかでも、耐蝕性、耐薬品性、製膜性、経済性などの観点からは、ポリオレフィン樹脂が好ましい。
[Seal part]
The seal part 31 is a member peculiar to the bipolar battery 10 b shown in FIG. 2, and is disposed on the outer peripheral part of the single battery layer 19 for the purpose of preventing leakage of the electrolyte layer 17. In addition to this, it is possible to prevent current collectors adjacent in the battery from coming into contact with each other and a short circuit due to a slight unevenness at the end of the laminated electrode. In the form shown in FIG. 2, the seal portion 31 is sandwiched between the respective current collectors 11 constituting the two adjacent single battery layers 19 so as to penetrate the outer peripheral edge portion of the separator that is the base material of the electrolyte layer 17. Further, it is arranged on the outer peripheral portion of the unit cell layer 19. Examples of the constituent material of the seal portion 31 include polyolefin resins such as polyethylene and polypropylene, epoxy resins, rubber, and polyimide. Of these, polyolefin resins are preferred from the viewpoints of corrosion resistance, chemical resistance, film-forming properties, economy, and the like.

[正極集電板および負極集電板]
集電板(25、27)を構成する材料は、特に制限されず、非水電池用の集電板やリチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板25と負極集電板27とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。また、図2に示すように最外層集電体(11a、11b)を延長することにより集電板としてもよいし、別途準備したタブを最外層集電体に接続してもよい。
[Positive electrode current collector and negative electrode current collector]
The material which comprises a current collector plate (25, 27) is not restrict | limited in particular, The well-known highly conductive material conventionally used as a current collector plate for non-aqueous batteries or a current collector plate for lithium ion secondary batteries Can be used. As a constituent material of the current collector plate, for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable. Note that the positive electrode current collector plate 25 and the negative electrode current collector plate 27 may be made of the same material or different materials. Further, as shown in FIG. 2, the outermost layer current collector (11a, 11b) may be extended to form a current collector plate, or a separately prepared tab may be connected to the outermost layer current collector.

[正極リードおよび負極リード]
また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知の非水電池や二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
[Positive lead and negative lead]
Moreover, although illustration is abbreviate | omitted, you may electrically connect between the collector 11 and the current collector plates (25, 27) via a positive electrode lead or a negative electrode lead. As a constituent material of the positive electrode and the negative electrode lead, materials used in known nonaqueous batteries and secondary batteries can be similarly employed. In addition, heat-shrinkable heat-shrinkable parts are removed from the exterior so that they do not affect products (for example, automobile parts, especially electronic devices) by touching peripheral devices or wiring and causing leakage. It is preferable to coat with a tube or the like.

[電池外装材]
電池外装材29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。なお、上記の非水電池やリチウムイオン二次電池は、従来公知の製造方法により製造することができる。
[Battery exterior materials]
As the battery exterior material 29, a known metal can case can be used, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used. For example, a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used as the laminate film, but the laminate film is not limited thereto. A laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV. In addition, said nonaqueous battery and a lithium ion secondary battery can be manufactured with a conventionally well-known manufacturing method.

[非水電池の外観構成]
図4は、非水電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
[External configuration of non-aqueous battery]
FIG. 4 is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of a nonaqueous battery.

図4に示すように、扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ58、負極タブ59が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素57は、正極タブ58および負極タブ59を外部に引き出した状態で密封されている。ここで、発電要素57は、先に説明した図1および図2に示すリチウムイオン二次電池10の発電要素21に相当するものである。発電要素57は、正極(正極活物質層)13、電解質層17および負極(負極活物質層)15で構成される単電池層(単セル)19が複数積層されたものである。   As shown in FIG. 4, the flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive electrode tab 58 and a negative electrode tab 59 for taking out electric power are drawn out from both sides thereof. Yes. The power generation element 57 is encased by the battery outer packaging material 52 of the lithium ion secondary battery 50, and the periphery thereof is heat-sealed. The power generation element 57 is sealed with the positive electrode tab 58 and the negative electrode tab 59 pulled out to the outside. Has been. Here, the power generation element 57 corresponds to the power generation element 21 of the lithium ion secondary battery 10 shown in FIGS. 1 and 2 described above. The power generation element 57 is formed by laminating a plurality of single battery layers (single cells) 19 including a positive electrode (positive electrode active material layer) 13, an electrolyte layer 17, and a negative electrode (negative electrode active material layer) 15.

なお、上記リチウムイオン二次電池は、積層型の扁平な形状のものに制限されるものではない。巻回型のリチウムイオン二次電池では、円筒型形状のものであってもよいし、こうした円筒型形状のものを変形させて、長方形状の扁平な形状にしたようなものであってもよいなど、特に制限されるものではない。上記円筒型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。前記形態により、軽量化が達成されうる。   The lithium ion secondary battery is not limited to a stacked flat shape. The wound lithium ion secondary battery may have a cylindrical shape, or may have a shape that is a flattened rectangular shape by deforming such a cylindrical shape. There is no particular limitation. In the said cylindrical shape thing, a laminate film may be used for the exterior material, and the conventional cylindrical can (metal can) may be used, for example, It does not restrict | limit. Preferably, the power generation element is covered with an aluminum laminate film. By the said form, weight reduction can be achieved.

また、図4に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図4に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。   Also, the removal of the tabs 58 and 59 shown in FIG. 4 is not particularly limited. The positive electrode tab 58 and the negative electrode tab 59 may be pulled out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to. Further, in a wound type lithium ion battery, instead of a tab, for example, a terminal may be formed using a cylindrical can (metal can).

上記リチウムイオン二次電池は、電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの大容量電源として、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に好適に利用することができる。   The lithium ion secondary battery is used as a power source for driving a vehicle or an auxiliary power source that requires a high volume energy density and a high volume output density as a large capacity power source for an electric vehicle, a hybrid electric vehicle, a fuel cell vehicle, and a hybrid fuel cell vehicle. It can be suitably used.

また、上記実施形態は、本発明に係る非水電池として、リチウムイオン電池を例示したが、これに制限されるわけではなく、他のタイプの二次電池、さらには、一次電池にも適用できることはいうまでもない。   Moreover, although the said embodiment illustrated the lithium ion battery as a non-aqueous battery which concerns on this invention, it is not necessarily restricted to this, It can apply also to another type secondary battery, Furthermore, a primary battery. Needless to say.

上記した本発明に係る電極を、以下の実施例および比較例を用いてさらに詳細に説明するが、以下の実施例のみに何ら限定されるわけではない。   The electrode according to the present invention described above will be described in more detail using the following examples and comparative examples, but is not limited to the following examples.

(実施例1)
「電極の作製」
(正極の作製)
マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、アセチレンブラックをそれぞれ所定量(正極用スラリー固形分(正極活物質層)の総量に対して、順に80質量%、10質量%、5質量%)を量り取った。これらをプラネタリーミキサーにてよく攪拌し、混合粉体を得た。その後にバインダ(半結晶性高分子)として所定量(正極用スラリー固形分の総量に対して5質量%)のPVdFをNMP(N−メチル−2−ピロリドン)中に溶解させたものを混合粉体中に加えて練り込みNMPにて粘稠した。この試料の粘稠溶液(正極用スラリー)をアルミニウム箔(厚さ20μm)上にスリットダイコーターにて均一に塗布し、電極中に含まれるNMPを蒸発させる為に110℃〜130℃の温度に設定された連続熱風乾燥炉で1分30秒間乾燥を行なった。
(Example 1)
"Production of electrodes"
(Preparation of positive electrode)
Lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), and acetylene black each in predetermined amounts (80% by mass, 10% by mass with respect to the total amount of positive electrode slurry solids (positive electrode active material layer)) 5% by mass). These were thoroughly stirred with a planetary mixer to obtain a mixed powder. After that, a mixed powder obtained by dissolving a predetermined amount (5% by mass with respect to the total amount of positive electrode slurry solids) of PVdF in NMP (N-methyl-2-pyrrolidone) as a binder (semicrystalline polymer) In addition to the body, it was kneaded and thickened with NMP. The viscous solution (slurry for positive electrode) of this sample is uniformly applied on an aluminum foil (thickness 20 μm) by a slit die coater, and the temperature is set to 110 ° C. to 130 ° C. in order to evaporate NMP contained in the electrode. Drying was performed for 1 minute and 30 seconds in the set continuous hot air drying furnace.

その後、電極密度が2.5g/cmの密度となるようロール表面温度が150℃としたΦ150×400Lの油触媒式のホットプレスを用いて5m/minの速度にて定位プレスを行ない、正極を作製した。 Thereafter, a stereotaxic press is performed at a speed of 5 m / min using a Φ150 × 400 L oil-catalyzed hot press with a roll surface temperature of 150 ° C. so that the electrode density is 2.5 g / cm 3. Was made.

(負極の作製)
カーボンブラック、黒鉛、半結晶性高分子としてPVdFを、それぞれ所定量(負極用スラリー固形分(負極活物質層)の総量に対して、順に90質量%、5質量%、5質量%)を量り取った。これらを溶媒であるNMPに添加して卓上プラネタリーミキサーで合計5時間攪拌混合し、負極用スラリーを調製した。次いで、負極用スラリーを銅箔(厚さ10μm)上に卓上コーターにて塗工し、電極中に含まれるNMPを蒸発させる為に110℃〜130℃の温度に設定された連続熱風乾燥炉で1分30秒間乾燥を行なった。
(Preparation of negative electrode)
Carbon black, graphite, and PVdF as a semi-crystalline polymer are respectively weighed in predetermined amounts (90% by mass, 5% by mass, and 5% by mass in order of the total amount of negative electrode slurry solids (negative electrode active material layer)). I took it. These were added to NMP as a solvent and mixed with a desktop planetary mixer for a total of 5 hours to prepare a slurry for a negative electrode. Next, the negative electrode slurry was coated on a copper foil (thickness 10 μm) with a desktop coater, and a continuous hot air drying furnace set at a temperature of 110 ° C. to 130 ° C. to evaporate NMP contained in the electrode. Drying was performed for 1 minute 30 seconds.

その後、電極密度が1.5g/cmの密度となるようロール表面温度が150℃としたΦ150×400Lの油触媒式のホットプレスを用いて5m/minの速度にて定位プレスを行ない、負極を作製した。 After that, using a Φ150 × 400 L oil-catalyzed hot press with a roll surface temperature of 150 ° C. so that the electrode density is 1.5 g / cm 3, a stereotaxic press is performed at a speed of 5 m / min. Was made.

(電池の作製)
前記正極の活物質層が形成された部分が68mm×68mm、前記負極の活物質層が形成された部分が70mm×70mmとなるように切断し、電流取り出し用金属製タブを超音波溶接した。その後、正極と負極の活物質層同士が対向するようにして厚さ25μmのポリプロピレン製微多孔膜セパレータを正極と負極の間に挟み、アルミ−樹脂ラミネートシート製の袋内に挿入した。その袋内にエチレンカーボネートとジエチレンカーボネートを体積比1:2で混合した溶媒に濃度1.0mol/リットルになるよう六フッ化リン酸リチウム(LiPF)を溶解させた。そしてその調製した電解液を注液し、その後熱シールにより封口して電池(サンプル1)とした。
(Production of battery)
The positive electrode active material layer portion was cut to 68 mm × 68 mm, and the negative electrode active material layer portion was cut to 70 mm × 70 mm, and the current extraction metal tab was ultrasonically welded. Thereafter, a polypropylene microporous membrane separator having a thickness of 25 μm was sandwiched between the positive electrode and the negative electrode so that the positive electrode and negative electrode active material layers were opposed to each other, and inserted into a bag made of an aluminum-resin laminate sheet. Lithium hexafluorophosphate (LiPF 6 ) was dissolved in a solvent in which ethylene carbonate and diethylene carbonate were mixed at a volume ratio of 1: 2 so that the concentration was 1.0 mol / liter. And the prepared electrolyte solution was poured, and it sealed by heat sealing after that, and was set as the battery (sample 1).

(比較例1)
マンガン酸リチウム、ニッケル酸リチウム、アセチレンブラックをそれぞれ実施例1と同量づつ所定量を量り取り、プラネタリーミキサーにてよく攪拌し、混合粉体を得た。その後にバインダ(半結晶性高分子)として実施例1と同量のPVdFをNMP中に溶解させたものを混合粉体中に加えて練り込みNMPにて粘稠した。この試料の粘稠溶液(正極用スラリー)をアルミニウム箔(厚さ20μm)上にスリットダイコーターにて均一に塗布し、NMPを蒸発させた。その後、電極密度が2.5g/cmの密度となるように、常温(27℃)でプレスをかけて正極を製造した。
(Comparative Example 1)
A predetermined amount of each of lithium manganate, lithium nickelate, and acetylene black was weighed out in the same amount as in Example 1 and stirred well with a planetary mixer to obtain a mixed powder. Thereafter, the same amount of PVdF as in Example 1 dissolved in NMP as a binder (semicrystalline polymer) was added to the mixed powder and kneaded to make it viscous with NMP. The viscous solution of this sample (slurry for positive electrode) was uniformly applied on an aluminum foil (thickness 20 μm) with a slit die coater to evaporate NMP. Then, the positive electrode was manufactured by pressing at room temperature (27 ° C.) so that the electrode density was 2.5 g / cm 3 .

カーボンブラック、黒鉛、バインダとしてPVdFを、それぞれ実施例1と同量づつ所定量を量り取り、溶媒であるNMPに添加して卓上プラネタリーミキサーで合計5時間攪拌混合し、負極用スラリーを調製した。次いで、負極用スラリーを銅箔(厚さ10μm)上に卓上コーターにて塗工し、電極中に含まれるNMPを蒸発させた。その後、電極密度が1.5g/cmの密度となるように、常温(27℃)でプレスをかけて負極を製造した。その後、実施例1と同様の方法で電池を作製した。 Carbon black, graphite, and PVdF as a binder were weighed out in the same amount as in Example 1, added to NMP as a solvent, and stirred and mixed for a total of 5 hours with a desktop planetary mixer to prepare a negative electrode slurry. . Next, the slurry for negative electrode was coated on a copper foil (thickness 10 μm) with a desktop coater to evaporate NMP contained in the electrode. Thereafter, a negative electrode was produced by pressing at room temperature (27 ° C.) so that the electrode density was 1.5 g / cm 3 . Thereafter, a battery was produced in the same manner as in Example 1.

(比較例2)
マンガン酸リチウム、ニッケル酸リチウム、アセチレンブラックをそれぞれ実施例1と同量づつ所定量を量り取り、プラネタリーミキサーにてよく攪拌した後にバインダ(半結晶性高分子)として実施例1と同量のPVdFをNMP(N−メチル‐2‐ピロリドン)中に溶解させたものを混合粉体中に加えて練り込みNMPにて粘稠した。この試料の粘稠溶液をアルミニウム箔(厚さ20μm)上にスリットダイコーターにて均一に塗布し、NMPを蒸発させた。その後、電極密度が2.5g/cmの密度となるように、常温(27℃)でプレスをかけ、正極を90℃の真空乾燥機にて1日乾燥して正極を製造した。
(Comparative Example 2)
Weigh out a predetermined amount of each of lithium manganate, lithium nickelate, and acetylene black in the same amount as in Example 1, thoroughly agitate with a planetary mixer, and then use the same amount as in Example 1 as a binder (semicrystalline polymer). A solution obtained by dissolving PVdF in NMP (N-methyl-2-pyrrolidone) was added to the mixed powder and kneaded to make it viscous with NMP. The viscous solution of this sample was uniformly applied on an aluminum foil (thickness 20 μm) with a slit die coater to evaporate NMP. Then, it pressed at normal temperature (27 degreeC) so that an electrode density might become a density of 2.5 g / cm < 3 >, and the positive electrode was dried with the 90 degreeC vacuum dryer for one day, and the positive electrode was manufactured.

カーボンブラック、黒鉛、バインダとしてPVdFを、それぞれ実施例1と同量づつ所定量を量り取り、溶媒であるNMPに添加して卓上プラネタリーミキサーで合計5時間攪拌混合し、負極用スラリーを調製した。次いで、負極用スラリーを銅箔(厚さ10μm)上に卓上コーターにて塗工し、電極中に含まれるNMPを蒸発させた。その後、電極密度が1.5g/cmの密度となるように、常温(27℃)でプレスをかけ、90℃の真空乾燥機にて1日乾燥して負極を製造した。その後、実施例1と同様の方法で電池を作製した。 Carbon black, graphite, and PVdF as a binder were weighed out in the same amount as in Example 1, added to NMP as a solvent, and stirred and mixed for a total of 5 hours with a desktop planetary mixer to prepare a negative electrode slurry. . Next, the slurry for negative electrode was coated on a copper foil (thickness 10 μm) with a desktop coater to evaporate NMP contained in the electrode. Then, it pressed at normal temperature (27 degreeC) so that an electrode density might become a density of 1.5 g / cm < 3 >, and it dried for one day with a 90 degreeC vacuum dryer, and manufactured the negative electrode. Thereafter, a battery was produced in the same manner as in Example 1.

「非水電池用電極の評価」
(結晶性評価)
上記で得られた電極の断面を顕微レーザーラマン分光装置を用いて測定し、電極断面1μmあたりのバインダ面積から高結晶成分ピークと低結晶成分ピークの占有比率を算出した。その結果を図5に示す。図5(a)は、実施例1と比較例1の電極の断面のバインダ(実施例1では半結晶性高分子、比較例ではバインダ)の結晶状態の対比を示すものである。また、図5(b)は、実施例1の電極の断面のバインダの結晶状態の像(図5(a)の左側の像)を膜厚方向に対して、集電体側から、集電箔部、中央部、および表面部の3つに区画したことを示す図である。この図5(b)において、各区画の低結晶性領域に対する高結晶領域の面積比を算出した。その結果を以下の表に示す。
"Evaluation of electrodes for nonaqueous batteries"
(Crystallinity evaluation)
The cross section of the electrode obtained above was measured using a microscopic laser Raman spectrometer, and the occupation ratio of the high crystal component peak and the low crystal component peak was calculated from the binder area per 1 μm 2 of the electrode cross section. The result is shown in FIG. FIG. 5A shows a comparison of the crystal states of the binders in the cross sections of the electrodes of Example 1 and Comparative Example 1 (a semi-crystalline polymer in Example 1 and a binder in the Comparative Example). Further, FIG. 5B shows an image of the binder in the cross section of the electrode of Example 1 (the image on the left side of FIG. 5A) from the current collector side with respect to the film thickness direction. It is a figure which shows having divided into three of a part, a center part, and a surface part. In FIG. 5B, the area ratio of the high crystal region to the low crystal region in each section was calculated. The results are shown in the following table.

実施例1の電極の電極活物質層全体に含まれる半結晶性高分子の低結晶性領域に対する高結晶領域の面積比は2であった。   The area ratio of the high crystal region to the low crystal region of the semicrystalline polymer contained in the entire electrode active material layer of the electrode of Example 1 was 2.

(サイクル試験)
上記で作製した電池の充放電試験は、日鉄エレックス製充放電装置を用いて行い、測定温度55℃、充電は1Cの電流値にて4.15Vに達するまで定電流充電した後、充電電流が0.5mAになるまで4.15Vにて定電圧充電を行なった。放電は、1Cの電流値にて2.5Vとなるまで放電するという操作を繰り返し行なった。その結果を図6に示す。
(Cycle test)
The charge / discharge test of the battery prepared above was performed using a charge / discharge device manufactured by Nippon Steel ELEX, and the charge was performed at a constant temperature until the measurement temperature reached 55 ° C. and reached 4.15 V at a current value of 1 C, and then the charge current. The battery was charged at a constant voltage of 4.15 V until the current reached 0.5 mA. The discharge was repeated by repeating the operation of discharging to 2.5 V at a current value of 1C. The result is shown in FIG.

(直流抵抗(DCR)の評価)
上記で作製した電池を満充電(4.15V)した後、25℃で3Cの電流レートで30秒間定電流放電を行った。降下電圧値より流した電流値で割ることで抵抗値を求めた。その結果を図7に示す。
(Evaluation of direct current resistance (DCR))
The battery prepared above was fully charged (4.15 V), and then a constant current discharge was performed at 25 ° C. and a current rate of 3 C for 30 seconds. The resistance value was obtained by dividing by the value of current flowed from the voltage drop value. The result is shown in FIG.

(インピーダンス解析)
上記で得られた電池の充電状態でのインピーダンス測定を行い、測定周波数単位0.1〜10000Hzで実施した。その結果を図8に示す。
(Impedance analysis)
The impedance measurement in the charge state of the battery obtained above was performed, and the measurement was performed at a measurement frequency unit of 0.1 to 10000 Hz. The result is shown in FIG.

(実施例2)
「電極の作製」
(正極の作製)
マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、アセチレンブラックをそれぞれ所定量(正極用スラリー固形分(正極活物質層)の総量に対して、順に80質量%、10質量%、5質量%)を量り取った。これらをプラネタリーミキサーにてよく攪拌し、混合粉体を得た。その後にバインダ(半結晶性高分子)として所定量(正極用スラリー固形分の総量に対して5質量%)のPVdFをNMP(N−メチル−2−ピロリドン)中に溶解させたものを混合粉体中に加えて練り込みNMPにて粘稠した。この試料の粘稠溶液(正極用スラリー)をアルミニウム箔(厚さ20μm)上にスリットダイコーターにて均一に塗布し、電極中に含まれるNMPを蒸発させる為に110℃〜130℃の温度に設定された熱風乾燥炉内で赤外線ヒーターを併用しながら1分30秒間乾燥を行なった。
(Example 2)
"Production of electrodes"
(Preparation of positive electrode)
Lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), and acetylene black each in predetermined amounts (80% by mass, 10% by mass with respect to the total amount of positive electrode slurry solids (positive electrode active material layer)) 5% by mass). These were thoroughly stirred with a planetary mixer to obtain a mixed powder. After that, a mixed powder obtained by dissolving a predetermined amount (5% by mass with respect to the total amount of positive electrode slurry solids) of PVdF in NMP (N-methyl-2-pyrrolidone) as a binder (semicrystalline polymer) In addition to the body, it was kneaded and thickened with NMP. The viscous solution (slurry for positive electrode) of this sample is uniformly applied on an aluminum foil (thickness 20 μm) by a slit die coater, and the temperature is set to 110 ° C. to 130 ° C. in order to evaporate NMP contained in the electrode. Drying was performed for 1 minute and 30 seconds while using an infrared heater in a set hot air drying oven.

その後、電極密度が2.5g/cmの密度となるようロール表面温度が110℃としたΦ150×400Lの油触媒式のホットプレスを用いて5m/minの速度にて定位プレスを行ない、正極を作製した。 Thereafter, a stereotaxic press is performed at a speed of 5 m / min using a Φ150 × 400 L oil-catalyzed hot press with a roll surface temperature of 110 ° C. so that the electrode density is 2.5 g / cm 3. Was made.

(負極の作製)
カーボンブラック、黒鉛、半結晶性高分子としてPVdFを、それぞれ所定量(負極用スラリー固形分(負極活物質層)の総量に対して、順に90質量%、5質量%、5質量%)を量り取った。これらを溶媒であるNMPに添加して卓上プラネタリーミキサーで合計5時間攪拌混合し、負極用スラリーを調製した。次いで、負極用スラリーを銅箔(厚さ10μm)上に卓上コーターにて塗工し、電極中に含まれるNMPを蒸発させる為に110℃〜130℃の温度に設定された熱風乾燥炉内で赤外線ヒーターを併用しながら1分30秒間乾燥を行なった。
(Preparation of negative electrode)
Carbon black, graphite, and PVdF as a semi-crystalline polymer are respectively weighed in predetermined amounts (90% by mass, 5% by mass, and 5% by mass in order of the total amount of negative electrode slurry solids (negative electrode active material layer)). I took it. These were added to NMP as a solvent and mixed with a desktop planetary mixer for a total of 5 hours to prepare a slurry for a negative electrode. Next, the slurry for the negative electrode was coated on a copper foil (thickness 10 μm) with a desktop coater, and in a hot air drying furnace set at a temperature of 110 ° C. to 130 ° C. in order to evaporate NMP contained in the electrode. Drying was performed for 1 minute and 30 seconds while using an infrared heater.

その後、電極密度が1.5g/cmの密度となるようロール表面温度が110℃としたΦ150×400Lの油触媒式のホットプレスを用いて5m/minの速度にて定位プレスを行ない、負極を作製した。その後、実施例1と同様の方法で電池を作製した。 Thereafter, a stereotaxic press is performed at a speed of 5 m / min using a Φ150 × 400 L oil-catalyzed hot press with a roll surface temperature of 110 ° C. so that the electrode density is 1.5 g / cm 3. Was made. Thereafter, a battery was produced in the same manner as in Example 1.

(サイクル試験)
上記で作製した電池の充放電試験は、日鉄エレックス製充放電装置を用いて行い、測定温度25℃、充電は1Cの電流値にて4.15Vに達するまで定電流充電した後、充電電流が0.5mAになるまで4.15Vにて定電圧充電を行なった。放電は、1Cの電流値にて2.5Vとなるまで放電するという操作(これを1サイクルとする)を100サイクル以上繰り返し行なった。その結果を表2に示す。結果、プレス温度を110℃に下げても同じ容量維持率を得ることができた。なお、100サイクルにおける容量維持率は下記式により求めた(なお、初期放電容量は、1サイクル目の放電容量である)。
(Cycle test)
The charge / discharge test of the battery produced above was performed using a charge / discharge device manufactured by Nippon Steel Elex, and was charged at a constant current until the measurement temperature reached 25 ° C. and reached 4.15 V at a current value of 1 C, and then the charge current. The battery was charged at a constant voltage of 4.15 V until the current reached 0.5 mA. For discharging, an operation of discharging to 2.5 V at a current value of 1 C (this is defined as one cycle) was repeated for 100 cycles or more. The results are shown in Table 2. As a result, the same capacity retention rate could be obtained even when the press temperature was lowered to 110 ° C. In addition, the capacity maintenance rate in 100 cycles was calculated | required by the following formula (Note that the initial discharge capacity is the discharge capacity in the first cycle).

10a、10b、50 非水電池、
11 正極集電体、
12 負極集電体、
13 正極活物質層、
15 負極活物質層、
17 電解質層、
19 単電池層、
21、57 発電要素、
25 正極集電板、
27 負極集電板、
29、52 電池外装材、
31 シール部、
58 正極タブ、
59 負極タブ、
62 集電体、
63 活物質層、
65 電極。
10a, 10b, 50 non-aqueous battery,
11 positive electrode current collector,
12 negative electrode current collector,
13 positive electrode active material layer,
15 negative electrode active material layer,
17 electrolyte layer,
19 cell layer,
21, 57 power generation element,
25 positive current collector,
27 negative current collector,
29, 52 Battery exterior material,
31 seal part,
58 positive electrode tab,
59 Negative electrode tab,
62 current collector,
63 active material layer,
65 electrodes.

Claims (5)

電極活物質、半結晶性高分子、および溶媒を含むスラリー原料を混合してスラリー溶液を調製する工程と、
前記スラリー溶液を塗布した集電体を前記半結晶性高分子の結晶化温度以上融点未満で熱処理し前記集電体表面に電極活物質層を形成する工程と、を有することを特徴とする非水電池用電極の製造方法。
Mixing a slurry raw material containing an electrode active material, a semi-crystalline polymer, and a solvent to prepare a slurry solution;
And a step of heat-treating the current collector coated with the slurry solution at a temperature equal to or higher than the crystallization temperature of the semicrystalline polymer and lower than the melting point to form an electrode active material layer on the surface of the current collector. A method for producing a water battery electrode.
前記スラリー溶液は、0.5〜10質量%の半結晶性高分子を含むことを特徴とする請求項1に記載の非水電池用電極の製造方法。   The method for producing an electrode for a non-aqueous battery according to claim 1, wherein the slurry solution contains 0.5 to 10% by mass of a semicrystalline polymer. 前記半結晶性高分子は、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ポリフッ化ビニリデンの水素原子が他のハロゲン元素にて置換された化合物、ポリエチレン、ポリプロピレン、ポリメチルペンテン、およびポリブテンからなる群から選択される少なくとも1種であることを特徴とする請求項1または2に記載の非水電池用電極の製造方法。   The semicrystalline polymer includes polybutylene terephthalate, polyethylene terephthalate, polyvinylidene fluoride, a compound in which a hydrogen atom of polyvinylidene fluoride is substituted with another halogen element, polyethylene, polypropylene, polymethylpentene, and polybutene The method for producing an electrode for a non-aqueous battery according to claim 1 or 2, wherein at least one selected from the group consisting of: 集電体と、前記集電体の表面に形成され、かつ電極活物質、および半結晶性高分子を含む電極活物質層と、を有し、前記電極活物質層内に前記半結晶性高分子の低結晶性領域および前記半結晶性高分子の高結晶性領域が形成され、かつ前記低結晶性領域に対する前記高結晶性領域の面積比は1〜5であることを特徴とする非水電池用電極。   An electrode active material layer formed on a surface of the current collector and including an electrode active material and a semi-crystalline polymer, and the semi-crystalline high in the electrode active material layer Non-water characterized in that a low crystalline region of a molecule and a high crystalline region of the semicrystalline polymer are formed, and an area ratio of the high crystalline region to the low crystalline region is 1 to 5. Battery electrode. 前記電極活物質層を形成する工程は、乾燥工程を有していて、
前記乾燥工程は、赤外線乾燥と熱風乾燥とを併用していることを特徴とする請求項1〜3のいすれか1項に記載の非水電池用電極の製造方法。
The step of forming the electrode active material layer includes a drying step,
The method for producing an electrode for a nonaqueous battery according to any one of claims 1 to 3, wherein the drying step uses both infrared drying and hot air drying.
JP2013076893A 2013-04-02 2013-04-02 Nonaqueous battery electrode and manufacturing method thereof Active JP6209844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013076893A JP6209844B2 (en) 2013-04-02 2013-04-02 Nonaqueous battery electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013076893A JP6209844B2 (en) 2013-04-02 2013-04-02 Nonaqueous battery electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014203572A true JP2014203572A (en) 2014-10-27
JP6209844B2 JP6209844B2 (en) 2017-10-11

Family

ID=52353863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076893A Active JP6209844B2 (en) 2013-04-02 2013-04-02 Nonaqueous battery electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6209844B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100205A (en) * 2014-11-21 2016-05-30 株式会社豊田自動織機 Electrode and manufacturing method thereof, and power storage device
JP2020123526A (en) * 2019-01-31 2020-08-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method for electrode thereof
CN114695837A (en) * 2020-12-28 2022-07-01 泰星能源解决方案有限公司 Method and apparatus for manufacturing electrode for nonaqueous electrolyte secondary battery
JP7565939B2 (en) 2019-03-14 2024-10-11 インディアン スペース リサーチ オーガニゼーション Method for producing composite cathode for lithium-ion cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239150A (en) * 1991-08-01 1993-09-17 Kureha Chem Ind Co Ltd Vinylidene fluoride-based polymer and its production
JP2005072009A (en) * 2003-08-27 2005-03-17 Samsung Sdi Co Ltd Binder and electrode for lithium battery, and lithium battery using the same
JP2010525124A (en) * 2007-04-24 2010-07-22 ソルヴェイ・ソレクシス・エッセ・ピ・ア Vinylidene fluoride copolymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239150A (en) * 1991-08-01 1993-09-17 Kureha Chem Ind Co Ltd Vinylidene fluoride-based polymer and its production
JP2005072009A (en) * 2003-08-27 2005-03-17 Samsung Sdi Co Ltd Binder and electrode for lithium battery, and lithium battery using the same
JP2010525124A (en) * 2007-04-24 2010-07-22 ソルヴェイ・ソレクシス・エッセ・ピ・ア Vinylidene fluoride copolymer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100205A (en) * 2014-11-21 2016-05-30 株式会社豊田自動織機 Electrode and manufacturing method thereof, and power storage device
JP2020123526A (en) * 2019-01-31 2020-08-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method for electrode thereof
JP7565939B2 (en) 2019-03-14 2024-10-11 インディアン スペース リサーチ オーガニゼーション Method for producing composite cathode for lithium-ion cell
CN114695837A (en) * 2020-12-28 2022-07-01 泰星能源解决方案有限公司 Method and apparatus for manufacturing electrode for nonaqueous electrolyte secondary battery
JP2022103904A (en) * 2020-12-28 2022-07-08 プライムプラネットエナジー&ソリューションズ株式会社 Method and device for manufacturing electrode for nonaqueous electrolyte secondary battery
JP7328954B2 (en) 2020-12-28 2023-08-17 プライムプラネットエナジー&ソリューションズ株式会社 METHOD AND APPARATUS FOR MANUFACTURING ELECTRODE FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US12046740B2 (en) 2020-12-28 2024-07-23 Prime Planet Energy & Solutions, Inc. Method and apparatus for producing an electrode for nonaqueous electrolyte secondary batteries

Also Published As

Publication number Publication date
JP6209844B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
CN111758176B (en) Method for pre-doping negative electrode active material, method for manufacturing negative electrode, and method for manufacturing power storage device
JP5313761B2 (en) Lithium ion battery
TW201836196A (en) Current collector, electrode, and non-aqueous electrolyte secondary battery
JP2009004289A (en) Nonaqueous electrolyte secondary battery
JP5418088B2 (en) Current collector for lithium ion secondary battery
JP2015076248A (en) Electrode for electric device and manufacturing method therefor
JP7460261B2 (en) Secondary battery charging and discharging method
JP2009026514A (en) Nonaqueous electrolyte secondary battery
JP4992203B2 (en) Lithium ion secondary battery
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
US20110236748A1 (en) Current collector for non-aqueous electrolyte secondary battery, electrode, non-aqueous electrolyte secondary battery, and method for producing the same
JP2013131427A (en) Laminated battery
JP6209844B2 (en) Nonaqueous battery electrode and manufacturing method thereof
JP2013127845A (en) Electric device
CN111183537B (en) Method for pre-doping negative electrode active material, electrode for electrical device, and method for manufacturing electrical device
JP2016134218A (en) Lithium ion secondary battery
US20230036765A1 (en) Aqueous Slurry for Positive Electrode, Positive Electrode Composition, Lithium-Ion Secondary Battery Including Said Positive Electrode Composition, and Methods for Manufacturing Same
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2019164965A (en) Lithium ion secondary battery
JP2005197073A (en) Positive electrode for lithium secondary battery
JP2015056311A (en) Method for manufacturing nonaqueous electrolyte secondary battery
KR102534215B1 (en) Lithium Secondary Battery Comprising Si Anode
JP6850975B2 (en) Positive electrode for lithium-ion batteries and lithium-ion batteries
CN116093257A (en) Negative electrode for lithium ion secondary battery, method for preparing same, and lithium ion secondary battery comprising same
JP2014049416A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R151 Written notification of patent or utility model registration

Ref document number: 6209844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250