JP2014137917A - Nb3Sn SUPERCONDUCTOR PRECURSOR WIRE, Nb FILAMENT SINGLE WIRE, Nb3Sn SUPERCONDUCTOR WIRE AND MANUFACTURING METHOD THEREOF - Google Patents
Nb3Sn SUPERCONDUCTOR PRECURSOR WIRE, Nb FILAMENT SINGLE WIRE, Nb3Sn SUPERCONDUCTOR WIRE AND MANUFACTURING METHOD THEREOF Download PDFInfo
- Publication number
- JP2014137917A JP2014137917A JP2013006249A JP2013006249A JP2014137917A JP 2014137917 A JP2014137917 A JP 2014137917A JP 2013006249 A JP2013006249 A JP 2013006249A JP 2013006249 A JP2013006249 A JP 2013006249A JP 2014137917 A JP2014137917 A JP 2014137917A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- wire
- reinforcing member
- filament
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
本発明は、Nb3Sn超電導前駆体線材、Nbフィラメント素線、Nb3Sn超電導線材並びにその製造方法に関し、特に、高磁場マグネットなどに応用可能な高Jc(臨界電流密度)で高強度を有するNb3Sn超電導前駆体線材、Nbフィラメント素線、Nb3Sn超電導線材並びにその製造方法に関する。 The present invention relates to an Nb 3 Sn superconducting precursor wire, an Nb filament strand, an Nb 3 Sn superconducting wire and a method for producing the same, and in particular, has a high Jc (critical current density) and high strength applicable to a high magnetic field magnet. The present invention relates to an Nb 3 Sn superconducting precursor wire, an Nb filament strand, an Nb 3 Sn superconducting wire, and a method for manufacturing the same.
従来、Nb3Sn超電導線材の製造方法としてブロンズ法が広く用いられている。ブロンズ法は、Cu−Sn合金製のマトリクスの内部に多数のNbフィラメントを配置した構造を備えたNb3Sn超電導前駆体線材に熱処理を施すことにより、Cu−Sn合金中のSnをNbフィラメントに拡散させてNbフィラメントの部分にNb3Snを生成させ、Nb3Sn超電導線材を形成する方法である。しかし、Cu−Sn合金におけるSnの固溶限は16質量%程度が上限であるため、それ以上のNb3Snの生成はできず、臨界電流値(Ic)にも限界が生じていた。 Conventionally, the bronze method has been widely used as a method for producing an Nb 3 Sn superconducting wire. In the bronze method, the Nb 3 Sn superconducting precursor wire having a structure in which a large number of Nb filaments are arranged inside a matrix made of Cu—Sn alloy is subjected to heat treatment to convert Sn in the Cu—Sn alloy into Nb filaments. This is a method of forming Nb 3 Sn superconducting wire by diffusing to generate Nb 3 Sn in the Nb filament portion. However, since the upper limit of the solid solubility limit of Sn in the Cu—Sn alloy is about 16% by mass, no more Nb 3 Sn can be generated, and the critical current value (Ic) is also limited.
上記の問題に対応するため、Snの供給源をCu−Sn合金以外とし、ブロンズ法より多くのSnを供給できる内部スズ法(内部拡散法)が開発された。 In order to address the above problems, an internal tin method (internal diffusion method) has been developed that can supply Sn more than the bronze method, except that the Sn supply source is other than a Cu-Sn alloy.
内部スズ法は、Cu製のマトリクス(Cuマトリクス)の内部に複数本のNbフィラメントを配置し、さらにCuマトリクスの中心部にSn供給源としてSn又はSn合金層を配置した構造のサブエレメント線を作製し、複数本のサブエレメント線を束ねて作製した多芯線材に熱処理を行うことにより、Sn層からCuマトリクスを介してSnを拡散させNbフィラメントの部分にNb3Snを生成させ、Nb3Sn超電導線材を形成する方法である。 In the internal tin method, a sub-element line having a structure in which a plurality of Nb filaments are arranged inside a Cu matrix (Cu matrix) and an Sn or Sn alloy layer is arranged as a Sn supply source at the center of the Cu matrix. A multi-core wire material produced by bundling a plurality of sub-element wires is subjected to heat treatment, whereby Sn is diffused from the Sn layer through the Cu matrix to generate Nb 3 Sn in the Nb filament portion, and Nb 3 This is a method of forming a Sn superconducting wire.
また内部スズ法の別のNb3Sn超電導線材の製造方法として、Cuマトリクス中に多芯のNbフィラメントを配置した素線と、Sn又は外周にCuを配置した単芯のSn素線をそれぞれ複数本複合化して多芯線材を作製する方法も行われている(特許文献1)。 As another method of manufacturing an Nb 3 Sn superconducting wire of the internal tin method, there are a plurality of wires each having a multi-core Nb filament arranged in a Cu matrix and a single-core Sn wire having Cu arranged on the outer periphery of Sn or the outer periphery. A method of producing a multi-core wire by combining this is also performed (Patent Document 1).
内部スズ法はブロンズ法に比べてSnの複合化の比率を高くすることができるため、Nb3Sn超電導線材のJcとしては、たとえば12Tの磁場中でnon−Cu Jc(非銅部臨界電流密度)=2900A/mm2の高い特性が得られている(非特許文献1)。 Since the internal tin method can increase the composite ratio of Sn as compared with the bronze method, the Jc of the Nb 3 Sn superconducting wire is, for example, a non-Cu Jc (non-copper critical current density) in a magnetic field of 12T. ) = 2900 A / mm 2 is obtained (Non-Patent Document 1).
かかる内部スズ法によるNb3Sn超電導線材(内部スズ法線材)を用いて超電導マグネットを作製した場合、マグネット内の巻き線部分には、Nb3Sn超電導線材の単位断面積あたりの通電電流をJ(A/mm2)、巻き線部分における磁場(磁束密度)の大きさをB(T)、巻き線のマグネット内における半径をR(mm)とすると、Nb3Sn超電導線材を引っ張る方向にσ=BJRで表される電磁応力(Nb3Sn超電導線材の単位断面積あたりの電磁力)σが発生する。 When a superconducting magnet is manufactured using such an internal tin method Nb 3 Sn superconducting wire (internal tin method wire), the current flowing per unit cross-sectional area of the Nb 3 Sn superconducting wire is J (A / mm 2 ), where the magnitude of the magnetic field (magnetic flux density) in the winding portion is B (T) and the radius of the winding in the magnet is R (mm), σ in the direction of pulling the Nb 3 Sn superconducting wire = Electromagnetic stress represented by BJR (electromagnetic force per unit cross-sectional area of the Nb 3 Sn superconducting wire) σ is generated.
内部スズ法線材はJcが高いという特徴があり、これを用いたマグネットが発生する磁場もまた高くすることが可能である。従って、上式のとおりNb3Sn超電導線材に加わる電磁応力も大きくなる。 The internal tin normal wire is characterized by high Jc, and the magnetic field generated by the magnet using this can also be increased. Accordingly, the electromagnetic stress applied to the Nb 3 Sn superconducting wire is increased as shown in the above equation.
一般にNb3Sn超電導線材のJc特性は歪に対して敏感であり、1%程度の歪が加わるだけでもJcが低下することが知られている。このため磁場の高いマグネットを作製する場合には、線材内に補強用の部材を複合化した構造の複合線材が用いられてきた。補強部材の線材断面内の配置としては、従来、ブロンズ法線材及び内部スズ法線材のいずれにおいても、多芯線材の中央部付近の超電導フィラメントを必要に応じた本数だけTaなどの補強部材で置換した構造が用いられてきた。 In general, the Jc characteristic of Nb 3 Sn superconducting wire is sensitive to strain, and it is known that Jc is lowered even when strain of about 1% is applied. For this reason, when producing a magnet with a high magnetic field, a composite wire having a structure in which a reinforcing member is combined in the wire has been used. As for the arrangement of the reinforcing members in the cross section of the wire rod, the superconducting filament near the center of the multi-core wire rod is replaced with a reinforcing member such as Ta as necessary in both the bronze wire rod and the internal tin wire rod. The structure has been used.
ブロンズ法では、Snの供給源としてCu−Sn合金が用いられる。Cu−Sn合金は硬いことから、NbフィラメントやTaなどの補強部材に対して大きな硬度差が無く、Nb3Sn超電導前駆体線材の断面内に大きな硬さの分布は無い。このため伸線加工の際も均一に加工することが可能であった。 In the bronze method, a Cu—Sn alloy is used as a Sn supply source. Since the Cu—Sn alloy is hard, there is no great hardness difference with respect to the reinforcing members such as Nb filaments and Ta, and there is no large distribution of hardness in the cross section of the Nb 3 Sn superconducting precursor wire. For this reason, it was possible to perform uniform processing during wire drawing.
これに対し、内部スズ法では、内部スズ法線材の内部に非常に柔らかいSn材料が単独で組み込まれる。ここで、従来のように多芯線材の中心部に補強用のTa部材を配置し、多芯線材の外周側にSnを配置すると、多芯線材の断面内で大きな硬さの分布ができて、伸線加工時に断面の不均一な変形、あるいは断線などを引き起こす可能性があった。 On the other hand, in the internal tin method, a very soft Sn material is incorporated alone inside the internal tin normal wire. Here, if a reinforcing Ta member is disposed at the center of the multi-core wire and Sn is disposed on the outer peripheral side of the multi-core wire as in the prior art, a large distribution of hardness can be obtained within the cross-section of the multi-core wire. There is a possibility that non-uniform deformation of the cross section or disconnection may occur during the wire drawing process.
また、多芯線材の中心フィラメントを補強部材で置き換える方法では、補強部材を入れたことにより多芯線材全体としての強度は向上するが、個々のNb3Snフィラメントには補強がないので歪が入りやすい。 In the method of replacing the central filament of the multi-core wire with the reinforcing member, the strength of the multi-core wire is improved by adding the reinforcing member, but the individual Nb 3 Sn filament is not reinforced, so that distortion occurs. Cheap.
すなわち、多芯線材の長手方向に引張り歪が加わるような状況では、多芯線材内のどの位置に補強部材が入っていても、補強部材の複合比率に応じた分の強度の向上が予想される。しかし実際には、多芯線材に加わる歪は多芯線材の長手方向の引張り歪だけでなく、例えば多芯線材を複数本撚り合わせて導体化した場合は撚り線内の線材同士が交差するので、局部的な曲げ歪や横方向の圧縮歪が発生する。このような場合には、多芯線材の中心に補強部材を配置しても個々のフィラメントには歪が加わり、線材特性の劣化を引き起こすことが予想される。 That is, in a situation where tensile strain is applied in the longitudinal direction of the multi-core wire, an improvement in strength corresponding to the composite ratio of the reinforcing member is expected no matter where the reinforcing member is in the multi-core wire. The However, in reality, the strain applied to the multi-core wire is not only the tensile strain in the longitudinal direction of the multi-core wire, but for example, when a plurality of multi-core wires are twisted to form a conductor, the wires in the stranded wire cross each other. Local bending strain and lateral compression strain are generated. In such a case, even if the reinforcing member is arranged at the center of the multi-core wire, it is expected that the individual filaments are distorted and the wire properties are deteriorated.
ブロンズ法では、熱処理することによりNb3Sn超電導前駆体線材中のNbフィラメントの部分にブロンズ部分からSnが供給されてNb3Snが生成する。このとき、Nb3Snフィラメントの中心部分ではNb3Snが生成せず未反応のNbが残ることがしばしば見られる。これは、ブロンズ法においてSnの組み込み量が少ないことが原因と考えられる。当然ながら未反応Nbの部分ではNb3Snの超電導特性は得られない。また未反応Nbに近い部分のNb3SnではSn濃度が低いためにNb3Snの外周側よりJcが低いことが知られている。 In the bronze method, by heat treatment, Sn is supplied from the bronze portion to the Nb filament portion in the Nb 3 Sn superconducting precursor wire to generate Nb 3 Sn. At this time, it is often seen that Nb 3 Sn is not generated and unreacted Nb remains in the central portion of the Nb 3 Sn filament. This is thought to be due to the small amount of Sn incorporated in the bronze method. Naturally, the superconducting characteristics of Nb 3 Sn cannot be obtained in the unreacted Nb portion. Further, it is known that Jc is lower than the outer peripheral side of Nb 3 Sn because the Sn concentration is low in the portion of Nb 3 Sn close to unreacted Nb.
そこで、臨界電流密度(Jc)を向上させるため、Nbフィラメントの芯に5原子%以下のTiを含有させる方法が提案されている(特許文献2)。また、Nbフィラメントの中心部に穴を開け、Nb−Ti合金芯を挿入する方法も提案されている(特許文献3)。しかしながら、これらの方法には製造コストが高くなる、製造中の断線のおそれがある等の問題があった。 Therefore, in order to improve the critical current density (Jc), a method of incorporating 5 atomic% or less of Ti into the core of the Nb filament has been proposed (Patent Document 2). In addition, a method has also been proposed in which a hole is formed in the center of an Nb filament and an Nb—Ti alloy core is inserted (Patent Document 3). However, these methods have problems such as an increase in production cost and a possibility of disconnection during production.
この問題を解決するために、Nbフィラメントの芯の周囲に、Ti,Ta,Zr及びHfからなる群から選ばれる1種以上の元素を含有するNb基合金からなる円筒状層又は上記のNb基合金からなる複数の板状部材を組み合わせてなる略円筒状層を配置し、更にその外周にNbからなる円筒状層を配置する方法が提案されている(特許文献4)。しかし、この方法は製造工程が複雑で加工性が低い。 In order to solve this problem, a cylindrical layer made of an Nb-based alloy containing one or more elements selected from the group consisting of Ti, Ta, Zr and Hf around the core of the Nb filament, or the above-mentioned Nb group A method has been proposed in which a substantially cylindrical layer formed by combining a plurality of plate-like members made of an alloy is disposed, and a cylindrical layer made of Nb is disposed on the outer periphery thereof (Patent Document 4). However, this method has a complicated manufacturing process and low processability.
一方で、Nb3Sn超電導線材は上述したようにわずかな歪で特性が低下する傾向があるために、むしろ未反応のNb芯があることで個々のNb3Snフィラメントが補強されることから、未反応のNb芯によって歪に対する特性低下を防止することも提案されている(特許文献5)。 On the other hand, since the Nb 3 Sn superconducting wire tends to deteriorate in characteristics with a slight strain as described above, the individual Nb 3 Sn filaments are reinforced by having an unreacted Nb core, It has also been proposed to prevent deterioration of characteristics against strain by an unreacted Nb core (Patent Document 5).
このように、臨界電流密度の観点からはNb3Snフィラメントの中心の未反応Nbは無いのが好ましく、フィラメントの歪に対する補強の点からはNb3Snフィラメントの中心の未反応Nbはあるのが好ましいという、二律背反する事象となっていた。 Thus, it is preferable not unreacted Nb in the center of the Nb 3 Sn filaments in terms of critical current density, unreacted Nb in the center of the Nb 3 Sn filaments in terms of reinforcement for strain of the filaments is of the It was a contradictory event of being preferable.
本発明は上記課題を解決するためになされたものであり、内部スズ法でNb3Sn超電導線材を製造する際に用いられる、補強部材を複合化し、加工性が良く、Jc特性に優れたNb3Sn超電導前駆体線材、Nbフィラメント素線、Nb3Sn超電導線材並びにその製造方法を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and a Nb 3 Sn superconducting wire used for manufacturing an Nb 3 Sn superconducting wire by an internal tin method is combined with a reinforcing member, has good workability, and has excellent Jc characteristics. 3 Sn superconductor precursor wire, and an object thereof is to provide a Nb filament strands, Nb 3 Sn superconducting wire, and a method for producing the same.
本発明の第1の形態は、上記課題を解決するために、内部スズ法でNb3Sn超電導線材を製造する際に用いるNb3Sn超電導前駆体線材であって、Nb又はNb合金を含む複数のNbフィラメント素線と、Sn又はSn合金を含む複数のSn素線を備え、前記Nbフィラメント素線は中心に補強部材を備え、前記補強部材は、Ta、Ta合金、W、W合金、Mo、Mo合金、V、V合金、Zr、Zr合金、Hf及びHf合金からなる群から選ばれる少なくとも1種の金属、又は、Ta、W、Mo、V、Zr及びHfからなる群から選ばれる少なくとも1種の金属を含むNb合金からなることを特徴とするNb3Sn超電導前駆体線材を提供する。 A first aspect of the present invention is an Nb 3 Sn superconducting precursor wire used when an Nb 3 Sn superconducting wire is manufactured by an internal tin method in order to solve the above-described problem, and includes a plurality of Nb or Nb alloys. Nb filament strand and a plurality of Sn strands containing Sn or Sn alloy, the Nb filament strand includes a reinforcing member in the center, and the reinforcing member is Ta, Ta alloy, W, W alloy, Mo , Mo alloy, V, V alloy, Zr, Zr alloy, at least one metal selected from the group consisting of Hf and Hf alloys, or at least selected from the group consisting of Ta, W, Mo, V, Zr and Hf An Nb 3 Sn superconducting precursor wire comprising an Nb alloy containing one kind of metal is provided.
前記Nbフィラメント素線は、前記補強部材の周囲に設けられたNb又はNb合金層を備え、前記Nb又はNb合金層の断面積と前記補強部材の断面積の合計に対する前記補強部材の断面積の比率が、0.19以上0.69以下であることが好ましい。 The Nb filament strand includes an Nb or Nb alloy layer provided around the reinforcing member, and a cross sectional area of the reinforcing member with respect to a sum of a cross sectional area of the Nb or Nb alloy layer and a cross sectional area of the reinforcing member. The ratio is preferably from 0.19 to 0.69.
前記Nb3Sn超電導前駆体線材全体の断面積に対する前記補強部材の断面積の比率が0.04以上0.30以下であることが好ましい。更に、前記Nb3Sn超電導前駆体線材全体の断面積に対する前記補強部材の断面積の比率が0.06以上であることがより好ましい。また、前記Nb3Sn超電導前駆体線材全体の断面積に対する前記補強部材の断面積の比率が0.19以下であることがより好ましい。 The ratio of the cross-sectional area of the reinforcing member to the cross-sectional area of the entire Nb 3 Sn superconducting precursor wire is preferably 0.04 or more and 0.30 or less. Furthermore, the ratio of the cross-sectional area of the reinforcing member to the cross-sectional area of the entire Nb 3 Sn superconducting precursor wire is more preferably 0.06 or more. The ratio of the cross-sectional area of the reinforcing member to the cross-sectional area of the entire Nb 3 Sn superconducting precursor wire is more preferably 0.19 or less.
本発明の第2の形態は、更に、補強部材を中心に有し、前記補強部材の周囲に設けられたNb又はNb合金層を備え、前記補強部材は、Ta、Ta合金、W、W合金、Mo、Mo合金、V、V合金、Zr、Zr合金、Hf、およびHf合金からなる群から選ばれる少なくとも1種の金属、又は、Ta、W、Mo、V、Zr、Hfからなる群から選ばれる少なくとも1種の金属を含むNb合金からなるNbフィラメント素線を提供する。 The second aspect of the present invention further includes an Nb or Nb alloy layer provided around the reinforcing member, and the reinforcing member includes Ta, Ta alloy, W, W alloy. At least one metal selected from the group consisting of Mo, Mo alloy, V, V alloy, Zr, Zr alloy, Hf, and Hf alloy, or from the group consisting of Ta, W, Mo, V, Zr, and Hf An Nb filament strand made of an Nb alloy containing at least one selected metal is provided.
前記Nbフィラメント素線は、前記Nb又はNb合金層の断面積と前記補強部材の断面積の合計に対する前記補強部材の断面積の比率が、0.19以上0.69以下であることが好ましい。更に、前記Nb又はNb合金層の断面積と前記補強部材の断面積の合計に対する前記補強部材の断面積の比率が、0.51以下であることがより好ましい。 In the Nb filament strand, the ratio of the cross-sectional area of the reinforcing member to the total of the cross-sectional area of the Nb or Nb alloy layer and the cross-sectional area of the reinforcing member is preferably 0.19 or more and 0.69 or less. Furthermore, the ratio of the cross-sectional area of the reinforcing member to the sum of the cross-sectional areas of the Nb or Nb alloy layer and the reinforcing member is more preferably 0.51 or less.
本発明の第3の形態は、上記のNb3Sn超電導前駆体線材を熱処理することにより、前記Nbフィラメント素線にSnを拡散させてNb3Snを生成したNb3Sn超電導線材を提供する。 A third aspect of the present invention, by heat-treating the above-mentioned Nb 3 Sn superconductor precursor wire, providing a Nb 3 Sn superconducting wire in which the Nb filaments wire to diffuse the Sn and to generate Nb 3 Sn.
本発明の第4の形態は、Nb又はNb合金を含む複数のNbフィラメント素線と、Sn又はSn合金を含む複数のSn素線を用意する工程と、前記Nbフィラメント素線の中心に、Ta、Ta合金、W、W合金、Mo、Mo合金、V、V合金、Zr、Zr合金、Hf、およびHf合金からなる群から選ばれる少なくとも1種の金属、又は、Ta、W、Mo、V、Zr、Hfからなる群から選ばれる少なくとも1種の金属を含むNb合金からなる補強部材を配置する工程を備えることを特徴とするNb3Sn超電導前駆体線材の製造方法を提供する。 According to a fourth aspect of the present invention, there is provided a step of preparing a plurality of Nb filament strands including Nb or Nb alloy and a plurality of Sn strands including Sn or Sn alloy, and a Ta at the center of the Nb filament strand. , Ta alloy, W, W alloy, Mo, Mo alloy, V, V alloy, Zr, Zr alloy, Hf, and at least one metal selected from the group consisting of Hf alloy, or Ta, W, Mo, V , Zr, to provide a method of manufacturing a Nb 3 Sn superconductor precursor wire, characterized in that it comprises the step of placing a reinforcing member made of Nb alloy containing at least one metal selected from the group consisting of Hf.
前記Nbフィラメント素線の中心に前記補強部材を配置する工程は、Ta、Ta合金、W、W合金、Mo、Mo合金、V、V合金、Zr、Zr合金、Hf、およびHf合金からなる群から選ばれる少なくとも1種の金属、又は、Ta、W、Mo、V、Zr、Hfからなる群から選ばれる少なくとも1種の金属を含むNb合金からなる棒をNb又はNb合金からなるパイプ内に挿入する工程を含んでもよい。 The step of disposing the reinforcing member at the center of the Nb filament strand is made of Ta, Ta alloy, W, W alloy, Mo, Mo alloy, V, V alloy, Zr, Zr alloy, Hf, and Hf alloy. A bar made of an Nb alloy containing at least one metal selected from the group consisting of Ta, W, Mo, V, Zr, and Hf and containing at least one metal selected from the group consisting of Ta, W, Mo, V, Zr, and Hf is placed in a pipe made of Nb or Nb alloy. A step of inserting may be included.
前記Nbフィラメント素線の中心に前記補強部材を配置する工程は、Ta、Ta合金、W、W合金、Mo、Mo合金、V、V合金、Zr、Zr合金、Hf、およびHf合金からなる群から選ばれる少なくとも1種の金属、又は、Ta、W、Mo、V、Zr、Hfからなる群から選ばれる少なくとも1種の金属を含むNb合金からなる金属棒の周囲にNb又はNb合金からなるシートを巻き付ける工程を含んでもよい。 The step of disposing the reinforcing member at the center of the Nb filament strand is made of Ta, Ta alloy, W, W alloy, Mo, Mo alloy, V, V alloy, Zr, Zr alloy, Hf, and Hf alloy. Or Nb or Nb alloy around a metal rod made of Nb alloy containing at least one metal selected from the group consisting of Ta, W, Mo, V, Zr, and Hf. A step of winding the sheet may be included.
本発明の第5の形態は、上記のNb3Sn超電導前駆体線材を熱処理することにより、前記Nbフィラメント素線にSnを拡散させてNb3Snを生成する工程を備えるNb3Sn超電導線材の製造方法を提供する。 According to a fifth aspect of the present invention, there is provided an Nb 3 Sn superconducting wire comprising a step of generating Nb 3 Sn by diffusing Sn in the Nb filament strand by heat-treating the Nb 3 Sn superconducting precursor wire. A manufacturing method is provided.
本発明によれば、内部スズ法でNb3Sn超電導線材を製造する際に用いられる、補強部材を複合化し、加工性が良く、Jc特性に優れたNb3Sn超電導前駆体線材、Nbフィラメント素線、Nb3Sn超電導線材並びにその製造方法を提供することができる。 According to the present invention, a Nb 3 Sn superconducting precursor wire, an Nb filament element, which is used when an Nb 3 Sn superconducting wire is manufactured by an internal tin method, composites a reinforcing member, has good workability, and has excellent Jc characteristics. A wire, a Nb 3 Sn superconducting wire, and a method for manufacturing the same can be provided.
以下に、本発明の好適な実施の形態について添付図面を用いて説明する。 Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
(第1の実施の形態)
図1は、第1の実施の形態に係るNb3Sn超電導前駆体線材の構造を示す断面図である。
(First embodiment)
FIG. 1 is a cross-sectional view showing the structure of the Nb 3 Sn superconducting precursor wire according to the first embodiment.
(Nb3Sn超電導前駆体線材1)
Nb3Sn超電導前駆体線材1は、複数のNbフィラメント素線11をSn素線15の周囲に配置し、複数のNbフィラメント素線11の周囲を拡散バリア層18とCu被覆層19で順次被覆してサブエレメント素線20を形成し、そのサブエレメント素線20を安定化Cu層21の内部に複数本配置した構造を有する。
(Nb 3 Sn superconducting precursor wire 1)
In the Nb 3 Sn
(サブエレメント素線20)
サブエレメント素線20は、Sn素線15と、Sn素線15の周囲に設けられた複数のNbフィラメント素線11と、複数のNbフィラメント素線11の周囲に設けられた拡散バリア層18と、拡散バリア層18の周囲を被覆するCu被覆層19を備える。
(Sub-element strand 20)
The
(Nbフィラメント素線11)
Nbフィラメント素線11は、Nb又はNb合金からなる層(Nb又はNb合金層)12の外周にCu被覆層13を被覆して形成されると共に、Nb又はNb合金層12の内部に補強部材14を備える。より詳細には、Nbフィラメント素線11は、中心に芯として設けられた補強部材14と、補強部材14の周囲に設けられたNb又はNb合金層12と、Nb又はNb合金層12の外周を被覆するCu被覆層13を備える。Nbフィラメント素線11は断面六角形の形状を有し、伸線加工や減面加工を経た後、安定化Cu層21の内部に埋設される。
(Nb filament strand 11)
The
(Sn素線15)
Sn素線15は、Sn又はSn合金からなるSnフィラメント16と、Snフィラメント16の外周を被覆するCu被覆層17を備える。Sn素線15は、Nbフィラメント素線11の断面積よりも大きな断面積を有する。Nbフィラメント素線11と同様に、Sn素線15は断面六角形の形状を有し、伸線加工や減面加工を経た後、安定化Cu層21の内部に埋設される。
(Sn strand 15)
The
(拡散バリア層18)
拡散バリア層18は、Nb3Sn超電導前駆体線材1の熱処理時に、Snの外部への拡散を防ぐためのものであり、Nb又はNb合金、あるいはTa又はTa合金からなる。
(Diffusion barrier layer 18)
The
(Cu被覆層13,17,19及び安定化Cu層21)
Cu被覆層13,17,19および安定化Cu層21は、主に無酸素銅からなり、例えば、純度99.95%以上のもの(JIS3510 C1020)を用いることができる。より導電率の向上を望む場合は、純度99.99%以上のもの(JIS3510 C1011)を用いることができる。なお、本発明は内部スズ法に関するものであり、Cu被覆層13,17,19に含まれるSnは0.01%以下であることが好ましい。理由は以下のとおりである。従来のブロンズ法によるNb3Sn超電導前駆体線材の作製においてはNbフィラメントを包含するマトリクス材としてブロンズ(Cu−Sn合金)を用いるが、線材伸線工程において加工硬化によってブロンズの高度が増した場合には、焼鈍によって硬度を低下させて引き続き伸線工程を繰り返すことが可能であった。しかし、内部スズ法では伸線加工中の線材内には単体のSnあるいはSn合金が組み込まれている。線材を伸線加工の途中で焼鈍すると、Snが周囲のCuマトリクスに拡散してCu−Sn合金あるいはCu-Sn化合物相が生成し、かえって加工性が低下する。したがって、上述のように、Cu被覆層13,17,19は主に純Cuであることが好ましく、さらにSnの含有量も極力少ないほうが好ましい。
(Cu coating layers 13, 17, 19 and stabilized Cu layer 21)
The Cu covering layers 13, 17, 19 and the stabilizing
(Nb3Sn超電導線材)
Nb3Sn超電導前駆体線材1を熱処理することにより、Nbフィラメント素線11にSnが拡散してNb3Snが生成し、本実施の形態に係るNb3Sn超電導線材が製造される。
(Nb 3 Sn superconducting wire)
By heat treating the Nb 3 Sn
(補強部材14)
以下、Nbフィラメント素線11の中心に配置された補強部材14について説明する。
(Reinforcing member 14)
Hereinafter, the reinforcing
(1)補強部材14の材料
補強部材14の材料は、Nb3Snを補強するために設けられるのでNb3Snより強度が高く、Nbフィラメント素線11の中心に配置されるのでNb3Snと反応せず、更に、超電導特性を低下させない性質を有することが求められる。
したがって、補強部材14は、タンタル(Ta)、タンタル合金、タングステン(W)、タングステン合金、モリブデン(Mo)、モリブデン合金、バナジウム(V)、バナジウム合金、ジルコニウム(Zr)、ジルコニウム合金、ハフニウム(Hf)、およびハフニウム合金からなる群から選ばれる少なくとも1種の金属からなることが好ましい。
また、補強部材14は、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、バナジウム(V)、ジルコニウム(Zr)、およびハフニウム(Hf)からなる群から選ばれる少なくとも1種の金属を含むニオブ(Nb)合金からなることが好ましい。
(1) the materials of the reinforcing
Therefore, the reinforcing
The reinforcing
特に、補強部材14の材料としては、拡散バリア層18としても用いられるTa又はTa合金、あるいはNb合金が好ましい。線材断面に大きな硬度分布が生じず、Nbフィラメント素線11やサブエレメント素線20などの伸線加工の際に、断線や不均一加工などが発生することを防止できるからである。また、Nb3Sn超電導線材を超電導マグネットとして使用する場合には、補強部材14の材料として、比較的高強度のW、W合金、Mo、Mo合金、Hf、あるいはHf合金を用いるのが好ましい。超電導マグネットが発生する磁場が大きくなっても、十分にNb3Snを補強することができるからである。この他にも、材料の入手しやすさなどを考慮して、補強部材14の材料を上記の群から適宜選択することが可能である。
In particular, the material of the reinforcing
なお、Ta合金、Nb合金、W合金、Mo合金、及びHf合金としては、例えば、5質量%以上の添加元素を有する組成であることが望ましい。 The Ta alloy, Nb alloy, W alloy, Mo alloy, and Hf alloy preferably have a composition having an additive element of 5% by mass or more, for example.
(2)Nbフィラメントに対する補強部材14の比率
本発明者等は、内部スズ法によるNb3Sn超電導線材について、熱処理を行うことによりNbフィラメントに生成されるNb3Snと、その内部に残留する未反応Nbの厚さについて鋭意検討を行った。例えば、Nbフィラメント素線11からCu被覆層を除いたNbフィラメントの外径が5μmのNb3Sn超電導前駆体線材に対して一般的な熱処理(例えば、500℃×100時間+700℃×100時間など)を行った場合には、生成したNb3Snフィラメントの中心に、直径約1μmの未反応Nbが残留し、未反応Nbの周囲に約2μmの厚さを有するNb3Snの層が生成された。すなわち、内部スズ法においては、Nbフィラメントの最表面から少なくとも約2μmの深さにNb3Snが生成されることがわかった。
(2) Ratio of the reinforcing
熱処理後に未反応Nbとして残留しうる部分を補強部材14で置換することにより、Nb3Snの補強を図ることが望ましい。よって、Nbフィラメント素線11において、補強部材14はその中心で、かつ、Nb又はNb合金層12の外表面から深さ2μmよりも内側に配置されることが望ましい。
It is desirable to reinforce Nb 3 Sn by replacing a portion that can remain as unreacted Nb after the heat treatment with the reinforcing
ここで、熱処理により得られるNb3Snフィラメントは、その寸法を小さくすることで交流損失が低減し超電導特性が安定化されるため、Nb3Snフィラメントは少なくとも30μm以下の外径を有することが望ましい。また、伸線加工時の断線を避けるため、Nb3Snフィラメントは5μm以上の径とすることが望ましい。すなわち、Nbフィラメントは、その外径を5μm以上30μm以下とすることが望ましい。 Here, since the Nb 3 Sn filament obtained by heat treatment reduces the AC loss and stabilizes the superconducting characteristics by reducing its size, it is desirable that the Nb 3 Sn filament has an outer diameter of at least 30 μm or less. . Moreover, in order to avoid disconnection at the time of wire drawing, it is desirable that the Nb 3 Sn filament has a diameter of 5 μm or more. That is, it is desirable that the Nb filament has an outer diameter of 5 μm or more and 30 μm or less.
外径が5μm以上30μm以下のNb又はNb合金層12の最表面に、厚さ2μmのNb3Snが生成する場合、その中心に残留する未反応Nbは直径1μm以上26μm以下となる。したがって、この未反応Nbと置換されるべき補強部材14の直径は1μm以上26μm以下が望ましい範囲となる。よって、Nb3Snフィラメント(Nbフィラメント)の直径(外径)に対する補強部材14の直径(外径)の比率は0.2以上0.87以下であり、Nbフィラメントの断面積に対する補強部材14の比率は0.04以上0.75以下である。したがって、Nbフィラメント素線11においても、Nbフィラメントの断面積(Nb又はNb合金層12の断面積と補強部材14の断面積の合計)の断面積に対する補強部材14の比率は理論上0.04以上0.75以下が好ましい。
When Nb 3 Sn having a thickness of 2 μm is formed on the outermost surface of Nb or
なお、Nb3Sn超電導線材において、補強部材14を複合化して充分な機械的強度を得るには、Nb3Snフィラメント(Nbフィラメント)の断面積に対して0.19以上の比率で補強部材14を複合化することが望ましい。一方、補強部材14を多く入れると機械的強度は大きく増加するものの、トレードオフの関係で臨界電流特性が低下するので、Nbフィラメントの断面積(Nb又はNb合金層12の断面積と補強部材14の断面積の合計)に対する補強部材14の断面積比率は0.69以下が好ましい。従って、Nbフィラメントの断面積に対する補強部材の断面積比率としては0.19以上0.69以下がより好適な範囲である。
In the Nb 3 Sn superconducting wire, in order to obtain a sufficient mechanical strength by combining the reinforcing
(3)Nb3Sn超電導前駆体線材1の全体に対する補強部材14の比率
一般に補強部材をNb3Sn超電導前駆体線材の断面内に複合化すると、その分超電導に関わる部分の断面積が減少して臨界電流値の減少をもたらす。本実施の形態において、補強部材14による補強は、Nbフィラメントの一部を補強部材14により置換するものである。Nbフィラメントの断面積における補強部材14の断面積の比率が小さい場合には、本来Jcの低い未反応Nbの領域を置換するのでNb3Sn超電導線材の超電導特性に与える影響は小さい。一方、Nbフィラメントの断面積における補強部材14の断面積の比率が大きくなるに従い、超電導特性に有効なNb3Snの領域を置換することになり、Nb3Sn超電導線材の臨界電流特性を低下させてしまう。
(3) Ratio of the reinforcing
本発明者等は、Nb3Sn超電導線材の超電導特性への影響を小さくでき、且つ、Nb3Snを十分に補強できる補強部材14の比率について検討した結果、Nb3Sn超電導線材全体の断面積に対する補強部材14の断面積の比率は、好ましくは0.04以上0.30以下が望ましい範囲であることを見出した。
The present inventors have, it is possible to reduce the influence on the superconducting properties of the Nb 3 Sn superconducting wire, and the results of investigation of the ratio of the reinforcing
従って、線材(Nb3Sn超電導前駆体線材1、あるいはNb3Sn超電導線材)の全体の断面積に対する補強部材14の断面積の比率は、後述する実施例に示されるように、0.04以上0.30以下とすることが望ましい。より好ましくは、下限値が0.06であり、また、上限値が0.19である。
Therefore, the ratio of the cross-sectional area of the reinforcing
(4)Nbフィラメント素線11の全本数に対する補強部材14を内包したNbフィラメント素線11の比率
あるフィラメントの中心に配置した補強部材14の補強の効果は、そのフィラメントだけではなく、そのフィラメントに隣接する他のフィラメントにも作用する。つまり本実施の形態では、Nb3Sn超電導前駆体線材1内の全てのNbフィラメント素線に補強部材14を配置する必要はない。補強部材14を内包するNbフィラメント素線11の本数を調節することにより、線材の超電導特性への影響を低減しつつ、Nb3Snの補強をすることができる。なお、この場合には、線材の特性に偏りが生じないように、補強部材14を内包したNbフィラメント素線11をNb3Sn超電導前駆体線材1の断面内で均等に配置することが望ましい。
(4) Ratio of the
(Nb3Sn超電導線材の製造方法)
次に、Nb3Sn超電導線材の製造方法の一例を図2〜4を参照して説明する。
(Method for producing Nb 3 Sn superconducting wire)
Will now be described with reference to FIGS. 2-4 an example of a method for manufacturing a Nb 3 Sn superconducting wire.
図2は、本発明の実施の形態に係るサブエレメント素線20の製造工程の一例を示すフローチャートである。
まず、ステップS21において、Nbフィラメント素線11を製造する。
FIG. 2 is a flowchart showing an example of a manufacturing process of the
First, in step S21, the
図3を参照して、ステップS21のNbフィラメント素線11の製造工程の一例を説明する。まず、Cuパイプを用意し(ステップS211)、そのCuパイプ内にNb又はNb合金製のNbパイプを挿入した後(ステップS212)、さらにそのNbパイプ内に補強部材(例えばTa棒)を挿入してNb複合材を作製する(ステップS213)。このNb複合材に減面加工(伸線)を繰り返し施して断面六角形状に加工することで、Nbフィラメント素線11が製造される(ステップS214)。以上の工程を、必要数のNbフィラメント素線が製造されるまで繰り返す。
With reference to FIG. 3, an example of the manufacturing process of the
また、ステップS21と平行して、ステップS22において、Sn素線製造工程により、Sn素線15を製造する。
Further, in parallel with step S21, in step S22, the
図4を参照して、ステップS22のSn素線15の製造工程の一例を説明する。まずCuパイプを用意し(ステップS221)、そのCuパイプ内にSn又はSn合金製のSn棒を挿入した後(ステップS222)、これに減面加工を繰り返し施して断面六角形状に加工することで、Sn素線が製造される(ステップS223)。以上の工程を、必要数のSn素線が製造されるまで繰り返す。
With reference to FIG. 4, an example of the manufacturing process of the
これらNbフィラメント素線製造工程(ステップS21)およびSn素線製造工程(ステップS22)により必要数のNbフィラメント素線11およびSn素線14を製造した後、ステップS23に進み、新たにCuパイプを用意し、続くステップS24で、このCuパイプの内周面にバリアシートを設ける。バリアシートは、拡散バリア層18を形成するためシート材であり、拡散バリア層18と同じく、Nb又はNb合金,あるいはTa又はTa合金からなる。
After the necessary number of
その後、ステップS25で、バリアシートを設けたCuパイプの内部にSn素線15を挿入し、さらにSn素線15の周囲に複数のNbフィラメント素線11を挿入して複合体を作製する。
Thereafter, in step S25, the
作製した複合体に対し、ステップS26にて減面加工を行うことで、サブエレメント素線20が製造される。
The
以上のサブエレメント素線20の製造工程を、必要数が製造されるまで繰り返した後、Cuパイプ内にサブエレメント素線20を複数本挿入して多芯ビレットとする。この多芯ビレットに対して減面加工を繰り返すことにより、Nb3Sn超電導前駆体線材1が製造される。さらに、Nb3Sn超電導前駆体線材1に熱処理を行うことにより、Nb3Sn超電導線材が製造される。
The above-described manufacturing process of the
(第1の実施の形態の作用)
次に、本実施の形態の作用を説明する。
本実施の形態では、内部スズ法によりNb3Snを生成するNb3Sn超電導線材において、Nb3Sn超電導前駆体線材1に埋設するNbフィラメント素線11の中心に、Taなどからなる補強部材14を配置するように構成した。
(Operation of the first embodiment)
Next, the operation of the present embodiment will be described.
In the present embodiment, in the Nb 3 Sn superconducting wire that generates Nb 3 Sn by the internal tin method, the reinforcing
(1)各Nbフィラメント素線11の中心を補強部材14で置換することにより、Nb3Sn超電導線材に加わる歪に対する補強がフィラメントごとに行われ、歪による超電導特性の低下が低減される。
(1) By replacing the center of each
(2)また、各フィラメントの中心に未反応Nbを残す場合と比較して、本来未反応のNbとそれと接する低JcのNb3Sn領域に補強部材14を配置するように構成したため、補強部材14を線材に複合化することによるJcの低下が小さくなる。
(2) Further, compared to the case where unreacted Nb is left at the center of each filament, the reinforcing
(3)さらに、本実施の形態では、Nbフィラメント素線11の中心に補強部材14が配置され、その外側にNb又はNb合金層12、Cu被覆13が順次配置され、補強部材14およびNb又はNb合金層12は、Cuを介して柔らかいSnと接するようにしている。このため、多芯線材の中心部分のフィラメントを補強部材で置き換える場合のような大きな硬度の分布が線材の中に発生しない。したがって、減面加工の際に断線や不均一加工が発生せず加工性が良好である。
(3) Further, in the present embodiment, the reinforcing
(第2の実施の形態)
図5は、本発明の第2の実施の形態に係るNb3Sn超電導前駆体線材5の構造を示す断面図である。第2の実施の形態に係るNb3Sn超電導前駆体線材5は、Nbフィラメント素線11をCu被覆層19内に複数本配置してNbフィラメントの複合線(Nbサブエレメント素線22)を形成し、内周面に拡散バリア層18を設けた安定化Cu層21の内部に、複数のNbサブエレメント素線22と複数のSn素線15を配置する構造を有する。また、Nb3Sn超電導前駆体線材5は、実質的に同程度の大きさに形成されたNbサブエレメント素線22とSn素線15を、Sn素線15の周囲にNbサブエレメント素線22が隣接し、Sn素線15同士が隣接しないように配置した構造を有する。
(Second Embodiment)
FIG. 5 is a cross-sectional view showing the structure of the Nb 3 Sn
第2の実施の形態に係るNb3Sn超電導前駆体線材5は、第1の実施の形態に係るNb3Sn超電導前駆体線材1と、複数のNbフィラメント素線11を用いてNbサブエレメント素線22を形成し、その後、Nbサブエレメント素線22と実質的に同じ大きさのSn素線15と共に安定化Cu層21内に埋設する点で異なっている。また、Nb3Sn超電導前駆体線材5は、DT(Dispersed Tin)法として知られている配置を有するNb3Sn超電導前駆体線材に関するものであり、名前の通りSn素線15を分散配置させた構造を有する。
The Nb 3 Sn
Nb3Sn超電導前駆体線材5は、第1の実施の形態と同様の工程により製造することができる。例えば、Nb3Sn超電導前駆体線材5は、Cuパイプ内に複数のNbフィラメント素線11を挿入し、これを減面加工してNbサブエレメント素線22を作製し、複数のNbサブエレメント素線22と複数のSn素線15を、内周面にバリアシートを設けたCuパイプの内部に挿入し、これを減面加工して製造することができる。
The Nb 3 Sn
(第2の実施の形態の効果)
第2の実施の形態に係るNb3Sn超電導前駆体線材5においても、Nbフィラメント素線11の中心に補強部材14を配置することにより、第1の実施の形態と同じ効果を得ることができる。
(Effect of the second embodiment)
In the Nb 3 Sn
(第3の実施の形態)
図6は、本発明の第3の実施の形態に係るNb3Sn超電導前駆体線材6の構造を示す断面図である。一方、図6に示すNb3Sn超電導前駆体線材6は、内周面に拡散バリア層18を設けた安定化Cu層21の内部に、複数のNbフィラメント素線11と複数のSn素線15を配置する構造を有する。Nb3Sn超電導前駆体線材6は、実質的に同程度の大きさに形成されたNbフィラメント素線11とSn素線15を、Sn素線15の周囲にNbフィラメント素線11が隣接し、Sn素線15同士が隣接しないように配置した構造を有する。
(Third embodiment)
FIG. 6 is a cross-sectional view showing the structure of the Nb 3 Sn
第3の実施の形態に係るNb3Sn超電導前駆体線材6は、第2の実施の形態に係るNb3Sn超電導前駆体線材5と、Nbサブエレメント素線22に代えてNbフィラメント素線11を用いる点で異なっている。
The Nb 3 Sn
Nb3Sn超電導前駆体線材6は、第1の実施の形態と同様の工程により製造することができる。例えば、Nb3Sn超電導前駆体線材5は、内周面にバリアシートを設けたCuパイプの内部に、複数のNbフィラメント素線11と複数のSn素線15を挿入し、これを減面加工して製造することができる。
The Nb 3 Sn
(第3の実施の形態の効果)
Nb3Sn超電導前駆体線材6においても、Nbフィラメント素線11の中心に補強部材14を配置することにより、上記実施の形態と同じ効果を得ることができる。
(Effect of the third embodiment)
Also in the Nb 3 Sn
ただし本発明は、Nb3Sn超電導線材およびNb3Sn超電導前駆体線材の製造方法を上記実施の形態に限定するものではない。 However, the present invention is not limited to the above embodiment of the manufacturing method of the Nb 3 Sn superconducting wire and Nb 3 Sn superconductor precursor wire.
例えば、Nbフィラメント素線およびSn素線の製造工程(ステップS21,S22)は、サブエレメント素線用のCuパイプの用意(ステップS23)やバリアシートの設置(ステップS24)と平行して、あるいは、Cuパイプの用意とバリアシートの設置との間、あるいは、バリアシートの設置と素線の挿入(ステップS25)との間に入れてもよい。 For example, the manufacturing process (steps S21 and S22) of the Nb filament strand and the Sn strand is parallel to the preparation of the Cu pipe for the sub-element strand (step S23) and the installation of the barrier sheet (step S24), or It may be inserted between the preparation of the Cu pipe and the installation of the barrier sheet, or between the installation of the barrier sheet and the insertion of the strand (step S25).
また、Nbフィラメント素線の製造工程では、Nbパイプの代わりに、Nb又はNb合金製のNbシートを用い、補強部材にNbシートを巻付けてこれをCuパイプ内に挿入し、減面加工によりNbフィラメント素線を製造することもできる。 In addition, in the manufacturing process of the Nb filament strand, instead of the Nb pipe, an Nb sheet made of Nb or Nb alloy is used, and the Nb sheet is wound around the reinforcing member and inserted into the Cu pipe. An Nb filament strand can also be manufactured.
以下に、本発明の実施例について説明する。 Examples of the present invention will be described below.
[実施例1]
実施例1のNb3Sn超電導前駆体線材について説明する。実施例1のNb3Sn超電導前駆体線材は、図1に示した断面構造を有する。
[Example 1]
The Nb 3 Sn superconducting precursor wire of Example 1 will be described. The Nb 3 Sn superconducting precursor wire of Example 1 has the cross-sectional structure shown in FIG.
<Nbフィラメント素線>
外径32.2mm、内径29mmのCuパイプを用意し、その内側に、外径28.6mm、内径20.4mmのNb−1mass%Ta合金パイプを挿入し、さらにその内側に外径20mmのTa棒を補強部材として挿入して、Nb複合材を作製した。このNb複合材に、押出機を用いた押出加工を施して線径10mmに加工した後、伸線機を用いた伸線加工を繰り返し施して対辺間距離2mmの六角形状に加工し、Nbフィラメント素線を作製した。これらの工程を繰り返し、中心をTaで補強したNbフィラメント素線を126本用意した。
<Nb filament strand>
A Cu pipe having an outer diameter of 32.2 mm and an inner diameter of 29 mm is prepared. An Nb-1 mass% Ta alloy pipe having an outer diameter of 28.6 mm and an inner diameter of 20.4 mm is inserted inside, and further, a Ta pipe with an outer diameter of 20 mm is inserted inside the pipe. A rod was inserted as a reinforcing member to prepare an Nb composite material. This Nb composite material is extruded using an extruder and processed to a wire diameter of 10 mm, and then repeatedly processed using a wire drawing machine to form a hexagonal shape with a distance between opposite sides of 2 mm. Nb filament A strand was prepared. By repeating these steps, 126 Nb filament strands whose center was reinforced with Ta were prepared.
<Sn素線>
外径34mm、内径30.4mmのCuパイプを用意し、このCuパイプに外径30mmの2質量%のTiを含むSn合金材料(Sn−2mass%Ti)を挿入した後、これを減面加工して対辺間距離12.4mmの六角形状に加工し、Sn素線を作製した。このSn素線を1本用意した。
<Sn strand>
A Cu pipe having an outer diameter of 34 mm and an inner diameter of 30.4 mm is prepared. After inserting an Sn alloy material (Sn-2 mass% Ti) containing 2% by mass of Ti with an outer diameter of 30 mm into this Cu pipe, the surface is reduced. Then, it was processed into a hexagonal shape with a distance between opposite sides of 12.4 mm to produce a Sn strand. One Sn strand was prepared.
<サブエレメント素線>
外径33mm、内径30mmのCuパイプを用意し、その内周面に、厚さ0.1mmのTaシートを5周巻きつけた。このTaシートの内部に、Sn素線を配置すると共にSn素線の周りにNb素線を126本配置して複合体を作製した。これを減面加工して対辺間距離3mmのサブエレメント素線とした。
<Sub-element wire>
A Cu pipe having an outer diameter of 33 mm and an inner diameter of 30 mm was prepared, and a Ta sheet having a thickness of 0.1 mm was wound around the inner peripheral surface for 5 turns. Inside this Ta sheet, Sn strands were arranged and 126 Nb strands were arranged around the Sn strands to produce a composite. This was subjected to surface reduction to obtain a sub-element strand having a distance between opposite sides of 3 mm.
<Nb3Sn超電導前駆体線材>
最後に外径38mm、内径32mmのCuパイプ中にサブエレメント素線を85本挿入して多芯線材複合体(多芯ビレット)を作製し、これを減面加工して、線径1mmのNb3Sn超電導前駆体線材を作製した。
<Nb 3 Sn superconducting precursor wire>
Finally, 85 sub-element wires are inserted into a Cu pipe having an outer diameter of 38 mm and an inner diameter of 32 mm to produce a multi-core wire composite (multi-core billet). A 3 Sn superconducting precursor wire was prepared.
このNb3Sn超電導前駆体線材において、Nbフィラメント素線のNbフィラメント部分の断面積に対する補強部材の断面積の比率は0.50であり、Nbフィラメント素線全体に対する補強部材を内包したNbフィラメント素線の本数の比率は1であり、Nb3Sn超電導前駆体線材全体の断面積に対する補強部材の断面積の比率は0.18である。 In this Nb 3 Sn superconducting precursor wire, the ratio of the cross-sectional area of the reinforcing member to the cross-sectional area of the Nb filament portion of the Nb filament element wire is 0.50, and the Nb filament element including the reinforcing member with respect to the entire Nb filament element wire The ratio of the number of wires is 1, and the ratio of the cross-sectional area of the reinforcing member to the cross-sectional area of the entire Nb 3 Sn superconducting precursor wire is 0.18.
[実施例2]
次に、実施例2のNb3Sn超電導前駆体線材について説明する。実施例2のNb3Sn超電導前駆体線材は、図5に示した断面構造を有する。
[Example 2]
Next, the Nb 3 Sn superconducting precursor wire of Example 2 will be described. The Nb 3 Sn superconducting precursor wire of Example 2 has the cross-sectional structure shown in FIG.
<Nbフィラメント素線>
Nbフィラメント素線の作製方法は、実施例1と同様である。外径32.2mm、内径29mmのCuパイプを用意し、その内側に、外径28.6mm、内径20.4mmのNb−1mass%Ta合金パイプを挿入し、さらにその内側に外径20mmのTa棒を補強部材として挿入して、Nb複合材を作製した。このNb複合材を減面加工(伸線)して、対辺間距離3mmの六角形状に加工し、Nbフィラメント素線を作製した。このように、中心をTa補強されたNbフィラメント素線を85本用意した。
<Nb filament strand>
The manufacturing method of the Nb filament strand is the same as that of Example 1. A Cu pipe having an outer diameter of 32.2 mm and an inner diameter of 29 mm is prepared. An Nb-1 mass% Ta alloy pipe having an outer diameter of 28.6 mm and an inner diameter of 20.4 mm is inserted inside, and further, a Ta pipe with an outer diameter of 20 mm is inserted inside the pipe. A rod was inserted as a reinforcing member to prepare an Nb composite material. The Nb composite material was subjected to surface reduction processing (drawing) and processed into a hexagonal shape with a distance between opposite sides of 3 mm to produce an Nb filament strand. In this way, 85 Nb filament strands whose center was reinforced with Ta were prepared.
<Nbサブエレメント素線>
そして、外径35mm、内径32mmのCuパイプにこのNbフィラメント素線を85本挿入し、これを減面加工して対辺間距離2mmの六角形状に加工し、Nbフィラメントの複合線(Nbサブエレメント素線)を得た。
<Nb subelement strand>
Then, 85 Nb filament strands are inserted into a Cu pipe having an outer diameter of 35 mm and an inner diameter of 32 mm, and this is reduced to a hexagonal shape with a distance between opposite sides of 2 mm, and an Nb filament composite wire (Nb subelement) Obtained).
<Sn素線>
Sn素線の作製方法は、実施例1と同様である。外径34mm、内径30.4mmのCuパイプに、外径30mmの2質量%のTiを含むSn合金材料(Sn−2mass%Ti)を挿入し、これを減面加工して対辺間距離2mmの六角形状に加工しSn素線を作製した。このSn素線を37本用意した。
<Sn strand>
The production method of the Sn strand is the same as that in the first embodiment. An Sn alloy material (Sn-2 mass% Ti) containing 2% by mass of Ti having an outer diameter of 30 mm is inserted into a Cu pipe having an outer diameter of 34 mm and an inner diameter of 30.4 mm, and this is reduced to a distance between opposite sides of 2 mm. An Sn strand was fabricated by processing into a hexagonal shape. Thirty-seven Sn wires were prepared.
<Nb3Sn超電導前駆体線材>
外径36mm、内径30mmのCuパイプを用意し、その内周面に、厚さ0.1mmのTaシートを5周巻きつけて拡散バリア層とし、この内部にNbサブエレメント素線126本とSn素線37本をSn素線同士が隣接しないように配置して多芯線材複合体(多芯ビレット)を作製し、これを減面加工して線径1mmのNb3Sn超電導前駆体線材を作製した。
<Nb 3 Sn superconducting precursor wire>
A Cu pipe having an outer diameter of 36 mm and an inner diameter of 30 mm is prepared, and a Ta sheet having a thickness of 0.1 mm is wound around the inner circumferential surface to form a diffusion barrier layer. Inside this, 126 Nb subelement strands and Sn are formed. 37 strands are arranged so that the Sn strands are not adjacent to each other, a multi-core wire composite (multi-core billet) is manufactured, and this is reduced in area to obtain a Nb 3 Sn superconducting precursor wire having a wire diameter of 1 mm. Produced.
このNb3Sn超電導前駆体線材において、Nbフィラメント素線のNbフィラメント部分の断面積に対する補強部材の断面積の比率は0.50であり、Nbフィラメント素線全体に対する補強部材を内包したNbフィラメント素線の本数の比率は1であり、Nb3Sn超電導前駆体線材全体の断面積に対する補強部材の断面積の比率は0.18である。 In this Nb 3 Sn superconducting precursor wire, the ratio of the cross-sectional area of the reinforcing member to the cross-sectional area of the Nb filament portion of the Nb filament element wire is 0.50, and the Nb filament element including the reinforcing member with respect to the entire Nb filament element wire The ratio of the number of wires is 1, and the ratio of the cross-sectional area of the reinforcing member to the cross-sectional area of the entire Nb 3 Sn superconducting precursor wire is 0.18.
[実施例3]
次に、実施例3のNb3Sn超電導前駆体線材について説明する。実施例3のNb3Sn超電導前駆体線材は図6に示した断面構造を有する。そしてNbフィラメント部分の断面積の異なる5種類の試料No.3〜7を以下のように作製した。
[Example 3]
Next, the Nb 3 Sn superconducting precursor wire of Example 3 will be described. The Nb 3 Sn superconducting precursor wire of Example 3 has the cross-sectional structure shown in FIG. And 5 types of sample Nos. 3 to 7 having different cross-sectional areas of the Nb filament part were produced as follows.
<Nbフィラメント素線>
Nbフィラメント素線の作製方法は、実施例1と同様である。
<Nb filament strand>
The manufacturing method of the Nb filament strand is the same as that of Example 1.
試料No.3用として、外径32mm、内径21.2mmのCuパイプを用意し、その内側に、外径20.9mm、内径9.2mmのNb−1mass%Ta合金パイプを挿入し、さらにその内側に外径9mmのTa棒を挿入して、Nb複合材を作製した。 Sample No. 3) Prepare a Cu pipe with an outer diameter of 32 mm and an inner diameter of 21.2 mm, insert an Nb-1 mass% Ta alloy pipe with an outer diameter of 20.9 mm and an inner diameter of 9.2 mm inside, and A Nb composite material was prepared by inserting a Ta rod having a diameter of 9 mm.
試料No.4用として、外径32mm、内径22.2mmのCuパイプを用意し、その内側に外径21.9mm、内径11.2mmのNb−1mass%Ta合金パイプを挿入し、さらにその内側に外径11mmのTa棒を挿入して、Nb複合材を作製した。 Sample No. 4) Prepare a Cu pipe with an outer diameter of 32 mm and an inner diameter of 22.2 mm, insert an Nb-1 mass% Ta alloy pipe with an outer diameter of 21.9 mm and an inner diameter of 11.2 mm inside, and further insert an outer diameter inside An Nb composite material was produced by inserting an 11 mm Ta rod.
試料No.5用として、外径32mm、内径27.1mmのCuパイプを用意し、その内側に外径26.8mm、内径19.2mmのNb−1mass%Ta合金パイプを挿入し、さらにその内側に外径19mmのTa棒を挿入して、Nb複合材を作製した。 Sample No. 5) Prepare a Cu pipe with an outer diameter of 32 mm and an inner diameter of 27.1 mm, insert an Nb-1 mass% Ta alloy pipe with an outer diameter of 26.8 mm and an inner diameter of 19.2 mm inside, and further inside the outer diameter A 19 mm Ta rod was inserted to prepare an Nb composite material.
試料No.6用として、外径32mm、内径29.3mmのCuパイプを用意し、その内側に外径29mm、内径23.2mmのNb−1mass%Ta合金パイプを挿入し、さらにその内側に外径23mmのTa棒を挿入して、Nb複合材を作製した。 Sample No. 6 is prepared with a Cu pipe having an outer diameter of 32 mm and an inner diameter of 29.3 mm, an Nb-1 mass% Ta alloy pipe having an outer diameter of 29 mm and an inner diameter of 23.2 mm is inserted inside, and an outer diameter of 23 mm is further inserted inside thereof. A Ta rod was inserted to prepare an Nb composite material.
試料No.7用として、外径32mm、内径29.3mmのCuパイプを用意し、その内側に外径29mm、内径24.2mmのNb−1mass%Ta合金パイプを挿入し、さらにその内側に外径24mmのTa棒を挿入して、Nb複合材を作製した。 Sample No. 7 is prepared with a Cu pipe having an outer diameter of 32 mm and an inner diameter of 29.3 mm, an Nb-1 mass% Ta alloy pipe having an outer diameter of 29 mm and an inner diameter of 24.2 mm is inserted inside, and further an inner diameter of 24 mm is inserted therein. A Ta rod was inserted to prepare an Nb composite material.
試料No.3〜7のNb複合材を減面加工(伸線)して、対辺間距離1mmの六角形状に加工し、Nbフィラメント素線を作製した。このように、中心をTa補強されたNbフィラメント素線をNo.3〜7の試料それぞれについて816本用意した。 Sample No. The Nb composite material of 3 to 7 was subjected to surface reduction processing (drawing) and processed into a hexagonal shape with a distance between opposite sides of 1 mm to produce an Nb filament strand. In this way, the Nb filament strand whose center is reinforced with Ta is referred to as “No. 816 samples were prepared for each of 3 to 7 samples.
<Sn素線>
Sn素線の作製方法は、実施例1と同様である。外径32mm、内径25.3mmのCuパイプに、外径25mmの2質量%のTiを含むSn合金材料(Sn−2mass%Ti)を挿入し、これを減面加工して対辺間距離1mmの六角形状に加工しSn素線を作製した。このSn素線をNo.3〜7の試料それぞれについて265本用意した。
<Sn strand>
The production method of the Sn strand is the same as that in the first embodiment. An Sn alloy material (Sn-2 mass% Ti) containing 2% by mass of Ti having an outer diameter of 25 mm is inserted into a Cu pipe having an outer diameter of 32 mm and an inner diameter of 25.3 mm, and the surface is reduced to a distance between opposite sides of 1 mm. An Sn strand was fabricated by processing into a hexagonal shape. This Sn strand is No. 265 samples were prepared for each of 3 to 7 samples.
<Nb3Sn超電導前駆体線材>
No.3〜7の試料それぞれについて、外径43mm、内径38mmのCuパイプの内周面に、厚さ0.1mmのTaシートを8周巻きつけて拡散バリア層とし、この内部にNbフィラメント素線816本とSn素線265本をSn素線同士が隣接しないように配置して多芯線材複合体(多芯ビレット)を作製し、これを減面加工して線径1mmのNb3Sn超電導前駆体線材を作製した。
<Nb 3 Sn superconducting precursor wire>
No. For each of the samples 3 to 7, a 0.1 mm-thick Ta sheet is wound around the inner peripheral surface of a Cu pipe having an outer diameter of 43 mm and an inner diameter of 38 mm to form a diffusion barrier layer. A multi-core wire composite (multi-core billet) is prepared by arranging 265 Sn wires and 265 Sn wires so that the Sn wires are not adjacent to each other, and this is subjected to surface reduction processing to produce a Nb 3 Sn superconducting precursor having a wire diameter of 1 mm. A body wire was prepared.
このNb3Sn超電導前駆体線材において、Nbフィラメント素線の断面積に対する補強部材の断面積の比率はNo.3〜7の試料それぞれについて、0.19、0.26、0.51、0.64、0.69であり、Nb3Sn超電導前駆体線材全体の断面積に対する補強部材の断面積の比率はそれぞれ0.04、0.06、0.19、0.28、0.30である。 In this Nb 3 Sn superconducting precursor wire, the ratio of the cross-sectional area of the reinforcing member to the cross-sectional area of the Nb filament strand is No. 1. For each of the samples 3 to 7, they are 0.19, 0.26, 0.51, 0.64, and 0.69, and the ratio of the cross-sectional area of the reinforcing member to the cross-sectional area of the entire Nb 3 Sn superconducting precursor wire is They are 0.04, 0.06, 0.19, 0.28, and 0.30, respectively.
次に、本発明の比較例について説明する。 Next, a comparative example of the present invention will be described.
[比較例1]
図8は、比較例1のNb3Sn超電導前駆体線材8の断面構造を示す。
[Comparative Example 1]
FIG. 8 shows a cross-sectional structure of the Nb 3 Sn
比較例1のNb3Sn超電導前駆体線材8は、従来の補強方法によりNb3Sn超電導前駆体線材を補強したものであり、実施例1とは、Nbフィラメント素線11aの内部に補強部材を配置せずにサブエレメント素線20aを作製し、Nb3Sn超電導前駆体線材の中心近傍のサブエレメント素線20aを補強部材14aで置き換えた構造を有する点で異なる。
The Nb 3 Sn
製造方法は以下の通りである。
まず、外径36mm、内径28.4mmのCuパイプの内側に、外径28mmのNb−1mass%Ta合金棒を挿入してNb複合材を作製し、これを減面加工して対辺間距離3mmの六角形状に加工し、Nbフィラメント素線を作製した。
The manufacturing method is as follows.
First, an Nb-1 mass% Ta alloy rod having an outer diameter of 28 mm is inserted inside a Cu pipe having an outer diameter of 36 mm and an inner diameter of 28.4 mm to produce an Nb composite material. Was processed into a hexagonal shape to prepare an Nb filament strand.
また、外径34mm、内径30.4mmのCuパイプに、外径30mmの2質量%のTiを含むSn合金材料(Sn−2mass%Ti)を挿入し、これを減面加工して対辺間距離15mmの六角形状に加工し、Sn素線を作製した。 In addition, an Sn alloy material (Sn-2 mass% Ti) containing 2% by mass of Ti having an outer diameter of 30 mm is inserted into a Cu pipe having an outer diameter of 34 mm and an inner diameter of 30.4 mm, and this is reduced to reduce the distance between opposite sides. A Sn strand was fabricated by processing into a 15 mm hexagonal shape.
次に、外径33mm、内径30mmのCuパイプの内周面に、厚さ0.1mmのTaシートを5周巻きつけて拡散バリア層を設け、この内部にSn素線1本を配置すると共に、対辺間距離15mmのSn素線の周りに対辺間距離2mmのNbフィラメント素線を102本配置して複合体を作製した。 Next, a diffusion barrier layer is provided on the inner circumferential surface of a Cu pipe having an outer diameter of 33 mm and an inner diameter of 30 mm by wrapping a Ta sheet having a thickness of 0.1 mm for five turns, and a single Sn wire is disposed therein. A composite was prepared by arranging 102 Nb filament strands having a distance between opposite sides of 2 mm around a Sn strand having a distance between opposite sides of 15 mm.
さらに、Ta棒を減面加工により対辺間距離2mmの六角形状に加工し、Ta補強部材を作製した。 Further, the Ta bar was processed into a hexagonal shape with a distance between opposite sides of 2 mm by a surface reduction process to produce a Ta reinforcing member.
その後、外径38mm、内径32mmのCuパイプを用意し、その中心部にTa補強部材を19本配置し、Ta補強部材の周囲に複合体を66本配置し、これを減面加工して線径1mmのNb3Sn超電導前駆体線材を作製した。 Thereafter, a Cu pipe having an outer diameter of 38 mm and an inner diameter of 32 mm is prepared, 19 Ta reinforcing members are arranged at the center thereof, 66 composites are arranged around the Ta reinforcing member, and this is subjected to surface reduction processing to obtain a wire. An Nb 3 Sn superconducting precursor wire having a diameter of 1 mm was produced.
比較例1のNb3Sn超電導前駆体線材8において、Nb3Sn超電導前駆体線材全体の断面積に対する補強部材の断面積の比率は0.15である。
In the Nb 3 Sn
[比較例2]
図9は、比較例2のNb3Sn超電導前駆体線材9の断面構造を示す。
[Comparative Example 2]
FIG. 9 shows a cross-sectional structure of the Nb 3 Sn
比較例2のNb3Sn超電導前駆体線材9は、従来の補強方法によりNb3Sn超電導前駆体線材を補強したものであり、実施例2とは、Nbフィラメント素線11aの内部に補強部材を配置せずにNbサブエレメント素線22aを作製し、Nb3Sn超電導前駆体線材の中心近傍のNbサブエレメント素線22aおよびSn素線15を補強部材14aで置き換えた構造を有する点で異なる。
The Nb 3 Sn
製造方法は以下の通りである。まず、外径36mm、内径28.4mmのCuパイプの内側に、外径28mmのNb−1mass%Ta合金棒を挿入してNb複合材を作製し、これを減面加工して対辺間距離3mmの六角形状に加工し、Nbフィラメント素線を作製した。 The manufacturing method is as follows. First, an Nb-1 mass% Ta alloy rod having an outer diameter of 28 mm is inserted inside a Cu pipe having an outer diameter of 36 mm and an inner diameter of 28.4 mm to produce an Nb composite material. Was processed into a hexagonal shape to prepare an Nb filament strand.
その後、外径36mm、内径32mmのCuパイプにNbフィラメント素線を85本挿入し、これを減面加工して対辺間距離2mmの六角形状に加工し、Nbサブエレメント素線を作製した。 Thereafter, 85 Nb filament strands were inserted into a Cu pipe having an outer diameter of 36 mm and an inner diameter of 32 mm, and the surface of the Nb filament strands was reduced to a hexagonal shape with a distance between opposite sides of 2 mm, thereby producing an Nb subelement strand.
また、外径34mm、内径30.4mmのCuパイプに外径30mmの2質量%のTiを含むSn合金材料(Sn−2mass%Ti)を挿入し、これを減面加工して対辺間距離2mmの六角形状に加工し、Sn素線を作製した。 In addition, an Sn alloy material (Sn-2 mass% Ti) containing 2% by mass of Ti having an outer diameter of 30 mm is inserted into a Cu pipe having an outer diameter of 34 mm and an inner diameter of 30.4 mm, and this is subjected to surface reduction to provide a distance between opposite sides of 2 mm. Was processed into a hexagonal shape to produce a Sn strand.
その後、外径36mm、内径30mmのCuパイプの内面に、厚さ0.1mmのTaシートを5周巻きつけて拡散バリア層とし、この内部の中心部分に対辺間距離2mmのTa補強部材を37芯配置し、その周囲に対辺間距離2mmの六角Nb複合線84本と対辺間距離2mmのSn素線42本を、Sn素線同士が隣接しないように配置して多芯線材複合体を作製し、これを減面加工して線径1mmのNb3Sn超電導前駆体線材を作製した。 Thereafter, a Ta sheet having a thickness of 0.1 mm is wound around the inner surface of a Cu pipe having an outer diameter of 36 mm and an inner diameter of 30 mm to form a diffusion barrier layer, and a Ta reinforcing member having a distance between opposite sides of 2 mm is formed at the center of the inner portion. The core is arranged, and 84 hexagonal Nb composite wires with a distance between opposite sides of 2 mm and 42 Sn strands with a distance between opposite sides of 2 mm are arranged so that the Sn strands are not adjacent to each other to produce a multi-core wire composite. Then, this was subjected to surface reduction processing to produce a Nb 3 Sn superconducting precursor wire having a wire diameter of 1 mm.
比較例2のNb3Sn超電導前駆体線材9において、Nb3Sn超電導前駆体線材全体の断面積に対する補強部材の断面積の比率は0.14である。
In the Nb 3 Sn
[比較例3]
図10は、比較例3のNb3Sn超電導前駆体線材10の断面構造を示す。
[Comparative Example 3]
FIG. 10 shows a cross-sectional structure of the Nb 3 Sn
比較例3のNb3Sn超電導前駆体線材10は、従来の補強方法によりNb3Sn超電導前駆体線材を補強したものであり、実施例3とは、Nbフィラメント素線11aの内部に補強部材を配置せず、Nb3Sn超電導前駆体線材の中心近傍のNbフィラメント素線11aおよびSn素線15を補強部材14aで置き換えた構造を有する点で異なる。
The Nb 3 Sn
製造方法は以下の通りである。まず、外径38mm、内径27.4mmのCuパイプの内側に、外径27mmのNb−1mass%Ta合金棒を挿入してNb複合材を作製し、これを減面加工して対辺間距離1mmの六角形状に加工し、Nbフィラメント素線を作製した。 The manufacturing method is as follows. First, an Nb-1 mass% Ta alloy rod having an outer diameter of 27 mm is inserted inside a Cu pipe having an outer diameter of 38 mm and an inner diameter of 27.4 mm to produce an Nb composite material. Was processed into a hexagonal shape to prepare an Nb filament strand.
また、外径36mm、内径30.4mmのCuパイプに、外径30mmの2質量%のTiを含むSn合金材料(Sn−2mass%Ti)を挿入し、これを減面加工して対辺間距離1mmの六角形状に加工しSn素線を作製した。 In addition, an Sn alloy material (Sn-2 mass% Ti) containing 2% by mass of Ti having an outer diameter of 30 mm is inserted into a Cu pipe having an outer diameter of 36 mm and an inner diameter of 30.4 mm, and the surface is processed to reduce the distance between opposite sides. A Sn strand was fabricated by processing into a 1 mm hexagonal shape.
しかる後、外径43mm、内径38mmのCuパイプの内周面に、厚さ0.1mmのTaシートを8周巻きつけて拡散バリア層とし、この内部の中心部に対辺間距離1mmのTa補強部材を271本配置し、その周囲に対辺間距離1mmのNbフィラメント素線540本と対辺間距離1mmのSn素線270本をSn素線同士が隣接しないように配置して多芯線材複合体を作製し、これを減面加工して線径1mmのNb3Sn超電導前駆体線材を作製した。
比較例3のNb3Sn超電導前駆体線材10において、Nb3Sn超電導前駆体線材全体の断面積に対する補強部材の断面積の比率は0.17である。
After that, 8 sheets of 0.1 mm thick Ta sheet is wound around the inner peripheral surface of a Cu pipe having an outer diameter of 43 mm and an inner diameter of 38 mm to form a diffusion barrier layer. 271 members are arranged, 540 Nb filament strands with a distance of 1 mm across the circumference and 270 Sn strands with a distance of 1 mm across the circumference are arranged so that the Sn strands are not adjacent to each other, and a multi-core wire composite Was manufactured, and an Nb 3 Sn superconducting precursor wire having a wire diameter of 1 mm was manufactured by reducing the surface.
In the Nb 3 Sn
[比較例4]
図11は、比較例4のNb3Sn超電導前駆体線材100の断面構造を示す。
[Comparative Example 4]
FIG. 11 shows a cross-sectional structure of the Nb 3 Sn
比較例4のNb3Sn超電導前駆体線材100は、従来の補強方法によりNb3Sn超電導前駆体線材を補強したものであり、比較例1〜3とは、多芯線材の中にNbフィラメント素線11aおよびSn素線15を配置し、補強部材14aの周囲を被覆Cu層13aで被覆した補強線材14’同士が隣接しないように分散して配置した構造を有する点で異なる。補強部材を分散配置した点では実施例1と同様であるが、補強部材がCuの部材、あるいはCuを介してSnフィラメントと接していることが本発明と異なる点である。
The Nb 3 Sn
製造方法は以下の通りである。まず、外径38mm、内径27.4mmのCuパイプの内側に、外径27mmのNb−1mass%Ta合金棒を挿入してNb複合材を作製し、これを減面加工して対辺間距離1mmの六角形状に加工し、Nbフィラメント素線を作製した。また、外径36mm、内径30.4mmのCuパイプに、外径30mmの2質量%のTiを含むSn合金材料(Sn−2mass%Ti)を挿入し、これを減面加工して対辺間距離1mmの六角形状に加工しSn素線を作製した。さらに、外径35mm、内径30.4mmのCuパイプに、外径30mmのTa補強部材を挿入し、これを減面加工して対辺間距離1mmの六角形状に加工して補強部材を作製した。 The manufacturing method is as follows. First, an Nb-1 mass% Ta alloy rod having an outer diameter of 27 mm is inserted inside a Cu pipe having an outer diameter of 38 mm and an inner diameter of 27.4 mm to produce an Nb composite material. Was processed into a hexagonal shape to prepare an Nb filament strand. In addition, an Sn alloy material (Sn-2 mass% Ti) containing 2% by mass of Ti having an outer diameter of 30 mm is inserted into a Cu pipe having an outer diameter of 36 mm and an inner diameter of 30.4 mm, and the surface is processed to reduce the distance between opposite sides. A Sn strand was fabricated by processing into a 1 mm hexagonal shape. Furthermore, a Ta reinforcing member having an outer diameter of 30 mm was inserted into a Cu pipe having an outer diameter of 35 mm and an inner diameter of 30.4 mm, and this was reduced in surface and processed into a hexagonal shape with a distance between opposite sides of 1 mm to produce a reinforcing member.
その後、外径43mm、内径38mmのCuパイプの内周面に、厚さ0.1mmのTaシートを8周巻きつけて拡散バリア層とし、この内部に対辺間距離がそれぞれ1mmのNbフィラメント素線558本とSnフィラメント用素線265本とTa補強部材258本とを、Sn素線同士が隣接しないように、また補強部材同士が連接しないように配置して多芯線材複合体を作製し、これを減面加工して線径1mmのNb3Sn超電導前駆体線材を作製した。
比較例4のNb3Sn超電導前駆体線材100において、Nb3Sn超電導前駆体線材全体の断面積に対する補強部材の断面積の比率は0.16である。
Thereafter, a Ta sheet having a thickness of 0.1 mm is wound around the inner peripheral surface of a Cu pipe having an outer diameter of 43 mm and an inner diameter of 38 mm to form a diffusion barrier layer, and an Nb filament strand having a distance between opposite sides of 1 mm is formed inside the Ta barrier sheet. 558, Sn filament strands 265, and Ta reinforcing members 258 are arranged so that the Sn strands are not adjacent to each other and the reinforcing members are not connected to each other to produce a multi-core wire composite, This was surface-reduced to produce an Nb 3 Sn superconducting precursor wire with a wire diameter of 1 mm.
In the Nb 3 Sn
作製した各Nb3Sn超電導前駆体線材の補強部材の配置、補強部材の断面積の比率と、伸線加工性の評価、およびNb3Sn超電導線材の臨界電流密度Jcの測定結果を表1に示す。 Table 1 shows the measurement results of the arrangement of the reinforcing members of each Nb 3 Sn superconducting precursor wire, the ratio of the cross-sectional area of the reinforcing member, the drawing workability, and the critical current density Jc of the Nb 3 Sn superconducting wire. Show.
線径1mmに伸線した実施例1〜3および比較例1〜4のNb3Sn超電導前駆体線材試料について顕微鏡を用いて断面観察を行い、伸線加工における断面均一性を評価した。比較例1〜4の試料No.8〜11は多芯線材の中心に配置した補強部材に隣接するNbフィラメントおよびSnフィラメントの形状は補強部材の外周に沿って扁平な形状に変形し、また各フィラメントは大きさが大きいものと小さいものが混在し、フィラメント断面積のばらつきが見られた。これに対して実施例1〜3で作製したNo.1〜7の試料では各NbフィラメントおよびSnフィラメントとも当初多芯組み込みを行った断面配置と同様に規則正しく整列し、また各フィラメントの形状も一方向に変形したような形状ではなく円形に近い形状を示しており、大きさも均一にそろっていて、フィラメントの断面積のばらつきも小さいことがわかった。実施例では補強部材をNbフィラメントの中心に配置したことにより、強度の大きな補強部材と強度の小さなSnフィラメントあるいはCuなどの部材を直接接触させずに配置したことにより、均一な加工性が得られたものである。
The Nb 3 Sn superconducting precursor wire samples of Examples 1 to 3 and Comparative Examples 1 to 4 drawn to a wire diameter of 1 mm were cross-sectional observed using a microscope, and the cross-sectional uniformity in wire drawing was evaluated. Samples Nos. 8 to 11 in Comparative Examples 1 to 4 have shapes of Nb filaments and Sn filaments adjacent to the reinforcing member arranged at the center of the multi-core wire, and are deformed into flat shapes along the outer periphery of the reinforcing member. Large and small filaments were mixed, and variation in filament cross-sectional area was observed. On the other hand, No. produced in Examples 1-3. In the
次に、各試料の超電導特性について調べるために、上記のようにして作製した実施例1〜3および比較例1〜4の線径1mmのNb3Sn超電導前駆体線材の一部を500℃×100時間+700℃×100時間の条件で熱処理し、得られたNb3Sn超電導線材から、臨界電流密度Jcを測定するための測定試料を作製した。作製した測定試料を液体ヘリウム中(温度4.2K)で12Tの磁場を加えた状態で通電し、臨界電流値の測定を行った。測定試料は各実施例、比較例とも2本ずつ用意し、1本は熱処理後そのままで歪を加えずに測定し、もう1本は熱処理後に直径250mmの曲率で曲げた状態で測定を行った。なお、曲げ歪εは線材の直径をd、曲げの曲率の直径をDとすると図7で説明されるようにε=d/Dで表され、線径1mmの線材を直径250mmの曲率で曲げると、約0.4%の曲げ歪となる。 Next, in order to investigate the superconducting characteristics of each sample, a part of the Nb 3 Sn superconducting precursor wire having a wire diameter of 1 mm in Examples 1 to 3 and Comparative Examples 1 to 4 prepared as described above was placed at 500 ° C. A measurement sample for measuring the critical current density Jc was prepared from the Nb 3 Sn superconducting wire obtained by heat treatment under conditions of 100 hours + 700 ° C. × 100 hours. The prepared measurement sample was energized in liquid helium (temperature 4.2 K) with a 12 T magnetic field applied, and the critical current value was measured. Two measurement samples were prepared for each of the examples and comparative examples. One sample was measured without any distortion after heat treatment, and the other sample was measured with a curvature of 250 mm in diameter after heat treatment. . The bending strain ε is expressed as ε = d / D as described in FIG. 7 where d is the diameter of the wire and D is the diameter of the bending curvature, and a wire having a diameter of 1 mm is bent with a curvature of 250 mm. And a bending strain of about 0.4%.
測定した臨界電流値をNb3Sn超電導前駆体線材におけるCu被覆層を除いたNbフィラメント素線の断面積で除して、Nb3Snフィラメント断面積あたりの臨界電流密度Jcを求めた。 The measured critical current value was divided by the cross-sectional area of the Nb filament strand excluding the Cu coating layer in the Nb 3 Sn superconducting precursor wire to determine the critical current density Jc per Nb 3 Sn filament cross-sectional area.
表1において、「各フィラメント中心」、「多芯線材中心」及び「分散配置」は、それぞれ、補強部材(補強線材)が、各Nbフィラメント素線の中心に配置される場合、多芯線材の中心部分に配置される場合、及び多芯線材の全体に分散して配置される場合をいう。「Nb断面積比率」とは、線材(Nb3Sn超電導前駆体線材)全体の断面積に占めるNbフィラメントの断面積の割合である。「線材内断面積比率」とは、Nb3Sn超電導前駆体線材全体の断面における補強部材の断面積の比率である。「Nb内断面積比率」とは、Nbフィラメントの断面積(Nb又はNb合金層の断面積と補強部材の断面積の合計)における補強部材の断面積の割合である。「加工性」について、「○」は加工中に断線が発生せず加工が容易であることを示し、「△」は加工中に断線が1回以上発生して加工がやや困難であることを示す。「臨界電流密度Jc」については、曲げ歪み0.4%でのJc値をJc1とし、曲げ歪みなしでのJc値をJc0として、曲げ歪みのない場合に対する曲げ歪みのある場合の特性比率(Jc比率)としてJc1/Jc0を計算した。
Nb3Sn超電導線材に歪を加えていないとき、実施例1〜3の試料のうちNo.1〜5の試料のJc0の値は約2200A/mm2(12T)であった。これに対して比較例1〜4の試料8〜11のJc0はおよそ2000〜2100A/mm2(12T)であった。実施例1〜3の試料1〜5は、Nb3Sn超電導前駆体線材全体の断面積に対する補強部材の断面積の比率はそれぞれ比較例1〜3とほぼ同等であったが、いずれも比較例より高いJc0の値を示した。従来技術による比較例1〜4のNb3Sn超電導線材では、Nb3Snフィラメントの中心に未反応Nbが残っているためにその分が超電導とならずにJc0の値が低くなり、これに対して実施例1〜3のNb3Sn超電導線材では、本来超電導にならない部分を含むNb3Snフィラメントの中心部分に補強部材を配置したために高いJc0の値を示したと考えられる。
When no strain was applied to the Nb 3 Sn superconducting wire, no. The values of Jc 0 of the
また、実施例3の試料6、7のJc0の値はそれぞれ1970、1010A/mm2(12T)であり、試料No.1〜5より低いJc特性であった。試料6、7は補強部材の比率をそれぞれ0.64、0.69まで増加したために、その分Nb又はNb合金層が少なくなり(表1のNb断面積比率がそれぞれ0.16および0.13)、Jc特性が低下したものである。この結果から、Nbフィラメント素線の断面における補強部材の断面積比率は、より好ましくは0.51以下であることがわかる。また、表1に示したようにNb3Sn超電導前駆体線材全体の断面に対する補強部材の断面積比率が0.19を超えるとJc特性の低下が起こることがわかる。この結果から、Nb3Sn超電導前駆体線材全体の断面に対する補強部材の断面積比率は、より好ましくは0.19以下であることがわかる。
Moreover, the values of Jc 0 of the
一方、0.4%の曲げ歪みを加えた試料では、実施例、比較例の試料とも、歪みのないときよりJc値が低下した。Jc比率(Jc1/Jc0)について、実施例1〜3の試料1、2、4、5、6、7では約0.8程度であった。これに対し比較例1〜3の試料8〜10では0.7程度であり、本発明のNb3Sn超電導線材は従来のNb3Sn超電導線材より曲げ歪みが加わった状態での特性劣化が小さいことを確認した。ただし、比較例4の試料11ではJc比率(Jc1/Jc0)はおよそ0.8に近い値であり、本実施例1〜3と同等の曲げ歪み特性を示しており、補強部材を分散配置した効果と考えられる。しかし、比較例4は曲げ歪みのないときのJc0は実施例1〜3のJc0より低い値となっている。これは、比較例1〜3と同様にNb3Sn超電導線材に未反応のNbが残っていることが理由であると考えられる。従って、実施例1〜3は、曲げ歪みのないときのJc値(Jc0)を向上する点、及び曲げ歪みを加えたときのJc値(Jc1)の低下を低減する点の両方に効果があることを示す。
On the other hand, in the sample to which 0.4% bending strain was applied, the Jc value was lower in both the examples and the comparative samples than when there was no strain. The Jc ratio (Jc 1 / Jc 0 ) was about 0.8 in
曲げ歪みによるJc特性の低下について図7を参照して考察すると、直径dのNb3Sn超電導線材を曲率直径Dで曲げた場合、Nb3Sn超電導線材断面のうち、曲げの外周側では線材が伸びてε=d/Dの引張り歪が発生し、曲げの内周側では反対にε=−d/Dの圧縮歪が発生する。Nb3Sn超電導線材の中心は中立の位置であり、曲げによる歪は発生しない。比較例8〜10において、Nb3Sn超電導線材の曲げ歪みによるJcの特性劣化が大きいのは、複合化した補強部材が歪の中立位置に近いために、個々のフィラメントの補強部材としての役割を果たしていないためであると考えられる。これに対して、実施例1〜3において、Nb3Sn超電導線材の曲げ歪みによるJcの特性劣化が小さいのは、個々のフィラメントが補強されているためであると考えられる。 Considering the deterioration of the Jc characteristics due to bending strain, with reference to FIG. 7, when a Nb 3 Sn superconducting wire having a diameter d is bent with a curvature diameter D, the wire is on the outer periphery side of the bending in the Nb 3 Sn superconducting wire cross section. Elongation causes a tensile strain of ε = d / D, and conversely, a compressive strain of ε = −d / D occurs on the inner peripheral side of the bending. The center of the Nb 3 Sn superconducting wire is a neutral position, and no distortion due to bending occurs. In Comparative Examples 8 to 10, the characteristic deterioration of Jc due to the bending strain of the Nb 3 Sn superconducting wire is large because the combined reinforcing member is close to the neutral position of the strain, and thus plays a role as a reinforcing member for each filament. This is probably because it has not been fulfilled. On the other hand, in Examples 1 to 3, it is considered that the characteristic deterioration of Jc due to the bending strain of the Nb 3 Sn superconducting wire is small because the individual filaments are reinforced.
実施例3の試料のうち、試料3ではJc1/Jc0は0.69であり、曲げ歪みによるJc特性の低下が大きかった。これは、試料3ではNb3Sn超電導前駆体線材全体の断面に対する補強部材の断面積比率が0.04と小さいことに起因する。試料4では断面積比率が0.06であり、Jc1/Jc0の値は0.8近くまで増加した。この結果より、Nb3Sn超電導前駆体線材全体の断面に対する補強部材の断面積比率は、より好ましくは0.06以上であることが明らかになった。 Among the samples of Example 3, in Sample 3, Jc 1 / Jc 0 was 0.69, and the decrease in Jc characteristics due to bending strain was large. This is because, in the sample 3, the cross-sectional area ratio of the reinforcing member with respect to the entire cross section of the Nb 3 Sn superconducting precursor wire is as small as 0.04. In sample 4, the cross-sectional area ratio was 0.06, and the value of Jc 1 / Jc 0 increased to nearly 0.8. From this result, it became clear that the cross-sectional area ratio of the reinforcing member to the entire cross section of the Nb 3 Sn superconducting precursor wire is more preferably 0.06 or more.
上述の結果とあわせ、Nb3Sn超電導前駆体線材全体の断面に対する補強部材の断面積比率は0.04以上0.30以下であり、好ましくは、下限値が0.06であり、また、上限値が0.19である。 Combined with the above results, the cross-sectional area ratio of the reinforcing member to the entire cross section of the Nb 3 Sn superconducting precursor wire is 0.04 or more and 0.30 or less, preferably the lower limit is 0.06, and the upper limit The value is 0.19.
なお、本発明は上記実施の形態及び上記実施例に限られず、本発明の要旨の範囲内で種々の変更が可能である。 Note that the present invention is not limited to the above-described embodiments and examples, and various modifications can be made within the scope of the gist of the present invention.
1,5,6,8,9,10,100 Nb3Sn超電導前駆体線材
11,11a Nbフィラメント素線
12 Nb又はNb合金層
13 Cu被覆層
14,14a 補強部材
15 Sn素線
16 Snフィラメント
17 Cu被覆層
18 拡散バリア層
19 Cu被覆層
20,20a サブエレメント素線
21 安定化Cu層
22,22a Nbサブエレメント素線
1, 5, 6, 8, 9, 10, 100 Nb 3 Sn
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013006249A JP2014137917A (en) | 2013-01-17 | 2013-01-17 | Nb3Sn SUPERCONDUCTOR PRECURSOR WIRE, Nb FILAMENT SINGLE WIRE, Nb3Sn SUPERCONDUCTOR WIRE AND MANUFACTURING METHOD THEREOF |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013006249A JP2014137917A (en) | 2013-01-17 | 2013-01-17 | Nb3Sn SUPERCONDUCTOR PRECURSOR WIRE, Nb FILAMENT SINGLE WIRE, Nb3Sn SUPERCONDUCTOR WIRE AND MANUFACTURING METHOD THEREOF |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014137917A true JP2014137917A (en) | 2014-07-28 |
Family
ID=51415316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013006249A Pending JP2014137917A (en) | 2013-01-17 | 2013-01-17 | Nb3Sn SUPERCONDUCTOR PRECURSOR WIRE, Nb FILAMENT SINGLE WIRE, Nb3Sn SUPERCONDUCTOR WIRE AND MANUFACTURING METHOD THEREOF |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014137917A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017142898A (en) * | 2016-02-08 | 2017-08-17 | 株式会社神戸製鋼所 | PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD AND METHOD FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD |
WO2018048826A1 (en) | 2016-09-06 | 2018-03-15 | H.C. Starck Inc. | Diffusion barriers for metallic superconducting wires |
JP2018529180A (en) * | 2015-07-14 | 2018-10-04 | エイチ.シー. スターク インコーポレイテッド | Manufacture of reinforced superconducting wires |
CN110121791A (en) * | 2016-11-03 | 2019-08-13 | 梅维昂医疗系统股份有限公司 | Superconducting coil construction |
KR20200106221A (en) * | 2018-03-07 | 2020-09-11 | 에이치. 씨. 스타아크 아이앤씨 | Diffusion barrier for metallic superconducting wires |
US11791066B2 (en) | 2016-09-06 | 2023-10-17 | Materion Newton Inc. | Diffusion barriers for metallic superconducting wires |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001236836A (en) * | 2000-02-21 | 2001-08-31 | Hitachi Cable Ltd | Nb3Sn SUPERCONDUCTING WIRE MATERIAL |
-
2013
- 2013-01-17 JP JP2013006249A patent/JP2014137917A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001236836A (en) * | 2000-02-21 | 2001-08-31 | Hitachi Cable Ltd | Nb3Sn SUPERCONDUCTING WIRE MATERIAL |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018529180A (en) * | 2015-07-14 | 2018-10-04 | エイチ.シー. スターク インコーポレイテッド | Manufacture of reinforced superconducting wires |
JP2017142898A (en) * | 2016-02-08 | 2017-08-17 | 株式会社神戸製鋼所 | PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD AND METHOD FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD |
JP7004700B2 (en) | 2016-09-06 | 2022-02-04 | エイチ.シー. スターク インコーポレイテッド | Diffusion barrier for metal superconducting wires |
WO2018048826A1 (en) | 2016-09-06 | 2018-03-15 | H.C. Starck Inc. | Diffusion barriers for metallic superconducting wires |
US11791066B2 (en) | 2016-09-06 | 2023-10-17 | Materion Newton Inc. | Diffusion barriers for metallic superconducting wires |
EP3510605B1 (en) * | 2016-09-06 | 2022-11-16 | H.C. Starck Inc. | Diffusion barriers for metallic superconducting wires |
JP2019537189A (en) * | 2016-09-06 | 2019-12-19 | エイチ.シー. スターク インコーポレイテッド | Diffusion barrier for metal superconducting wires |
JP7058646B2 (en) | 2016-11-03 | 2022-04-22 | メビオン・メディカル・システムズ・インコーポレーテッド | Superconducting coil configuration |
JP2021114610A (en) * | 2016-11-03 | 2021-08-05 | メビオン・メディカル・システムズ・インコーポレーテッド | Superconducting coil configuration |
JP2019536266A (en) * | 2016-11-03 | 2019-12-12 | メビオン・メディカル・システムズ・インコーポレーテッド | Superconducting coil configuration |
CN110121791A (en) * | 2016-11-03 | 2019-08-13 | 梅维昂医疗系统股份有限公司 | Superconducting coil construction |
JP2021516428A (en) * | 2018-03-07 | 2021-07-01 | エイチ.シー. スターク インコーポレイテッド | Diffusion barrier for metal superconducting wires |
EP3762950A4 (en) * | 2018-03-07 | 2021-11-24 | H. C. Starck Inc | Diffusion barriers for metallic superconducting wires |
CN111819639A (en) * | 2018-03-07 | 2020-10-23 | H.C.施塔克公司 | Diffusion barrier for metallic superconducting wire |
KR20200106221A (en) * | 2018-03-07 | 2020-09-11 | 에이치. 씨. 스타아크 아이앤씨 | Diffusion barrier for metallic superconducting wires |
KR102423559B1 (en) * | 2018-03-07 | 2022-07-20 | 에이치. 씨. 스타아크 아이앤씨 | Diffusion barrier for metallic superconducting wires |
JP7110372B2 (en) | 2018-03-07 | 2022-08-01 | エイチ.シー. スターク インコーポレイテッド | Diffusion barrier for metallic superconducting wires |
CN111819639B (en) * | 2018-03-07 | 2023-10-24 | 万腾荣牛顿公司 | Diffusion barrier for metal superconducting wires |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5588303B2 (en) | Precursor of Nb3Sn superconducting wire and Nb3Sn superconducting wire using the same | |
WO2013154187A1 (en) | Compound superconductive wire and method for manufacturing same | |
JP2014137917A (en) | Nb3Sn SUPERCONDUCTOR PRECURSOR WIRE, Nb FILAMENT SINGLE WIRE, Nb3Sn SUPERCONDUCTOR WIRE AND MANUFACTURING METHOD THEREOF | |
JP2016195100A (en) | SEMI-COMPLETE WIRE MATERIAL HAVING PIT ELEMENT FOR SUPERCONDUCTING WIRE MATERIAL CONTAINING Nb3Sn AND METHOD FOR MANUFACTURING SEMI-COMPLETE WIRE MATERIAL | |
JP2013062239A (en) | Nb3Sn SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURING THE SAME | |
JP4227143B2 (en) | Nb3Sn superconducting wire and precursor therefor | |
JP2009211880A (en) | Nb3Sn SUPERCONDUCTING WIRE ROD MADE BY USING INTERNAL Sn METHOD, AND PRECURSOR THEREFOR | |
JP6585519B2 (en) | Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire | |
JP6719141B2 (en) | Nb3Sn superconducting wire manufacturing method, precursor for Nb3Sn superconducting wire, and Nb3Sn superconducting wire using the same | |
JP5438531B2 (en) | Manufacturing method of Nb3Sn superconducting wire and Nb3Sn superconducting wire | |
JP2007214002A (en) | Method of manufacturing nb3sn superconductive wire rod and precursor for it | |
JP4163719B2 (en) | Powder method Nb3Sn superconducting wire precursor and manufacturing method | |
JP2014072039A (en) | PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD | |
JP2014143056A (en) | Precursor for superconducting wire rod and superconducting wire rod | |
JP2019186167A (en) | PRECURSOR OF Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD | |
JP2016126950A (en) | Multicore superconducting wire material | |
JP5805469B2 (en) | Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire | |
JP5661582B2 (en) | Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire | |
JP2007128686A (en) | Nb3Sn SUPERCONDUCTING WIRE MATERIAL MANUFACTURED BY INSIDE DIFFUSION METHOD | |
JP5164815B2 (en) | Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire | |
JP3754522B2 (en) | Nb (3) Sn superconducting wire | |
JP4742843B2 (en) | Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof | |
JP5848677B2 (en) | Superconducting wire precursor, superconducting wire, and method of manufacturing superconducting wire | |
JP4476755B2 (en) | Method for producing Nb3Sn superconducting wire and composite wire therefor | |
JP4687438B2 (en) | Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20141128 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141224 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150522 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160202 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160802 |