Nothing Special   »   [go: up one dir, main page]

JP2014197154A - 光操作装置 - Google Patents

光操作装置 Download PDF

Info

Publication number
JP2014197154A
JP2014197154A JP2013073527A JP2013073527A JP2014197154A JP 2014197154 A JP2014197154 A JP 2014197154A JP 2013073527 A JP2013073527 A JP 2013073527A JP 2013073527 A JP2013073527 A JP 2013073527A JP 2014197154 A JP2014197154 A JP 2014197154A
Authority
JP
Japan
Prior art keywords
light
optical
input
cores
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013073527A
Other languages
English (en)
Inventor
賢宜 木村
Yoshitaka Kimura
賢宜 木村
加木 信行
Nobuyuki Kagi
信行 加木
小栗 淳司
Junji Oguri
淳司 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2013073527A priority Critical patent/JP2014197154A/ja
Publication of JP2014197154A publication Critical patent/JP2014197154A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】光操作装置における多ポート化に伴うファイバの取り回しの困難性を回避しつつ、小型化して設置スペースを節約するとともに、高コスト化を抑制すること。
【解決手段】光スイッチ装置は、1本のマルチコア光ファイバを用いたマルチコアファイバアレイと、マルチコアファイバアレイに対して順次配置された、コリメータレンズと、アナモルフィックプリズムペアと、分散素子としての回折格子と、集光素子としての集光レンズと、偏波分離素子と、偏波回転素子と、光スイッチとしての空間光変調器とを備える。マルチコア光ファイバ1における複数のコア1aを波長多重信号光OSの入出力ポートとして用い、コア1aaを入力ポート、コア1ab〜1aeを出力ポートとして用いて、入出力ポートに共通した同一のコリメータレンズ12を用いる。
【選択図】図2A

Description

本発明は、光操作装置に関する。
従来、波長多重方式とパス管理の技術とを組み合わせて、高速で大容量の伝送ネットワークを運用するための技術であるROADM(Reconfigurable Optical Add-Drop Multiplexer)が知られている。そして、このRODAMにおけるより柔軟な運営のために、波長選択スイッチ(Wavelength Selective Switch :WSS)の多ポート化が求められている。
特許文献1には、1つのポートごとに1つのレンズが割り当てられており、光をコリメートしている構成が記載されている。すなわち、特許文献1に記載された波長選択光スイッチ装置は、入力側のn個のポートと、出力側の1個の共通のポートと、各ポートの入出力口ごとに備えられたn個のコリメータレンズと、回折格子と、集光光学系としてのレンズと、マイクロミラーとから構成されている。
特開2006−133336号公報
また、特許文献1に記載のWSSにおいて、入出力ポートとしてファイバアレイが使用されている。ところが、多ポート化に伴ってファイバの本数が増加すると、ファイバの取り回しが困難になるという問題がある。さらに、各ポートの入出力口にそれぞれコリメータレンズが設けられているため、多ポート化に伴ってコリメータレンズも増加させる必要が生じることから、設置スペースの増大および高コスト化を招くという問題がある。
本発明は、上記に鑑みてなされたものであって、その目的は、光操作装置における多ポート化に伴うファイバの取り回しの困難性を回避しつつ、小型化して設置スペースを節約するとともに、高コスト化を抑制できる光操作装置を提供することにある。
上述した課題を解決し、上記目的を達成するために、本発明に係る光操作装置は、外部から光が入力される、または外部に光を出力する複数のポートが所定の配列方向に沿って配列した光入出力ポートと、光入出力ポートのいずれかのポートから入力した光の光路を切り換えて光入出力ポートの他のいずれかのポートに向けて出力する角度操作器と、光入出力ポートのいずれかのポートから入力した光をコリメートするコリメート手段と、光入出力ポートと角度操作器との間に配置され、光入出力ポートと角度操作器とを光学的に結合させる集光レンズ系と、を備えた光操作装置において、光入出力ポートが、複数のコアを有するファイバ基体における複数のコアのうちの断面において所定の配列方向に沿って配列されたコアから構成され、ファイバ基体の所定の配列方向に沿って配列された光入出力ポートを構成するコアに対して、同一のコリメート手段によって光をコリメートするように構成されていることを特徴とする。
本発明に係る光操作装置は、上記の発明において、ファイバ基体を複数備え、複数のファイバ基体において、それぞれのファイバ基体の光入出力ポートを構成するコアが互いに所定の配列方向に沿って配列されていることを特徴とする。
本発明に係る光操作装置は、上記の発明において、コリメート手段を複数備え、複数のファイバ基体における個々のファイバ基体ごとに同一のコリメート手段によって光をコリメートするように構成されていることを特徴とする。
本発明に係る光操作装置は、上記の発明において、光入出力ポートが、ファイバ基体における複数のコアのうちの、断面において所定の配列方向に沿って複数の列で配列されたコアによって構成されることを特徴とする。
本発明に係る光操作装置は、上記の発明において、角度操作器が、入射された光の位相を液晶によって変調するとともに回折させる素子からなり、フレネルレンズ形状の位相を描画した空間光変調器からなることを特徴とする。
本発明に係る光操作装置によれば、多ポート化に伴うファイバの取り回しの困難性を回避しつつ、小型化して設置スペースを節約するとともに、高コスト化を抑制することが可能となる。
図1Aは、本発明の第1の実施形態による波長選択光スイッチ装置の構成を示す側面図である。 図1Bは、本発明の第1の実施形態による波長選択光スイッチ装置の構成を示す上面図である。 図2Aは、本発明の第1の実施形態による波長選択光スイッチ装置に用いられるマルチコアファイバアレイを示す正面図である。 図2Bは、本発明の第1の実施形態による波長選択光スイッチ装置に用いられるマルチコアファイバアレイを示す側面図である。 図3は、従来技術による波長選択光スイッチ装置の構成を示す側面図である。 図4は、本発明の第2の実施形態による波長選択光スイッチ装置の構成を示す側面図である。 図5は、本発明の第2の実施形態において用いられる空間光変調器の表示画像の一例を示す図である。 図6Aは、本発明の第3の実施形態による波長選択光スイッチ装置の構成を示す側面図である。 図6Bは、本発明の第3の実施形態による波長選択光スイッチ装置の構成を示す上面図である。 図7Aは、本発明の第4の実施形態による波長選択光スイッチ装置の構成を示す側面図である。 図7Bは、本発明の第4の実施形態による波長選択光スイッチ装置の構成を示す上面図である。 図8Aは、本発明の第5の実施形態による波長選択光スイッチ装置の構成を示す側面図である。 図8Bは、本発明の第5の実施形態による波長選択光スイッチ装置の構成を示す上面図である。 図9Aは、本発明の第5の実施形態による波長選択光スイッチ装置に用いられるマルチコアファイバアレイを示す正面図である。 図9Bは、本発明の第5の実施形態による波長選択光スイッチ装置に用いられるマルチコアファイバアレイを示す側面図である。 図10Aは、本発明の実施形態において用いることができるマルチコア光ファイバの一例を示す断面図である。 図10Bは、本発明の実施形態において用いることができるマルチコア光ファイバの一例を示す断面図である。
以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。また、本発明は以下に説明する実施形態によって限定されるものではない。さらに、図面は模式的なものであり、各層の厚みと幅との関係、各層の比率などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、図中、適宜xyz座標系を用いて方向を説明しているが、各図においてxyz軸の方向は同一であるものとする。
(第1の実施形態)
(波長選択光スイッチ装置)
まず、本発明の第1の実施形態によるマルチコアファイバアレイを用いた光操作装置としての波長選択光スイッチ装置について説明する。図1Aおよび図1Bはそれぞれ、この第1の実施形態による波長選択光スイッチ装置10の構成を示す側面図および上面図である。
図1Bに示すように、この第1の実施形態による波長選択光スイッチ装置10は、ファイバ基体として、たとえば1本のマルチコア光ファイバを用いたマルチコアファイバアレイ11と、マルチコアファイバアレイ11に対して順次配置された、コリメータレンズ12,13と、一対のアナモルフィックプリズム14a,14bからなるアナモルフィックプリズムペア14と、回折格子15と、集光素子としての集光レンズ16と、偏波分離素子17と、たとえばλ/2波長板から構成される偏波回転素子21と、たとえばLCOS(Liquid Crystal On Silicon)から構成された光スイッチとしての空間光変調器18とを備えている。なお、実際には回折格子15において光路は曲げられるので、アナモルフィックプリズムペア14から空間光変調器18までの各素子は、回折格子15の前後で角度を持って配置されているが、図1Aおよび図1Bにおいては簡略化のために直列に配置して示す。
(マルチコアファイバアレイ)
ここで、この第1の実施形態におけるマルチコアファイバアレイ11について説明する。図2Aおよび図2Bはそれぞれ、本発明の第1の実施形態による波長選択光スイッチ装置10に用いられるマルチコア光ファイバ1を備えたマルチコアファイバアレイ11を示す正面図および側面図である。
図2Aおよび図2Bに示すように、この第1の実施形態によるマルチコアファイバアレイ11は、外部から光が入力される、または外部に光を出力する光入出力ポートとなる複数のコア1aを有するマルチコア光ファイバ1と、このマルチコア光ファイバ1がその長手方向に垂直な断面において光を入出力可能に挿通固定する光ファイバ固定基材11aとから構成されている。マルチコア光ファイバ1は、マルチコア光ファイバ1の断面内において所定の配列方向(図中x軸方向)に沿ってたとえば直線状に並べられた複数のコア1a(コア1aa,1ab,1ac,1ad,1ae)と、コア1aの周囲のクラッド1bとから構成されている。そして、図2Bに示すように、この第1の実施形態においては、マルチコア光ファイバ1における複数のコア1aが波長多重信号光OSの入出力ポートとして用いられる。
この波長選択光スイッチ装置10では、マルチコア光ファイバ1のコア1aのうち、コア1aaが、外部から光が入力される共通の光入力ポート(Comポート)として設定されており、その他の4つのコア1ab〜1aeが、外部に光を出力する出力ポートとして設定されている。すなわち、この波長選択光スイッチ装置10は1×4の光スイッチとして機能する。
また、図1Aおよび図1Bに示すように、コリメータレンズ12,13は、マルチコア光ファイバ1の出力ポートとしてのコア1aaから出力した光を平行光にし、または、入力された平行光をマルチコア光ファイバ1の光入力ポートとしてのコア1ab〜1aeに集光して結合させる。
なお、コリメータレンズ12から出力した信号光は、平行光になっているが、各入出力信号光(OS,OS1,OS2)の各光軸は非平行になっている。そこで、波長多重信号光OSに関して、コリメータレンズ13を経ることで、他の出力信号光OS1,OS2の各光軸と平行になるように出射される。ここで、コリメータレンズ12の焦点距離よりコリメータレンズ13の焦点距離を大きく取ることによって、コリメータレンズ13からの出力光を、各入出力信号光OS,OS1,OS2の各光軸を平行にしながら、略平行光として出力させることができ、好ましい。また、たとえば、コリメータレンズ12の焦点距離に対するコリメータレンズ13の焦点距離を、約20倍以上にすることによって、コリメータレンズ12から出射した後の平行光の状態を損なうことなく、各入出射信号光OS,OS1,OS2の各光軸を平行にできるとともに、アナモルフィックプリズムペア14に入射する位置におけるy方向についてのビームウェスト径を十分大きく取ることができ、さらに、空間光変調器18に入射されるビームのy方向についてのビームウェスト径を十分小さくできるので、より好ましい。
また、光分散素子としての回折格子15は、透過型回折格子であって、コリメータレンズ12,13と集光レンズ16との間に配置され、入力された光を分光するものである。アナモルフィックプリズムペア14は、マルチコアファイバアレイ11と回折格子15との間に配置され、入力された光のビーム形状の縦横比を変更するものである。
また、集光レンズ16は、マルチコアファイバアレイ11と空間光変調器18との間に配置され、これらを光学的に結合させるものである。ここで、集光レンズ16は1枚のレンズから構成されていてもよいし、複数のレンズから構成されていてもよい。
また、偏波分離素子17は、集光レンズ16と空間光変調器18との間に配置され、入力された光の偏波状態を操作するものであり、具体的には入力された光の偏波分離を行うものである。この偏波分離素子17は、たとえばルチル(TiO)単結晶や方解石などの複屈折性材料からなり、互いに直交する2つの直線偏波成分(x軸偏波成分およびy軸偏波成分)を含む光を、このx軸偏波成分の光とy軸偏波成分の光とに偏波分離する。ここで、偏波分離素子17から出射された光は光入出力ポートの配列方向に分離される。また、λ/2波長板から構成される偏波回転素子21は、入力された光の偏波回転を行うものである。偏波回転素子21は、λ/2波長板であり、入力された光の偏波方向を90度回転させてy軸偏波成分の光をx軸偏波成分の光として偏波方向と一致させて出力する。
また、空間光変調器18を構成するLCOSは、入射された光の位相を液晶によって変調し、回折させることができる空間光変調器である。したがって、LCOSを用いた波長選択光スイッチ装置10では、ある経路から入力された信号光を、LCOSによって回折させて、特定の経路に出力することにより、光スイッチ動作を実現している。ここで、LCOSは液晶の複屈折を利用するため、偏波依存特性を有しているので、この第1の実施形態においては、偏波分離素子17および偏波回転素子21を備えている。そして、この偏波分離素子17が、波長選択光スイッチ装置10に入力された信号光を互いに直交する2つの直線偏波の信号光に分離し、偏波回転素子21が一方の信号光の偏波方向を回転させてもう一方の信号光の偏波方向に合わせることによって、偏波方向が一致した2つの信号光がLCOSに入射されるように構成されている。これによって、単一の偏波方向のみからなる信号光がLCOSに入射されるので、偏波依存特性の問題が解決される。
また、以上のように構成された波長選択光スイッチ装置10に入力または出力される光は特に限定されないが、たとえば波長1520〜1620nmの光通信用の信号光である。
(波長選択光スイッチ装置の動作)
次に、波長選択光スイッチ装置10の動作について説明する。まず、図1Aおよび図1Bに示すように、この波長選択光スイッチ装置10のマルチコアファイバアレイ11のComポート(図2Aに示すマルチコア光ファイバ1のコア1aa)に、互いに波長が異なる4つの信号光からなる波長多重信号光OSが入力される。マルチコアファイバアレイ11は、波長多重信号光OSを出力してコリメータレンズ12に入射させる。コリメータレンズ12から出力した波長多重信号光OSは平行光であるが、他の出力信号光OS1,OS2の各光軸とは非平行である。そこで、さらにコリメータレンズ13を経ることによって、波長多重信号光OSを、他の出力信号光OS1,OS2と平行になるようにして、アナモルフィックプリズムペア14に出力する。アナモルフィックプリズムペア14は、波長多重信号光OSのビーム径を、回折格子15の格子の配列方向に広げて出力する。その結果、空間光変調器18上における波長多重信号光OSが細長のビーム形状になることで、隣接する波長信号同士が干渉しにくくなる。回折格子15は、波長多重信号光OSを、波長が互いに異なる複数の波長の信号光に分光して、所定の角度に出力する。なお、図1Aおよび図1Bにおいては図示の便宜上、信号光OS1,OS2のみ記載している。集光レンズ16は、各信号光OS1,S2の光路を屈折させて、偏波分離素子17を介して空間光変調器18に集光する。
ここで、上述したように、偏波分離素子17は、各信号光OS1,OS2を偏波分離し、偏波回転素子21によって分離した2つの光の偏波方向を一致させる。したがって、各信号光OS1,OS2は、操作がされた信号光OS1a,OS2aとして空間光変調器18に集光される。
次に、空間光変調器18は、制御器(図示せず)によって印加電圧が制御され、各信号光OS1a,OS2aをマルチコア光ファイバ1の出力ポートとしてのコア1ab〜1aeのうちの対応するポートに向けて所定の角度で回折させる。ここで、空間光変調器18は偏波依存特性を有するが、信号光OS1a,OS2aは偏波分離素子17の操作を受けて単一の偏波方向からなるものにされているので、空間光変調器18の偏波依存特性の影響なく回折される。
次に、各信号光OS1a,OS2aは再度、偏波分離素子17および偏波回転素子21に入力する。偏波分離素子17および偏波回転素子21は、各信号光OS1a,OS2aに往路とは逆の操作を与え、すなわち、2つの一致した偏波方向の光を直交させて合成し、各信号光OS1,OS2として出力する。
各信号光OS1,OS2はそれぞれ、偏波回転素子21、偏波分離素子17、集光レンズ16、回折格子15、アナモルフィックプリズムペア14、一対のコリメータレンズ13,12を順次経由して、マルチコアファイバアレイ11のマルチコア光ファイバ1における所望のコア1ab〜1aeへと入力し、これらのコア1ab〜1aeを通じて所定の伝送路を通じて波長選択光スイッチ装置10から出力される。このようにして、この波長選択光スイッチ装置10は、Comポートから入力された波長多重信号光OSを各波長の信号光OS1,OS2ごとに所望のポートに出力する波長選択光スイッチング動作を行うことができる。
(従来の波長選択光スイッチ装置)
次に、本発明の第1の実施形態と比較するために、従来の波長選択光スイッチ装置について説明する。図3は、特許文献1に示す従来の波長選択光スイッチ装置100を示す側面図である。
図3に示すように,従来の波長選択光スイッチ装置100は、n本の光ファイバをまとめて光ファイバアレイ101とし、それぞれの光ファイバに対向してそれぞれコリメータレンズ102−1,102−2,…,102−nが設けられている。また、従来の波長選択光スイッチ装置100は、一対のアナモルフィックプリズム103a,103bからなるアナモルフィックプリズムペア103と、回折格子104と、集光レンズ105と、偏波分離素子106および偏波回転素子108と、LCOSなどから構成された光スイッチとしての空間光変調器107とを備えている。このように、従来の波長選択光スイッチ装置100においては、光ファイバアレイ101を複数本の光ファイバから構成していることにより、光ファイバの取り回しが必要となり、さらに、それぞれの光ファイバに対応させてコリメータレンズ102−1〜102−nを設ける必要があることによって、極めて広い設置スペースを確保しなければならず、さらに高コストであった。
これに対し、以上説明した本発明の第1の実施形態によれば、マルチコア光ファイバ1の複数のコア1aを入出力ポートとして利用し、これらの各入出力ポートに共通させて同一のコリメータレンズを用いていることにより、波長選択光スイッチ装置における多ポート化に伴って複数の光ファイバを用いる必要がないため、ファイバの取り回しの困難性を回避することができるとともに小型化することができるので、設置スペースを節約することができ、高コスト化を抑制することが可能となる。
(第2の実施形態)
次に、本発明の第2の実施形態による波長選択光スイッチ装置について説明する。図4は、この第2の実施形態による波長選択光スイッチ装置20を示す側面図である。
図4に示すように、この第2の実施形態による波長選択光スイッチ装置20においては、第1の実施形態と異なり、空間光変調器18は、たとえばフレネルレンズ形状を描画させたLCOSから構成されている。なお、図4において、コリメータレンズ12,13および集光レンズ16の焦点距離がそれぞれ、f1,f2,およびf3であり、集光レンズ16からビームウェスト位置の距離はf3+wである。その他の構成は第1の実施形態と同様であるので、説明を省略する。
ここで、上述したフレネルレンズ形状の描画は、たとえば以下のようにして行われる。図5は、この第2の実施形態において用いられる空間光変調器18の表示画像の一例を示す図である。
まず、x方向についての入出射信号光のビームウェスト位置は、空間光変調器18上にくるように全体の光学系が構成されている。図5において、色が濃い部分の屈折率が高く、薄い部分の屈折率が低くなっている。すなわち、位相変調の周期が、図5中D2の下から上への方向(スイッチング方向:y方向に対応)に行くにつれ、次第に短くなるように各画素の屈折率が制御されている。その結果、D2の下から上への方向、すなわちフレネルレンズの中央から上下端方向に行くにつれ、次第に(フレネル)レンズとしての曲率が大きくなるように作用させることができる。このように、空間光変調器18の表示画像は、光入出力ポートを構成する各コア1aの配列方向と、空間光変調器18を構成する各画素の屈折率のグラデーションの方向とが一致する、すなわち、図5中D2方向に屈折率の分布が形成されて、同方向についてフレネルレンズの機能を有している。
そして、上述したように空間光変調器18を反射型のフレネルレンズとして機能させるように制御して、フレネルレンズとしての曲率を最適化させることによって、空間光変調器18から出射した信号光のy方向についてのビームウェスト位置を補償して、マルチコア光ファイバ1のそれぞれのコア1aに好適に結合させることができる。
以上説明した第2の実施形態によれば、波長選択光スイッチ装置20において、マルチコア光ファイバ1を用いて複数のコア1aを光入出力ポートとして利用するとともに、1つのコリメータレンズ12によって光をコリメートさせていることにより、第1の実施形態と同様の効果を得ることができるとともに、空間光変調器18を、フレネルレンズ形状を描画させたLCOSから構成していることにより、空間光変調器18を反射した反射光のビームウェスト位置を任意の位置に調整することが可能になる。
(第3の実施形態)
次に、本発明の第3の実施形態による波長選択光スイッチ装置について説明する。図6Aおよび図6Bはそれぞれ、この第3の実施形態による波長選択光スイッチ装置30の構成を示す側面図および上面図である。
図6Aおよび図6Bに示すように、この第3の実施形態による波長選択光スイッチ装置30は、第1の実施形態と異なり、偏波分離素子17が設けられておらず、アナモルフィックプリズムペア14と回折格子15との間に、偏波分離素子19として一対のウォラストンプリズム19a,19bが設けられている。なお、実際には回折格子15において光路は曲げられるので、アナモルフィックプリズムペア14から空間光変調器18までの各素子は、回折格子15の前後で角度を持って配置されているが、図6A,図6Bにおいては簡略化のために直列に配置して示す。その他の構成については、第1の実施形態と同様であるので、説明を省略する。
(波長選択光スイッチ装置の動作)
次に、波長選択光スイッチ装置30の動作について説明する。まず、図6Aおよび図6Bに示すように、ある光ファイバ伝送路を伝送してマルチコア光ファイバ1から入力した波長多重信号光OSを、マルチコアファイバアレイ11からコリメータレンズ12に入射させる。コリメータレンズ12から出力した波長多重信号光OSは平行光であるが、他の出力信号光OS1,OS2の各光軸とは非平行である。そこで、さらにコリメータレンズ13を経ることによって、波長多重信号光OSを、他の出力信号光OS1,OS2と平行になるようにして、アナモルフィックプリズムペア14に出力する。アナモルフィックプリズムペア14は、波長多重信号光OSを偏波分離素子19に入力して偏波させる。
そして、図6Aに示すように、波長多重信号光OSは偏波分離素子19によりそれぞれ直線偏波を有する2つの信号光OSaと信号光OSbとがx軸方向に分離された状態で回折格子15や集光レンズ16に入力する。その後、信号光OSaはそのまま空間光変調器18に入力し、信号光OSbは偏波回転素子21を通過した後に空間光変調器18に入力する。この場合においても、この第3の実施形態においては、マルチコアファイバアレイ11を用いていることにより小型化を実現でき、低コスト化が可能になる。その他の動作については第1の実施形態と同様であるので、説明を省略する。
以上説明した第3の実施形態によれば、波長選択光スイッチ装置30において、マルチコア光ファイバ1を用いて複数のコア1aを光入出力ポートとして利用するとともに、1つのコリメータレンズ12によって光をコリメートさせていることにより、第1の実施形態と同様の効果を得ることができる。
(第4の実施形態)
次に、本発明の第4の実施形態による波長選択光スイッチ装置について説明する。図7Aおよび図7Bはそれぞれ、この第4の実施形態による波長選択光スイッチ装置40の構成を示す側面図および上面図である。
図7Aおよび図7Bに示すように、この第4の実施形態による波長選択光スイッチ装置40は、第1の実施形態と異なり、マルチコアファイバアレイ11の代わりに、第1の実施形態において用いられたマルチコア光ファイバ1をN本用いた、マルチコア光ファイバ1−1〜1−Nから構成されるマルチコアファイバアレイ41が設けられている。これらのN本のマルチコア光ファイバ1−1〜1−Nのそれぞれにおいて入出力ポートとして用いる複数のコア1aの並び方向は、マルチコアファイバアレイ41におけるマルチコア光ファイバ1−1〜1−Nの並び方向(x軸方向)と略平行にする。また、第1の実施形態と異なり、コリメータレンズ12の代わりに、N本のマルチコア光ファイバ1−1〜1−Nのそれぞれに対応して設けられたN個のコリメータレンズ42−1〜42−Nが設けられている。そして、これらのN本のマルチコア光ファイバ1−1〜1−Nの入出力光において、コリメータレンズ13、アナモルフィックプリズムペア14、回折格子15、集光レンズ16、偏波分離素子17、および空間光変調器18が共通に用いられる。さらに、波長選択光スイッチ装置40においては、偏波分離素子17の空間光変調器18側に、それぞれのマルチコア光ファイバ1−1〜1−Nからの光に対応してそれぞれ、第1の実施形態と同様のたとえばλ/2波長板からなる偏波回転素子49−1〜49−Nがそれぞれ設けられている。また、空間光変調器18は、マルチコア光ファイバ1−1〜1−Nの配列方向に沿って、N個の領域に分割され、それぞれの領域をマルチコア光ファイバ1−1〜1−Nに対応したN個の空間光変調器として動作させる。その他の構成については第1の実施形態と同様であるので、説明を省略する。
(波長選択光スイッチ装置の動作)
次に、波長選択光スイッチ装置40の動作について説明する。図7Bに示すように、まず、マルチコアファイバアレイ41におけるそれぞれのマルチコア光ファイバ1−1〜1−Nに入力した複数の波長多重信号光OS1〜OSNをそれぞれ、コリメータレンズ42−1〜42ーNによってコリメートし、さらにコリメータレンズ13によって各マルチコア光ファイバ1−1〜1−N内の各コアからのそれぞれの入出力信号光の光軸が互いに平行となるようにしてアナモルフィックプリズムペア14に出力する。その後の動作については、それぞれのマルチコア光ファイバ1−1〜1−Nのそれぞれにおいて、第1の実施形態と同様であるので、説明を省略する。
この第4の実施形態によれば、複数のマルチコア光ファイバ1−1〜1−Nを備えたマルチコアファイバアレイ41を用いていることにより、第1の実施形態と同様の効果を得ることができるとともに、N本のマルチコア光ファイバ1−1〜1−Nにそれぞれコリメータレンズを割り当て、その他のコリメータレンズ13、アナモルフィックプリズムペア14、回折格子15、集光レンズ16、偏波分離素子17、および空間光変調器18を共通に用いることにより、N体の波長選択光スイッチ装置を1体の波長選択光スイッチ装置とした、いわゆるNin1の波長選択光スイッチ装置を実現できるので、より一層の小型化を図ることができる。
(第5の実施形態)
次に、本発明の第5の実施形態による波長選択光スイッチ装置について説明する。図8Aおよび図8Bはそれぞれ、この第5の実施形態による波長選択光スイッチ装置50の構成を示す側面図および上面図である。
図8Aおよび図8Bに示すように、この第5の実施形態による波長選択光スイッチ装置50は、第1の実施形態と異なり、後述するようにコアが直線的に2列に配列されたマルチコア光ファイバを3本用いて構成されるマルチコアファイバアレイ51と、マルチコアファイバアレイ51に対して順次配置された、1つのコリメータレンズ12と、1つのシリンドリカル形状のコリメータレンズ53とを備えている。また、これに伴って、空間光変調器18を、2列に配置されたマルチコア光ファイバの複数のコア列の配列方向(図9A、図9B中y方向)に沿って2つの領域に分割させ、それぞれの領域を上述したマルチコア光ファイバ1の各コア1aの列に対応させて、2個の空間光変調器18として動作させる。その他の構成については第1の実施形態と同様であるので、説明を省略する。なお、回折格子15において光路が曲げられるので、アナモルフィックプリズムペア14から空間光変調器18までの各素子は、回折格子15の前後で角度を持って配置されているが、図8Aおよび図8Bにおいては簡略化のために直列に配置して示す。
(マルチコアファイバアレイ)
ここで、この第5の実施形態におけるマルチコアファイバアレイ51について説明する。図9Aおよび図9Bはそれぞれ、この第5の実施形態による波長選択光スイッチ装置50に用いられるマルチコア光ファイバ2を備えたマルチコアファイバアレイ51を示す正面図および側面図である。
図9Aに示すように、この第5の実施形態によるマルチコアファイバアレイ51は、外部から光が入力される、または外部に光を出力する光入出力ポートとなる複数のコア2aを有する3本のファイバ基体としてのマルチコア光ファイバ2と、このマルチコア光ファイバ2がその長手方向に垂直な断面において光の入出力可能なように挿通固定する光ファイバ固定基材51aとから構成されている。マルチコア光ファイバ2は、その断面内において所定の配列方向(図中x軸方向)に互いに平行に2列に並べられた複数のコア2a(2aa〜2ao)と、コア2aの周囲のクラッド2bとから構成されている。
そして、図9Bに示すように、この第5の実施形態においては、マルチコア光ファイバ2における複数のコア2aが波長多重信号光OSの入出力ポートとして用いられる。また、この波長選択波長選択光スイッチ装置50では、マルチコア光ファイバ2のコア2aのうち、一対のコア2aaがそれぞれ、外部から光が入力される共通の光入力ポート(Comポート)として設定されており、その他の14対のコア2ab〜2aoが、外部に光を出力する出力ポートとして設定されている。すなわち、この波長選択光スイッチ装置50は、2体からなる一対の1×14の光スイッチとして機能する。
(波長選択光スイッチ装置の動作)
次に、波長選択光スイッチ装置50の動作について説明する。すなわち、図8Bに示すように、ある光ファイバ伝送路から伝送されて入力した2つの波長多重信号光OSを、マルチコアファイバアレイ51において光軸がずれた状態でマルチコア光ファイバ2の一対のコア2aaからそれぞれ、コリメータレンズ12,53に出力する。コリメータレンズ12,53はこれらの波長多重信号光OSを平行光としてアナモルフィックプリズムペア14に出力する。その後の動作については、光軸がずれて伝送される以外、第1の実施形態と同様であるので、説明を省略する。
この第5の実施形態によれば、第1の実施形態と同様の効果を得ることができるとともに、波長選択光スイッチ装置50に用いられるマルチコア光ファイバ2が、互いに平行に2列に配列された複数のコア2a(2aa〜2ao)を有していることにより、2体からなる1×14の光スイッチを1つの波長選択光スイッチ装置として機能させることができ、いわゆる2in1の波長選択光スイッチ装置を実現することが可能になり、より小型化を図ることができる。
次に、以上説明した実施形態において使用可能なマルチコア光ファイバの他の例について説明する。図10Aおよび図10Bはそれぞれ、本発明に使用可能なマルチコア光ファイバ3の一例を示す断面図である。
図10Aおよび図10Bに示すように、この他の例によるファイバ基体としてのマルチコア光ファイバ3は、複数のコア3aが三角格子状に配置されて構成されており、周囲にクラッド3bが設けられている。
そして、このマルチコア光ファイバ3を上述した第1〜第4の実施形態による波長選択光スイッチ装置に用いる場合には、図10Aに示すように、複数のコア3aのうちの直線状に配列された複数のコア3a(図10A中、破線Aの囲み)を選択する。そして、選択されたコア3aを、上述したマルチコア光ファイバ1におけるコア1aとして使用する。なお、複数のコア3aのうちの直線状に配列された複数のコア3aとしては、図10A中、破線Bの囲みのコア3aを選択することも可能である。これらは、波長選択光スイッチ装置において必要とされる光スイッチに応じて適宜選択される。
また、図10Bに示すように、このマルチコア光ファイバ3を上述した第5の実施形態による波長選択光スイッチ装置50に用いる場合には、複数のコア3aのうちの直線状に配列された2列の複数のコア3a(図10B中、破線Bおよび破線Cの囲み)を選択する。そして、選択されたコア3aを、上述した第5の実施形態におけるマルチコア光ファイバ2のコア2aと同様に使用する。マルチコア光ファイバ3におけるコア3aの選択は、互いに平行に配列された2列であれば適宜その他の列も選択可能であるが、波長範囲が広い場合には、コア3a間の間隔を確保する必要があるため、2列の間隔を所定の間隔以上に確保できるように選択される。
以上、本発明の実施形態について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。たとえば、上述の一実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。
たとえば、上述の第1〜第3の実施形態においては、マルチコアファイバアレイとして、1本のマルチコア光ファイバ1を用いているが、必ずしもこれに限定されるものではなく、複数のマルチコア光ファイバ1を同様にコア1aの配列方向に並べ、コリメータレンズ12を共用させるようにしても良く、これにより、入出力ポート数を更に増やすことが可能になる。
また、たとえば上述した実施形態においては、波長選択光スイッチ装置は1×4型または1×14型のものであるが、本発明では光が入出力するポートとしてのマルチコア光ファイバのコアの数は特に限定されず、1×N光スイッチ装置またはN×1光スイッチ装置であればよい(ただし、Nは2以上の整数である)。
また、上述の実施形態においては、アナモルフィックプリズム14a,14bを用いたアナモルフィック光学系を用いているが、必ずしもアナモルフィックプリズムペア14に限定されるものではなく、シリンドリカルレンズを用いることも可能である。この場合、空間光変調器18としてのLCOSにフレネルレンズを描画する必要がないため、空間光変調器18の代わりに通常の平板ミラーを用いても良い。また、空間光変調器18としてはMEMSを用いても良い。
また、上述した実施形態においては、空間光変調器18がLCOSであるが、空間光変調層として液晶または光をスイッチできる他の部材を用いた偏波依存特性を有する空間光変調器または光スイッチであれば特に限定されるものではない。
また、上述した実施形態においては、回折格子は透過型であるが、反射型でもよい。また回折格子の代わりに、プリズムなどの光分散素子を用いてもよい。また、光分散素子としては偏波依存特性が小さいものが好ましい。
また、上述の実施形態においては、本発明を波長選択光スイッチ装置に適用した例について説明したが、本発明はこれに限らず、光分散素子を備えず、特定波長の信号光の経路を任意に変更するための光スイッチ装置に適用することができる。また、本発明は、アナモルフィック光学系を備えない光スイッチ装置に対しても適用することができる。
また、上述の実施形態においては、光スイッチを用いた波長選択光スイッチ装置について説明したが、本発明は、空間光変調器を用いる光操作装置であれば特に限定されない。たとえば、上述の実施形態において、空間光変調器として、光スイッチの替わりに強度変調器を用いれば、強度変調装置として利用できる。更に、回折格子による分散方向である図1のy軸方向に沿って、強度変調器を並べることにより、各強度変調器に入射された波長の光ごとに光の強度を操作できるので、折り返された光の強度スペクトル形状を制御することができる。また、たとえば、空間光変調器として、光スイッチの替わりに位相変調器を用いれば、位相変調装置として利用できる。更に、回折格子による分散方向である図1のy軸方向に沿って、位相変調器を並べることで、各位相変調器に入射された波長の光ごとに光の位相を操作できるので、折り返された光の群速度分散の波長依存性を制御することができる。郡速度分散の波長依存性を制御することにより、たとえば、光信号の分散補償の機能を位相変調装置に持たせることができる。これらの空間光変調を行う際は、操作した光を、必ずしも光が入力されたポートとは異なるポートに出力する必要は無く、光が入力されたポートと同じポートに折り返してもよい。その場合は、サーキュレータなどを用いて、入力光と出力光とを分離することができる。
また、上述の実施形態においては、複数の入出力ポートとして複数のコアを使用し、この複数のコアを有するファイバ基体として、マルチコア光ファイバを使用しているが、必ずしもマルチコア光ファイバに限定されるものではなく、ファイバ基体として、複数の光ファイバを、それらのコアが極めて小さい間隔になるように束ねて形成された、いわゆるファイババンドルを使用することも可能である。
1,1−1〜1−N,2,3 マルチコア光ファイバ
1a,1aa〜1ae,2a,2aa〜2ao,3a コア
1b,2b,3b クラッド
10,20,30,40,50 波長選択光スイッチ装置
11,41,51 マルチコアファイバアレイ
11a,51a 光ファイバ固定基材
12,13,42−1〜42−N,53 コリメータレンズ
14 アナモルフィックプリズムペア
14a,14b アナモルフィックプリズム
15 回折格子
16 集光レンズ
17,19 偏波分離素子
18 空間光変調器
19a,19b ウォラストンプリズム
21、49−1〜49−N 偏波回転素子

Claims (5)

  1. 外部から光が入力される、または外部に光を出力する複数のポートが所定の配列方向に沿って配列した光入出力ポートと、
    前記光入出力ポートのいずれかのポートから入力した光の光路を切り換えて前記光入出力ポートの他のいずれかのポートに向けて出力する角度操作器と、
    前記光入出力ポートのいずれかのポートから入力した光をコリメートするコリメート手段と、
    前記光入出力ポートと前記角度操作器との間に配置され、前記光入出力ポートと前記角度操作器とを光学的に結合させる集光レンズ系と、を備えた光操作装置において、
    前記光入出力ポートが、複数のコアを有するファイバ基体における前記複数のコアのうちの断面において前記所定の配列方向に沿って配列されたコアから構成され、
    前記ファイバ基体の前記所定の配列方向に沿って配列された前記光入出力ポートを構成するコアに対して、同一のコリメート手段によって前記光をコリメートするように構成されている
    ことを特徴とする光操作装置。
  2. 前記ファイバ基体を複数備え、前記複数のファイバ基体において、それぞれの前記ファイバ基体の前記光入出力ポートを構成するコアが互いに前記所定の配列方向に沿って配列されていることを特徴とする請求項1に記載の光操作装置。
  3. 前記コリメート手段を複数備え、前記複数のファイバ基体における個々のファイバ基体ごとに同一のコリメート手段によって前記光をコリメートするように構成されていることを特徴とする請求項2に記載の光操作装置。
  4. 前記光入出力ポートが、前記ファイバ基体における前記複数のコアのうちの、断面において前記所定の配列方向に沿って複数の列で配列されたコアによって構成されることを特徴とする請求項1〜3のいずれか1項に記載の光操作装置。
  5. 前記角度操作器が、入射された光の位相を液晶によって変調するとともに回折させる素子からなり、フレネルレンズ形状の位相を描画した空間光変調器からなることを特徴とする請求項1〜4のいずれか1項に記載の光操作装置。
JP2013073527A 2013-03-29 2013-03-29 光操作装置 Pending JP2014197154A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013073527A JP2014197154A (ja) 2013-03-29 2013-03-29 光操作装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073527A JP2014197154A (ja) 2013-03-29 2013-03-29 光操作装置

Publications (1)

Publication Number Publication Date
JP2014197154A true JP2014197154A (ja) 2014-10-16

Family

ID=52357956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073527A Pending JP2014197154A (ja) 2013-03-29 2013-03-29 光操作装置

Country Status (1)

Country Link
JP (1) JP2014197154A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111480A (ja) * 2014-12-04 2016-06-20 株式会社日立製作所 光経路切替装置及びマルチコアファイバネットワークシステム
JP2018508839A (ja) * 2015-02-10 2018-03-29 ニスティカ,インコーポレーテッド クロストークを回避するために周波数分離を増大させた波長選択スイッチ
WO2020174919A1 (ja) * 2019-02-27 2020-09-03 国立大学法人香川大学 コア選択スイッチ、及び光ノード装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104443A (ja) * 1996-09-26 1998-04-24 Nippon Telegr & Teleph Corp <Ntt> マルチコアファイバ
JP2011232695A (ja) * 2010-04-30 2011-11-17 Sanyo Engineer & Construction Inc 光可変フィルタアレイ装置
US20120114292A1 (en) * 2010-11-08 2012-05-10 Brett Jason Hoover Multi-core optical fiber ribbons and methods for making the same
WO2012123715A1 (en) * 2011-03-14 2012-09-20 Cambridge Enterprise Limited Optical beam routing apparatus and methods
WO2012172968A1 (ja) * 2011-06-17 2012-12-20 住友電気工業株式会社 光学装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104443A (ja) * 1996-09-26 1998-04-24 Nippon Telegr & Teleph Corp <Ntt> マルチコアファイバ
JP2011232695A (ja) * 2010-04-30 2011-11-17 Sanyo Engineer & Construction Inc 光可変フィルタアレイ装置
US20120114292A1 (en) * 2010-11-08 2012-05-10 Brett Jason Hoover Multi-core optical fiber ribbons and methods for making the same
WO2012123715A1 (en) * 2011-03-14 2012-09-20 Cambridge Enterprise Limited Optical beam routing apparatus and methods
WO2012172968A1 (ja) * 2011-06-17 2012-12-20 住友電気工業株式会社 光学装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111480A (ja) * 2014-12-04 2016-06-20 株式会社日立製作所 光経路切替装置及びマルチコアファイバネットワークシステム
JP2018508839A (ja) * 2015-02-10 2018-03-29 ニスティカ,インコーポレーテッド クロストークを回避するために周波数分離を増大させた波長選択スイッチ
WO2020174919A1 (ja) * 2019-02-27 2020-09-03 国立大学法人香川大学 コア選択スイッチ、及び光ノード装置
JPWO2020174919A1 (ja) * 2019-02-27 2020-09-03
CN113544561A (zh) * 2019-02-27 2021-10-22 国立大学法人香川大学 芯选择开关和光节点装置
US11516562B2 (en) 2019-02-27 2022-11-29 National University Corporation Kagawa University Core selective switch and optical node device
JP7370085B2 (ja) 2019-02-27 2023-10-27 国立大学法人 香川大学 コア選択スイッチ、及び光ノード装置

Similar Documents

Publication Publication Date Title
JP5692865B2 (ja) 波長クロスコネクト装置
JP5730526B2 (ja) 光スイッチ
JP4960294B2 (ja) 波長選択スイッチ
WO2012172968A1 (ja) 光学装置
JP5718016B2 (ja) 光操作装置
US9645321B2 (en) Optical signal processing device
JP5855323B1 (ja) 光コリメータアレイおよび光スイッチ装置
US10126556B2 (en) Light operation device
US11728919B2 (en) Optical communications apparatus and wavelength selection method
JP5373291B2 (ja) 波長選択スイッチ
CN105739026B (zh) 一种高端口数目波长选择开关
JP4949355B2 (ja) 波長選択スイッチ
JP4842226B2 (ja) 波長選択スイッチ
JP2014197154A (ja) 光操作装置
JP6238413B2 (ja) 光信号処理装置
JP5651904B2 (ja) N×n波長選択スイッチ
JP5852198B1 (ja) 光入出力装置およびその制御方法
JP6034319B2 (ja) 光スイッチ
US20210258662A1 (en) Optical Switching Unit
JP5759430B2 (ja) 波長選択スイッチ
JP2015011225A (ja) 光信号選択装置の制御方法および光信号選択装置
WO2019203307A1 (ja) 波長選択光スイッチ
JP5839586B2 (ja) 光信号処理装置
KR20220116842A (ko) 광 통신용 다중 파장 선택 스위칭 장치
JP2017009871A (ja) 光スイッチ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170829