JP2014185822A - Geothermal heat utilization heat exchanger and heat pump system using the same - Google Patents
Geothermal heat utilization heat exchanger and heat pump system using the same Download PDFInfo
- Publication number
- JP2014185822A JP2014185822A JP2013061844A JP2013061844A JP2014185822A JP 2014185822 A JP2014185822 A JP 2014185822A JP 2013061844 A JP2013061844 A JP 2013061844A JP 2013061844 A JP2013061844 A JP 2013061844A JP 2014185822 A JP2014185822 A JP 2014185822A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- heat exchanger
- path
- heat exchange
- ground
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 claims abstract description 116
- 239000011347 resin Substances 0.000 claims abstract description 43
- 229920005989 resin Polymers 0.000 claims abstract description 43
- 238000005553 drilling Methods 0.000 description 13
- 238000009412 basement excavation Methods 0.000 description 12
- 230000017525 heat dissipation Effects 0.000 description 12
- 238000005338 heat storage Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000945 filler Substances 0.000 description 8
- 239000002689 soil Substances 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 239000003415 peat Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/15—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、垂直埋設式地中熱交換器およびそれを用いたヒートポンプシステムに関する。さらに詳しくは複数の樹脂製流体路から形成されている地中熱交換構造を備えている地中熱交換器およびそれを用いたヒートポンプシステムに関する。 The present invention relates to a vertical buried underground heat exchanger and a heat pump system using the same. More specifically, the present invention relates to an underground heat exchanger having an underground heat exchange structure formed from a plurality of resin fluid paths and a heat pump system using the underground heat exchanger.
地中の温度は、年間を通して10〜15℃とほぼ一定であり、外気温度に比べると、夏は低く、冬は高くなっている。従って、外気との温度差を利用するために地中に熱交換器を埋設して地中熱を採熱し、熱源として利用することが行われており、この地中熱利用システムに関しては種々の提案がなされている。 The underground temperature is almost constant at 10 to 15 ° C. throughout the year, and is lower in summer and higher in winter than the outside air temperature. Therefore, in order to use the temperature difference from the outside air, a heat exchanger is buried in the ground and the ground heat is collected and used as a heat source. Proposals have been made.
この地中熱利用の技術は、地中においてほぼ一定である地中熱を利用して熱交換を行うもので、冬には高温エネルギーとして暖房用熱源または融雪用熱源等のために、地中熱を採熱し利用することができる。また、夏には低温エネルギーとして冷房用熱源等のために、地中熱を利用することができる。地中熱は大気よりも温度が安定しているので効率的な熱源であり、かつ二酸化炭素の発生の少ない熱源であるので、省エネルギーで地球環境に優しいシステムとして地中熱利用システムの普及が期待されている。 This underground heat utilization technology uses ground heat, which is almost constant in the ground, to perform heat exchange. In the winter, it is used as a high-temperature energy source for heating or for melting snow. Heat can be collected and used. In summer, geothermal heat can be used as a heat source for cooling as low-temperature energy. Geothermal heat is an efficient heat source because its temperature is more stable than the atmosphere, and it is a heat source that generates less carbon dioxide. Has been.
このような地中熱利用システムとして、地中に垂直に熱交換チューブを設置した方式が知られている。垂直に設置した地中熱交換チューブ方式は、設置のために占有する地表面積が小さく、また地表面のヒートロスが少ない特徴がある。垂直に設置した地中熱交換チューブ方式として、十数mm径の鋼製U字管やプラスチック製のU字管を垂直な掘削孔に1セットまたは2セット挿入して周りを土質材料(グラウト材)で充填することが知られている。例えば特許文献1では、U字管として平行な直管部分の下端部同士を連通したU字管を用いることが提案されている。 As such a ground heat utilization system, a system in which a heat exchange tube is installed vertically in the ground is known. The underground heat exchange tube system installed vertically has the characteristics that the ground surface area occupied for installation is small and the heat loss of the ground surface is small. As an underground heat exchange tube system installed vertically, one or two sets of steel U-shaped pipes with a diameter of several tens of millimeters or plastic U-shaped pipes are inserted into vertical excavation holes, and the surrounding soil material (grouting material) ). For example, Patent Document 1 proposes to use a U-shaped tube in which the lower ends of parallel straight tube portions communicate with each other as a U-shaped tube.
しかしながら、垂直設置の地中熱交換チューブ方式において、地中熱を効率よく利用するためには、地中深くまで熱交換チューブを埋設する必要があり、埋設のための削孔深度は数十m〜約100mの深さが必要であった。そのために、長尺状垂直埋設式地中熱交換器では、掘削費用が高く設置工事費が高価になるという問題があった。 However, in order to efficiently use the underground heat in the vertically installed underground heat exchange tube system, it is necessary to embed the heat exchange tube deep into the ground, and the drilling depth for embedment is several tens of meters. A depth of ~ 100m was required. Therefore, the long vertical buried underground heat exchanger has a problem that the excavation cost is high and the installation cost is high.
そこで、削孔深度をより浅くして掘削費用を低減するという提案もなされている。例えば特許文献2では、垂直に埋設するU字管の一方を螺旋状流体路とすることが提案されている。しかしながら、螺旋状流体路を形成させるためには管の複雑かつ精密な成形が必要となるので製造コストが高くなる上に、流体路を螺旋状にすると螺旋形成流体路同士の上下間隔が狭いため、地中との熱交換効率が流体路の長さの割には上昇しないという問題があった。 Therefore, a proposal has been made to reduce the drilling cost by making the drilling depth shallower. For example, Patent Document 2 proposes that one of the U-shaped tubes embedded vertically is a spiral fluid path. However, in order to form a spiral fluid path, complicated and precise forming of the pipe is required, which increases the manufacturing cost. In addition, if the fluid path is spiral, the vertical distance between the spiral fluid paths is narrow. There is a problem that the efficiency of heat exchange with the ground does not increase relative to the length of the fluid path.
本発明は上記従来の課題を解決するもので、公知の長尺状垂直埋設式地中熱交換器と同等以上の熱交換効率を実現しながら、削孔深度を数分の1程度に短くすることができ、掘削コストを大幅に削減できる垂直埋設式地中熱交換構造を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and shortens the drilling depth to about a fraction of that while realizing a heat exchange efficiency equal to or higher than that of a known long vertical buried underground heat exchanger. An object of the present invention is to provide a vertical buried underground heat exchange structure that can reduce excavation costs.
本発明は、地面から下方に形成された同一の熱交換領域に埋設された。循環流体を対地熱交換させる流体路として、循環流体を地表側から地中へ向けて流す往路と、その往路を通過した流体を地中から地表側へ向けて流す復路を有する樹脂製流体路を、少なくとも3つ用いて形成されている地中熱交換構造を備えている地中熱交換器を提供する。 The present invention is embedded in the same heat exchange region formed downward from the ground. As a fluid path for exchanging the circulating fluid to the ground, a resin fluid path having a forward path for flowing the circulating fluid from the ground side toward the ground and a return path for flowing the fluid passing through the forward path from the ground toward the ground side A ground heat exchanger having a ground heat exchange structure formed by using at least three is provided.
前記地中熱交換構造が、前記流体路の間隔を所定の間隔に保持する間隔保持部材を備えている前記した地中熱交換器は本発明の好ましい態様である。 The above-described underground heat exchanger, in which the underground heat exchange structure includes an interval holding member that holds the interval of the fluid path at a predetermined interval, is a preferred aspect of the present invention.
前記往路もしくは復路となる流体路が、隣り合う往路もしくは復路となる流体路との間に、少なくとも7cmの間隔を保持している前記した地中熱交換器は本発明の好ましい態様である。 The above-mentioned underground heat exchanger in which the fluid path serving as the forward path or the return path maintains an interval of at least 7 cm between the adjacent fluid path serving as the forward path or the return path is a preferred embodiment of the present invention.
前記樹脂製流体路の各往路と復路の接点が、深度がほぼ同じ領域にあり、各樹脂製流体路が平面視で交差している前記した地中熱交換器は本発明の好ましい態様である。 The above-mentioned underground heat exchanger in which the contact points of the forward path and the return path of the resin fluid path are in regions where the depths are substantially the same and the resin fluid paths intersect in plan view is a preferred aspect of the present invention. .
本発明はまた、前記した地中熱交換器を熱交換装置として有する地中熱利用ヒートポンプシステムを提供する。 The present invention also provides a geothermal heat pump system having the above-described underground heat exchanger as a heat exchange device.
本発明により、長尺状垂直埋設式地中熱交換器と同等以上の熱交換効率を実現しながら、削孔深度を数分の1程度に短くすることができ、掘削コストを大幅に削減できる垂直埋設式地中熱交換器が提供される。
ヒートポンプなどの負荷装置の熱交換器として垂直埋設式地中熱交換器を用いる場合、設置費用のかなりの割合が地中熱交換器設置のための掘削費用であるところ、本発明によって削孔深度を短くできるので、設置費用を大幅に削減することが可能となる。
本発明により、長尺状垂直埋設式地中熱交換器と同等以上の熱交換効率を実現しながら、掘削コストを大幅に削減できる垂直埋設式地中熱交換器を用いたヒートポンプが提供される。
According to the present invention, the depth of drilling can be reduced to a fraction of that while realizing a heat exchange efficiency equal to or greater than that of a long vertical buried underground heat exchanger, and the excavation cost can be greatly reduced. A vertical buried underground heat exchanger is provided.
When using a vertical buried underground heat exchanger as a heat exchanger for a load device such as a heat pump, a significant percentage of the installation cost is excavation cost for installing the underground heat exchanger. Therefore, the installation cost can be greatly reduced.
The present invention provides a heat pump using a vertical buried underground heat exchanger that can significantly reduce excavation costs while realizing a heat exchange efficiency equal to or higher than that of a long vertical buried underground heat exchanger. .
本発明は、地面から下方に形成された熱交換領域に埋設された。循環流体を対地熱交換させる流体路として、循環流体を地表側から地中へ向けて流す往路と、その往路を通過した流体を地中から地表側へ向けて流す復路を有する樹脂製流体路を、少なくとも3つ用いて形成されている地中熱交換構造を備えている地中熱交換器を提供するものである。 The present invention is embedded in a heat exchange region formed downward from the ground. As a fluid path for exchanging the circulating fluid to the ground, a resin fluid path having a forward path for flowing the circulating fluid from the ground side toward the ground and a return path for flowing the fluid passing through the forward path from the ground toward the ground side The underground heat exchanger provided with the underground heat exchange structure formed by using at least three is provided.
本発明の熱交換領域は、地表から下方に向かって掘削した削孔に、土質材料等の充填材で埋め戻した領域である。掘削孔は、地中にボーリングによる削孔、スクリューオーガを用いた削孔等従来公知の方法で形成させた削孔に、地中熱交換構造を設置した後、充填材で埋め戻した地中熱交換が行われる領域である。
充填材としては、材料熱伝導率の良いものを用いることが好ましく、例えば掘削土、砂質土、礫質土、有機質土、砂利及び砕石から選ばれた少なくとも1種を含む材料で構成されている土質材料が好ましく用いられる。熱交換領域では、雨水や大地内を流動する地下水が掘削部に充填された充填材の粒子間に浸透し、地下水によって地中熱交換器と大地との熱交換が促進される
The heat exchanging region of the present invention is a region in which a hole excavated downward from the ground surface is backfilled with a filler such as a soil material. The excavation hole is an underground hole that has been backfilled with filler after an underground heat exchange structure is installed in a hole formed by a conventionally known method such as drilling by boring or drilling using a screw auger. This is a region where heat exchange is performed.
As the filler, it is preferable to use a material having good material thermal conductivity. For example, the filler is composed of a material containing at least one selected from excavated soil, sandy soil, gravelly soil, organic soil, gravel and crushed stone. Soil materials are preferably used. In the heat exchange area, rainwater and groundwater flowing in the ground permeate between the filler particles filled in the excavation part, and the groundwater promotes heat exchange between the underground heat exchanger and the ground.
樹脂製流体路は、不凍液(ブライン)、水などの循環流体を流すことができて、地中熱と熱交換できるもので、循環流体を対地熱交換させる流体路である。本発明の樹脂製流体路は、循環流体を対地熱交換させる流体路として、循環流体を地表側から地中へ向けて流す往路と、その往路を通過した流体を地中から地表側へ向けて流す復路を有するもので、管状体であることが好ましい。 The resin-made fluid path is a fluid path that allows a circulating fluid such as antifreeze (brine) and water to flow and exchange heat with underground heat, and exchanges the circulating fluid with ground heat. The resin-made fluid path of the present invention is a fluid path for exchanging the circulating fluid with respect to the ground, an outward path for flowing the circulating fluid from the ground side toward the ground, and a fluid passing through the forward path from the ground toward the ground side. It has a return path to flow, and is preferably a tubular body.
樹脂製流体路を構成する樹脂としては、ポリエチレン、ポリプロピレン、ポリブテンなどのポリオレフィン、ポリ塩化ビニル、ポリアミド等を挙げることができる。中でもポリオレフィン製管、とくにはエチレン製管が特に好ましい。
樹脂製流体路往路と復路の接点は、エルボを介していてもよいが、下端部同士が連通したU字状管が好ましい。
Examples of the resin constituting the resin fluid path include polyolefins such as polyethylene, polypropylene, and polybutene, polyvinyl chloride, and polyamide. Of these, polyolefin pipes, particularly ethylene pipes are particularly preferred.
The contact point between the resin fluid path forward path and the return path may be via an elbow, but a U-shaped tube having lower ends communicating with each other is preferable.
本発明の地中熱交換構造は、樹脂製流体路を少なくとも3個、好ましくは3〜6個、より好ましくは3または4個、とくには4個用いて形成されていることが望ましい。
本発明においては、地中熱交換構造を構成する樹脂製流体路の往路および復路が、それぞれ隣り合う樹脂製流体路の往路および復路との間の間隔を所定値以上の間隔で設置されていることが好ましい。
The underground heat exchange structure of the present invention is desirably formed using at least 3, preferably 3 to 6, more preferably 3 or 4, and particularly 4 resin fluid paths.
In the present invention, the forward path and the return path of the resin fluid path constituting the underground heat exchanging structure are installed with an interval between the forward path and the return path of the adjacent resin fluid paths at a predetermined value or more. It is preferable.
流体路同士の間隔が短すぎると、熱交換対象となる熱交換領域の充填材量が相対的に少なくなることになり、熱交換効率が低下する恐れがある。従来公知の垂直埋設式地中熱交換器では、通常1個の流体路を敷設しているが、その敷設領域で2個の流体路を敷設することも提案されている(例えば特許文献2の図4)。しかしながら、同特許文献におけるような敷設方法では、流体路同士の間隔が短くなるために、流体路の総延長距離を伸ばしたところで、トータルの熱交換効率を向上させることは難しい。 If the distance between the fluid paths is too short, the amount of filler in the heat exchange region to be heat exchange will be relatively small, and the heat exchange efficiency may be reduced. In a conventionally known vertical buried type underground heat exchanger, one fluid path is usually laid, but it is also proposed to lay two fluid paths in the laying region (for example, Patent Document 2). FIG. 4). However, in the laying method as in the patent document, since the distance between the fluid paths is shortened, it is difficult to improve the total heat exchange efficiency when the total extension distance of the fluid paths is increased.
本発明は、樹脂製流体路を少なくとも3個用いることによって、流体路の総延長距離を伸ばすことによって、所定のトータルの熱交換効率を獲得する地中熱交換構造を提供するものである。このような、地中熱交換構造によって、削孔深度を数分の1程度に短くしても従来の長尺状垂直埋設式地中熱交換器と同等以上の熱交換効率を実現できるので、掘削コストを大幅に削減した垂直埋設式地中熱交換器の提供が可能となるのである。 The present invention provides a ground heat exchange structure that obtains a predetermined total heat exchange efficiency by extending the total extension distance of the fluid path by using at least three resin fluid paths. With such an underground heat exchange structure, even if the drilling depth is shortened to about a fraction, heat exchange efficiency equal to or higher than that of conventional long vertical buried underground heat exchangers can be realized. This makes it possible to provide a vertical buried underground heat exchanger that significantly reduces drilling costs.
本発明において、地中熱交換構造を構成する樹脂製流体路の往路および復路が、それぞれ隣り合う樹脂製流体路の往路および復路との間の間隔を、管中心間の間隔として7cm以上、好ましくは9cm、さらに好ましくは11cm以上程度の間隔で設置されていることが好ましい。 In the present invention, the distance between the forward path and the return path of the resin fluid paths adjacent to each other is preferably 7 cm or more, preferably the distance between the pipe centers. Are preferably installed at intervals of about 9 cm, more preferably about 11 cm or more.
樹脂製流体路間の間隔を所定値以上に設置するために、間隔保持部材を使用することができる。間隔保持部材の形状には特に制限はなく、所定の目的を達成できる形状であればよい。たとえば、3個以上の樹脂製流体路を取り巻くような円形基材から樹脂製流体路の各往路および復路に延びる保持具を有するようなものを採用してもよい。 In order to set the interval between the resin fluid paths to a predetermined value or more, an interval holding member can be used. There is no restriction | limiting in particular in the shape of a space | interval holding member, What is necessary is just a shape which can achieve a predetermined objective. For example, one having a holder extending from the circular base material surrounding three or more resin-made fluid paths to each forward path and return path of the resin-made fluid path may be adopted.
3個以上の樹脂製流体路で地中熱交換構造を形成するにあたって、各樹脂製流体路はそれぞれ任意の位置関係で構成させてもよいが、樹脂製流体路の各往路と復路の接点が、深度がほぼ同じ領域にあり、各樹脂製流体路が平面視で交差するような関係で構成させるのが、地中熱交換構造の取扱いおよび埋設作業上都合がよい。このような、位置関係にある樹脂製流体路に、所定の位置で間隔保持部材を設置した地中熱交換構造は、作業性に優れると共に安定した地中熱交換効率を得ることができるものとなる。 When forming the underground heat exchange structure with three or more resin fluid paths, each resin fluid path may be configured in an arbitrary positional relationship, but there are contact points between the forward path and the return path of the resin fluid path. It is convenient in terms of handling and embedding work of the underground heat exchange structure that the resin fluid paths intersect with each other in a plan view because the depths are in substantially the same region. Such an underground heat exchange structure in which a spacing member is installed at a predetermined position in a resin fluid passage in a positional relationship is excellent in workability and can obtain stable underground heat exchange efficiency. Become.
本発明の3個以上の樹脂製流体路からなる地中熱交換構造を用いる地中熱交換器は、地表占有面積においては、従来公知の垂直埋設式地中熱交換器よりも広くなることになる。たとえば、従来公知の垂直埋設式地中熱交換器では、直径15cm程度の削孔であったとしたら、本発明の実施には直径25〜30cm程度の削孔が必要になると思われるが、その分地中熱交換領域の熱交換対象充填材量が増し、樹脂製流体路の総延長距離を大きくすることができるので、削孔深度を数分の1程度に短くしても従来の長尺状垂直埋設式地中熱交換器と同等以上の熱交換効率を実現でき、掘削コストを大幅に削減した垂直埋設式地中熱交換器が実現することとなる。 The underground heat exchanger using the underground heat exchange structure composed of three or more resin fluid passages according to the present invention is wider than the conventionally known vertical buried type underground heat exchanger in the surface occupation area. Become. For example, in a conventionally known underground underground heat exchanger, if a hole having a diameter of about 15 cm is drilled, it is considered that a hole having a diameter of about 25 to 30 cm is required to implement the present invention. Since the amount of filler for heat exchange in the underground heat exchange area is increased and the total extension distance of the resin fluid path can be increased, the conventional long shape can be achieved even if the drilling depth is reduced to a fraction. A heat transfer efficiency equivalent to or better than that of a vertical buried underground heat exchanger can be realized, and a vertical buried underground heat exchanger with a drastic reduction in excavation costs will be realized.
本発明の樹脂製流体路の循環流体は、流体路の入口から入り往路および復路を経て出口から出るが、夏期には、地中温度は、地上の外気温度に比べ恒温状態で温度が低いので、循環流体は地中熱交換領域で冷やされて略15℃の循環流体となり、冬期には地中熱熱交換領域で地中温度に温められた循環流体となる。 The circulating fluid in the resin fluid path of the present invention enters from the inlet of the fluid path and exits from the outlet through the return path, but in the summer, the underground temperature is constant and lower than the outside air temperature on the ground. The circulating fluid is cooled in the underground heat exchange region to become a circulating fluid of approximately 15 ° C., and becomes a circulating fluid warmed to the underground temperature in the underground heat exchange region in winter.
本発明の地中熱交換構造では、使用する樹脂製流体路の数に応じた流体路における循環流体の入口および出口となる流体路端部がある。それぞれの入口流体路端部および出口流体路端部は、それぞれ独立した複数の流体循環系を形成していてもよいし、連通して一つの流体循環系を形成していてもよい。連通して一つの流体循環系系を形成する場合には、複数の入口流体路端部及び出口流体路端部をそれぞれ、T字管、結合管、ヘッダーなどの部材を用いて一つの管に繋ぐことができる。 In the underground heat exchange structure of the present invention, there are fluid path end portions serving as inlets and outlets of the circulating fluid in the fluid paths according to the number of resin fluid paths used. Each inlet fluid path end and outlet fluid path end may form a plurality of independent fluid circulation systems, or may communicate with each other to form a single fluid circulation system. When communicating to form one fluid circulation system, a plurality of inlet fluid passage end portions and outlet fluid passage end portions are respectively formed into one tube using members such as a T-shaped tube, a coupling tube, and a header. Can be connected.
以下に本発明について、図を用いて具体例に説明する。以下に説明する具体例は、4個の樹脂製流体路で地中熱交換構造を形成する場合である。 Hereinafter, the present invention will be described with reference to the drawings. The specific example described below is a case where the underground heat exchange structure is formed by four resin fluid paths.
図1には、本発明の垂直埋設式地中熱交換器1の例が示されている。図1では、地表10から下方に掘削された削孔に、循環流体の往路と復路を形成する直状樹脂製管3からなるU字管4個からなる地中熱交換構造2を設置し充填材11で埋め戻した状態が示されている。4個の直状樹脂製管3からなるU字管は、削孔の下端附近で各樹脂製管が平面視で交差するように設置されている。図1の地中熱交換構造2には、所定の位置に間隔保持部材5が備えられている。 FIG. 1 shows an example of a vertical buried underground heat exchanger 1 according to the present invention. In FIG. 1, a ground heat exchanging structure 2 consisting of four U-shaped pipes made of straight resin pipes 3 forming a forward path and a return path of circulating fluid is installed and filled in a borehole drilled downward from the ground surface 10. A state of being backfilled with the material 11 is shown. The U-shaped pipe composed of four straight resin pipes 3 is installed so that the resin pipes intersect each other in plan view near the lower end of the drilling hole. In the underground heat exchanging structure 2 in FIG. 1, a spacing member 5 is provided at a predetermined position.
図1の削孔は30mの深さに掘削されており、樹脂製管として外形17mmで、内径が12.2mmのポリエチレン製管からなるU字管4個によって地中熱交換構造2が形成されているので、地中熱交換構造2の循環流体路の全長は240mである。 The drilling hole in FIG. 1 is excavated to a depth of 30 m, and the underground heat exchange structure 2 is formed by four U-shaped pipes made of polyethylene pipe having an outer diameter of 17 mm as a resin pipe and an inner diameter of 12.2 mm. Therefore, the total length of the circulating fluid path of the underground heat exchange structure 2 is 240 m.
図1の地中熱交換構造2では、4個の直状樹脂製管3からなるU字管の往路それぞれが、ヘッダー4によって連通している。また、U字管の復路もそれぞれがヘッダー4によって、連通している。図1の地中熱交換構造2はヘッダーによって連通して一つの流体循環系系を形成している。 In the underground heat exchange structure 2 of FIG. 1, each of the outward paths of the U-shaped pipe composed of four straight resin pipes 3 is communicated by the header 4. In addition, the U-tube return paths communicate with each other through a header 4. The underground heat exchange structure 2 in FIG. 1 is communicated by a header to form one fluid circulation system.
図2には、図1に示された地中熱交換構造2の底部附近A−Aにおける断面図を示している。図2には、間隔保持部材5の円形枠6に設置されたアーム部7に接続されている管保持部8によって、地中熱交換構造2を形成するU字管がそれぞれ2ヶ所、合計8箇所で管間隔保持部材5によって固定されている。それぞれのU字管を構成する樹脂管は循環流体の往路と復路の働きをする。例えば樹脂管3−1が往路であれば、それに連通する樹脂管3−2は復路である。 FIG. 2 shows a cross-sectional view of the underground heat exchange structure 2 shown in FIG. In FIG. 2, two U-shaped tubes forming the underground heat exchanging structure 2 are provided in total by a tube holding portion 8 connected to the arm portion 7 installed on the circular frame 6 of the interval holding member 5. It is fixed at a location by the tube spacing member 5. The resin pipes constituting each U-shaped pipe serve as a forward path and a return path of the circulating fluid. For example, if the resin pipe 3-1 is the forward path, the resin pipe 3-2 communicating with it is the return path.
管間隔保持部材の形状は、図2のものに限定されるものではないが、管間隔保持部材によって、樹脂管の各往路もしくは復路となる流体路が、往路と復路の接点附近を除いて、隣り合う往路もしくは復路となる流体路との間に、少なくとも7cmの間隔を保持しているので、地中熱との良好な熱交換効率が実現している。
図2のように、3つの樹脂製流体路が、各樹脂製流体路の往路と復路がほぼ等間隔の円周上に配置されており、その円周の直径が30cmであるとしたら、各往路もしくは復路となる流体路が隣り合う往路もしくは復路となる流体路との間の間隔は約15cmとなる。
The shape of the pipe interval holding member is not limited to that shown in FIG. 2, but the pipe interval holding member allows the fluid path serving as each forward path or return path of the resin pipe to be close to the contact point between the forward path and the return path, Since a distance of at least 7 cm is maintained between adjacent forward or return fluid paths, good heat exchange efficiency with the underground heat is realized.
As shown in FIG. 2, if three resin fluid paths are arranged on the circumference of approximately equal intervals between the forward path and the return path of each resin fluid path, and the diameter of the circumference is 30 cm, The distance between the fluid path serving as the forward path or the return path and the fluid path serving as the forward path or the return path adjacent to each other is approximately 15 cm.
図3は、地中熱交換構造2の底部附近の様子を示す写真である。図3から4個の直状樹脂製管3からなる各U字管が平面視で交差する様子、およびU字管がそれぞれ2ヶ所、合計8箇所で管間隔保持部材5によって固定されている様子がよくわかる。図4は、地中熱交換構造の全体の様子を示す写真である。図4の地中熱交換構造の端部にはヘッダーが用いられている。 FIG. 3 is a photograph showing a state near the bottom of the underground heat exchange structure 2. Each U-shaped pipe made of four straight resin pipes 3 from FIG. 3 intersects in plan view, and two U-shaped pipes are fixed by the pipe interval holding member 5 at a total of 8 positions. I understand well. FIG. 4 is a photograph showing the overall state of the underground heat exchange structure. A header is used at the end of the underground heat exchange structure in FIG.
図5は、本発明の垂直埋設式地中熱交換器を地中熱交換装置として有する地中熱利用ヒートポンプシステムの概略図である。図9は、冬期における地中熱利用ヒートポンプシステムの稼動状況を示している。地中熱交換構造の流体路には、不凍液(ブライン)、水等の循環流体が循環している。
冬期には、地中熱熱交換領域12で地中温度に温められた循環流体がピートポンプ9内の熱交換器A(蒸発部)93に導かれ、熱媒体との熱交換によって熱を奪われて温度が低下し、熱媒体は吸熱によって蒸発する。ヒートポンプ9に導かれて温度が低下した循環流体は、再び地中熱熱交換領域2に戻る。このとき地中温度は、地上の外気温度に比べ恒温状態で温度が高くなっているので、循環流体は地上側から地中に送り込まれると、地中熱交換領域で採熱し、温められて循環流体循環系91を通ってピートポンプ内の熱交換器A93に循環することになる。
FIG. 5 is a schematic view of a heat pump system using geothermal heat having the vertical buried underground heat exchanger of the present invention as a geothermal heat exchange device. FIG. 9 shows the operation status of the geothermal heat pump system in winter. Circulating fluids such as antifreeze (brine) and water circulate in the fluid path of the underground heat exchange structure.
In the winter season, the circulating fluid heated to the ground temperature in the ground heat heat exchange region 12 is guided to the heat exchanger A (evaporating part) 93 in the peat pump 9, and heat is taken away by heat exchange with the heat medium. As a result, the temperature drops and the heat medium evaporates due to endotherm. The circulating fluid that has been led to the heat pump 9 and whose temperature has dropped returns to the underground heat exchange region 2 again. At this time, since the underground temperature is higher in the constant temperature state than the outside air temperature on the ground, when the circulating fluid is fed into the ground from the ground side, it is collected and heated in the underground heat exchange area and circulated. It will circulate through the fluid circulation system 91 to the heat exchanger A93 in the peat pump.
ピートポンプの熱交換器Aにおいて蒸発した熱媒体は圧縮機95を通って熱交換器B(凝縮部)94に入る。熱交換器Bには、放熱系を循環する2次蓄熱媒体が導かれており、熱交換によって熱媒体から熱が放出されて2次蓄熱媒体の温度が上昇する。放熱して温度が低下した熱媒体は再度熱交換器A93に循環して、循環流体と熱交換が行われる。
温度が上昇した2次蓄熱媒体は2次蓄熱媒体循環系92を通って放熱系97に到達し、所望の暖房機能が得られる。放熱系の例としては、床暖房、ファンコイルユニット、融雪用パネル、融雪用放熱管等がある。放熱系も循環ループとなっており、放熱系で熱を放出した2次蓄熱媒体は、再び2次蓄熱媒体循環系92によって熱交換器B(冷媒凝縮部)94に導かれて加熱されて、再度放熱系に供給される。
各循環系には、流体循環のためにポンプが設置されているが、図9ではポンプの表示を省略した。
The heat medium evaporated in the heat exchanger A of the peat pump enters the heat exchanger B (condensing unit) 94 through the compressor 95. A secondary heat storage medium that circulates in the heat dissipation system is guided to the heat exchanger B, and heat is released from the heat medium by heat exchange, so that the temperature of the secondary heat storage medium rises. The heat medium whose temperature has decreased due to heat dissipation circulates again to the heat exchanger A93 to exchange heat with the circulating fluid.
The secondary heat storage medium whose temperature has increased reaches the heat dissipation system 97 through the secondary heat storage medium circulation system 92, and a desired heating function is obtained. Examples of the heat dissipation system include floor heating, a fan coil unit, a snow melting panel, a snow melting heat radiation pipe, and the like. The heat dissipation system is also a circulation loop, and the secondary heat storage medium that has released heat in the heat dissipation system is again led to the heat exchanger B (refrigerant condensing unit) 94 by the secondary heat storage medium circulation system 92 and heated, It is supplied again to the heat dissipation system.
In each circulation system, a pump is installed for fluid circulation, but the pump is not shown in FIG.
夏期には、略15℃の循環流体がピートポンプ内の熱交換器において、熱媒体との熱交換によって熱を奪うことで循環流体の温度が上昇する。このヒートポンプに導かれて温度が上昇した循環流体は、再び地中熱熱交換領域に戻る。このとき地中温度は、地上の外気温度に比べ恒温状態で温度が低いので、循環流体は地上側から地中に送り込まれると、地中熱交換領域で冷やされて再び熱交換器に循環することになる。 In the summer, the temperature of the circulating fluid rises as the circulating fluid of approximately 15 ° C. takes heat away from the heat exchanger in the heat exchanger in the peat pump. The circulating fluid whose temperature has been increased by being guided to the heat pump returns to the underground heat heat exchange region again. At this time, since the underground temperature is constant and lower than the outside air temperature on the ground, when the circulating fluid is fed from the ground side into the ground, it is cooled in the underground heat exchange region and circulated again to the heat exchanger. It will be.
ピートポンプにおいて循環流体によって冷却された熱媒体は、膨張弁を通って熱交換器に入り、2次蓄熱媒体から熱を奪う。温度が上昇した熱媒体は再度熱交換器に循環して、循環流体から熱を奪うことにより、地中熱との熱交換が行われる。冷却された熱媒体は配管を通って放熱系に到達し、所望の冷房機能が得られる。放熱系も循環ループとなっており、放熱系で温度が上昇した2次蓄熱媒体は、再び熱交換器B(冷媒凝縮部)に導かれ、冷却されて再度放熱系に供給される。 The heat medium cooled by the circulating fluid in the peat pump enters the heat exchanger through the expansion valve and takes heat from the secondary heat storage medium. The heat medium whose temperature has risen is circulated again to the heat exchanger, and heat is taken from the circulating fluid to exchange heat with the underground heat. The cooled heat medium reaches the heat dissipation system through the pipe, and a desired cooling function is obtained. The heat dissipation system is also a circulation loop, and the secondary heat storage medium whose temperature has increased in the heat dissipation system is again guided to the heat exchanger B (refrigerant condensing unit), cooled, and supplied to the heat dissipation system again.
本発明により、長尺状垂直埋設式地中熱交換器と同等以上の熱交換効率を実現しながら、削孔深度を数分の1程度に短くすることができ、掘削コストを大幅に削減できる垂直埋設式地中熱交換器が提供される。
ヒートポンプなどの負荷装置の熱交換器として垂直埋設式地中熱交換器を用いる場合、設置費用のかなりの割合が地中熱交換器設置のための掘削費用であるところ、本発明によって削孔深度を短くできるので、設置費用を大幅に削減することが可能となる。
本発明により、長尺状垂直埋設式地中熱交換器と同等以上の熱交換効率を実現しながら、掘削コストを大幅に削減できる垂直埋設式地中熱交換器を用いたヒートポンプが提供される。
According to the present invention, the depth of drilling can be reduced to a fraction of that while realizing a heat exchange efficiency equal to or greater than that of a long vertical buried underground heat exchanger, and the excavation cost can be greatly reduced. A vertical buried underground heat exchanger is provided.
When using a vertical buried underground heat exchanger as a heat exchanger for a load device such as a heat pump, a significant percentage of the installation cost is excavation cost for installing the underground heat exchanger. Therefore, the installation cost can be greatly reduced.
The present invention provides a heat pump using a vertical buried underground heat exchanger that can significantly reduce excavation costs while realizing a heat exchange efficiency equal to or higher than that of a long vertical buried underground heat exchanger. .
1.垂直埋設式地中熱交換器
2.地中熱交換構造
3.樹脂製管
3−1.往路
3−2.復路
4.ヘッダー
5.間隔保持部材
6.枠
7.アーム部
8.管保持部
9.ヒートポンプ
91.循環流体循環系
92.2次蓄熱媒体循環系
93.熱交換器A
94.熱交換器B
95.圧縮機
96.膨張弁
97.放熱系
10.地表
11.充填材
12.地中熱交換
a.循環流体入口
b.循環流体出口
1. 1. Vertical buried underground heat exchanger 2. Underground heat exchange structure Resin pipe 3-1. Outward path 3-2. Return way4. Header 5. 5. Spacing member Frame 7. Arm part 8. 8. Tube holding part Heat pump 91. Circulating fluid circulation system 92.2 Secondary heat storage medium circulation system 93. Heat exchanger A
94. Heat exchanger B
95. Compressor 96. Expansion valve 97. Heat dissipation system 10. Surface 11. Filler 12. Underground heat exchange a. Circulating fluid inlet b. Circulating fluid outlet
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013061844A JP2014185822A (en) | 2013-03-25 | 2013-03-25 | Geothermal heat utilization heat exchanger and heat pump system using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013061844A JP2014185822A (en) | 2013-03-25 | 2013-03-25 | Geothermal heat utilization heat exchanger and heat pump system using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014185822A true JP2014185822A (en) | 2014-10-02 |
Family
ID=51833555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013061844A Pending JP2014185822A (en) | 2013-03-25 | 2013-03-25 | Geothermal heat utilization heat exchanger and heat pump system using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014185822A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106123631A (en) * | 2016-08-18 | 2016-11-16 | 山东省北斗制冷设备有限公司 | Underground tubulation multiply-connected formula heat abstractor |
CN106481328A (en) * | 2016-09-23 | 2017-03-08 | 太原理工大学 | A kind of utilization graininess dry ice builds the hot dry rock method that manually heat is stored up |
CN107228500A (en) * | 2017-07-10 | 2017-10-03 | 陕西德龙地热开发有限公司 | A kind of direct heating system of utilization deep geothermal heat energy |
KR102518823B1 (en) * | 2021-10-06 | 2023-04-06 | 주식회사 지앤지테크놀러지 | A heat exchange unit composed of a heat exchange coil tube in six or more rows, a vertically underground heat exchanger unit including the heat exchange coil tube, and a method of installing the same |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4516629A (en) * | 1982-04-06 | 1985-05-14 | Thermal Concepts, Inc. | Earth-type heat exchanger for heat pump system |
US4538673A (en) * | 1984-05-02 | 1985-09-03 | Geo-Systems, Inc. | Drilled well series and paralleled heat exchange systems |
JPH11182943A (en) * | 1997-12-22 | 1999-07-06 | Kubota Corp | Underground heat exchanger |
US5983660A (en) * | 1998-01-15 | 1999-11-16 | Geofurnace Systems, Inc. | Defrost subcircuit for air-to-air heat pump |
JP2002054850A (en) * | 2000-08-08 | 2002-02-20 | Nippon Steel Corp | Underground heat exchange system |
JP2003206528A (en) * | 2002-01-10 | 2003-07-25 | Kubota Corp | Civil engineering-construction pile for constructing ground heat exchange equipment and its construction method |
JP2004333001A (en) * | 2003-05-06 | 2004-11-25 | Taisei Corp | Heat exchanging pipe installation mechanism in heat exchanging system utilizing foundation pile of building |
JP2005337590A (en) * | 2004-05-27 | 2005-12-08 | Tsunoda Tadashi | Underground heat sampling unit |
JP2007071439A (en) * | 2005-09-06 | 2007-03-22 | Misawa Kankyo Gijutsu Kk | Triple u-shaped tube type underground heat exchanger |
JP2007315742A (en) * | 2006-04-28 | 2007-12-06 | Just Thokai:Kk | Underground heat exchanger and its buried structure |
JP2009041894A (en) * | 2007-08-07 | 2009-02-26 | Yoshihiro Tatemoto | Underground heat exchange method by pulling out rotary leading steel pipe |
JP2009063267A (en) * | 2007-09-07 | 2009-03-26 | Nippon Steel Engineering Co Ltd | Ground heat exchanger and its using method, and ground heat utilizing system and its operating method |
JP2010060247A (en) * | 2008-09-05 | 2010-03-18 | Mitsubishi Materials Techno Corp | Soil heat exchanger of heat pump system using soil heat |
JP2011191014A (en) * | 2010-03-16 | 2011-09-29 | Sumitomo Fudosan Kk | Underground heat use system |
JP2012097984A (en) * | 2010-11-04 | 2012-05-24 | Taiyo Kiso Kk | Cast-in-place concrete pile with steel pipe for extracting geothermal heat |
JP2012127583A (en) * | 2010-12-15 | 2012-07-05 | Ohbayashi Corp | Method for building pipe member concerning underground heat exchanger into excavation hole |
JP2012255337A (en) * | 2012-09-18 | 2012-12-27 | Kume Sekkei:Kk | Method for installing heat exchange pile |
-
2013
- 2013-03-25 JP JP2013061844A patent/JP2014185822A/en active Pending
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4516629A (en) * | 1982-04-06 | 1985-05-14 | Thermal Concepts, Inc. | Earth-type heat exchanger for heat pump system |
US4538673A (en) * | 1984-05-02 | 1985-09-03 | Geo-Systems, Inc. | Drilled well series and paralleled heat exchange systems |
JPH11182943A (en) * | 1997-12-22 | 1999-07-06 | Kubota Corp | Underground heat exchanger |
US5983660A (en) * | 1998-01-15 | 1999-11-16 | Geofurnace Systems, Inc. | Defrost subcircuit for air-to-air heat pump |
JP2002054850A (en) * | 2000-08-08 | 2002-02-20 | Nippon Steel Corp | Underground heat exchange system |
JP2003206528A (en) * | 2002-01-10 | 2003-07-25 | Kubota Corp | Civil engineering-construction pile for constructing ground heat exchange equipment and its construction method |
JP2004333001A (en) * | 2003-05-06 | 2004-11-25 | Taisei Corp | Heat exchanging pipe installation mechanism in heat exchanging system utilizing foundation pile of building |
JP2005337590A (en) * | 2004-05-27 | 2005-12-08 | Tsunoda Tadashi | Underground heat sampling unit |
JP2007071439A (en) * | 2005-09-06 | 2007-03-22 | Misawa Kankyo Gijutsu Kk | Triple u-shaped tube type underground heat exchanger |
JP2007315742A (en) * | 2006-04-28 | 2007-12-06 | Just Thokai:Kk | Underground heat exchanger and its buried structure |
JP2009041894A (en) * | 2007-08-07 | 2009-02-26 | Yoshihiro Tatemoto | Underground heat exchange method by pulling out rotary leading steel pipe |
JP2009063267A (en) * | 2007-09-07 | 2009-03-26 | Nippon Steel Engineering Co Ltd | Ground heat exchanger and its using method, and ground heat utilizing system and its operating method |
JP2010060247A (en) * | 2008-09-05 | 2010-03-18 | Mitsubishi Materials Techno Corp | Soil heat exchanger of heat pump system using soil heat |
JP2011191014A (en) * | 2010-03-16 | 2011-09-29 | Sumitomo Fudosan Kk | Underground heat use system |
JP2012097984A (en) * | 2010-11-04 | 2012-05-24 | Taiyo Kiso Kk | Cast-in-place concrete pile with steel pipe for extracting geothermal heat |
JP2012127583A (en) * | 2010-12-15 | 2012-07-05 | Ohbayashi Corp | Method for building pipe member concerning underground heat exchanger into excavation hole |
JP2012255337A (en) * | 2012-09-18 | 2012-12-27 | Kume Sekkei:Kk | Method for installing heat exchange pile |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106123631A (en) * | 2016-08-18 | 2016-11-16 | 山东省北斗制冷设备有限公司 | Underground tubulation multiply-connected formula heat abstractor |
CN106481328A (en) * | 2016-09-23 | 2017-03-08 | 太原理工大学 | A kind of utilization graininess dry ice builds the hot dry rock method that manually heat is stored up |
CN106481328B (en) * | 2016-09-23 | 2018-12-25 | 太原理工大学 | A method of the artificial heat storage of hot dry rock is built using graininess dry ice |
CN107228500A (en) * | 2017-07-10 | 2017-10-03 | 陕西德龙地热开发有限公司 | A kind of direct heating system of utilization deep geothermal heat energy |
KR102518823B1 (en) * | 2021-10-06 | 2023-04-06 | 주식회사 지앤지테크놀러지 | A heat exchange unit composed of a heat exchange coil tube in six or more rows, a vertically underground heat exchanger unit including the heat exchange coil tube, and a method of installing the same |
WO2023058841A1 (en) * | 2021-10-06 | 2023-04-13 | 주식회사 지앤지테크놀러지 | Heat exchange unit comprising six rows or more of heat exchange coil tubes and vertical-closed ground heat exchanger comprising same, and installation method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2394191C2 (en) | Heating and cooling method and device | |
JP4642579B2 (en) | Geothermal heat collection system | |
US20090025902A1 (en) | Probe For Collecting Thermal Energy From The Ground For A Heat Pump, And A Collection Network Equipped With Such Probes | |
US4566532A (en) | Geothermal heat transfer | |
JP2011524967A (en) | Thermal energy system and operating method thereof | |
KR101166684B1 (en) | Thermal storage of underground rock using heat utilizing system | |
JP2010532842A (en) | Geothermal energy system and method of operation | |
WO2018014604A1 (en) | Cast-in-place pile apparatus for combined cooling, heat and power generation and construction method therefor | |
KR101368362B1 (en) | Cooling and heating system using ground source | |
JP2014185822A (en) | Geothermal heat utilization heat exchanger and heat pump system using the same | |
KR101011130B1 (en) | Ground-coupled Heat Exchanger | |
KR101591017B1 (en) | Thermal energy storage system using depth defference of aquifer | |
CN103968607B (en) | A kind of ground heat exchanger for geothermal heat pump air-conditioning system | |
EP3841331A1 (en) | A system, an arrangement and method for heating and cooling | |
JP2009008320A (en) | Bearing pile system for house-building-and-heat-exchange utilizing geothermal heat | |
JP2015055365A (en) | Heat collecting pipe for underground thermal heat pump system | |
US20100251710A1 (en) | System for utilizing renewable geothermal energy | |
JP2017101867A (en) | Geothermal heat exchanger and heat pump system using the same | |
KR20100085432A (en) | Earth heat exchange pipe, earth heat exchange system and manufacturing method of the same | |
JP2013148255A (en) | Heat exchanger and heat exchanger module | |
JP5859731B2 (en) | Horizontally buried underground heat exchanger equipment for heat pump system using geothermal heat | |
KR20190063698A (en) | Energy System having Underground Storage | |
KR101696822B1 (en) | Binary rankine cycle system | |
JP2014115025A (en) | Geothermal utilization heat exchange structure and heat pump system using the same | |
KR101189079B1 (en) | Geothermal exchanging pile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150917 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160907 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170214 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20170223 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20170414 |