Nothing Special   »   [go: up one dir, main page]

JP2014178065A - Regenerative combustion device and pyrolysis processing method - Google Patents

Regenerative combustion device and pyrolysis processing method Download PDF

Info

Publication number
JP2014178065A
JP2014178065A JP2013052129A JP2013052129A JP2014178065A JP 2014178065 A JP2014178065 A JP 2014178065A JP 2013052129 A JP2013052129 A JP 2013052129A JP 2013052129 A JP2013052129 A JP 2013052129A JP 2014178065 A JP2014178065 A JP 2014178065A
Authority
JP
Japan
Prior art keywords
gas
heat storage
auxiliary fuel
heat
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013052129A
Other languages
Japanese (ja)
Other versions
JP6086313B2 (en
JP2014178065A5 (en
Inventor
Nobuhiko Murofushi
信彦 室伏
Tsuyoshi Amaike
強 天池
Yuichi Sato
祐一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013052129A priority Critical patent/JP6086313B2/en
Publication of JP2014178065A publication Critical patent/JP2014178065A/en
Publication of JP2014178065A5 publication Critical patent/JP2014178065A5/ja
Application granted granted Critical
Publication of JP6086313B2 publication Critical patent/JP6086313B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a regenerative combustion device and a pyrolysis processing method capable of preventing a heat storage body from erosion by curbing consumption of auxiliary fuel through means which can be easily installed to an existing facility without requiring a huge amount of facility investment and reservation of an installation place for an additional facility.SOLUTION: A regenerative combustion device comprises: a combustion chamber 4 which burns processing object gas; an auxiliary fuel supply path 16 which introduces auxiliary fuel into the combustion chamber 4; at least a pair of heat storage chambers 3 which store heat storage bodies 12 and are communicated with the combustion chamber 4; a fan 7 which transfers the processing object gas to the combustion chamber 3; a rotary type selector valve 18 which switches transfer directions of the processing object gas to the heat storage chambers 3; an auxiliary fuel flowmeter 17 which detects consumption of auxiliary fuel in the combustion chamber 4; a discharge port thermometer 20 which detects a temperature of the processing object gas discharged from the heat storage chambers 3; and control means 21 which controls a gas transfer amount with the fan 7 on the basis of detection results of the auxiliary fuel flowmeter 17 and the discharge port thermometer 20.

Description

本発明は、各種工場や研究施設などで発生する揮発性有機化合物(VOC)を含有する被処理ガスを熱分解して処理する蓄熱式燃焼装置及び熱分解処理方法に関するものである。   The present invention relates to a regenerative combustion apparatus and a thermal decomposition treatment method for thermally decomposing and treating a gas to be treated containing a volatile organic compound (VOC) generated in various factories and research facilities.

電子写真方式用トナー、合成樹脂、塗料、顔料、医薬品、工業薬品などの化学製品を取り扱う工場などでは、環境問題の点から、酢酸エチル、トルエン、キシレン、スチレンなどの揮発性有機化合物(VOC)を含有する被処理ガスを熱分解処理している。この熱分解処理には、例えば、蓄熱式熱交換原理に基づいた蓄熱燃焼装置が使用されている。   In factories that handle chemical products such as electrophotographic toners, synthetic resins, paints, pigments, pharmaceuticals, and industrial chemicals, volatile organic compounds (VOCs) such as ethyl acetate, toluene, xylene, and styrene are environmentally problematic. The gas to be treated containing pyrolysis is pyrolyzed. For this thermal decomposition treatment, for example, a heat storage combustion apparatus based on a heat storage type heat exchange principle is used.

この蓄熱式燃焼装置は、被処理ガスを一方側の蓄熱室内の予め余熱された高温の蓄熱体の中を通し、昇温させてから燃焼室に導き、更にバーナなどで燃焼室の温度を上げて被処理ガスを燃焼、熱分解させる。その結果発生する高温の被処理ガスを他方側の蓄熱室内を通して排出する。被処理ガスは一方側の蓄熱室で蓄熱体から熱をもらい、処理された後で他方側の蓄熱室で蓄熱体に熱を与えることになる。一方側と他方側の蓄熱室を適宜切換えることにより、蓄熱体が吸熱・放熱を交互に繰り返し、熱を効率的に利用することができる。蓄熱室の切換えには、複数の切換弁を用いる方式と、回転式切換弁を用いる方式が挙げられる。回転式切換弁を用いる方式は、コンパクトにまとめられて連続してガスの切り換えができるので有利である。   This regenerative combustion apparatus passes the gas to be treated through a preheated high-temperature heat accumulator in one side of the heat storage chamber, raises the temperature, guides it to the combustion chamber, and further raises the temperature of the combustion chamber with a burner or the like. The gas to be treated is burned and pyrolyzed. As a result, the high temperature gas to be treated is discharged through the heat storage chamber on the other side. The gas to be treated receives heat from the heat storage body in the heat storage chamber on one side and, after being processed, gives heat to the heat storage body in the heat storage chamber on the other side. By appropriately switching the heat storage chambers on the one side and the other side, the heat storage body alternately repeats heat absorption and heat release, and heat can be used efficiently. Switching between heat storage chambers includes a system using a plurality of switching valves and a system using a rotary switching valve. The method using the rotary switching valve is advantageous because it is compact and can continuously switch gases.

上述した蓄熱式燃焼装置においては、何らかの理由により蓄熱体が異常に昇温して溶損することを防止するために、様々な方策がとられている。例えば、特許文献1には、燃焼室内の被処理ガスの一部をバイパスダクトと熱交換器とに導入して熱回収し、蓄熱体に蓄熱される熱量を減少させるシステムが提案されている。また、特許文献2には、蓄熱体の内部温度や、蓄熱体の端部の温度を測定する温度計を設置し、これらの温度から燃焼排ガスの吸引流量及び吸引時間を制御することにより、蓄熱体の温度を制御するシステムが提案されている。特許文献3には、処理前後の被処理ガスの温度や、蓄熱体の内部温度を測定する温度計を設置し、これらの温度から被処理ガスを吸引排出するファンの可動を決定することにより、蓄熱体の温度を制御するシステムが提案されている。   In the above-described regenerative combustion apparatus, various measures are taken in order to prevent the heat storage body from being abnormally heated and melted for some reason. For example, Patent Document 1 proposes a system in which a part of the gas to be treated in the combustion chamber is introduced into a bypass duct and a heat exchanger to recover heat, and the amount of heat stored in the heat storage body is reduced. Further, in Patent Document 2, a thermometer for measuring the internal temperature of the heat storage body and the temperature of the end of the heat storage body is installed, and by controlling the suction flow rate and suction time of the combustion exhaust gas from these temperatures, Systems for controlling body temperature have been proposed. In Patent Literature 3, by installing a thermometer that measures the temperature of the gas to be processed before and after the treatment and the internal temperature of the heat storage body, by determining the movement of the fan that sucks and discharges the gas to be processed from these temperatures, A system for controlling the temperature of the heat storage body has been proposed.

しかしながら、特許文献1に記載されるように、燃焼室にバイパスダクトや熱交換器などの追加設備を付設するには、多大な設備投資と、追加設備の設置場所の確保が必要となる。また、特許文献2及び3に記載されるように、蓄熱体内部の温度を検出する温度計を、既存の蓄熱式燃焼装置の蓄熱体内部に新たに設置するには多大な設備投資が必要になる。   However, as described in Patent Document 1, in order to add additional equipment such as a bypass duct and a heat exchanger to the combustion chamber, it is necessary to make a great investment in equipment and secure a place for installing the additional equipment. In addition, as described in Patent Documents 2 and 3, a large amount of capital investment is required to newly install a thermometer that detects the temperature inside the heat storage body inside the heat storage body of the existing heat storage combustion device. Become.

本発明者らは、蓄熱体の異常な昇温の原因として、低発火点のVOC含有ガスなどの被処理ガスを熱分解処理した場合に、本来被処理ガスが熱分解するはずの燃焼室で分解せずに蓄熱体内部で熱分解してしまう、いわゆる中間燃焼の発生に着眼した。被処理ガスが蓄熱体内部で熱分解すると、熱分解時に発生する熱が燃焼室に廻らず蓄熱体内部に過剰に蓄積してしまう。蓄熱体内部に蓄積した熱の一部は排出通路を通り外部へ放出されるが、蓄熱体の耐熱温度に達すると蓄熱体は溶損することになる。また、このような中間燃焼時には、熱分解時に発生する熱が蓄熱体に過剰に蓄熱し燃焼室に回らないため、燃焼室では十分なVOC含有ガス濃度にも関わらず補助燃料であるLNG・都市ガス等を消費し続けている現象が発生していることにも着眼した。   As a cause of abnormal temperature rise of the heat storage body, the present inventors, in the combustion chamber where the gas to be treated should be pyrolyzed when the gas to be treated such as a VOC-containing gas having a low ignition point is pyrolyzed. We focused on the occurrence of so-called intermediate combustion that would cause thermal decomposition inside the heat storage body without decomposition. When the gas to be treated is thermally decomposed inside the heat storage body, the heat generated during the thermal decomposition does not go to the combustion chamber and is excessively accumulated inside the heat storage body. A part of the heat accumulated in the heat storage body is released to the outside through the discharge passage, but when the heat storage body reaches the heat resistant temperature, the heat storage body is melted. In addition, during such intermediate combustion, the heat generated during pyrolysis is excessively stored in the heat storage body and does not go to the combustion chamber, so the LNG / city that is an auxiliary fuel in the combustion chamber despite the sufficient VOC-containing gas concentration I also noticed that there was a phenomenon that continued to consume gas.

本発明は以上の問題点に鑑みなされたものであり、その目的は、多大な設備投資や追加設備の設置場所の確保を必要とせず、既存の設備に導入しやすい手段により、補助燃料の消費を抑制し、蓄熱体の溶損を防止することが可能な蓄熱式燃焼装置及び熱分解処理方法を提供することである。   The present invention has been made in view of the above-mentioned problems, and the object thereof is to consume auxiliary fuel by means that can be easily introduced into existing equipment without requiring a large capital investment and securing a place for installing additional equipment. Is to provide a regenerative combustion apparatus and a thermal decomposition treatment method that can prevent melting of the heat storage body.

上記課題を解決するため、請求項1の発明は、被処理ガスを燃焼させる燃焼室と、該燃焼室に補助燃料を導入する燃料導入手段と、蓄熱体を収容し燃焼室に連通する少なくとも一対の蓄熱室と、蓄熱室へ被処理ガスを移送するガス移送手段と、蓄熱室への被処理ガスの移送方向を切り換える切換手段とを備える蓄熱式燃焼装置において、上記燃焼室での補助燃料の消費量を検出する補助燃料検出手段と、上記蓄熱室から排出される被処理ガスの温度を検出するガス温度検出手段と、該補助燃料検出手段の検出結果と該ガス温度検出手段の検出結果とから、上記ガス移動手段によるガス移送量を制御する制御手段とを備えることを特徴とするものである。   In order to solve the above problems, the invention of claim 1 is directed to at least a pair of a combustion chamber for combusting the gas to be treated, fuel introduction means for introducing auxiliary fuel into the combustion chamber, and a heat accumulator that is in communication with the combustion chamber. A regenerator, a gas transfer means for transferring the gas to be processed to the heat storage chamber, and a switching means for switching the transfer direction of the gas to be processed to the heat storage chamber. Auxiliary fuel detection means for detecting consumption, a gas temperature detection means for detecting the temperature of the gas to be processed discharged from the heat storage chamber, a detection result of the auxiliary fuel detection means, and a detection result of the gas temperature detection means And a control means for controlling the amount of gas transferred by the gas moving means.

本発明においては、燃焼室での補助燃料の消費量と蓄熱室から排出される被処理ガスの温度とから中間燃焼を判定し、被処理ガスの移送量を制御することにより蓄熱体の溶損を防止することが可能である。中間燃焼が起きていると判定された場合には、被処理ガスの移送量を増やし、蓄熱体に蓄積された熱を排出し、その後の中間燃焼の発生を止め、補助燃料の消費量が増加することを抑制するのである。また、中間燃焼を判定するにあたって、装置の外側に補助燃料検出手段とガス温度検出手段を設置すればよく、既存の設備に導入する際にも、多大な設備投資や追加設備の設置場所の確保を必要としない。このように、本発明においては、多大な設備投資や追加設備の設置場所の確保を必要とせず、既存の設備に導入しやすい手段により、補助燃料の消費を抑制し、蓄熱体の溶損を防止することができるという優れた効果がある。   In the present invention, intermediate combustion is determined from the consumption amount of auxiliary fuel in the combustion chamber and the temperature of the gas to be processed discharged from the heat storage chamber, and the heat loss of the heat storage body is controlled by controlling the transfer amount of the gas to be processed. Can be prevented. If it is determined that intermediate combustion is occurring, the transfer amount of the gas to be treated is increased, the heat accumulated in the heat storage body is discharged, the subsequent intermediate combustion is stopped, and the consumption of auxiliary fuel increases. It suppresses doing. In addition, when determining intermediate combustion, auxiliary fuel detection means and gas temperature detection means need only be installed outside the device, and when installing into existing equipment, a large amount of capital investment and securing of additional equipment is ensured. Do not need. As described above, in the present invention, it is not necessary to secure a large facility investment and a place for installing additional equipment, and by means that can be easily introduced into existing equipment, consumption of auxiliary fuel is suppressed, and the heat storage body is melted. There is an excellent effect that it can be prevented.

本実施形態に係る蓄熱式燃焼装置の構成を示す構成図。The block diagram which shows the structure of the thermal storage type combustion apparatus which concerns on this embodiment. 同蓄熱式燃焼装置をA−A’線で切断したときの構成を示す断面図。Sectional drawing which shows a structure when the thermal storage type combustion apparatus is cut | disconnected by the A-A 'line. 同蓄熱式燃焼装置の蓄熱室に収容される蓄熱体の一部構成を示す一部拡大斜視図。The partial expansion perspective view which shows the partial structure of the thermal storage body accommodated in the thermal storage chamber of the thermal storage type combustion apparatus. 同蓄熱式燃焼装置をB−B’線で切断したときの構成を示す断面図。Sectional drawing which shows a structure when the thermal storage type combustion apparatus is cut | disconnected by the B-B 'line | wire.

以下、本発明を適用した回転式の蓄熱式燃焼装置の実施形態について説明する。図1は蓄熱式燃焼装置の構成を示す構成図である。図2は、図1に示す蓄熱式燃焼装置をA−A’線で切断したときの構成を示す断面図である。図3は、蓄熱式燃焼装置の蓄熱室に収容される蓄熱体の一部構成を示す一部拡大斜視図である。図4は、図1に示す蓄熱式燃焼装置をB−B’線で切断したときの構成を示す断面図である。図1及び図2に示すように、蓄熱式燃焼装置は略円筒状に形成された周壁1内に、周壁1の内径と略同じに形成された平面形状が円状になるガス導入室2、蓄熱室3、燃焼室4を同心状に備えている。   Hereinafter, an embodiment of a rotary heat storage combustion apparatus to which the present invention is applied will be described. FIG. 1 is a configuration diagram showing the configuration of a regenerative combustion apparatus. FIG. 2 is a cross-sectional view showing the configuration of the regenerative combustion apparatus shown in FIG. 1 taken along line A-A ′. FIG. 3 is a partially enlarged perspective view showing a partial configuration of the heat storage body accommodated in the heat storage chamber of the heat storage type combustion apparatus. FIG. 4 is a cross-sectional view showing a configuration when the regenerative combustion apparatus shown in FIG. 1 is cut along line B-B ′. As shown in FIGS. 1 and 2, the regenerative combustion apparatus has a gas introduction chamber 2 in which a planar shape formed in substantially the same inner diameter of the peripheral wall 1 is circular in a peripheral wall 1 formed in a substantially cylindrical shape. The heat storage chamber 3 and the combustion chamber 4 are provided concentrically.

上記ガス導入室2は、周壁1内の最下方に配置され、熱処理前の被処理ガスであるVOC含有ガスが導入されるガス導入路5が接続されている。ガス導入路5には、取入口ダンパ6から導入されたVOC含有ガスの導入量を調整するガス移送手段たるファン7を介在させている。ファン7は、VOC含有ガスの吸引と同時に二次エア供給口8より大気を吸い込み、VOC含有ガスの濃度を調整することが可能である。ファン7としては、シロッコファン、ターボファン、プロペラファンなどを用いることができる。   The gas introduction chamber 2 is disposed at the lowermost position in the peripheral wall 1 and is connected to a gas introduction path 5 into which a VOC-containing gas that is a gas to be treated before heat treatment is introduced. The gas introduction path 5 is provided with a fan 7 serving as a gas transfer means for adjusting the introduction amount of the VOC-containing gas introduced from the intake damper 6. The fan 7 can suck the atmosphere from the secondary air supply port 8 simultaneously with the suction of the VOC-containing gas, and can adjust the concentration of the VOC-containing gas. As the fan 7, a sirocco fan, a turbo fan, a propeller fan, or the like can be used.

ガス導入室2の上には、孔空き床板9を介して蓄熱室3が設置される。図2に示すように、この蓄熱室3は、仕切板11により放射状に仕切られ、12個の分割室10が形成されている。各分割室10は、それぞれ、周壁1と孔空き床板9と仕切板11とに囲まれて略扇状に形成され、上面が燃焼室4に対して開口している。   A heat storage chamber 3 is installed on the gas introduction chamber 2 through a perforated floor plate 9. As shown in FIG. 2, the heat storage chamber 3 is partitioned radially by a partition plate 11 to form twelve divided chambers 10. Each of the divided chambers 10 is formed in a substantially fan shape surrounded by the peripheral wall 1, the perforated floor plate 9 and the partition plate 11, and the upper surface is open to the combustion chamber 4.

これら各分割室10には、それぞれ、図3に示すような直方体形状の蓄熱体12が上面(開口)から孔空き床板9の上に複数敷き並べられ、且つ、数段に積み重ねられて収納されている。蓄熱体12には、切断面形状が正方形となる複数のガス通路13が等間隔に並列して図中上下方向に貫通するように形成されている。蓄熱室3のガス通路は、数段に積み重ねた複数の蓄熱体12のガス通路13を接続して構成されることになる。なお、各分割室10内において、周壁1と蓄熱体12との間の隙間には、耐火キャスタ14が詰められている。   In each of the divided chambers 10, a plurality of rectangular parallelepiped-shaped heat accumulators 12 as shown in FIG. 3 are arranged on the perforated floor plate 9 from the upper surface (opening), and are stacked and stored in several stages. ing. A plurality of gas passages 13 having a square cut surface shape are formed in the heat storage body 12 so as to penetrate in the vertical direction in the drawing in parallel at equal intervals. The gas passage of the heat storage chamber 3 is configured by connecting the gas passages 13 of the plurality of heat storage bodies 12 stacked in several stages. In each divided chamber 10, a refractory caster 14 is packed in a gap between the peripheral wall 1 and the heat storage body 12.

各蓄熱体12の平面寸法及び高さは、施工が手作業であるので、取扱いしやすさ、作業効率とから平面寸法100〜200mm及び高さ200〜400mmが好ましく、平面寸法150×150mm高さ寸法300mmがより好ましい。ガス通路13の切断面寸法は、圧力損失及び蓄効率から、3×3〜7×7mmが好ましく、圧力損失及び蓄熱効率の良い、5×5mmがより好ましい。蓄熱体12の材料としては、セラミック、アルミナ、ムライト、SiC、などを用いることができ、VOC含有ガスが酢酸エチルである場合には、無害化するために800℃以上が必要であるため、耐熱温度の高いセラミックが好ましい。同様に、耐火キャスタ14の材料としては、セラミック、アルミナ、ムライトなどを用いることができ、VOC含有ガスが酢酸エチルである場合には、無害化するために800℃以上が必要であるため、耐熱温度の高いセラミックが好ましい。   Since the construction is manual work, the planar dimensions and heights of the respective heat storage elements 12 are preferably 100 to 200 mm in plane dimensions and 200 to 400 mm in height from the viewpoint of ease of handling and work efficiency. A dimension of 300 mm is more preferred. The cut surface dimensions of the gas passage 13 are preferably 3 × 3 to 7 × 7 mm from the pressure loss and storage efficiency, and more preferably 5 × 5 mm with good pressure loss and heat storage efficiency. As the material of the heat storage body 12, ceramic, alumina, mullite, SiC, or the like can be used, and when the VOC-containing gas is ethyl acetate, 800 ° C. or higher is necessary for detoxification. High temperature ceramics are preferred. Similarly, ceramic, alumina, mullite, or the like can be used as the material of the refractory caster 14, and when the VOC-containing gas is ethyl acetate, 800 ° C. or higher is necessary for detoxification. High temperature ceramics are preferred.

上記蓄熱室3の上方に配置される燃焼室4は、蓄熱室3の上面開口、すなわちすべての分割室10の上面開口に連通している。この燃焼室4には、LNG・都市ガス等の補助燃料を燃焼するバーナ15と、バーナ15に補助燃料を供給する補助燃料供給路が設置されている。これにより、燃焼室4は、後述するように、一方の蓄熱室3から供給された被処理ガスをバーナを使用して、若しくは使用せずに熱分解処理し、熱分解処理後のガスを他方の蓄熱室3に排出することになる。また、補助燃料供給路16には、燃焼室4で消費される補助燃料の消費量を検出する補助燃料検出手段たる補助燃料流量計17が設置されている。補助燃料流量計17には、渦式、超音波式、差圧式、面積式などの流量計を用いることができる。   The combustion chamber 4 disposed above the heat storage chamber 3 communicates with the upper surface opening of the heat storage chamber 3, that is, the upper surface openings of all the divided chambers 10. The combustion chamber 4 is provided with a burner 15 for burning auxiliary fuel such as LNG and city gas, and an auxiliary fuel supply passage for supplying auxiliary fuel to the burner 15. Thereby, as will be described later, the combustion chamber 4 pyrolyzes the gas to be treated supplied from one heat storage chamber 3 with or without using a burner, and the gas after the pyrolysis treatment is treated with the other gas. The heat storage chamber 3 is discharged. The auxiliary fuel supply passage 16 is provided with an auxiliary fuel flow meter 17 as auxiliary fuel detecting means for detecting the amount of auxiliary fuel consumed in the combustion chamber 4. The auxiliary fuel flow meter 17 may be a flow meter such as a vortex type, an ultrasonic type, a differential pressure type, or an area type.

また、上記蓄熱室3の下方には、図1に示すように、切換手段たる回転式切換弁18が円筒状の蓄熱室3の中心軸と同心状に回転可能に設けられている。回転式切換弁18は、ガス導入室2の内側に配置して上端を孔空き床板9の一部に重ね合わせ、下端をガス導入室2の外側に突出する排出通路19に接続させている。回転式切換弁18の上端には、図4に示すように、周方向に順に、吸入口18a、閉鎖板18b、排出口18c、浄化ガス口18dが設けられている。吸入口18aは、ガス導入室2と半数弱となる5つ分の分割室10とを連通させる。排出口18cは、半数弱となる5つ分の分割室10と排出通路19を連通させる。閉鎖板18bは、1つの分割室10を閉鎖する。浄化ガス口18dは、ガス導入路5と1つの分割室10とを連通させる。   Further, as shown in FIG. 1, a rotary switching valve 18 serving as switching means is provided below the heat storage chamber 3 so as to be concentric with the central axis of the cylindrical heat storage chamber 3. The rotary switching valve 18 is arranged inside the gas introduction chamber 2, the upper end is overlapped with a part of the perforated floor plate 9, and the lower end is connected to a discharge passage 19 projecting outside the gas introduction chamber 2. As shown in FIG. 4, a suction port 18a, a closing plate 18b, a discharge port 18c, and a purified gas port 18d are provided at the upper end of the rotary switching valve 18 in order in the circumferential direction. The suction port 18a communicates the gas introduction chamber 2 with the five divided chambers 10 that are less than half. The discharge port 18c communicates the discharge chamber 19 with the five divided chambers 10 that are less than half. The closing plate 18b closes one divided chamber 10. The purified gas port 18d allows the gas introduction path 5 and the one divided chamber 10 to communicate with each other.

上記回転式切換弁18は、図示しない装置により、所定の時間毎に150°(分割室5つ分の角度)ずつ回転する構成となっている。これにより、蓄熱室3における各分割室10の蓄熱体12は、回転式切換弁18の一回転毎に、放熱時期、浄化時期、受熱時期、休止時期を順次繰り返す。放熱時期にある蓄熱体12は、吸入口18aを介してガス通路13を上昇する熱分解処理前のVOC含有ガスを加熱することにより(放熱)により温度が下がる。浄化時期にある蓄熱体12は、放熱時期から受熱時期に切り替わる際に、燃焼室4にたどり着けず蓄熱室3に残ったVOC含有ガスが浄化ガス口18dを介してガス導入路5(ファン7)側に戻されることによって浄化される。受熱時期にある蓄熱体12は、ガス通路13を下降する熱分解処理後の高温のガスにより加熱されて(受熱)温度が上昇する。休止時期にある蓄熱体12は、閉鎖板18bによって閉鎖された状態にある。熱分解処理前のガスを加熱する放熱時期と、熱分解処理後のガスがもつ熱を回収する受熱時期は、それぞれ、浄化時期や休止時期より数倍長い。   The rotary switching valve 18 is configured to rotate by 150 ° (an angle corresponding to five divided chambers) every predetermined time by a device (not shown). Thereby, the heat storage body 12 of each divided chamber 10 in the heat storage chamber 3 sequentially repeats the heat release time, the purification time, the heat reception time, and the pause time for each rotation of the rotary switching valve 18. The heat storage body 12 in the heat release timing is heated (heat radiation) to lower the temperature by heating the VOC-containing gas before the pyrolysis treatment that rises through the gas passage 13 via the suction port 18a. When the heat storage body 12 in the purification time is switched from the heat radiation time to the heat reception time, the VOC-containing gas remaining in the heat storage chamber 3 without reaching the combustion chamber 4 is passed through the gas purification path 18d (fan 7). It is purified by returning to the side. The heat storage body 12 in the heat receiving time is heated by the high-temperature gas after the thermal decomposition process that moves down the gas passage 13 (heat receiving) and the temperature rises. The heat storage body 12 in the rest period is in a state of being closed by the closing plate 18b. The heat release time for heating the gas before the pyrolysis treatment and the heat receiving time for recovering the heat of the gas after the pyrolysis treatment are several times longer than the purification time and the suspension time, respectively.

上記回転式切換弁18の下端に接続される排出通路19には、排出通路19を通過する熱分解処理後のガスの温度を常時検出する排出ガス温度検出手段たる排出口温度計20が設置される。排出口温度計20には、熱電対式、側温抵抗体式、などの温度計を用いることができる。   A discharge passage 19 connected to the lower end of the rotary switching valve 18 is provided with a discharge port thermometer 20 serving as a discharge gas temperature detecting means for constantly detecting the temperature of the gas after the pyrolysis process that passes through the discharge passage 19. The The outlet thermometer 20 can be a thermocouple, a side temperature resistor, or the like.

そして、本実施形態に係る蓄熱式燃焼装置には、後述するように、上記補助燃料流量計24と排出口温度計20との検出結果から、ガス導入室2にガスを導入するファン7の風量を制御する制御手段21が設置されている。   In the regenerative combustion apparatus according to the present embodiment, the air volume of the fan 7 for introducing gas into the gas introduction chamber 2 based on the detection results of the auxiliary fuel flow meter 24 and the discharge port thermometer 20 as will be described later. Control means 21 for controlling is installed.

上記構成の蓄熱式燃焼装置は、次のように運転される。まず、熱処理分解前のVOC含有ガスは、ガス導入路5からガス導入室2に導入され、吸入口18aを介して、蓄熱室3の片側に位置する半数弱の放熱時期にあたる分割室10を経て燃焼室4に流入する。熱分解処理前のVOC含有ガスは、以前に受熱して高温になっている蓄熱体12のガス通路13を下から上に通過し、高温の蓄熱体12から受熱し、温度が上昇した状態で燃焼室4に流入するのである。燃焼室4に流入したVOC含有ガスは、バーナ15で加熱され又は加熱されずに、燃焼して分解される。例えば、VOC含有ガスが酢酸エチル含有ガスである場合には、これを無害化するため、燃焼室4は、常に800℃以上(セラミック蓄熱体の耐熱温度の50〜90%)となる様に調整される。熱分解処理後のガスは、燃焼室4から流出し、蓄熱室3のもう片側に位置する半数弱の受熱時期に当たる分割室10と回転式切換弁18の排出口18cを経て排出通路19に排出される。熱分解処理後の高温のガスは、以前に放熱して低温になっている蓄熱体12のガス通路13を上から下に通過し、低温の蓄熱体12に放熱し、温度が下降した状態で排出されるのである。   The regenerative combustion apparatus having the above-described configuration is operated as follows. First, the VOC-containing gas before the heat treatment decomposition is introduced into the gas introduction chamber 2 from the gas introduction path 5 and passes through the suction chamber 18 and the divided chamber 10 which is located on one side of the heat storage chamber 3 and is in a little less than half heat release period. It flows into the combustion chamber 4. The VOC-containing gas before the pyrolysis treatment passes through the gas passage 13 of the heat storage body 12 that has previously received heat and becomes high temperature, and receives heat from the high-temperature heat storage body 12 in a state where the temperature has increased. It flows into the combustion chamber 4. The VOC-containing gas flowing into the combustion chamber 4 is burned and decomposed, with or without being heated by the burner 15. For example, when the VOC-containing gas is an ethyl acetate-containing gas, the combustion chamber 4 is always adjusted to be 800 ° C. or higher (50 to 90% of the heat resistant temperature of the ceramic heat storage body) in order to render it harmless. Is done. The pyrolyzed gas flows out of the combustion chamber 4 and is discharged into the discharge passage 19 through the divided chamber 10 located on the other side of the heat storage chamber 3 and corresponding to the heat receiving timing of less than half and the discharge port 18c of the rotary switching valve 18. Is done. The high-temperature gas after the thermal decomposition process passes through the gas passage 13 of the heat storage body 12 that has previously been radiated and cooled to the lower side, radiates heat to the low-temperature heat storage body 12, and the temperature is lowered. It is discharged.

そして、所定の時間経過後、回転式切換弁18が150°回転し、放熱時期にあたる分割室10は浄化時期を経て吸熱時期にあたる分割室10に切り換えられ、吸熱時期にあたる分割室10は休止時期を経て放熱時期に切り換えられる。このようにして、分割室10内の蓄熱体12は放熱吸熱を交互に繰り返しながら、VOC含有ガスの熱分解処理を行なう。   Then, after a predetermined time has elapsed, the rotary switching valve 18 rotates by 150 °, the divided chamber 10 corresponding to the heat release time is switched to the divided chamber 10 corresponding to the heat absorption time through the purification time, and the division chamber 10 corresponding to the heat absorption time is set to the rest time. After that, it is switched to the heat release time. In this manner, the heat storage body 12 in the divided chamber 10 performs the thermal decomposition treatment of the VOC-containing gas while alternately repeating heat dissipation.

ところが、低発火点VOC含有ガス(例えば酢酸エチル含有ガスなど)を低風量時において熱分解処理すると、本来燃焼室4内で分解されるはずが、発火点が低いため蓄熱体12を通過中に熱分解がおこってしまう、いわゆる中間燃焼が発生することがある。VOC含有ガスが蓄熱体内部で熱分解すると、熱分解時に発生する熱が燃焼室4に廻らず蓄熱体12内部に蓄積してしまう。蓄熱体12内部に蓄積した熱の一部は排出通路19を通り外部へ放出されるが、蓄熱体12の耐熱温度に達すると蓄熱体12は溶損することになる。また、このような中間燃焼時には、燃焼室4に熱が廻らないため、十分なVOC含有ガス濃度にも関わらず燃焼室4では補助燃料を消費し続ける。そこで、本実施形態に係る蓄熱式燃焼装置は、蓄熱体12の溶損を回避するべく、排出通路19へ取り付けた排出口温度計20の温度と補助燃料流量計24の検出結果を常時監視する制御手段21を備えている。   However, if a low ignition point VOC-containing gas (for example, ethyl acetate-containing gas) is thermally decomposed at a low air volume, it should be decomposed in the combustion chamber 4 originally, but the ignition point is low so that it passes through the heat storage body 12. So-called intermediate combustion, in which pyrolysis occurs, may occur. When the VOC-containing gas is thermally decomposed inside the heat storage body, the heat generated during the heat decomposition does not go to the combustion chamber 4 but accumulates inside the heat storage body 12. A part of the heat accumulated in the heat storage body 12 is released to the outside through the discharge passage 19, but the heat storage body 12 is melted when the heat resistance temperature of the heat storage body 12 is reached. In addition, during such intermediate combustion, heat does not flow to the combustion chamber 4, so that the auxiliary fuel is continuously consumed in the combustion chamber 4 regardless of the sufficient VOC-containing gas concentration. Therefore, the regenerative combustion apparatus according to the present embodiment constantly monitors the temperature of the discharge port thermometer 20 attached to the discharge passage 19 and the detection result of the auxiliary fuel flow meter 24 in order to avoid melting of the heat storage body 12. Control means 21 is provided.

制御手段21は、排出口温度計20が蓄熱体12の耐熱温度の20%(セラミック蓄熱体の場合は220℃)を検出し、更に補助燃料流量計24により補助燃料の使用を検出した場合には、中間燃焼と自動判定する。中間燃焼と判定した場合には、ファン7の回転数を増段し、二次エア供給口8より大気吸引量を増やしVOC含有ガスのガス濃度を下げる。これにより、蓄熱体がもつ熱を強制的に外部へと放出する。そして、制御手段21は、排出口温度計20により、蓄熱体12に蓄積された熱量の放出を監視し、排出口温度計20の検出結果が蓄熱体12の耐熱温度の20%以下になった時点でファン7の回転数を減段する制御を開始する。その後、蓄熱式燃焼装置は、通常運転となる。なお、ファン7の風量を減段する途中、もしくは通常運転時に、排出口温度計20が蓄熱体12の耐熱温度の20%を検出し、補助燃料流量計24が補助燃料の使用を検出した場合には、再度中間燃焼と判定し、再びファン7の回転数を増段する。なお、排出口温度計20が蓄熱体12の耐熱温度の20%を検出した場合でも、補助燃料の使用を検出しない(補助燃料消費量ゼロ)場合には、温度上昇の原因を中間燃焼と判定せず、VOC含有ガスが燃焼室4にて熱分解していると判定し、通常運転を継続する。   The control means 21 detects when the outlet thermometer 20 detects 20% of the heat-resistant temperature of the heat storage body 12 (220 ° C. in the case of a ceramic heat storage body) and further detects the use of auxiliary fuel by the auxiliary fuel flow meter 24. Automatically determines intermediate combustion. If it is determined that the combustion is intermediate, the rotational speed of the fan 7 is increased, the amount of atmospheric suction is increased from the secondary air supply port 8, and the gas concentration of the VOC-containing gas is decreased. Thereby, the heat of the heat storage body is forcibly released to the outside. And the control means 21 monitors discharge | release of the calorie | heat amount accumulated in the thermal storage body 12 with the discharge port thermometer 20, and the detection result of the discharge port thermometer 20 became 20% or less of the heat-resistant temperature of the thermal storage body 12. At the time, control for reducing the rotational speed of the fan 7 is started. Thereafter, the regenerative combustion apparatus becomes a normal operation. When the air flow rate of the fan 7 is being reduced or during normal operation, the outlet thermometer 20 detects 20% of the heat-resistant temperature of the heat storage body 12, and the auxiliary fuel flow meter 24 detects the use of auxiliary fuel. In this case, it is determined that the intermediate combustion is performed again, and the rotational speed of the fan 7 is increased again. Even if the outlet thermometer 20 detects 20% of the heat-resistant temperature of the heat storage body 12, if the use of auxiliary fuel is not detected (zero auxiliary fuel consumption), the cause of the temperature rise is determined to be intermediate combustion. Without determining that the VOC-containing gas is thermally decomposed in the combustion chamber 4, the normal operation is continued.

以下、実施例および比較例を挙げて本発明について具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。本実施例では、酢酸エチル含有ガスを被処理ガスとする。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited only to these Examples. In this embodiment, an ethyl acetate-containing gas is used as a gas to be processed.

[実施例1]
蓄熱式燃焼装置(株式会社タクマ製;RL−15)を用いて、酢酸エチル含有ガスの熱分解処理を行った。このときの、ガス導入室に導入する酢酸エチル含有ガスのガス濃度は7%LEL、ファンの風量は150Nm/minとする。下記の表1示す結果からわかるように、時間経過と共に排出口温度は上昇傾向となり、蓄熱体内部において中間燃焼が発生したと考えられる。そこで、制御手段は、排出口温度計による排出口温度が220℃、補助燃料流量計により補助燃料の使用を検出した時点で、取入口ダンパの開度調整により風量を400Nm3/minにする制御を行った。これにより、蓄熱体内部に蓄積された熱が排出口にて放出され、補助燃料の消費量が減少したことを確認できる。

Figure 2014178065
[Example 1]
The pyrolysis process of the ethyl acetate containing gas was performed using the thermal storage type combustion apparatus (product made from Takuma Corporation; RL-15). At this time, the gas concentration of the ethyl acetate-containing gas introduced into the gas introduction chamber is 7% LEL, and the air volume of the fan is 150 Nm 3 / min. As can be seen from the results shown in Table 1 below, the exhaust port temperature tends to increase with time, and it is considered that intermediate combustion has occurred inside the heat storage body. Therefore, the control means controls the air flow to 400 Nm3 / min by adjusting the opening of the intake damper when the discharge port temperature by the discharge port thermometer is 220 ° C. and the use of the auxiliary fuel is detected by the auxiliary fuel flow meter. went. Thereby, it can confirm that the heat | fever accumulate | stored inside the thermal storage body is discharge | released at an exhaust port, and the consumption of auxiliary fuel reduced.
Figure 2014178065

[実施例2]
実施例1に記載の蓄熱式燃焼装置を用い、酢酸エチル含有ガスのガス濃度を7%LEL、ファンの風量を150Nm/minとし、酢酸エチル含有ガスの熱分解処理を行った。下記の表2に示す結果からわかるように、時間経過と共に排出口温度は上昇傾向となり、蓄熱体内部において中間燃焼が発生したと考えられる。そこで、制御手段は、排出口温度計による排出口温度が220℃、補助燃料流量計により補助燃料の使用を検出した時点で、ファンの回転数制御により風量を400Nm3/minに増段する制御を行った。これにより、蓄熱体内部に蓄積された熱が排出口にて放出され、補助燃料の消費量が減少したことが確認できる。

Figure 2014178065
[Example 2]
Using the regenerative combustion apparatus described in Example 1, the ethyl acetate-containing gas was pyrolyzed by setting the gas concentration of the ethyl acetate-containing gas to 7% LEL and the air volume of the fan to 150 Nm 3 / min. As can be seen from the results shown in Table 2 below, the exhaust port temperature tends to increase with time, and it is considered that intermediate combustion has occurred inside the heat storage body. Therefore, the control means performs control to increase the air volume to 400 Nm3 / min by controlling the rotational speed of the fan when the outlet temperature by the outlet thermometer is 220 ° C. and the use of auxiliary fuel is detected by the auxiliary fuel flow meter. went. Thereby, it can confirm that the heat | fever accumulate | stored inside the thermal storage body is discharge | released at an exhaust port, and the consumption of auxiliary fuel reduced.
Figure 2014178065

[比較例1]
実施例1に記載の運転条件にて、ファンの風量を制御せずに酢酸エチル含有ガスの熱分解処理実験を行った。下記の表3に示す結果からわかるように、時間経過と共に、排出口温度は上昇傾向となり、40時間後の時点で蓄熱体内部において中間燃焼が発生した。実験を継続することにより、さらに排出口温度が上昇し、蓄熱体の溶損の危険があると判断されるため、排出口温度が220℃以上になった時点で実験を強制終了した。

Figure 2014178065
[Comparative Example 1]
Under the operating conditions described in Example 1, a pyrolysis treatment experiment of an ethyl acetate-containing gas was performed without controlling the fan air volume. As can be seen from the results shown in Table 3 below, as the time elapses, the outlet temperature tends to rise, and intermediate combustion occurs inside the heat accumulator after 40 hours. By continuing the experiment, it was determined that the outlet temperature further increased and there was a risk of melting of the heat storage body, so the experiment was forcibly terminated when the outlet temperature reached 220 ° C. or higher.
Figure 2014178065

[比較例2]
実施例1に記載の蓄熱式燃焼装置を用い、酢酸エチル含有ガスのガス濃度を12%LEL、ファンの風量を150Nm/minとし、ファンの風量を制御せずに酢酸エチル含有ガスの熱分解処理を行った。下記の表4に示す結果からわかるように、時間経過と共に、排出口温度は上昇傾向となり、30時間後の時点で蓄熱体内部において中間燃焼が発生した。実験を継続することにより、さらに排出口温度が上昇し、蓄熱体の溶損の危険があると判断されるため、排出口温度が220℃以上になった時点で実験を強制終了した。

Figure 2014178065
[Comparative Example 2]
Using the regenerative combustion apparatus described in Example 1, the gas concentration of the ethyl acetate-containing gas is 12% LEL, the fan air volume is 150 Nm 3 / min, and the ethyl acetate-containing gas is thermally decomposed without controlling the fan air volume. Processed. As can be seen from the results shown in Table 4 below, as the time elapses, the outlet temperature tends to increase, and intermediate combustion occurs inside the heat storage body 30 hours later. By continuing the experiment, it was determined that the outlet temperature further increased and there was a risk of melting of the heat storage body, so the experiment was forcibly terminated when the outlet temperature reached 220 ° C. or higher.
Figure 2014178065

[比較例3]
実施例1に記載の蓄熱式燃焼装置を用い、酢酸エチル含有ガスのガス濃度を4%LEL、ファンの風量を150Nm/minとし、ファンの風量を制御せずに酢酸エチル含有ガスの熱分解処理を行った。下記の表5に示す結果からわかるように、時間経過と共に、排出口温度は上昇傾向となり、60時間後の時点で蓄熱体内部において中間燃焼が発生した。実験を継続することにより、さらに排出口温度が上昇し蓄熱体の溶損の危険があると判断されるため、排出口温度が220℃以上になった時点で実験を強制終了した。

Figure 2014178065
[Comparative Example 3]
Using the regenerative combustion apparatus described in Example 1, the gas concentration of the ethyl acetate-containing gas is 4% LEL, the fan air volume is 150 Nm 3 / min, and the ethyl acetate-containing gas is thermally decomposed without controlling the fan air volume. Processed. As can be seen from the results shown in Table 5 below, with the passage of time, the outlet temperature increased, and intermediate combustion occurred inside the heat storage body 60 hours later. By continuing the experiment, it was determined that the outlet temperature further increased and there was a risk of melting of the heat storage body. Therefore, the experiment was forcibly terminated when the outlet temperature reached 220 ° C. or higher.
Figure 2014178065

上述した実施例及び比較例の結果を表6にまとめる。表6に示す結果からわかるように、排出口の温度上昇及び補助燃料の使用有無を監視し、中間燃焼が発生した判定した場合には、ファンの風量を制御することにより中間燃焼の継続を防止できる。これにより、蓄熱体の溶損を防止し、補助燃料の削減を図ることができる。また、ファンの風量の制御に関しては、消費電力の少ないファンの回転数制御を選択することが望ましいことがわかる。

Figure 2014178065
Table 6 summarizes the results of the above-described Examples and Comparative Examples. As can be seen from the results shown in Table 6, the temperature rise at the outlet and the presence or absence of auxiliary fuel are monitored, and if it is determined that intermediate combustion has occurred, the continuation of intermediate combustion is prevented by controlling the air volume of the fan. it can. Thereby, the melting loss of a thermal storage body can be prevented and reduction of auxiliary fuel can be aimed at. It can also be seen that it is desirable to select fan speed control with low power consumption for controlling the fan air volume.
Figure 2014178065

以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
(態様A)
被処理ガスを燃焼させる燃焼室4などの燃焼室と、燃焼室に補助燃料を導入する補助燃料供給路16などの燃料導入手段と、蓄熱体12などの蓄熱体を収容し燃焼室に連通する少なくとも一対の蓄熱室3と、蓄熱室へ被処理ガスを移送するファン7などのガス移送手段と、蓄熱室への被処理ガスの移送方向を切り換える回転式切換弁18などの切換手段とを備える蓄熱式燃焼装置において、上記燃焼室での補助燃料の消費量を検出する補助燃料流量計17などの補助燃料検出手段と、上記蓄熱室から排出される被処理ガスの温度を検出する排出口温度計20などのガス温度検出手段と、補助燃料検出手段の検出結果とガス温度検出手段の検出結果とから、ガス移送手段によるガス移送量を制御する制御手段21などの制御手段とを備える。
これによれば、上記実施形態について説明したように、多大な設備投資や追加設備の設置場所の確保を必要とせず、既存の設備に導入しやすい手段により、補助燃料の消費を抑制し、蓄熱体の溶損を防止することができる。
(態様B)
(態様A)の蓄熱式燃焼装置において、上記制御手段は、上記ガス移送手段の回転数を制御することにより被処理ガスの移送量を制御する。
これによれば、上記実施形態について説明したように、ファンなどのガス移送手段の回転数を制御して風量を調節することにより、ダンパなどの風量調節手段を用いて風量を調節する場合に比べ、消費電力を抑制することができる。
(態様C)
被処理ガスを一方の蓄熱体で蓄熱した熱により余熱する余熱工程と、余熱された被処理ガスを燃焼室で燃焼させる燃焼工程と、燃焼室で熱分解処理された被処理ガスがもつ熱を他方の蓄熱体で回収蓄熱する熱回収工程とを備え、蓄熱室での余熱工程と回収工程とを交互に繰り返し行う熱分解処理方法において、上記燃焼行程で消費される補助燃料の消費量と、上記熱回収行程で排出された被処理ガスの温度とから、上記蓄熱体へのガス移送量を制御する。
これによれば、上記実施形態について説明したように、多大な設備投資や追加設備の設置場所の確保を必要とせず、既存の設備に導入しやすい手段により、補助燃料の消費を抑制し、蓄熱体の溶損を防止することができる。
What has been described above is merely an example, and the present invention has a specific effect for each of the following modes.
(Aspect A)
A combustion chamber such as the combustion chamber 4 for burning the gas to be treated, fuel introduction means such as the auxiliary fuel supply passage 16 for introducing auxiliary fuel into the combustion chamber, and a heat storage body such as the heat storage body 12 are accommodated and communicated with the combustion chamber. At least a pair of heat storage chambers 3, a gas transfer means such as a fan 7 that transfers a gas to be processed to the heat storage chamber, and a switching means such as a rotary switching valve 18 that switches the transfer direction of the gas to be processed to the heat storage chamber. In the heat storage type combustion apparatus, auxiliary fuel detection means such as an auxiliary fuel flow meter 17 for detecting the consumption amount of auxiliary fuel in the combustion chamber, and an outlet temperature for detecting the temperature of the gas to be processed discharged from the heat storage chamber. Gas temperature detection means such as a total of 20 and control means such as control means 21 for controlling the gas transfer amount by the gas transfer means from the detection result of the auxiliary fuel detection means and the detection result of the gas temperature detection means.
According to this, as described in the above embodiment, the consumption of auxiliary fuel is suppressed by means that can be easily introduced into existing equipment without requiring large capital investment and securing the installation location of additional equipment, and heat storage. Body melting can be prevented.
(Aspect B)
In the regenerative combustion apparatus of (Aspect A), the control means controls the transfer amount of the gas to be processed by controlling the rotation speed of the gas transfer means.
According to this, as described in the above embodiment, by adjusting the air volume by controlling the rotation speed of the gas transfer means such as a fan, compared with the case where the air volume is adjusted using the air volume adjusting means such as a damper. , Power consumption can be suppressed.
(Aspect C)
The preheating process in which the gas to be treated is preheated by the heat stored in one heat storage body, the combustion process in which the pretreated gas to be burned is combusted in the combustion chamber, and the heat of the gas to be treated pyrolyzed in the combustion chamber. A heat recovery process for recovering and storing heat with the other heat storage body, and in the thermal decomposition treatment method in which the remaining heat process and the recovery process in the heat storage chamber are alternately repeated, the consumption amount of auxiliary fuel consumed in the combustion stroke, The amount of gas transferred to the heat storage body is controlled based on the temperature of the gas to be processed discharged in the heat recovery process.
According to this, as described in the above embodiment, the consumption of auxiliary fuel is suppressed by means that can be easily introduced into existing equipment without requiring large capital investment and securing the installation location of additional equipment, and heat storage. Body melting can be prevented.

1 周壁
2 ガス導入室
3 蓄熱室
4 燃焼室
5 ガス導入路
6 取入口ダンパ
7 ファン
8 二次エア供給口
9 孔空き床板
10 分割室
11 仕切板
12 蓄熱体
13 ガス通路
14 耐火キャスタ
15 バーナ
16 補助燃料供給路
18 回転式切換弁
17 補助燃料流量計
18 回転式切換弁
19 排出口温度計
20 制御手段
DESCRIPTION OF SYMBOLS 1 Perimeter wall 2 Gas introduction chamber 3 Thermal storage chamber 4 Combustion chamber 5 Gas introduction path 6 Intake damper 7 Fan 8 Secondary air supply port 9 Perforated floor board 10 Partition room 11 Partition plate 12 Heat storage body 13 Gas passage 14 Refractory caster 15 Burner 16 Auxiliary fuel supply path 18 Rotary switching valve 17 Auxiliary fuel flow meter 18 Rotary switching valve 19 Discharge port thermometer 20 Control means

特開2002−115836号公報JP 2002-115836 A 特開平9−159150号公報JP-A-9-159150 特開2009−250509号公報JP 2009-250509 A

Claims (3)

被処理ガスを燃焼させる燃焼室と、該燃焼室に補助燃料を導入する燃料導入手段と、蓄熱体を収容し燃焼室に連通する少なくとも一対の蓄熱室と、蓄熱室へ被処理ガスを移送するガス移送手段と、蓄熱室への被処理ガスの移送方向を切り換える切換手段とを備える蓄熱式燃焼装置において、
上記燃焼室での補助燃料の消費量を検出する補助燃料検出手段と、上記蓄熱室から排出される被処理ガスの温度を検出するガス温度検出手段と、該補助燃料検出手段の検出結果と該ガス温度検出手段の検出結果とから、上記ガス移動手段によるガス移送量を制御する制御手段とを備えることを特徴とする蓄熱式燃焼装置。
A combustion chamber for burning the gas to be treated; fuel introducing means for introducing auxiliary fuel into the combustion chamber; at least a pair of heat storage chambers that contain the heat storage body and communicate with the combustion chamber; and transfer the gas to be treated to the heat storage chamber In the regenerative combustion apparatus comprising gas transfer means and switching means for switching the transfer direction of the gas to be processed to the heat storage chamber,
Auxiliary fuel detection means for detecting consumption of auxiliary fuel in the combustion chamber, a gas temperature detection means for detecting the temperature of the gas to be processed discharged from the heat storage chamber, a detection result of the auxiliary fuel detection means, and the A regenerative combustion apparatus comprising: control means for controlling a gas transfer amount by the gas moving means based on a detection result of the gas temperature detecting means.
請求項1の蓄熱式燃焼装置において、
上記制御手段は、上記ガス移送手段の回転数を制御することによりガス移送量を制御することを特徴とする蓄熱式燃焼装置。
The regenerative combustion apparatus of claim 1,
The regenerative combustion apparatus according to claim 1, wherein the control means controls a gas transfer amount by controlling a rotation speed of the gas transfer means.
被処理ガスを一方の蓄熱体で蓄熱した熱により余熱する余熱工程と、余熱された被処理ガスを燃焼室で燃焼させる燃焼工程と、
燃焼室で熱分解処理された被処理ガスがもつ熱を他方の蓄熱体で回収蓄熱する熱回収工程とを備え、蓄熱室での余熱工程と回収工程とを交互に繰り返し行う熱分解処理方法において、
上記燃焼行程で消費される補助燃料の消費量と、上記熱回収行程で排出された被処理ガスの温度とから、上記蓄熱体へのガス移送量を制御することを特徴とする熱分解処理方法。
A preheating process in which the gas to be processed is preheated by heat stored in one heat storage body, a combustion process in which the preheated gas to be processed is burned in the combustion chamber,
In a thermal decomposition processing method comprising: a heat recovery process for recovering and storing heat of a gas to be processed pyrolyzed in a combustion chamber with the other heat storage body, and alternately repeating a residual heat process and a recovery process in the heat storage chamber ,
A pyrolysis processing method characterized by controlling the amount of gas transferred to the heat storage body from the consumption of auxiliary fuel consumed in the combustion stroke and the temperature of the gas to be treated discharged in the heat recovery stroke. .
JP2013052129A 2013-03-14 2013-03-14 Thermal storage combustion apparatus and thermal decomposition treatment method Expired - Fee Related JP6086313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013052129A JP6086313B2 (en) 2013-03-14 2013-03-14 Thermal storage combustion apparatus and thermal decomposition treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013052129A JP6086313B2 (en) 2013-03-14 2013-03-14 Thermal storage combustion apparatus and thermal decomposition treatment method

Publications (3)

Publication Number Publication Date
JP2014178065A true JP2014178065A (en) 2014-09-25
JP2014178065A5 JP2014178065A5 (en) 2017-01-12
JP6086313B2 JP6086313B2 (en) 2017-03-01

Family

ID=51698196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013052129A Expired - Fee Related JP6086313B2 (en) 2013-03-14 2013-03-14 Thermal storage combustion apparatus and thermal decomposition treatment method

Country Status (1)

Country Link
JP (1) JP6086313B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106287756A (en) * 2016-08-09 2017-01-04 苏州云白环境设备股份有限公司 A kind of using method having Novel machine waste gas burning purifier
CN106402882A (en) * 2016-11-21 2017-02-15 北京神雾环境能源科技集团股份有限公司 Dual-heat-storage type pyrolytic oil combustion gas making system and method
CN109539285A (en) * 2018-12-14 2019-03-29 中国汽车工业工程有限公司 A kind of transverse rotation RTO
CN112303616A (en) * 2019-07-26 2021-02-02 秦皇岛秦冶重工有限公司 Industrial flue gas heating furnace system and control method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139185A (en) * 1975-05-27 1976-12-01 Babcock Hitachi Kk Control unit in combination with multi-gas mixed-firing furnace
JPS53129174A (en) * 1977-04-18 1978-11-10 Matsushita Electric Ind Co Ltd Cleaning apparatus for gas containing organic solvent
JPS5842253B2 (en) * 1979-02-16 1983-09-19 新日本製鐵株式会社 Afterburn control method for direct flame heating non-oxidation furnace
JPS6051606B2 (en) * 1979-10-31 1985-11-14 日本鋼管株式会社 Air-fuel ratio control device for heating furnace for exhaust gas denitrification
JPH07305824A (en) * 1994-05-11 1995-11-21 Daikin Ind Ltd Operating method for heat storage type catalytic burner and controller
JPH1026339A (en) * 1996-07-09 1998-01-27 Nkk Corp Thermal storage type combustion burner and its controlling method
JP2000104918A (en) * 1998-09-30 2000-04-11 Osaka Gas Co Ltd Heat storage combujstion controller
JP2001099420A (en) * 1999-09-29 2001-04-13 Kawasaki Steel Corp Exhaust gas flow controller for heat storage burner
JP2006300399A (en) * 2005-04-20 2006-11-02 Kondo Unyu-Kiko Co Ltd Rotary regenerative combustion type deodorizing apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139185A (en) * 1975-05-27 1976-12-01 Babcock Hitachi Kk Control unit in combination with multi-gas mixed-firing furnace
JPS53129174A (en) * 1977-04-18 1978-11-10 Matsushita Electric Ind Co Ltd Cleaning apparatus for gas containing organic solvent
JPS5842253B2 (en) * 1979-02-16 1983-09-19 新日本製鐵株式会社 Afterburn control method for direct flame heating non-oxidation furnace
JPS6051606B2 (en) * 1979-10-31 1985-11-14 日本鋼管株式会社 Air-fuel ratio control device for heating furnace for exhaust gas denitrification
JPH07305824A (en) * 1994-05-11 1995-11-21 Daikin Ind Ltd Operating method for heat storage type catalytic burner and controller
JPH1026339A (en) * 1996-07-09 1998-01-27 Nkk Corp Thermal storage type combustion burner and its controlling method
JP2000104918A (en) * 1998-09-30 2000-04-11 Osaka Gas Co Ltd Heat storage combujstion controller
JP2001099420A (en) * 1999-09-29 2001-04-13 Kawasaki Steel Corp Exhaust gas flow controller for heat storage burner
JP2006300399A (en) * 2005-04-20 2006-11-02 Kondo Unyu-Kiko Co Ltd Rotary regenerative combustion type deodorizing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106287756A (en) * 2016-08-09 2017-01-04 苏州云白环境设备股份有限公司 A kind of using method having Novel machine waste gas burning purifier
CN106402882A (en) * 2016-11-21 2017-02-15 北京神雾环境能源科技集团股份有限公司 Dual-heat-storage type pyrolytic oil combustion gas making system and method
CN109539285A (en) * 2018-12-14 2019-03-29 中国汽车工业工程有限公司 A kind of transverse rotation RTO
CN109539285B (en) * 2018-12-14 2024-06-11 中国汽车工业工程有限公司 Transverse rotation RTO
CN112303616A (en) * 2019-07-26 2021-02-02 秦皇岛秦冶重工有限公司 Industrial flue gas heating furnace system and control method thereof

Also Published As

Publication number Publication date
JP6086313B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6086313B2 (en) Thermal storage combustion apparatus and thermal decomposition treatment method
CN105903313A (en) Exhaust gas concentrating regenerative thermal oxidization system
US9651249B2 (en) Method for utilization of low-concentration gas mixtures of combustible gas and air with stable heat energy recovery
JP2012531480A (en) Method and apparatus for keeping the coke oven chamber warm when the waste heat boiler is stopped
KR100678335B1 (en) Regenerative thermal oxidizer with no switching vlave
TWI626404B (en) Catalytic thermal-accumulating burning apparatus
TW201027008A (en) Temperature-control device in the processing system of volatile organic exhaust gas, and method thereof
JP4121457B2 (en) Module VOC containment chamber for two-chamber regenerative oxidizer
JP2010236793A (en) Method of controlling operation of regenerative thermal oxidizer
CN106196098A (en) A kind of rotary accumulation of heat incinerator
CN111609415A (en) Self-cleaning heat accumulating type thermal incineration device
JPH07305824A (en) Operating method for heat storage type catalytic burner and controller
KR20100073732A (en) Rotary regenerator type heat exchanger for waste hert recovery in reheating furnace
CN101862592A (en) System and method for purifying waste gas containing flammable components
TWI363853B (en)
JP2003074826A (en) Thermal storage combustion device
CN203893198U (en) Temperature control regenerative thermal oxidizer
KR100598553B1 (en) Regenerative thermal oxidizer with high thermal efficiency
CN212430893U (en) Heat accumulating type heating power incineration device not prone to blockage
WO2016166781A1 (en) Heat exchanger and voc treatment apparatus using same
JP2007093156A (en) Exhaust gas treatment method
KR200380624Y1 (en) Regenerative thermal oxidizer with no switching vlave
TW201924769A (en) Regenerative catalytic oxidizer for the abatement of VOCs laden gases
KR102636137B1 (en) Regenerative Thermal Oxidizer for direct burning waste gas
CN201755451U (en) Purifying system for waste gas including combustible components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161129

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170119

R151 Written notification of patent or utility model registration

Ref document number: 6086313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees