Nothing Special   »   [go: up one dir, main page]

JP2014163263A - Gas turbine - Google Patents

Gas turbine Download PDF

Info

Publication number
JP2014163263A
JP2014163263A JP2013033620A JP2013033620A JP2014163263A JP 2014163263 A JP2014163263 A JP 2014163263A JP 2013033620 A JP2013033620 A JP 2013033620A JP 2013033620 A JP2013033620 A JP 2013033620A JP 2014163263 A JP2014163263 A JP 2014163263A
Authority
JP
Japan
Prior art keywords
exhaust
cylinder member
outer cylinder
upstream
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013033620A
Other languages
Japanese (ja)
Other versions
JP6129580B2 (en
Inventor
Kentaro AKIMOTO
健太郎 秋元
Tadayuki Okabe
能幸 岡部
Koichi Ishizaka
浩一 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013033620A priority Critical patent/JP6129580B2/en
Publication of JP2014163263A publication Critical patent/JP2014163263A/en
Application granted granted Critical
Publication of JP6129580B2 publication Critical patent/JP6129580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supercharger (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas turbine capable of balancing a workload taken out by a turbine with cooling of an exhaust part at a highly effective point.SOLUTION: In a gas turbine engine 1 which includes an exhaust part 20 in which an exhaust gas G exhausted from a turbine 10 circulates, the exhaust part 20 has: an exhaust air flow passage 31 in which the exhaust gas G circulates; an ejector 24 which introduces outside air A to the exhaust air flow passage 31 and in which an outflow port 24a is connected to the exhaust air flow passage 31; and an exhaust strut 23 which forms a static pressure reduction region by narrowing a flow passage area of at least one part of the exhaust air flow passage 31 and by accelerating the exhaust gas G. The outflow port 24a of the ejector 24 is provided in the static pressure reduction region.

Description

本発明は、排気部を備えるガスタービンに関するものである。   The present invention relates to a gas turbine including an exhaust part.

従来、ガスタービンとして、航空機用ガスタービンエンジンが知られている(例えば、特許文献1参照)。このガスタービンエンジンは、排気内筒と、排気内筒の外側に設けられた排気外筒とを有し、排気内筒と排気外筒との間に排気流路を形成している。また、ガスタービンエンジンの排気外筒は、外気吸気口を有しており、排気流路を流れる排気ガスのエジェクタ効果により、外気吸気口を介して排気流路に外気を流入させ、高温の排気ガスを冷却することで、排気内筒及び排気外筒を含む排気部を冷却している。   Conventionally, an aircraft gas turbine engine is known as a gas turbine (see, for example, Patent Document 1). This gas turbine engine has an exhaust inner cylinder and an exhaust outer cylinder provided outside the exhaust inner cylinder, and forms an exhaust passage between the exhaust inner cylinder and the exhaust outer cylinder. Further, the exhaust outer cylinder of the gas turbine engine has an outside air intake port, and due to the ejector effect of the exhaust gas flowing through the exhaust channel, the outside air flows into the exhaust channel via the outside air intake port, thereby By cooling the gas, the exhaust part including the exhaust inner cylinder and the exhaust outer cylinder is cooled.

特開平4−31636号公報JP-A-4-31636

しかしながら、特許文献1のガスタービンエンジンでは、排気ガスを冷却するために、外気を多く取り込むと、外気が流入した排気流路の圧力は上昇する。排気流路の圧力が上昇すると、タービンから排出される排気ガスが流れ難くなるため、タービンで取り出す仕事量が低下してしまう。一方で、タービンで取り出す仕事量を上昇させるべく、外気の取り込む量を減らしてしまうと、排気ガスが冷却され難くなるため、排気内筒及び排気外筒を含む排気部の冷却が困難となる。   However, in the gas turbine engine disclosed in Patent Document 1, when a large amount of outside air is taken in to cool the exhaust gas, the pressure of the exhaust passage into which the outside air flows increases. When the pressure in the exhaust passage rises, the exhaust gas discharged from the turbine becomes difficult to flow, so that the work taken out by the turbine is reduced. On the other hand, if the amount of outside air taken in is reduced to increase the amount of work taken out by the turbine, it becomes difficult to cool the exhaust gas, so that it becomes difficult to cool the exhaust part including the exhaust inner cylinder and the exhaust outer cylinder.

そこで、本発明は、タービンで取り出す仕事量と排気部の冷却とを効率良く行うことができるガスタービンを提供することを課題とする。   Then, this invention makes it a subject to provide the gas turbine which can perform efficiently the work amount taken out with a turbine, and cooling of an exhaust part.

本発明のガスタービンは、タービンから排出される排気ガスが流通する排気部を備えるガスタービンにおいて、前記排気部は、前記排気ガスが流通する排気流路と、前記排気流路に外気を導入し、流出口が前記排気流路に接続されるエジェクタと、前記排気流路の少なくとも一部の流路面積を絞って、前記排気ガスを増速させることで、静圧低下領域を形成する流路絞り部材と、を有し、前記エジェクタの前記流出口は、前記静圧低下領域に設けられていることを特徴とする。   The gas turbine according to the present invention is a gas turbine including an exhaust portion through which exhaust gas discharged from the turbine flows, wherein the exhaust portion introduces outside air into the exhaust passage through which the exhaust gas flows and the exhaust passage. An ejector whose outlet is connected to the exhaust flow path, and a flow path that forms a static pressure reduction region by increasing the speed of the exhaust gas by reducing the flow area of at least a part of the exhaust flow path A throttle member, and the outlet of the ejector is provided in the static pressure reduction region.

この構成によれば、流路絞り部材により排気流路に静圧低下領域を形成することができる。そして、この静圧低下領域に、エジェクタの流出口を設けることで、エジェクタの流出口から多くの外気を取り込むことができる。このとき、静圧低下領域において外気を取り込んでいることから、排気流路の圧力の上昇が抑制される。これにより、排気流路の圧力の上昇を抑制しつつ、外気の取り込み量を多くすることができるため、タービンで取り出す仕事量を低下させることなく、排気ガスが流通する排気部を好適に冷却することができる。換言すれば、静圧低下領域にエジェクタの流出口を設け、外気の取り込み量を、排気部を冷却可能な所定の取り込み量に抑制することで、外気が取り込まれた排気流路の圧力を低下させることができる。これにより、外気の取り込み量を所定の取り込み量にしつつ、排気流路の圧力を低下させることができるため、排気ガスが流通する排気部を冷却しつつ、タービンで取り出す仕事量を向上させることができる。以上から、タービンで取り出す仕事量と排気部の冷却とを効率良く行うことができる。   According to this configuration, the static pressure reduction region can be formed in the exhaust passage by the passage restricting member. Then, by providing the ejector outlet in this static pressure reduction region, a large amount of outside air can be taken in from the ejector outlet. At this time, since the outside air is taken in the static pressure reduction region, an increase in the pressure of the exhaust passage is suppressed. As a result, it is possible to increase the intake amount of the outside air while suppressing an increase in the pressure of the exhaust flow path, so that the exhaust part through which the exhaust gas flows is suitably cooled without reducing the work amount taken out by the turbine. be able to. In other words, the outlet of the ejector is provided in the static pressure drop region, and the intake air pressure is reduced to a predetermined intake amount that can cool the exhaust part, thereby reducing the pressure of the exhaust flow path in which the outside air is taken in. Can be made. As a result, the pressure of the exhaust passage can be reduced while keeping the intake amount of the outside air at a predetermined intake amount, so that the work taken out by the turbine can be improved while cooling the exhaust portion through which the exhaust gas flows. it can. From the above, the amount of work taken out by the turbine and the cooling of the exhaust part can be efficiently performed.

この場合、前記排気部は、排気内筒部材と、前記排気内筒部材の径方向外側に設けられる排気外筒部材と、前記排気内筒部材と前記排気外筒部材とを連結する排気ストラットと、をさらに備え、前記排気流路は、前記排気内筒部材と前記排気外筒部材との間に形成され、前記排気外筒部材は、前記排気ガスの流れ方向において、上流側に設けられる上流側排気外筒部材と、下流側に設けられる下流側排気外筒部材とを有し、前記上流側排気外筒部材の下流側端部と前記下流側排気外筒部材の上流側端部とは一部重複し、前記上流側排気外筒部材の下流側端部は、前記下流側排気外筒部材の上流側端部に対して径方向内側に位置しており、前記エジェクタは、前記上流側排気外筒部材の下流側端部と、前記下流側排気外筒部材の上流側端部とを含んで構成され、前記上流側排気外筒部材の下流側端部が、前記排気ガスの流れ方向において前記排気ストラットと重複して設けられると共に、前記上流側排気外筒部材の下流端における開口が前記流出口となっており、前記流路絞り部材は、前記排気流路の周方向における流路面積を絞る前記排気ストラットであることが好ましい。   In this case, the exhaust part includes an exhaust inner cylinder member, an exhaust outer cylinder member provided on a radially outer side of the exhaust inner cylinder member, and an exhaust strut connecting the exhaust inner cylinder member and the exhaust outer cylinder member. The exhaust passage is formed between the exhaust inner cylinder member and the exhaust outer cylinder member, and the exhaust outer cylinder member is provided upstream in the flow direction of the exhaust gas. A downstream exhaust outer cylinder member and a downstream exhaust outer cylinder member provided downstream, and a downstream end of the upstream exhaust outer cylinder member and an upstream end of the downstream exhaust outer cylinder member The downstream end of the upstream exhaust outer cylinder member is partially overlapped, and is located radially inward with respect to the upstream end of the downstream exhaust outer cylinder member, and the ejector A downstream end of the exhaust outer cylinder member and an upstream end of the downstream exhaust outer cylinder member A downstream end of the upstream exhaust outer cylinder member is provided to overlap the exhaust strut in the exhaust gas flow direction, and an opening at the downstream end of the upstream exhaust outer cylinder member is Preferably, the flow path restricting member is the exhaust strut for reducing the flow area in the circumferential direction of the exhaust flow path.

この構成によれば、上流側排気外筒部材の下流側端部を、排気ガスの流れ方向において排気ストラットと重複して設けることで、排気内筒部材と排気外筒部材とを連結する排気ストラットを、流路絞り部材として活用することができる。このため、大幅な設計変更を伴うことなく、簡易な構成で排気流路を周方向に絞ることができる。   According to this configuration, the exhaust end strut that connects the exhaust inner cylinder member and the exhaust outer cylinder member by providing the downstream end of the upstream exhaust outer cylinder member overlapping the exhaust strut in the flow direction of the exhaust gas. Can be utilized as a flow path restricting member. For this reason, the exhaust passage can be narrowed in the circumferential direction with a simple configuration without any significant design change.

この場合、前記エジェクタの前記流出口は、前記排気ストラットの周方向における幅が最大となる位置に設けられることが好ましい。   In this case, it is preferable that the outlet of the ejector is provided at a position where the circumferential width of the exhaust strut is maximized.

この構成によれば、排気流路が周方向において最も絞られる部分に、つまり、排気ガスの流速が最も速い部分に、エジェクタの流出口を設けることができる。このため、タービンの仕事と排気部の冷却とを、より効率良く行うことができる。   According to this configuration, the outlet of the ejector can be provided in a portion where the exhaust flow path is most restricted in the circumferential direction, that is, in a portion where the exhaust gas flow velocity is the fastest. For this reason, the work of the turbine and the cooling of the exhaust part can be performed more efficiently.

この場合、前記排気部は、排気内筒部材と、前記排気内筒部材の径方向外側に設けられる排気外筒部材と、をさらに備え、前記排気流路は、前記排気内筒部材と前記排気外筒部材との間に形成され、前記排気外筒部材は、前記排気ガスの流れ方向において、上流側に設けられる上流側排気外筒部材と、下流側に設けられる下流側排気外筒部材とを有し、前記上流側排気外筒部材の下流側端部と前記下流側排気外筒部材の上流側端部とは一部重複し、前記上流側排気外筒部材の下流側端部は、前記下流側排気外筒部材の上流側端部に対して径方向内側に位置しており、前記エジェクタは、前記上流側排気外筒部材の下流側端部と、前記下流側排気外筒部材の上流側端部とを含んで構成され、前記上流側排気外筒部材の下流端における開口が前記流出口となっており、前記流路絞り部材は、前記排気流路の径方向における流路面積を絞る、前記上流側排気外筒部材の下流側端部及び前記上流側排気外筒部材の下流側端部に対向する前記排気内筒部材の少なくとも一方であることが好ましい。   In this case, the exhaust part further includes an exhaust inner cylinder member and an exhaust outer cylinder member provided on a radially outer side of the exhaust inner cylinder member, and the exhaust passage includes the exhaust inner cylinder member and the exhaust gas The exhaust outer cylinder member is formed between the upstream exhaust outer cylinder member provided on the upstream side and the downstream exhaust outer cylinder member provided on the downstream side in the exhaust gas flow direction. And the downstream end of the upstream exhaust outer cylinder member and the upstream end of the downstream exhaust outer cylinder member partially overlap, and the downstream end of the upstream exhaust outer cylinder member is It is located radially inward with respect to the upstream end of the downstream exhaust outer cylinder member, and the ejector includes a downstream end of the upstream exhaust outer cylinder member and a downstream exhaust outer cylinder member. An upstream end, and an opening at the downstream end of the upstream exhaust outer tubular member is the The flow path restricting member serves as an outlet, and the downstream end portion of the upstream exhaust outer cylinder member and the downstream side of the upstream exhaust outer cylinder member restrict the flow area in the radial direction of the exhaust flow path. It is preferable that the exhaust inner cylinder member be opposed to the end portion.

この構成によれば、上流側排気外筒部材の下流側端部及び排気内筒部材の少なくとも一方を、排気流路の径方向において流路面積が狭くなるように絞ることで、上流側排気外筒部材の下流側端部及び排気内筒部材の少なくとも一方を流路絞り部材として活用することができる。このため、大幅な設計変更を伴うことなく、簡易な構成で排気流路を径方向に絞ることができる。   According to this configuration, at least one of the downstream end of the upstream exhaust outer cylinder member and the exhaust inner cylinder member is narrowed so that the flow passage area becomes narrow in the radial direction of the exhaust flow passage, thereby At least one of the downstream end of the tubular member and the exhaust inner tubular member can be used as a flow path restricting member. For this reason, the exhaust passage can be narrowed in the radial direction with a simple configuration without any significant design change.

この場合、前記流路絞り部材は、前記排気流路の全周に亘って、流路面積を絞っていることが好ましい。   In this case, it is preferable that the flow passage restricting member restricts the flow passage area over the entire circumference of the exhaust flow passage.

この構成によれば、排気流路の全周に亘って、径方向における流路面積を絞って静圧低下領域を形成できることから、全周から外気を吸い込むことができる。   According to this configuration, since the static pressure reduction region can be formed by reducing the flow area in the radial direction over the entire circumference of the exhaust flow path, the outside air can be sucked from the entire circumference.

この場合、前記流路絞り部材は、前記排気流路の周方向における所定の部位において、流路面積を絞っていることが好ましい。   In this case, it is preferable that the flow passage restricting member restricts the flow passage area at a predetermined portion in the circumferential direction of the exhaust flow passage.

この構成によれば、所定の部位において、径方向における流路面積を絞って静圧低下領域を形成できることから、所定の部位から外気を吸い込むことができる。このとき、所定の部位としては、例えば、排気ガスの流れを阻害し難い部位、または排気ガスを良好に案内可能な部位等がある。   According to this configuration, since the static pressure reduction region can be formed by narrowing the flow path area in the radial direction at a predetermined portion, outside air can be sucked from the predetermined portion. At this time, the predetermined part includes, for example, a part that does not obstruct the flow of exhaust gas, or a part that can guide the exhaust gas well.

図1は、実施例1に係るガスタービンエンジンの排気部の概略構成図である。FIG. 1 is a schematic configuration diagram of an exhaust portion of a gas turbine engine according to a first embodiment. 図2は、図1のA−A断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 図3は、実施例2に係るガスタービンエンジンの排気部の概略構成図である。FIG. 3 is a schematic configuration diagram of an exhaust portion of the gas turbine engine according to the second embodiment.

以下に、本発明に係る実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。   Embodiments according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

図1は、実施例1に係るガスタービンエンジンの排気部の概略構成図である。図2は、図1のA−A’断面図である。実施例1に係るガスタービンエンジン(ガスタービン)1は、航空機用のガスタービンエンジンである。図1に示すように、ガスタービンエンジン1は、回転軸となるロータ5と、タービン10と、排気部20とを備えている。ここで、図示は省略したが、ロータ5の軸方向において、タービン10の反対側には、圧縮機及び燃焼器が設けられている。なお、実施例1では、航空機用のガスタービンエンジンに適用して説明するが、排気部20を有するガスタービンであれば、いずれであってもよい。   FIG. 1 is a schematic configuration diagram of an exhaust portion of a gas turbine engine according to a first embodiment. FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG. 1. A gas turbine engine (gas turbine) 1 according to the first embodiment is a gas turbine engine for an aircraft. As shown in FIG. 1, the gas turbine engine 1 includes a rotor 5 serving as a rotation shaft, a turbine 10, and an exhaust unit 20. Although not shown, a compressor and a combustor are provided on the opposite side of the turbine 10 in the axial direction of the rotor 5. In the first embodiment, description will be made by applying to an aircraft gas turbine engine. However, any gas turbine having an exhaust part 20 may be used.

圧縮機は、外部から空気を吸い込むと共に、吸い込んだ空気を圧縮し、圧縮した空気を燃焼器へ向けて供給する。燃焼器は、燃料を噴射し、噴射した燃料と圧縮された空気とを混合させると共に燃焼させ、燃焼ガス(主流ガス)を発生させる。発生した燃焼ガスは、タービン10に流入する。   The compressor sucks air from the outside, compresses the sucked air, and supplies the compressed air toward the combustor. The combustor injects fuel, mixes the injected fuel and compressed air, and burns the fuel to generate combustion gas (mainstream gas). The generated combustion gas flows into the turbine 10.

タービン10は、複数の静翼11と、複数の動翼12と、複数のディスクプレート13とを有している。複数のディスクプレート13は、複数の動翼12に応じて設けられ、ロータ5に固定されると共に、各動翼12が連結される。そして、複数の静翼11と複数の動翼12とは交互に配設されている。   The turbine 10 includes a plurality of stationary blades 11, a plurality of moving blades 12, and a plurality of disk plates 13. The plurality of disk plates 13 are provided according to the plurality of moving blades 12, are fixed to the rotor 5, and are connected to the moving blades 12. The plurality of stationary blades 11 and the plurality of moving blades 12 are alternately arranged.

上記のようなガスタービンエンジン1は、圧縮機により、空気が圧縮されることで高温・高圧の圧縮空気となり、燃焼器により、この圧縮空気に対して所定の燃料が供給されることで燃焼する。そして、この燃焼器で生成された高温・高圧の燃焼ガスが、タービン10を構成する複数の静翼11と複数の動翼12とを通過することでロータ5を回転駆動させる。一方、ロータ5を回転駆動させた後の燃焼ガスである排気ガスGは、排気部20から大気に放出される。   The gas turbine engine 1 as described above is compressed into high-temperature and high-pressure compressed air when compressed by a compressor, and combusts when a predetermined fuel is supplied to the compressed air by a combustor. . The high-temperature and high-pressure combustion gas generated by the combustor passes through the plurality of stationary blades 11 and the plurality of moving blades 12 constituting the turbine 10 to rotate the rotor 5. On the other hand, the exhaust gas G that is the combustion gas after the rotor 5 is rotationally driven is discharged from the exhaust unit 20 to the atmosphere.

次に、排気部20周りの構成について詳細に説明する。排気部20は、筒状の排気内筒部材21と、排気内筒部材21の径方向外側に設けられる筒状の排気外筒部材22とを有している。また、排気部20は、排気内筒部材21と排気外筒部材22とを接続する排気ストラット23を有している。排気内筒部材21と排気外筒部材22との間は、タービン10から排出された排気ガスGが流通する排気流路31となっている。また、排気部20は、排気流路31に接続されるエジェクタ24を有している。   Next, the configuration around the exhaust unit 20 will be described in detail. The exhaust unit 20 includes a cylindrical exhaust inner cylinder member 21 and a cylindrical exhaust outer cylinder member 22 provided on the radially outer side of the exhaust inner cylinder member 21. The exhaust unit 20 has an exhaust strut 23 that connects the exhaust inner cylinder member 21 and the exhaust outer cylinder member 22. Between the exhaust inner cylinder member 21 and the exhaust outer cylinder member 22 is an exhaust passage 31 through which the exhaust gas G discharged from the turbine 10 flows. In addition, the exhaust unit 20 includes an ejector 24 connected to the exhaust flow path 31.

排気内筒部材21は、排気ガスGの流れ方向の上流側(図示左側)の端部が、タービン10に接続されている。排気内筒部材21の上流側の端部は、径方向において、動翼12の基端側とディスクプレート13とが接続される部位に位置している。排気内筒部材21は、上流側端部から下流側端部にかけて所定の径となるように形成されている。   The exhaust inner cylinder member 21 is connected to the turbine 10 at the upstream end (the left side in the drawing) in the flow direction of the exhaust gas G. The upstream end of the exhaust inner cylinder member 21 is located in a radial direction at a portion where the base end side of the moving blade 12 and the disk plate 13 are connected. The exhaust inner cylinder member 21 is formed to have a predetermined diameter from the upstream end to the downstream end.

排気外筒部材22は、排気ガスGの流れ方向の上流側(図示左側)の端部が、タービン10に接続されている。排気外筒部材22の上流側の端部は、径方向において、動翼12の先端側に位置している。排気外筒部材22は、上流側端部から下流側端部にかけて径方向が大きくなるように形成されている。排気外筒部材22は、上流側排気外筒部材22aと、下流側排気外筒部材22bとを有している。   The exhaust outer cylinder member 22 is connected to the turbine 10 at an upstream end (left side in the drawing) in the flow direction of the exhaust gas G. The upstream end portion of the exhaust outer cylinder member 22 is located on the distal end side of the rotor blade 12 in the radial direction. The exhaust outer cylinder member 22 is formed so that the radial direction increases from the upstream end to the downstream end. The exhaust outer cylinder member 22 has an upstream side exhaust outer cylinder member 22a and a downstream side exhaust outer cylinder member 22b.

上流側排気外筒部材22aは、タービン10の下流側に設けられ、且つ下流側排気外筒部材22bの上流側に設けられている。上流側排気外筒部材22aは、その下流側の端部の径が、下流側排気外筒部材22bの上流側の端部の径よりも小さな径となっており、下流側排気外筒部材22bの内側に配置されている。換言すれば、下流側排気外筒部材22bは、その上流側の端部の径が、上流側排気外筒部材22aの下流側の端部の径よりも大きな径となっており、上流側排気外筒部材22aの外側に配置されている。   The upstream side exhaust outer cylinder member 22a is provided on the downstream side of the turbine 10, and is provided on the upstream side of the downstream side exhaust outer cylinder member 22b. The upstream exhaust outer cylinder member 22a has a downstream end diameter smaller than the upstream end diameter of the downstream exhaust outer cylinder member 22b, and the downstream exhaust outer cylinder member 22b. It is arranged inside. In other words, the downstream exhaust outer cylinder member 22b has an upstream end diameter larger than the downstream end diameter of the upstream exhaust outer cylinder member 22a. It arrange | positions on the outer side of the outer cylinder member 22a.

上流側排気外筒部材22aと下流側排気外筒部材22bとは、その一部が径方向において重複している。具体的に、上流側排気外筒部材22aの下流側の端部22a1と、下流側排気外筒部材22bの上流側の端部22b1とは、径方向において重複しており、2重管の構成となっている。なお、後述するが、上流側排気外筒部材22aの下流側端部22a1と、下流側排気外筒部材22bの上流側端部22b1とが、エジェクタ24の一部を構成している。   The upstream exhaust outer cylinder member 22a and the downstream exhaust outer cylinder member 22b partially overlap in the radial direction. Specifically, the downstream end 22a1 of the upstream exhaust outer cylinder member 22a and the upstream end 22b1 of the downstream exhaust outer cylinder member 22b overlap in the radial direction, and the structure of the double pipe It has become. As will be described later, the downstream end 22a1 of the upstream exhaust outer cylinder member 22a and the upstream end 22b1 of the downstream exhaust outer cylinder member 22b constitute a part of the ejector 24.

排気ストラット23は、排気内筒部材21と下流側排気外筒部材22bとを連結する部材であり、所定の間隔を空けて周方向に複数設けられている。図2に示すように、各排気ストラット23は、径方向に直交する面で切った断面が翼形状となっており、排気ガスGを上流側から下流側へ案内している。排気ストラット23は、周方向における長さ(幅)が最大となる最大幅Lが、軸方向における上流側端部と中央部との間に位置している。   The exhaust struts 23 are members that connect the exhaust inner cylinder member 21 and the downstream exhaust outer cylinder member 22b, and a plurality of exhaust struts 23 are provided in the circumferential direction at predetermined intervals. As shown in FIG. 2, each exhaust strut 23 has a blade shape in a cross section cut by a plane orthogonal to the radial direction, and guides the exhaust gas G from the upstream side to the downstream side. The exhaust strut 23 has a maximum width L that maximizes the length (width) in the circumferential direction between the upstream end and the central portion in the axial direction.

エジェクタ24は、排気流路31における排気ガスGの流通によるエジェクタ効果により、外気Aを排気流路31に取り込んでいる。エジェクタ24は、上記したように、上流側排気外筒部材22aの下流側端部22a1と、下流側排気外筒部材22bの上流側端部22b1とを含んで構成されている。エジェクタ24は、下流側排気外筒部材22bの上流端における開口が外気Aの流入口24bとなっており、周方向に亘って形成されている。また、エジェクタ24は、上流側排気外筒部材22aの下流端における開口が外気Aの流出口24aとなっており、周方向に亘って形成されている。なお、図示では省略したが、エジェクタ24の流入口24bには、所定の間隔を空けてスリットが周方向に複数形成された、環状のスリット板を配置してもよい。   The ejector 24 takes outside air A into the exhaust passage 31 due to the ejector effect caused by the flow of the exhaust gas G in the exhaust passage 31. As described above, the ejector 24 includes the downstream end 22a1 of the upstream exhaust outer cylinder member 22a and the upstream end 22b1 of the downstream exhaust outer cylinder member 22b. In the ejector 24, an opening at the upstream end of the downstream side exhaust outer cylinder member 22b is an inflow port 24b for the outside air A, and is formed in the circumferential direction. The ejector 24 has an opening at the downstream end of the upstream side exhaust outer cylinder member 22a serving as an outlet 24a for the outside air A, and is formed in the circumferential direction. Although not shown in the drawing, an annular slit plate in which a plurality of slits are formed in the circumferential direction at a predetermined interval may be disposed at the inlet 24b of the ejector 24.

また、エジェクタ24は、上流側排気外筒部材22aの下流側端部22a1が、排気ガスGの流れ方向において、排気ストラット23と重複して設けられている。具体的に、上流側排気外筒部材22aの下流端は、排気ガスGの流れ方向において、排気ストラット23の最大幅Lの部位に位置している。このとき、上流側排気外筒部材22aの下流側端部22a1は、排気ストラット23と重複する部位が、排気ストラット23の翼形状と相補的な形状となるように切り欠いて形成されている。このため、エジェクタ24の流出口24aは、排気流路31が周方向において最も絞られる位置に形成される。よって、排気ストラット23は、周方向に排気流路31の流路面積を絞る流路絞り部材として機能する。   In the ejector 24, the downstream end 22 a 1 of the upstream exhaust outer cylinder member 22 a is provided so as to overlap the exhaust strut 23 in the flow direction of the exhaust gas G. Specifically, the downstream end of the upstream side exhaust outer cylinder member 22a is located in the region of the maximum width L of the exhaust strut 23 in the flow direction of the exhaust gas G. At this time, the downstream side end 22a1 of the upstream side exhaust outer cylindrical member 22a is formed by cutting out a portion overlapping with the exhaust strut 23 so as to have a shape complementary to the wing shape of the exhaust strut 23. For this reason, the outlet 24a of the ejector 24 is formed at a position where the exhaust passage 31 is most restricted in the circumferential direction. Therefore, the exhaust strut 23 functions as a flow passage restricting member that restricts the flow passage area of the exhaust flow passage 31 in the circumferential direction.

続いて、エジェクタ24における外気Aの取り込みについて説明する。タービン10から排出された排気ガスGは、排気内筒部材21と上流側排気外筒部材22aとの間の排気流路31を流通する。排気流路31を流通する排気ガスGは、排気ストラット23に流入する。ここで、排気流路31は、排気ストラット23が設けられていることから、周方向における排気流路31の流路面積が絞られることになる。排気ストラット23により排気流路31の流路面積が絞られると、排気ストラット23を通過する排気ガスGの流速は、排気ストラット23に流入する前の流速に比して速くなる。特に、周方向において排気流路31の流路面積が最も絞られる、排気ストラット23の最大幅Lの部位において、排気ガスGの流速が最も速くなる。このため、排気ストラット23の軸方向を前後方向としたときの排気ストラット23の側面及び側面の周辺には、排気ストラット23の上流側及び下流側における静圧に比して低い静圧低下領域Eが形成される。   Next, the intake of outside air A by the ejector 24 will be described. The exhaust gas G discharged from the turbine 10 circulates in the exhaust passage 31 between the exhaust inner cylinder member 21 and the upstream side exhaust outer cylinder member 22a. The exhaust gas G flowing through the exhaust passage 31 flows into the exhaust strut 23. Here, since the exhaust flow path 31 is provided with the exhaust strut 23, the flow area of the exhaust flow path 31 in the circumferential direction is reduced. When the flow passage area of the exhaust flow passage 31 is reduced by the exhaust strut 23, the flow rate of the exhaust gas G passing through the exhaust strut 23 becomes faster than the flow velocity before flowing into the exhaust strut 23. In particular, the flow velocity of the exhaust gas G becomes the fastest at the portion of the exhaust strut 23 having the maximum width L where the flow passage area of the exhaust flow passage 31 is most restricted in the circumferential direction. For this reason, when the axial direction of the exhaust strut 23 is set to the front-rear direction, the side surface of the exhaust strut 23 and the periphery of the side surface have a static pressure reduction region E lower than the static pressure on the upstream side and downstream side of the exhaust strut 23 Is formed.

そして、エジェクタ24の流出口24aは、排気ストラット23の最大幅Lの部位に位置していることから、静圧低下領域Eに位置することになる。このため、エジェクタ24は、静圧が低い領域においてエジェクタ効果による外気Aの取り込みが可能になることから、流出口24aが排気ストラット23の上流側に設けられる場合に比して、より多くの外気Aを取り込むことが可能となる。エジェクタ24を介して排気流路31に取り込まれた外気Aは、排気流路31を流通する排気ガスGと混合しながら下流側へ向けて送られることで、排気ガスGを冷却する。   And since the outflow port 24a of the ejector 24 is located in the site | part of the maximum width L of the exhaust strut 23, it will be located in the static pressure fall area | region E. FIG. For this reason, since the ejector 24 can take in the outside air A by the ejector effect in the region where the static pressure is low, more outside air is provided compared to the case where the outlet 24 a is provided on the upstream side of the exhaust strut 23. A can be captured. The outside air A taken into the exhaust passage 31 via the ejector 24 is sent to the downstream side while being mixed with the exhaust gas G flowing through the exhaust passage 31, thereby cooling the exhaust gas G.

以上のように、実施例1の構成によれば、排気ストラット23により排気流路31に静圧低下領域Eを形成することができる。そして、この静圧低下領域Eに、エジェクタ24の流出口24aを設けることで、エジェクタ24の流出口24aから多くの外気Aを取り込むことができる。このとき、静圧低下領域Eにおいて外気Aを取り込んでいることから、排気流路31の圧力の上昇は抑制される。これにより、排気流路31の圧力の上昇を抑制しつつ、外気Aの取り込み量を多くすることができるため、タービン10で取り出す仕事量を低下させることなく、排気ガスGが流通する排気部20を好適に冷却することができる。換言すれば、静圧低下領域Eにエジェクタ24の流出口24aを設け、外気Aの取り込み量を排気部20を冷却可能な所定の取り込み量に抑制することで、外気Aが取り込まれた排気流路31の圧力(静圧)を低下させることができる。これにより、外気Aの取り込み量を所定の取り込み量にしつつ、排気流路31の圧力を低下させることができるため、排気ガスGが流通する排気部20を冷却しつつ、タービン10で取り出す仕事量を向上させることができる。以上から、タービン10で取り出す仕事量と排気部20の冷却とを効率よく行うことができる。   As described above, according to the configuration of the first embodiment, the static pressure reduction region E can be formed in the exhaust passage 31 by the exhaust strut 23. Then, by providing the outlet 24 a of the ejector 24 in the static pressure reduction region E, a large amount of outside air A can be taken from the outlet 24 a of the ejector 24. At this time, since the outside air A is taken in the static pressure lowering region E, an increase in the pressure of the exhaust passage 31 is suppressed. Thereby, since the intake amount of the outside air A can be increased while suppressing an increase in the pressure of the exhaust passage 31, the exhaust portion 20 through which the exhaust gas G flows without reducing the work amount taken out by the turbine 10. Can be suitably cooled. In other words, the outlet 24a of the ejector 24 is provided in the static pressure reduction region E, and the intake amount of the outside air A is suppressed to a predetermined intake amount that can cool the exhaust portion 20 so that the outside air A is taken in. The pressure (static pressure) in the path 31 can be reduced. As a result, the pressure of the exhaust passage 31 can be reduced while the intake amount of the outside air A is set to a predetermined intake amount, so that the work amount taken out by the turbine 10 while cooling the exhaust portion 20 through which the exhaust gas G flows is cooled. Can be improved. From the above, the work taken out by the turbine 10 and the cooling of the exhaust part 20 can be efficiently performed.

また、実施例1の構成によれば、上流側排気外筒部材22aの下流側端部22a1を、排気ガスGの流れ方向において排気ストラット23と重複して設けることで、排気ストラット23を、流路絞り部材として活用することができる。このため、大幅な設計変更を伴うことなく、簡易な構成で排気流路31を周方向に絞ることができる。   Further, according to the configuration of the first embodiment, the downstream end portion 22a1 of the upstream side exhaust outer cylinder member 22a is provided to overlap the exhaust strut 23 in the flow direction of the exhaust gas G, so that the exhaust strut 23 can be It can be used as a road throttle member. For this reason, the exhaust passage 31 can be narrowed in the circumferential direction with a simple configuration without any significant design change.

また、実施例1の構成によれば、エジェクタ24の流出口24aを、排気ストラット23の最大幅Lとなる位置に設けることができるため、排気流路31が周方向において最も絞られる部分に、つまり、排気ガスGの流速が最も速い部分に、エジェクタ24の流出口24aを設けることができる。このため、タービン10で取り出す仕事量と排気部20の冷却とを、より効率良く行うことができる。   Further, according to the configuration of the first embodiment, since the outlet 24a of the ejector 24 can be provided at a position where the exhaust strut 23 has the maximum width L, the exhaust passage 31 is narrowed down most in the circumferential direction. That is, the outlet 24a of the ejector 24 can be provided at a portion where the flow velocity of the exhaust gas G is the fastest. For this reason, the work taken out by the turbine 10 and the cooling of the exhaust part 20 can be performed more efficiently.

なお、実施例1では、上流側排気外筒部材22aの下流端を、排気ガスGの流れ方向において排気ストラット23の最大幅Lとなる部位に位置させることで、エジェクタ24の流出口24aを、排気ストラット23の最大幅Lとなる位置に形成した。しかしながら、上流側排気外筒部材22aの下流端は、排気ストラット23に重複すれば、いずれの位置であってもよい。   In the first embodiment, the downstream end of the upstream side exhaust outer cylinder member 22a is positioned at a portion having the maximum width L of the exhaust strut 23 in the flow direction of the exhaust gas G, whereby the outlet 24a of the ejector 24 is The exhaust strut 23 is formed at a position where the maximum width L is reached. However, the downstream end of the upstream exhaust outer cylinder member 22 a may be at any position as long as it overlaps the exhaust strut 23.

また、実施例1では、排気ストラット23を流路絞り部材として機能させたが、この構成に限定されない。つまり、周方向において排気流路31の流路面積を絞る部材(例えば、マンホール)であれば、排気ストラット23とは異なる別部材を排気流路31に設けてもよい。   Moreover, in Example 1, although the exhaust strut 23 was functioned as a flow-path throttle member, it is not limited to this structure. That is, another member different from the exhaust strut 23 may be provided in the exhaust passage 31 as long as it is a member (for example, a manhole) that narrows the flow passage area of the exhaust passage 31 in the circumferential direction.

次に、図3を参照して、実施例2に係るガスタービンエンジン50について説明する。図3は、実施例2に係るガスタービンエンジンの排気部の概略構成図である。なお、実施例2では、実施例1と重複する記載を避けるべく、実施例1と異なる部分についてのみ説明する。実施例1では、排気ストラット23を流路絞り部材として機能させたが、実施例2では、上流側排気外筒部材22aを流路絞り部材として機能させている。以下、実施例2に係るガスタービンエンジン50の排気部20について説明する。   Next, a gas turbine engine 50 according to the second embodiment will be described with reference to FIG. FIG. 3 is a schematic configuration diagram of an exhaust portion of the gas turbine engine according to the second embodiment. In the second embodiment, only parts different from the first embodiment will be described in order to avoid the description overlapping with the first embodiment. In the first embodiment, the exhaust strut 23 functions as a flow path restricting member. However, in the second embodiment, the upstream exhaust outer cylinder member 22a functions as a flow path restricting member. Hereinafter, the exhaust part 20 of the gas turbine engine 50 according to the second embodiment will be described.

図3に示すように、排気部20において、上流側排気外筒部材22aは、その下流側端部22a1が、径方向において排気流路31の流路面積を絞るような形状となっている。具体的に、上流側排気外筒部材22aの下流側端部22a1は、排気内筒部材21へ向けて湾曲した形状となっている。つまり、上流側排気外筒部材22aの下流側端部22a1は、その上流側において、上流側排気外筒部材22aの下流側端部22a1と排気内筒部材21との径方向における距離が、短くなるように湾曲させられる。また、上流側排気外筒部材22aの下流側端部22a1は、その下流側において、上流側排気外筒部材22aの下流側端部22a1と排気内筒部材21との径方向における距離が、排気ガスGの流れ方向に延在するように上流側に比して僅かに長くなっている。つまり、下流側端部22a1は、その上流側と下流側との間に、排気内筒部材21との径方向における距離が短くなる部位を有する。よって、上流側排気外筒部材22aの下流側端部22a1は、周方向に排気流路31の流路面積を絞る流路絞り部材として機能する。   As shown in FIG. 3, in the exhaust portion 20, the upstream side exhaust outer cylindrical member 22 a has a shape such that the downstream side end portion 22 a 1 narrows the flow passage area of the exhaust passage 31 in the radial direction. Specifically, the downstream end 22 a 1 of the upstream exhaust outer cylinder member 22 a is curved toward the exhaust inner cylinder member 21. That is, the downstream end 22a1 of the upstream exhaust outer cylinder member 22a has a short radial distance between the downstream end 22a1 of the upstream exhaust outer cylinder member 22a and the exhaust inner cylinder member 21 on the upstream side. To be curved. Further, the downstream end 22a1 of the upstream exhaust outer cylinder member 22a has a radial distance between the downstream end 22a1 of the upstream exhaust outer cylinder member 22a and the exhaust inner cylinder member 21 on the downstream side. It is slightly longer than the upstream side so as to extend in the flow direction of the gas G. That is, the downstream end 22a1 has a portion between which the distance in the radial direction from the exhaust inner cylinder member 21 is shortened between the upstream side and the downstream side. Therefore, the downstream end 22a1 of the upstream exhaust outer cylinder member 22a functions as a flow passage restricting member that restricts the flow passage area of the exhaust flow passage 31 in the circumferential direction.

ここで、上流側排気外筒部材22aの下流側端部22a1は、排気流路31の全周に亘って、流路面積を絞っていてもよい。また、上流側排気外筒部材22aの下流側端部22a1は、排気流路31の周方向における所定の部位(局所的な部位)において、流路面積を絞っていてもよい。   Here, the downstream end 22 a 1 of the upstream exhaust outer cylinder member 22 a may have a reduced flow area over the entire circumference of the exhaust flow path 31. Further, the downstream end 22 a 1 of the upstream exhaust outer cylinder member 22 a may have a reduced flow area at a predetermined site (local site) in the circumferential direction of the exhaust flow channel 31.

以上のように、実施例2の構成によれば、上流側排気外筒部材22aの下流側端部22a1を、排気流路31の径方向において流路面積が狭くなるように絞ることで、上流側排気外筒部材22aの下流側端部22a1を流路絞り部材として活用することができる。このため、大幅な設計変更を伴うことなく、簡易な構成で排気流路31を径方向に絞ることができる。   As described above, according to the configuration of the second embodiment, the downstream end 22a1 of the upstream exhaust outer cylinder member 22a is narrowed so that the flow passage area becomes narrower in the radial direction of the exhaust flow passage 31. The downstream end 22a1 of the side exhaust outer cylinder member 22a can be used as a flow path restricting member. For this reason, the exhaust passage 31 can be narrowed in the radial direction with a simple configuration without any significant design change.

また、実施例2の構成によれば、上流側排気外筒部材22aの下流側端部22a1により、排気流路31の全周に亘って、流路面積を絞った場合、排気流路31の全周に亘って静圧低下領域Eを形成できることから、全周から多くの外気Aを取り込むことができる。   Further, according to the configuration of the second embodiment, when the flow passage area is reduced over the entire circumference of the exhaust flow passage 31 by the downstream end 22a1 of the upstream exhaust outer cylinder member 22a, Since the static pressure reduction region E can be formed over the entire circumference, a large amount of outside air A can be taken from the entire circumference.

また、実施例2の構成によれば、上流側排気外筒部材22aの下流側端部22a1により、排気流路31の周方向における所定の部位(局所的な部位)において、流路面積を絞った場合、排気流路31の所定の部位に静圧低下領域Eを形成できることから、所定の部位から多くの外気Aを取り込むことができる。このとき、所定の部位としては、排気ガスGの流れを阻害し難い部位、または排気ガスGを良好に案内可能な部位等がある。具体的に、周方向に設けられた複数の排気ストラット23の位置を考慮して、例えば、流れ方向から見て排気ストラット23同士の間に位置する部位、または排気ストラット23と重なる位置の部位において、排気流路31の流路面積を絞ってもよい。   Further, according to the configuration of the second embodiment, the flow path area is reduced at a predetermined site (local site) in the circumferential direction of the exhaust flow channel 31 by the downstream end 22a1 of the upstream exhaust outer cylinder member 22a. In this case, since the static pressure reduction region E can be formed at a predetermined part of the exhaust passage 31, a large amount of outside air A can be taken from the predetermined part. At this time, as the predetermined part, there is a part that does not obstruct the flow of the exhaust gas G or a part that can guide the exhaust gas G satisfactorily. Specifically, in consideration of the positions of the plurality of exhaust struts 23 provided in the circumferential direction, for example, at a part located between the exhaust struts 23 when viewed from the flow direction or a part overlapping the exhaust struts 23 The flow passage area of the exhaust flow passage 31 may be reduced.

なお、実施例2では、上流側排気外筒部材22aの下流側端部22a1を、排気流路31の径方向において流路面積が狭くなるように絞ったが、この構成に限定されない。例えば、上流側排気外筒部材22aの下流側端部22a1を絞らずに、排気内筒部材21を排気流路31の径方向において流路面積が狭くなるように絞ってもよい。また、上流側排気外筒部材22aの下流側端部22a1、及び排気内筒部材21の両方を、排気流路31の径方向において流路面積が狭くなるように絞ってもよい。つまり、排気流路31の径方向において流路面積を狭くすることで、排気流路31に静圧低下領域Eを形成できれば、いずれの構成であってもよい。   In the second embodiment, the downstream end 22a1 of the upstream exhaust outer cylinder member 22a is narrowed so that the flow passage area becomes narrower in the radial direction of the exhaust flow passage 31, but the present invention is not limited to this configuration. For example, the exhaust inner cylinder member 21 may be restricted so that the flow passage area becomes narrower in the radial direction of the exhaust flow passage 31 without restricting the downstream end 22a1 of the upstream exhaust outer tubular member 22a. Further, both the downstream end 22 a 1 of the upstream exhaust outer cylinder member 22 a and the exhaust inner cylinder member 21 may be narrowed so that the flow passage area becomes narrow in the radial direction of the exhaust flow passage 31. That is, any configuration may be used as long as the static pressure reduction region E can be formed in the exhaust flow path 31 by narrowing the flow path area in the radial direction of the exhaust flow path 31.

1 ガスタービンエンジン
5 ロータ
10 タービン
11 静翼
12 動翼
13 ディスクプレート
20 排気部
21 排気内筒部材
22 排気外筒部材
22a 上流側排気外筒部材
22b 下流側排気外筒部材
23 排気ストラット
24 エジェクタ
24a 流出口
24b 流入口
31 排気流路
50 ガスタービンエンジン
G 排気ガス
A 外気
L 最大幅
E 静圧低下領域
DESCRIPTION OF SYMBOLS 1 Gas turbine engine 5 Rotor 10 Turbine 11 Stator blade 12 Moving blade 13 Disc plate 20 Exhaust part 21 Exhaust inner cylinder member 22 Exhaust outer cylinder member 22a Upstream exhaust outer cylinder member 22b Downstream exhaust outer cylinder member 23 Exhaust strut 24 Ejector 24a Outlet 24b Inlet 31 Exhaust flow path 50 Gas turbine engine G Exhaust gas A Outside air L Maximum width E Static pressure drop region

Claims (6)

タービンから排出される排気ガスが流通する排気部を備えるガスタービンにおいて、
前記排気部は、
前記排気ガスが流通する排気流路と、
前記排気流路に外気を導入し、流出口が前記排気流路に接続されるエジェクタと、
前記排気流路の少なくとも一部の流路面積を絞って、前記排気ガスを増速させることで、静圧低下領域を形成する流路絞り部材と、を有し、
前記エジェクタの前記流出口は、前記静圧低下領域に設けられていることを特徴とするガスタービン。
In a gas turbine including an exhaust part through which exhaust gas discharged from a turbine flows,
The exhaust part is
An exhaust passage through which the exhaust gas flows;
An ejector for introducing outside air into the exhaust flow path, and an outlet connected to the exhaust flow path;
A flow passage restricting member that forms a static pressure lowering region by squeezing at least a part of the flow passage area of the exhaust flow passage to increase the exhaust gas speed,
The gas turbine according to claim 1, wherein the outlet of the ejector is provided in the static pressure reduction region.
前記排気部は、
排気内筒部材と、
前記排気内筒部材の径方向外側に設けられる排気外筒部材と、
前記排気内筒部材と前記排気外筒部材とを連結する排気ストラットと、をさらに備え、
前記排気流路は、前記排気内筒部材と前記排気外筒部材との間に形成され、
前記排気外筒部材は、前記排気ガスの流れ方向において、上流側に設けられる上流側排気外筒部材と、下流側に設けられる下流側排気外筒部材とを有し、前記上流側排気外筒部材の下流側端部と前記下流側排気外筒部材の上流側端部とは一部重複し、前記上流側排気外筒部材の下流側端部は、前記下流側排気外筒部材の上流側端部に対して径方向内側に位置しており、
前記エジェクタは、前記上流側排気外筒部材の下流側端部と、前記下流側排気外筒部材の上流側端部とを含んで構成され、前記上流側排気外筒部材の下流側端部が、前記排気ガスの流れ方向において前記排気ストラットと重複して設けられると共に、前記上流側排気外筒部材の下流端における開口が前記流出口となっており、
前記流路絞り部材は、前記排気流路の周方向における流路面積を絞る前記排気ストラットであることを特徴とする請求項1に記載のガスタービン。
The exhaust part is
An exhaust inner cylinder member;
An exhaust outer cylinder member provided on a radially outer side of the exhaust inner cylinder member;
An exhaust strut connecting the exhaust inner cylinder member and the exhaust outer cylinder member, and
The exhaust passage is formed between the exhaust inner cylinder member and the exhaust outer cylinder member,
The exhaust outer cylinder member has an upstream exhaust outer cylinder member provided on the upstream side in the flow direction of the exhaust gas, and a downstream exhaust outer cylinder member provided on the downstream side, and the upstream exhaust outer cylinder The downstream end of the member and the upstream end of the downstream exhaust outer cylinder member partially overlap, and the downstream end of the upstream exhaust outer cylinder member is upstream of the downstream exhaust outer cylinder member Located radially inward of the end,
The ejector includes a downstream end of the upstream exhaust outer cylinder member and an upstream end of the downstream exhaust outer cylinder member, and the downstream end of the upstream exhaust outer cylinder member is The exhaust gas strut is provided so as to overlap with the exhaust strut in the flow direction of the exhaust gas, and an opening at the downstream end of the upstream exhaust outer cylinder member serves as the outlet.
2. The gas turbine according to claim 1, wherein the flow passage restricting member is the exhaust strut that restricts a flow passage area in a circumferential direction of the exhaust flow passage.
前記エジェクタの前記流出口は、前記排気ストラットの周方向における幅が最大となる位置に設けられることを特徴とする請求項2に記載のガスタービン。   The gas turbine according to claim 2, wherein the outlet of the ejector is provided at a position where a width in the circumferential direction of the exhaust strut is maximized. 前記排気部は、
排気内筒部材と、
前記排気内筒部材の径方向外側に設けられる排気外筒部材と、をさらに備え、
前記排気流路は、前記排気内筒部材と前記排気外筒部材との間に形成され、
前記排気外筒部材は、前記排気ガスの流れ方向において、上流側に設けられる上流側排気外筒部材と、下流側に設けられる下流側排気外筒部材とを有し、前記上流側排気外筒部材の下流側端部と前記下流側排気外筒部材の上流側端部とは一部重複し、前記上流側排気外筒部材の下流側端部は、前記下流側排気外筒部材の上流側端部に対して径方向内側に位置しており、
前記エジェクタは、前記上流側排気外筒部材の下流側端部と、前記下流側排気外筒部材の上流側端部とを含んで構成され、前記上流側排気外筒部材の下流端における開口が前記流出口となっており、
前記流路絞り部材は、前記排気流路の径方向における流路面積を絞る、前記上流側排気外筒部材の下流側端部及び前記上流側排気外筒部材の下流側端部に対向する前記排気内筒部材の少なくとも一方であることを特徴とする請求項1に記載のガスタービン。
The exhaust part is
An exhaust inner cylinder member;
An exhaust outer cylinder member provided on a radially outer side of the exhaust inner cylinder member, and
The exhaust passage is formed between the exhaust inner cylinder member and the exhaust outer cylinder member,
The exhaust outer cylinder member has an upstream exhaust outer cylinder member provided on the upstream side in the flow direction of the exhaust gas, and a downstream exhaust outer cylinder member provided on the downstream side, and the upstream exhaust outer cylinder The downstream end of the member and the upstream end of the downstream exhaust outer cylinder member partially overlap, and the downstream end of the upstream exhaust outer cylinder member is upstream of the downstream exhaust outer cylinder member Located radially inward of the end,
The ejector includes a downstream end of the upstream exhaust outer cylinder member and an upstream end of the downstream exhaust outer cylinder member, and an opening at the downstream end of the upstream exhaust outer cylinder member is formed. The outlet,
The flow passage restricting member restricts the flow passage area in the radial direction of the exhaust flow passage and faces the downstream end of the upstream exhaust outer tubular member and the downstream end of the upstream exhaust outer tubular member. The gas turbine according to claim 1, wherein the gas turbine is at least one of an exhaust inner cylinder member.
前記流路絞り部材は、前記排気流路の全周に亘って、流路面積を絞っていることを特徴とする請求項4に記載のガスタービン。   The gas turbine according to claim 4, wherein the flow passage restricting member restricts a flow passage area over the entire circumference of the exhaust flow passage. 前記流路絞り部材は、前記排気流路の周方向における所定の部位において、流路面積を絞っていることを特徴とする請求項4に記載のガスタービン。   The gas turbine according to claim 4, wherein the flow passage restricting member restricts a flow passage area at a predetermined portion in a circumferential direction of the exhaust flow passage.
JP2013033620A 2013-02-22 2013-02-22 gas turbine Active JP6129580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013033620A JP6129580B2 (en) 2013-02-22 2013-02-22 gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013033620A JP6129580B2 (en) 2013-02-22 2013-02-22 gas turbine

Publications (2)

Publication Number Publication Date
JP2014163263A true JP2014163263A (en) 2014-09-08
JP6129580B2 JP6129580B2 (en) 2017-05-17

Family

ID=51614115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013033620A Active JP6129580B2 (en) 2013-02-22 2013-02-22 gas turbine

Country Status (1)

Country Link
JP (1) JP6129580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031972A (en) * 2017-08-04 2019-02-28 マン・エナジー・ソリューションズ・エスイー Turbine inflow housing of axial flow type turbine of turbo supercharger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187501A (en) * 1960-12-19 1965-06-08 Thomas E Quick Method of and apparatus for augmenting thrust and suppressing sound in aircraft, rockets, and the like
US3710890A (en) * 1971-09-27 1973-01-16 Boeing Co Aircraft engine noise suppression
JPH0431636A (en) * 1990-05-28 1992-02-03 Mitsubishi Heavy Ind Ltd Gas turbine engine for aircraft
JPH06159136A (en) * 1992-07-11 1994-06-07 Deutsche Aerospace Ag Jet engine
US5884843A (en) * 1996-11-04 1999-03-23 The Boeing Company Engine noise suppression ejector nozzle
JP2012052547A (en) * 2004-07-23 2012-03-15 General Electric Co <Ge> Split shroud exhaust nozzle
JP2012122379A (en) * 2010-12-07 2012-06-28 Toyota Motor Corp Gas turbine power generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187501A (en) * 1960-12-19 1965-06-08 Thomas E Quick Method of and apparatus for augmenting thrust and suppressing sound in aircraft, rockets, and the like
US3710890A (en) * 1971-09-27 1973-01-16 Boeing Co Aircraft engine noise suppression
JPH0431636A (en) * 1990-05-28 1992-02-03 Mitsubishi Heavy Ind Ltd Gas turbine engine for aircraft
JPH06159136A (en) * 1992-07-11 1994-06-07 Deutsche Aerospace Ag Jet engine
US5884843A (en) * 1996-11-04 1999-03-23 The Boeing Company Engine noise suppression ejector nozzle
JP2012052547A (en) * 2004-07-23 2012-03-15 General Electric Co <Ge> Split shroud exhaust nozzle
JP2012122379A (en) * 2010-12-07 2012-06-28 Toyota Motor Corp Gas turbine power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031972A (en) * 2017-08-04 2019-02-28 マン・エナジー・ソリューションズ・エスイー Turbine inflow housing of axial flow type turbine of turbo supercharger

Also Published As

Publication number Publication date
JP6129580B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
JP6497183B2 (en) Centrifugal compressor
US10082079B2 (en) Gas-turbine engine with oil cooler in the engine cowling
JP6059424B2 (en) Curved contour axial direction-radial diffuser
CN106460550A (en) Gas turbine engine with rotor centering cooling system in an exhaust diffuser
CA2860326C (en) Integrated turbine exhaust struts and mixer of turbofan engine
JP5876894B2 (en) Turbine ventilation structure
US10125781B2 (en) Systems and methods for a compressor diffusion slot
JP2013221512A (en) Turbomachine blade tip shroud with parallel casing configuration
EP3012405A2 (en) Coolant flow redirection component
US9476355B2 (en) Mid-section of a can-annular gas turbine engine with a radial air flow discharged from the compressor section
JP2016512586A5 (en)
BR102016005720A2 (en) system for cooling a turbine wrap
JP6222876B2 (en) Cascade, gas turbine
CN104373157B (en) Arrange and method for blocking the Fluid Sealing of the leakage stream through leakage-gap
JP2011106474A (en) Axial flow turbine stage and axial flow turbine
JP2013151934A (en) Turbine exhaust diffuser system
JP2015045333A (en) Inducer and diffuser configuration for gas turbine system
US20150167986A1 (en) Swirling midframe flow for gas turbine engine having advanced transitions
JP6129580B2 (en) gas turbine
KR101574979B1 (en) Method and cooling system for cooling blades of at least one blade row in a rotary flow machine
JP5039595B2 (en) Gas turbine and gas turbine operation stop method
JP2017520716A (en) Exhaust region of exhaust-driven turbocharger turbine
JP2017223218A (en) Impeller-mounted vortex spoiler
CN103518037A (en) Turbine nozzle guide vane assembly in a turbomachine
KR102575119B1 (en) Loss reduction devices used in partial feed turbines and partial feed turbines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170412

R150 Certificate of patent or registration of utility model

Ref document number: 6129580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150