Nothing Special   »   [go: up one dir, main page]

JP2014148993A - Double-row ball bearing and method of manufacturing the same - Google Patents

Double-row ball bearing and method of manufacturing the same Download PDF

Info

Publication number
JP2014148993A
JP2014148993A JP2013016369A JP2013016369A JP2014148993A JP 2014148993 A JP2014148993 A JP 2014148993A JP 2013016369 A JP2013016369 A JP 2013016369A JP 2013016369 A JP2013016369 A JP 2013016369A JP 2014148993 A JP2014148993 A JP 2014148993A
Authority
JP
Japan
Prior art keywords
outer ring
inner ring
raceways
difference
balls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013016369A
Other languages
Japanese (ja)
Inventor
Masaru Ito
大 伊藤
Toshihito Nagashiro
寿仁 永代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013016369A priority Critical patent/JP2014148993A/en
Publication of JP2014148993A publication Critical patent/JP2014148993A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a double-row ball bearing which can be constituted in a small size, has a high load capacity with respect to an axial load acting in both directions, and has excellent durability.SOLUTION: A difference between a pitch Pof both outer ring raceways 6e, 6f and a pitch Pof both inner ring raceways 7e, 7f is set to be 20 μm or less. A difference between inside diameters R, Rof groove bottoms of both the outer ring raceways 6e, 6f and a difference between outside diameters R, Rof groove bottoms of both the inner ring raceways 7e, 7f are each set to be 6 μm or less. Furthermore, a difference between radial gaps of ball bearings 11a, 11b in both rows constituted of both the outer ring raceways and both the inner ring raceways 6e, 6f, 7e, 7f and balls 4e, 4f is set to be 8 μm or less. By this constitution, an axial load applied on a double-row ball bearing 1b can be substantially-uniformly supported with the ball bearings 11a, 11b in both the rows.

Description

この発明は、自動車用のトランスミッション(トランスアクスルを含む)、モータ等の、各種回転機械装置の回転支持部に組み込む、複列玉軸受の改良に関する。具体的には、アキシアル荷重に関する負荷容量が大きく、しかも優れた耐久性を有する複列玉軸受及びその製造方法を実現するものである。   The present invention relates to an improvement in a double-row ball bearing incorporated in a rotation support portion of various rotary machine devices such as an automobile transmission (including a transaxle) and a motor. Specifically, a double-row ball bearing having a large load capacity with respect to an axial load and having excellent durability and a manufacturing method thereof are realized.

はすば歯車の如き歯車を使用する事に伴って動力伝達部でラジアル荷重及びスラスト荷重を発生する、自動車用トランスミッション等の回転支持部に組み込む転がり軸受として、大きな負荷容量を有し、しかも回転抵抗(動トルク)が小さな、複列玉軸受を使用する事が考えられている。この場合に使用できる複列玉軸受として、例えば、特許文献1や非特許文献1に記載された様なアンギュラ型の複列玉軸受がある。図7は、このうちの特許文献1に記載された構造を示している。この複列玉軸受1は、1個の外輪2と、1対の内輪3a、3bと、複数個の玉4a、4bと、1対の保持器5a、5bとから成る。このうちの外輪2は、内周面に複列の外輪軌道6a、6bを備えたもので、一体型である。又、前記両内輪3a、3bは、それぞれの外周面に内輪軌道7a、7bを備えたもので、互いに別体である。又、前記各玉4a、4bは、これら両内輪軌道7a、7bと前記両外輪軌道6a、6bとの間に、両列毎に複数個ずつ、転動自在に設けられている。更に、前記両保持器5a、5bは、これら両列の玉4a、4bを転動自在に保持している。尚、この状態で、これら各玉4a、4bには、背面組み合わせ(DB)型の接触角α、βと共に、必要に応じて予圧を付与している。この様な従来構造の複列玉軸受1は、ラジアル荷重に加えて、両方向のスラスト荷重を支承できる。又、図示は省略するが、前記非特許文献1には、両列の玉に付与する接触角として、前記正面組み合わせ(DF)型、或いは並列(DT)型の接触角を付与した複列玉軸受の構造が記載されている。   As a rolling bearing incorporated in a rotating support part of an automobile transmission or the like that generates a radial load and a thrust load in the power transmission part with the use of a gear such as a helical gear, it has a large load capacity and rotates. It is considered to use a double row ball bearing with a small resistance (dynamic torque). As a double row ball bearing that can be used in this case, for example, there is an angular type double row ball bearing as described in Patent Document 1 and Non-Patent Document 1. FIG. 7 shows the structure described in Patent Document 1 among them. The double-row ball bearing 1 includes one outer ring 2, a pair of inner rings 3a and 3b, a plurality of balls 4a and 4b, and a pair of cages 5a and 5b. Out of these, the outer ring 2 is provided with double-row outer ring raceways 6a and 6b on the inner peripheral surface, and is an integral type. The inner rings 3a and 3b are provided with inner ring raceways 7a and 7b on their outer peripheral surfaces, and are separate from each other. Further, a plurality of balls 4a and 4b are provided between the inner ring raceways 7a and 7b and the outer ring raceways 6a and 6b, respectively, so that they can roll freely. Further, both the cages 5a and 5b hold the balls 4a and 4b in both rows so as to roll freely. In this state, a preload is applied to each of the balls 4a and 4b as necessary, together with the contact angles α and β of the rear combination (DB) type. Such a double-row ball bearing 1 having a conventional structure can support a thrust load in both directions in addition to a radial load. Although not shown, the non-patent document 1 discloses a double-row ball in which the contact angle of the front combination (DF) type or the parallel (DT) type is given as a contact angle to be given to both rows of balls. The structure of the bearing is described.

図7に示した従来構造の第1例の場合、前記各玉4a、4bを2列に亙り設けているが、アキシアル荷重を支承するのは、何れか一方の列の玉4a、4a(又は4b、4b)のみである。この為、小型化とアキシアル負荷容量の確保とを両立させる事が難しく、設置空間が限られ、しかも大きな(例えば、基本動定格荷重Corの40%以上の)アキシアル荷重が加わる様な条件下で使用すると、必ずしも十分な耐久性を確保できない可能性がある。 In the first example of the conventional structure shown in FIG. 7, the balls 4a and 4b are provided in two rows, but the axial load is supported by the balls 4a and 4a (or one of the rows). 4b, 4b) only. Therefore, it is difficult to achieve both securing miniaturization and axial load capacity, a limited installation space, yet large (e.g., basic dynamic load rating C of more than 40% or) under such conditions the axial load is applied If it is used, it may not always be possible to ensure sufficient durability.

前記非特許文献1に記載された様な、並列(DT)型の接触角を付与した複列玉軸受を使用すれば、比較的小型の複列玉軸受によりアキシアル荷重を支承する場合でも、十分な耐久性を確保し易い。但し、前記DT型の構造の場合、所定方向のアキシアル荷重しか支承できない(逆方向のアキシアル荷重を支承できない)。一方、例えば自動車用トランスミッションの回転支持部の場合、加速時及び定速走行時と減速時(エンジンブレーキ作動時)とで、アキシアル荷重の作用方向が逆になるので、前記DT型の構造は、採用できない場合がある。   If a double row ball bearing provided with a parallel (DT) type contact angle as described in Non-Patent Document 1 is used, it is sufficient even when an axial load is supported by a relatively small double row ball bearing. It is easy to ensure the durability. However, in the case of the DT type structure, only an axial load in a predetermined direction can be supported (an axial load in the reverse direction cannot be supported). On the other hand, for example, in the case of a rotation support part of an automobile transmission, the acting direction of the axial load is reversed during acceleration and constant speed traveling and during deceleration (when the engine brake is activated). There are cases where it cannot be adopted.

この様な事情に鑑みて、アキシアル荷重が加わらない中立状態で接触角を持たない、深溝型の複列玉軸受を使用する事が考えられる。深溝型の複列玉軸受は、アキシアル荷重が加わった状態では、複列に配置された各玉に、このアキシアル荷重の作用方向に応じた方向の接触角が生じて、このアキシアル荷重を支承する。この場合に、複列に配置された各玉がこのアキシアル荷重を支承すれば、アキシアル負荷容量を十分に確保して、複列玉軸受の耐久性を十分に確保できる。   In view of such circumstances, it is conceivable to use a deep groove type double-row ball bearing that is neutral without an axial load and does not have a contact angle. Deep groove type double-row ball bearings support this axial load when an axial load is applied to each ball arranged in a double row with a contact angle in the direction corresponding to the direction of the action of this axial load. . In this case, if each ball arranged in a double row supports this axial load, the axial load capacity can be sufficiently secured and the durability of the double row ball bearing can be sufficiently secured.

上述の様な回転支持部に利用可能な深溝型の複列玉軸受として、例えば、特許文献2〜4に記載されたものがある。図8〜9は、このうちの特許文献2に記載された複列玉軸受1aを示している。この複列玉軸受1aは、外輪2aの内周面に形成した、それぞれが深溝型である外輪軌道6c、6dと、内輪3cの外周面に形成した、それぞれが深溝型である内輪軌道7c、7dとの間に、両列毎にそれぞれ複数個ずつの玉4c、4dを、それぞれ保持器5c、5dに転動自在に保持した状態で配置して成る。尚、前記両外輪軌道6c、6dと前記両内輪軌道7c、7dとの間に前記各玉4c、4dを組み込むには、図10に示す様に、前記外輪2aと前記内輪3cとを偏心させた状態で、前記両外輪軌道6c、6dと前記両内輪軌道7c、7dとの間に必要数の玉4c、4c(4d、4d)を、互いにくっつき合った状態で組み込んだ後、これら各玉4c、4c(4d、4d)を円周方向に等配する。   Examples of the deep groove type double row ball bearing that can be used for the rotation support portion as described above include those described in Patent Documents 2 to 4. 8-9 has shown the double row ball bearing 1a described in patent document 2 among these. This double row ball bearing 1a is formed on the inner peripheral surface of the outer ring 2a, each of which is a deep groove type outer ring raceway 6c, 6d, and formed on the outer peripheral surface of the inner ring 3c, each of which is a deep groove type inner ring raceway 7c, 7d, a plurality of balls 4c and 4d are arranged in both rows so as to be held by the cages 5c and 5d, respectively. In order to incorporate the balls 4c and 4d between the outer ring raceways 6c and 6d and the inner ring raceways 7c and 7d, the outer ring 2a and the inner ring 3c are eccentric as shown in FIG. In this state, a necessary number of balls 4c, 4c (4d, 4d) are assembled between the outer ring raceways 6c, 6d and the inner ring raceways 7c, 7d in a state of sticking to each other. 4c, 4c (4d, 4d) are equally distributed in the circumferential direction.

上述の様な、深溝型の複列玉軸受1aを、アキシアル荷重が加わる回転支持部に組み込んで、この複列玉軸受1aの耐久性を確保する為には、前記両列の玉4c、4dにより前記アキシアル荷重を、ほぼ均等に支承させる必要がある。何れか一方の列の玉4c、4c(4d、4d)のみが前記アキシアル荷重を支承したり、何れか一方の列の玉4c、4c(4d、4d)がこのアキシアル荷重を支承する割合が極端に多くなると、この一方の列の玉4c、4c(4d、4d)に関する転がり疲れ寿命が短くなり、前記複列玉軸受1aの耐久性を確保できない。   In order to secure the durability of the double row ball bearing 1a by incorporating the deep groove type double row ball bearing 1a as described above into a rotation support portion to which an axial load is applied, the balls 4c, 4d of the both rows are arranged. Therefore, it is necessary to support the axial load almost uniformly. Only one row of balls 4c, 4c (4d, 4d) supports the axial load, or the proportion of balls 4c, 4c (4d, 4d) of either row supports this axial load is extremely high. When the number is increased, the rolling fatigue life of the balls 4c, 4c (4d, 4d) in one row is shortened, and the durability of the double row ball bearing 1a cannot be ensured.

特許文献3には、風力発電用の風車を回転させる旋回輪として使用される、深溝型の複列玉軸受で、両外輪軌道のピッチと両内輪軌道のピッチとの差を5〜50μmとする事と、この為に、これら両外輪軌道及び両内輪軌道を同時に仕上加工する事とが記載されている。複列玉軸受で、両列の玉により、アキシアル荷重を均等に支承する為には、両外輪軌道のピッチと両内輪軌道のピッチとの差を小さく抑える事が重要ではあるが、それだけでは、均等に支承させる事はできない。従って、前記特許文献3に記載された技術だけでは、本発明が意図している様な用途で、複列玉軸受の小型化と耐久性確保とを両立させる事はできない。   In Patent Document 3, a deep groove type double row ball bearing used as a turning wheel for rotating a wind turbine for wind power generation, the difference between the pitch of both outer ring raceways and the pitch of both inner ring raceways is set to 5 to 50 μm. For this reason, it is described that the outer ring raceway and the inner ring raceway are simultaneously finished. In a double row ball bearing, in order to support the axial load evenly with the balls in both rows, it is important to keep the difference between the pitch of both outer ring raceways and the pitch of both inner ring raceways small. It cannot be supported evenly. Therefore, only the technique described in Patent Document 3 cannot achieve both downsizing and ensuring of durability of the double-row ball bearing in an application as intended by the present invention.

更に、特許文献4には、組立以前に、外輪軌道の内径、内輪軌道の外径、玉の直径の、それぞれの設定基準寸法に対する差を求め、それぞれの差に応じて、外輪と内輪と各玉とを選択組み合わせる事により、複列玉軸受のラジアル隙間を所定値とする、複列玉軸受の組立方法に就いて記載されている。但し、前記特許文献4に記載された発明は、あくまでも複列玉軸受のラジアル隙間を所定値とする事を意図したもので、両列の玉によりアキシアル荷重を均等に支承する事を意図したものではない。従って、前記特許文献3に記載された技術だけでも、本発明が意図している様な用途で、複列玉軸受の小型化と耐久性確保とを両立させる事はできない。尚、非特許文献2には、玉軸受のラジアル隙間とアキシアル隙間との関係に就いて記載されている。   Further, in Patent Document 4, before assembling, the difference between the inner diameter of the outer ring raceway, the outer diameter of the inner ring raceway, the diameter of the ball with respect to each set reference dimension is obtained, and according to each difference, the outer ring, the inner ring, It describes a method for assembling a double row ball bearing in which the radial clearance of the double row ball bearing is set to a predetermined value by selectively combining the balls. However, the invention described in Patent Document 4 is intended only to set the radial clearance of the double row ball bearing to a predetermined value, and intended to support the axial load evenly by both rows of balls. is not. Therefore, even with the technique described in Patent Document 3 alone, it is impossible to achieve both downsizing of the double row ball bearing and ensuring of durability in an application intended by the present invention. Non-Patent Document 2 describes the relationship between the radial gap and the axial gap of the ball bearing.

特開2011−252521号公報JP 2011-252521 A 特開2009−41756号公報JP 2009-41756 A 国際公開第2009/147865号パンフレットInternational Publication No. 2009/147865 Pamphlet 特公昭63−649号公報Japanese Patent Publication No. 63-649

「NSK テクニカルレポート」、日本精工株式会社、2004年、No.728e E−3、p.15、p.143“NSK Technical Report”, NSK Ltd., 2004, No. 728e E-3, p. 15, p. 143 「NSK テクニカルレポート」、日本精工株式会社、2004年、No.728e E−3、p.96“NSK Technical Report”, NSK Ltd., 2004, No. 728e E-3, p. 96

本発明は、上述の様な事情に鑑み、小型に構成できて、両方向に作用するアキシアル荷重に関する負荷容量が大きく、しかも優れた耐久性を有する複列玉軸受を実現すべく発明したものである。   In view of the circumstances as described above, the present invention was invented to realize a double row ball bearing that can be configured in a small size, has a large load capacity with respect to an axial load acting in both directions, and has excellent durability. .

本発明の対象となる複列玉軸受は、外輪と、内輪と、複数個の玉とを備える。
このうちの外輪は、内周面に複列の外輪軌道を設けている。
又、前記内輪は、外周面に複列の内輪軌道を設けている。
更に、前記各玉は、これら両内輪軌道と前記両外輪軌道との間に、両列毎に複数個ずつ、転動自在に設けており、これら両列の玉のピッチ円直径(PCD)は、互いにほぼ等しくしている。即ち、これら両列の玉のピッチ円直径(PCD)は、前記両内輪軌道の外径と前記両外輪軌道の内径との差に基づいて僅かに相違するのみであり、基本的には同じである。
A double-row ball bearing that is an object of the present invention includes an outer ring, an inner ring, and a plurality of balls.
Of these, the outer ring is provided with double-row outer ring raceways on the inner peripheral surface.
The inner ring is provided with double-row inner ring raceways on the outer peripheral surface.
Further, a plurality of balls are provided between the inner ring raceways and the outer ring raceways for each row so as to roll freely. The pitch circle diameter (PCD) of the balls in both rows is Are almost equal to each other. That is, the pitch circle diameters (PCD) of the balls in both rows are only slightly different based on the difference between the outer diameter of the inner ring raceways and the inner diameter of the outer ring raceways, and are basically the same. is there.

特に、請求項1に記載した、本発明の複列玉軸受に於いては、前記両外輪軌道が、それぞれが深溝型で、母線の形状及び寸法が互いにほぼ等しい(母線形状が円弧形で、曲率半径の差が5μm以下である)。
又、前記両内輪軌道が、それぞれが深溝型で、母線の形状及び寸法が互いにほぼ等しい(母線形状が円弧形で、曲率半径の差が5μm以下である)。
更に、前記各玉が、互いにほぼ等しい直径を有する。即ち、これら各玉のうちで、最大のものと最小のものとの直径差が4μm以内(好ましくは2μm以内)に収まっている。
そして、前記両外輪軌道のピッチ(溝底部同士の軸方向間隔)と前記両内輪軌道のピッチとの差を、20μm以下、更に好ましくは10μm以下に抑えている。
又、前記両外輪軌道の溝底部の内径同士の差、並びに、前記両内輪軌道の溝底部の外径同士の差を、何れも6μm以下に抑えている。
更に、それぞれが前記外輪、内輪両軌道と前記各玉とにより構成される両列の玉軸受のラジアル隙間同士の差を、8μm以下、より好ましくは6μm以下としている。
In particular, in the double row ball bearing of the present invention as set forth in claim 1, the outer ring raceways are each a deep groove type, and the shape and dimensions of the bus bar are substantially equal to each other (the bus bar shape is an arc shape). The difference in radius of curvature is 5 μm or less).
Each of the inner ring raceways is a deep groove type, and the shape and dimensions of the bus bar are substantially equal to each other (the bus bar shape is an arc shape and the difference in curvature radius is 5 μm or less).
Furthermore, each said ball | bowl has a substantially equal diameter mutually. That is, among these balls, the difference in diameter between the largest and smallest balls is within 4 μm (preferably within 2 μm).
The difference between the pitch of the outer ring raceways (interval in the axial direction between the groove bottoms) and the pitch of the inner ring raceways is suppressed to 20 μm or less, more preferably 10 μm or less.
Further, the difference between the inner diameters of the groove bottom portions of both outer ring raceways and the difference between the outer diameters of the groove bottom portions of both inner ring raceways are suppressed to 6 μm or less.
Furthermore, the difference between the radial clearances of the two rows of ball bearings each constituted by the outer ring and inner ring raceways and the balls is set to 8 μm or less, more preferably 6 μm or less.

上述の様に構成する本発明の複列玉軸受の要点は、次述するトータルアキシアル隙間差を小さくする事により、両列の玉軸受が分担して支承するアキシアル荷重(分担アキシアル荷重)同士の差を十分に小さくする(例えば前記複列玉軸受の基本動定格荷重Corの数%以下に抑える)点にある。
ここで、本発明の複列玉軸受に関する、トータルアキシアル隙間差とは、前記両外輪軌道のピッチと前記両内輪軌道のピッチとの差(△1)と、前記両列の玉軸受のアキシアル隙間同士の差(△2)との和(△1+△2)で表される量である。又、これら両列の玉軸受毎のアキシアル隙間は、それぞれ対応する列の玉軸受に関する、ラジアル隙間と、外輪軌道の母線形状の曲率半径と、内輪軌道の母線形状の曲率半径と、各玉の直径とに基づいて、非特許文献2に記載された式により求められる計算値である。
そこで、本発明の複列玉軸受では、前記両外輪軌道のピッチと前記両内輪軌道のピッチとの差と、前記両外輪軌道の溝底部の内径同士の差と、前記両内輪軌道の溝底部の外径同士の差と、前記両列の玉軸受のラジアル隙間同士の差とを、それぞれ上述した様な範囲に収める事により、前記トータルアキシアル隙間差を小さくする事で、前記両列の玉軸受の分担アキシアル荷重がほぼ等しくなる様にしている。
The main point of the double row ball bearing of the present invention configured as described above is to reduce the difference between the total axial gaps described below, so that the axial loads (shared axial loads) supported by both rows of ball bearings are shared. the difference is sufficiently small (e.g., the suppressed to less than several% of the basic dynamic load rating C or double row ball bearings) in point.
Here, regarding the double-row ball bearing of the present invention, the total axial gap difference is the difference (Δ1) between the pitch of the outer ring raceways and the pitch of the inner ring raceways, and the axial gap of the ball bearings of both rows. It is an amount represented by the sum (Δ1 + Δ2) of the difference (Δ2) between them. In addition, the axial clearance for each of the ball bearings in both rows is the radial clearance, the radius of curvature of the bus bar shape of the outer ring raceway, the radius of curvature of the bus race shape of the inner ring raceway, This is a calculated value obtained by the formula described in Non-Patent Document 2 based on the diameter.
Therefore, in the double row ball bearing of the present invention, the difference between the pitch of the outer ring raceways and the pitch of the inner ring raceways, the difference between the inner diameters of the groove bottom portions of the outer ring raceways, and the groove bottom portions of the inner ring raceways. The difference between the outer diameters of the ball bearings and the difference between the radial gaps of the ball bearings of the two rows are within the ranges as described above, thereby reducing the total axial gap difference, thereby reducing the balls of the rows of the two rows. The shared axial load of the bearing is made almost equal.

上述の様な本発明の複列玉軸受を実施する場合に、前記外輪と前記内輪と前記各玉とは、何れも硬質の鉄系合金とする。この鉄系合金としては、JIS G 4805に規定されている高炭素クロム軸受鋼(SUJ)が最も一般的であるが、必要とする硬度を確保できるものであれば、ステンレス鋼(SUS)、炭素工具鋼(SK)、高速度工具鋼(SKH)等も使用可能である。但し、セラミックスに関しては、これらの鉄系合金に比べて弾性係数が遥かに大きい為、前記各値がそのままは当て嵌まらず、本発明の実施に供する材料としては不適である。
例えば前記外輪及び前記内輪と前記各玉とを、SUJ2等の鉄系合金により造った場合には、例えば請求項2に記載した発明の様に、前記各玉の直径を5〜20mmとし、前記両外輪軌道及び前記両内輪軌道のピッチを35〜130mmとする。
When implementing the double row ball bearing of the present invention as described above, the outer ring, the inner ring, and the balls are all made of a hard iron-based alloy. As this iron-based alloy, high carbon chromium bearing steel (SUJ) specified in JIS G 4805 is the most common, but stainless steel (SUS), carbon can be used as long as the required hardness can be secured. Tool steel (SK), high speed tool steel (SKH), etc. can also be used. However, ceramics have a much larger elastic coefficient than these iron-based alloys, and thus the above values are not applied as they are, and are not suitable as materials for carrying out the present invention.
For example, when the outer ring and the inner ring and the balls are made of an iron-based alloy such as SUJ2, the diameter of the balls is set to 5 to 20 mm as in the invention described in claim 2, for example. The pitch between both outer ring raceways and both inner ring raceways is set to 35 to 130 mm.

又、本発明の複列玉軸受を実施する場合に好ましくは、請求項3に記載した発明の様に、前記両列の玉軸受を構成する各玉を、それぞれが合成樹脂製で、円環状のリム部の軸方向片側面にポケットを設けた1対の冠型保持器により転動自在に保持する。そして、これら両冠型保持器のリム部を、前記各玉を挟んで、軸方向反対側に配置する。
或いは、請求項4に記載した発明の様に、前記外輪の内周面と前記内輪の外周面との間で、前記各玉を設置した軸受内部空間の軸方向両端開口部を塞ぐ、1対のシールリングを設ける。
この様な請求項4に記載した複列玉軸受の発明を実施する場合に好ましくは、請求項5に記載した発明の様に、潤滑油の流通方向とアキシアル荷重の作用方向とを規制する。即ち、複列玉軸受を、使用状態で前記外輪と前記内輪との間に加わるアキシアル荷重の作用方向が、使用時間の過半で所定方向となる回転支持部に対し、前記両シールリングのうちで、この所定方向に作用するアキシアル荷重に基づいてその周縁が相手面から浮き上がる傾向となる一方のシールリングを、当該回転支持部を流通する潤滑油の流れ方向に関して下流側に設置した状態で組み込む。
Moreover, when implementing the double row ball bearing of this invention, Preferably, each ball which comprises the ball bearing of the said both row | line | column is each made from a synthetic resin, and an annular shape like the invention described in Claim 3. The rim portion is rotatably held by a pair of crown-shaped cages provided with pockets on one side surface in the axial direction. And the rim | limb part of these both crown type holder | retainers is arrange | positioned on the opposite side of an axial direction on both sides of the said each ball | bowl.
Alternatively, as in the invention described in claim 4, a pair of axial end openings of the bearing inner space in which the balls are installed are closed between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. Provide a seal ring.
When the invention of such a double row ball bearing described in claim 4 is carried out, preferably, the flow direction of the lubricating oil and the acting direction of the axial load are regulated as in the invention described in claim 5. That is, when the double row ball bearing is used, the acting direction of the axial load applied between the outer ring and the inner ring is a predetermined direction in the majority of the usage time, and the rotation support part is a part of the two seal rings. One seal ring whose peripheral edge tends to be lifted from the mating surface based on the axial load acting in the predetermined direction is incorporated in a state where it is installed on the downstream side with respect to the flow direction of the lubricating oil flowing through the rotation support portion.

更に、請求項6に記載した複列玉軸受の製造方法の発明は、内周面に複列の外輪軌道を設けた外輪と、外周面に複列の内輪軌道を設けた内輪と、これら両外輪軌道とこれら両内輪軌道との間に、両列毎に複数個ずつ転動自在に設けられた玉とを備え、前記両外輪軌道が、それぞれが深溝型で母線の形状及び寸法が互いにほぼ等しく、前記両内輪軌道が、それぞれが深溝型で母線の形状及び寸法が互いにほぼ等しく、前記各玉が、互いにほぼ等しい直径を有する、複列玉軸受の製造方法である。
この様な本発明の複列玉軸受の製造方法の発明は、前記両外輪軌道を、例えばロータリドレッサを備えた研磨装置により同時研磨して、これら両外輪軌道の溝底部の内径同士の差を6μm以下に、前記両内輪軌道を、例えばロータリドレッサを備えた研磨装置により同時研磨して、これら両内輪軌道の溝底部の外径同士の差を6μm以下に、それぞれ抑えると共に、前記両外輪軌道のピッチと前記両内輪軌道のピッチとの差を20μm以下(好ましくは、10μm以下)に抑える。
そして、それぞれ複数ずつ造られた前記外輪及び前記内輪のうちから選択された1個ずつの外輪と内輪とを組み合わせる。次いで、前記両外輪軌道の溝底部の内径と前記両内輪軌道の溝底部の外径とに応じて、両列のラジアル隙間差が小さくなる様に、前記外輪と前記内輪との組み合わせ方向を規制すると共に、これら各軌道同士の間にほぼ等しい直径を有する(例えばそれぞれの直径差を2〜4μm以下に抑えた)前記各玉を転動自在に配置した状態で前記外輪と前記内輪とを組み合わせ、それぞれが前記外輪、内輪両軌道と前記各玉とにより構成される両列の玉軸受のラジアル隙間同士の差を、8μm以下(好ましくは、6μm以下)にする。
Further, the invention of the method for manufacturing a double row ball bearing according to claim 6 includes an outer ring having a double row outer ring raceway on the inner peripheral surface, an inner ring having a double row inner ring raceway on the outer peripheral surface, Between the outer ring raceway and the inner ring raceways, a plurality of balls are provided so as to be able to roll in each row, and the outer ring raceways are deep groove type, and the shape and dimensions of the bus bar are substantially the same. Equally, the inner ring raceways are each a deep groove type, the shape and dimensions of the bus bar are substantially equal to each other, and the balls have a diameter substantially equal to each other.
The invention of the manufacturing method of such a double row ball bearing of the present invention is such that both the outer ring raceways are simultaneously polished by, for example, a polishing apparatus equipped with a rotary dresser, and the difference between the inner diameters of the groove bottom portions of these outer ring raceways is determined. The inner ring raceways are simultaneously polished to 6 μm or less by, for example, a polishing device equipped with a rotary dresser, and the difference between the outer diameters of the groove bottoms of these inner ring raceways is suppressed to 6 μm or less. And the difference between the pitches of the two inner ring raceways are suppressed to 20 μm or less (preferably 10 μm or less).
Then, one outer ring and one inner ring selected from each of the plurality of outer rings and inner rings are combined. Next, the combination direction of the outer ring and the inner ring is regulated so that the radial gap difference between the two rows is reduced according to the inner diameter of the groove bottom of the outer ring raceway and the outer diameter of the groove bottom part of the inner raceway. In addition, the outer ring and the inner ring are combined in a state in which the balls having substantially the same diameter between these tracks (for example, the difference in diameter between each track is suppressed to 2 to 4 μm or less) are arranged in a freely rolling manner. The difference between the radial clearances of the ball bearings in both rows each constituted by the outer ring and inner ring raceways and the balls is set to 8 μm or less (preferably 6 μm or less).

上述の様に構成する本発明によれば、小型に構成できて、両方向に作用するアキシアル荷重に関する負荷容量が大きく、しかも優れた耐久性を有する複列玉軸受を実現できる。
即ち、本発明の複列玉軸受の場合には、1対の外輪軌道のピッチと1対の内輪軌道のピッチとの差、これら両外輪軌道の溝底部の内径同士の差、並びに、これら両内輪軌道の溝底部の外径同士の差、両列の玉軸受のラジアル隙間を、何れも小さな値ではあるが、不良率が徒に高くなる等、製造上の問題(徒なコスト上昇)を招かない程度の値に抑えている。そして、外輪と内輪と各玉との組み合わせ状態を適切に規制する事により、前記複列玉軸受のトータルアキシアル隙間差{=前記両外輪軌道のピッチと前記両内輪軌道のピッチとの差(△1)と、前記両列の玉軸受のアキシアル隙間同士の差(△2)との和(△1+△2)}を小さく抑えている。この結果、外輪と内輪との間にアキシアル荷重が作用した場合に、前記両列の玉軸受が、ほぼ均等にこのアキシアル荷重を支承する。言い換えれば、これら両列の玉軸受の分担アキシアル荷重同士の差を十分に小さくできる(例えば前記複列玉軸受の基本動定格荷重Corの数%以下に抑えられる)。この為、これら両列毎の玉軸受に関する転がり接触部の面圧上昇を抑えられ、外輪や内輪、更には各玉として、径の大きなものを使用しなくても、アキシアル荷重に関する負荷容量を大きくできる。この為、複列玉軸受が大型化するのを抑えつつ、耐久性を確保できる。
According to the present invention configured as described above, it is possible to realize a double row ball bearing that can be configured in a small size, has a large load capacity with respect to an axial load acting in both directions, and has excellent durability.
That is, in the case of the double row ball bearing of the present invention, the difference between the pitch of the pair of outer ring raceways and the pitch of the pair of inner ring raceways, the difference between the inner diameters of the groove bottoms of these outer ring raceways, The difference between the outer diameters of the groove bottoms of the inner ring raceway and the radial clearance of the ball bearings in both rows are small values, but there are manufacturing problems such as a high defect rate. The value is kept at a level that does not invite. Then, by appropriately regulating the combination state of the outer ring, the inner ring, and each ball, the total axial gap difference of the double row ball bearing {= the difference between the pitch of the outer ring raceway and the pitch of the inner ring raceway (Δ 1) and the sum (Δ1 + Δ2)} of the difference (Δ2) between the axial gaps of the ball bearings in both rows are kept small. As a result, when an axial load is applied between the outer ring and the inner ring, the ball bearings in both rows support the axial load almost evenly. In other words, the difference between the share axial load between the ball bearings of both rows can be sufficiently reduced (for example be suppressed to less than several% of the basic dynamic load rating C or of the double row ball bearing). For this reason, it is possible to suppress an increase in the surface pressure of the rolling contact portion related to the ball bearings in both rows, and to increase the load capacity related to the axial load without using a large-diameter outer ring, inner ring, or each ball. it can. For this reason, durability can be secured while suppressing an increase in size of the double row ball bearing.

又、請求項3に記載した発明の様に、前記両列の玉軸受を構成する各玉を合成樹脂製の冠型保持器により保持すれば、安定した高速回転を実現する面から有利である。先ず、金属に比べて軽量な合成樹脂製の冠型保持器を使用する事で、保持器の慣性質量を低く抑え、高速回転を実現する面から有利になる。又、金属に比べて自己潤滑性が優れている合成樹脂製の保持器を使用する事で、希薄潤滑下、低潤滑下で運転した場合でも、焼き付き等の重大な損傷が発生するまでの時間を長くできる面から有利である。尚、前記各玉を保持する1対の冠型保持器のリム部は、これら各玉を挟んで、軸方向反対側に配置する。この理由は、本発明の複列玉軸受への、前記両冠型保持器の組み付け作業性を良好にする為である。又、両列の玉同士の間にリムを配置しない事で、1つずつの外輪軌道同士、内輪軌道同士のピッチが過大になる事を防止できる。この為、限られた軸方向寸法で、前記両外輪軌道の両側部分、並びに前記両側部分のアキシアル剛性を互いに同じにする事ができ、両方向のアキシアル荷重を両列の玉軸受により均等に支承させる面から有利になる。   Further, as in the third aspect of the invention, it is advantageous in terms of realizing stable high-speed rotation if each ball constituting the both-row ball bearings is held by a synthetic resin crown-shaped cage. . First, the use of a synthetic resin-made crown-type cage that is lighter than metal is advantageous in terms of suppressing the inertial mass of the cage and realizing high-speed rotation. Also, by using a cage made of synthetic resin that is superior in self-lubrication compared to metal, the time until serious damage such as seizure occurs even when operating under dilute or low lubrication. This is advantageous from the standpoint that the length can be increased. In addition, the rim | limb part of a pair of crown type holder | retainer holding each said ball | bowl is arrange | positioned on the opposite side of an axial direction on both sides of these each ball | bowl. The reason for this is to improve the workability of assembling the double crown cage to the double row ball bearing of the present invention. Further, by not arranging the rim between the balls in both rows, it is possible to prevent the pitch between the outer ring raceways and the inner ring raceways from becoming excessive. For this reason, the axial rigidity of both side portions of both outer ring raceways and the both side portions can be made equal to each other with limited axial dimensions, and the axial loads in both directions are evenly supported by the ball bearings in both rows. It becomes advantageous from a surface.

或いは、請求項4に記載した発明の様に、軸受内部空間の軸方向両端開口部を1対のシールリングにより塞げば、トランスミッションを構成するケーシング内を循環する滑油中に混入した、歯車の摩耗粉等の異物が前記軸受内部空間内に入り込む事を抑えて、複列玉軸受の耐久性低下を抑えられる。
この場合に、例えば請求項5に記載した発明の様に、アキシアル荷重に基づいてその周縁が相手面から浮き上がる傾向となる一方のシールリングを、前記潤滑油の流れ方向に関して下流側に設置すれば、浮き上がりに伴うシール性低下に拘らず、前記内部空間内への異物侵入を抑えられる。
更に、請求項6に記載した本発明の複列玉軸受の製造方法によれば、それぞれが複列玉軸受の構成部材である、前記外輪、前記内輪、及び前記各玉の加工精度を、製造コストが徒に嵩む程高くしなくても、上述の様な優れた作用・効果を奏する複列玉軸受を得られる。言い換えれば、本発明の複列玉軸受の製造コストを抑えられる。
Alternatively, as in the invention described in claim 4, if both axial end openings of the bearing internal space are closed by a pair of seal rings, the gear of the gear mixed in the lubricating oil circulating in the casing constituting the transmission is mixed. It is possible to suppress the deterioration of the durability of the double row ball bearing by suppressing the entry of foreign matter such as wear powder into the bearing internal space.
In this case, for example, as in the invention described in claim 5, if one seal ring whose peripheral edge tends to lift from the mating surface based on the axial load is installed on the downstream side in the flow direction of the lubricating oil, Regardless of the deterioration of the sealing performance associated with lifting, foreign matter intrusion into the internal space can be suppressed.
Furthermore, according to the manufacturing method of the double row ball bearing of the present invention described in claim 6, the processing accuracy of the outer ring, the inner ring, and each ball, each of which is a constituent member of the double row ball bearing, is manufactured. Even if the cost is not so high as to increase the cost, a double row ball bearing can be obtained that exhibits the above-described excellent actions and effects. In other words, the manufacturing cost of the double row ball bearing of the present invention can be suppressed.

本発明の実施の形態の1例を示す、複列玉軸受の部分断面図。The fragmentary sectional view of the double row ball bearing which shows one example of embodiment of this invention. 本発明の構造の組立手順を示すフローチャート。The flowchart which shows the assembly procedure of the structure of this invention. トータルのアキシアル隙間差と両列が支承するアキシアル荷重の差との関係を示す線図。The diagram which shows the relationship between the total axial gap difference and the difference of the axial load which both rows support. 本発明の効果を説明する為の、図1と同様の図。The figure similar to FIG. 1 for demonstrating the effect of this invention. 本発明の効果を確認する為に行った実験の結果を示す棒グラフ。The bar graph which shows the result of the experiment conducted in order to confirm the effect of this invention. 同じくトータルアキシアル隙間差と寿命との関係を示すグラフ。Similarly, a graph showing the relationship between the total axial gap difference and the service life. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 同第2例を示す、部分切断斜視図。The partial cut perspective view which shows the 2nd example. 同じく断面図。Similarly sectional drawing. 外輪軌道と内輪軌道との間に玉を組み込む状態を示す断面図。Sectional drawing which shows the state which incorporates a ball between an outer ring track and an inner ring track.

本発明の実施の形態の1例に就いて、図1〜3により説明する。本例の複列玉軸受1bは、図1に示す様に、外輪2bと、内輪3dと、複数個の玉4e、4fと、1対の保持器5e、5fと、1対のシールリング8a、8bを備える。
このうちの外輪2bは、高炭素クロム軸受鋼2種(SUJ2)製で、内周面に複列の外輪軌道6e、6fを設けている。これら両外輪軌道6e、6fは、それぞれが深溝型で、母線の形状及び寸法が、互いにほぼ等しい。即ち、これら両外輪軌道6e、6fは、母線形状が円弧形で、これら両外輪軌道6e、6f同士の間で、この円弧の曲率半径Rの差が5μm以下である。尚、これら両外輪軌道6e、6fの母線形状の曲率半径Rは、前記各玉4e、4fの直径Dの1/2よりも少しだけ大きい{例えば、R=(0.515〜0.55)D}。又、前記外輪2bの内周面のうちで、前記両外輪軌道6e、6fを幅方向両側から挟む位置に存在する3箇所の外輪肩部9a、9b、9cの内径は互いに同じであり、軸方向寸法に関しても、互いにほぼ同じである。従って、これら各外輪肩部9a、9b、9cのアキシアル剛性は、互いに同じである。更に、前記両外輪軌道6e、6fの溝底部の内径R6e、R6f同士の差を、6μm以下に(|R6e−R6f|≦6μm)抑えている。
An example of an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the double row ball bearing 1b of this example includes an outer ring 2b, an inner ring 3d, a plurality of balls 4e and 4f, a pair of cages 5e and 5f, and a pair of seal rings 8a. , 8b.
Out of these, the outer ring 2b is made of high-carbon chromium bearing steel class 2 (SUJ2), and double row outer ring raceways 6e and 6f are provided on the inner peripheral surface. These outer ring raceways 6e and 6f are each a deep groove type, and the shape and dimensions of the bus bar are substantially equal to each other. That is, these outer ring raceways 6e, 6f, the generatrix shape in arc shape, the both outer ring raceways 6e, among 6f each other, the difference in the radius of curvature R 6 of the circular arc is 5μm or less. It should be noted that the radius of curvature R 6 of the generatrix shape of these outer ring raceways 6e, 6f is slightly larger than ½ of the diameter D 4 of each of the balls 4e, 4f {eg, R 6 = (0.515-0 .55) D 4 }. In addition, the inner diameters of the three outer ring shoulder portions 9a, 9b, 9c existing at the positions sandwiching the outer ring raceways 6e, 6f from both sides in the width direction on the inner peripheral surface of the outer ring 2b are the same, and the shaft The directional dimensions are almost the same as each other. Accordingly, the axial rigidity of each of the outer ring shoulder portions 9a, 9b, 9c is the same. Furthermore, the outer ring raceways 6e, the groove bottom of the inner diameter R 6e of 6f, the difference between R 6f, the 6 [mu] m or less (| R 6e -R 6f | ≦ 6μm) is suppressed.

又、前記内輪3dは、SUJ2製で、外周面に複列の内輪軌道7e、7fを設けている。これら両内輪軌道7e、7fは、それぞれが深溝型で、母線の形状及び寸法が、互いにほぼ等しい。即ち、これら両内輪軌道7e、7fは、母線の形状が円弧形で、これら両内輪軌道7e、7f同士の間で、この円弧の曲率半径Rの差が5μm以下である。尚、これら両内輪軌道7e、7fは、前記各玉4e、4fの直径Dの1/2よりも少しだけ大きく、更に、前記両外輪軌道6e、6fに関する曲率半径R以下である{例えば、R=(0.505〜0.54)D}。又、前記内輪3dの外周面のうちで、前記両内輪軌道7e、7fを幅方向両側から挟む位置に存在する3箇所の内輪肩部10a、10b、10cの外径は互いに同じであり、軸方向寸法に関しても、互いにほぼ同じである。従って、これら各内輪肩部10a、10b、10cのアキシアル剛性は、互いに同じである。更に、前記両内輪軌道7e、7fの溝底部の外径R7e、R7f同士の差に就いても、6μm以下に(|R7e−R7f|≦6μm)抑えている。 The inner ring 3d is made of SUJ2 and has double-row inner ring raceways 7e and 7f on the outer peripheral surface. These inner ring raceways 7e and 7f are each a deep groove type, and the shape and dimensions of the bus bar are substantially equal to each other. In other words, these two inner ring raceways 7e, 7f, the shape of the generating line is a circular arc shape, these two inner ring raceways 7e, among 7f each other, the difference in the curvature radius R 7 of the circular arc is 5μm or less. Incidentally, these two inner ring raceways 7e, 7f, the respective balls 4e, 4f slightly larger than half the diameter D 4 of, further, the outer ring raceways 6e, is less than the radius of curvature R 6 relates 6f {e.g. , R 7 = (0.505-0.54) D 4 }. In addition, the outer diameters of the three inner ring shoulder portions 10a, 10b, and 10c existing at positions sandwiching the inner ring raceways 7e and 7f from both sides in the width direction on the outer peripheral surface of the inner ring 3d are the same as each other. The directional dimensions are almost the same as each other. Therefore, the axial rigidity of each of the inner ring shoulder portions 10a, 10b, and 10c is the same. Furthermore, the two inner ring raceway 7e, 7f groove bottom portion of the outer diameter R 7e of, even concerning the difference between R 7f, to 6 [mu] m or less (| R 7e -R 7f | ≦ 6μm) is suppressed.

又、前記両外輪軌道6e、6fのピッチPと、前記両内輪軌道7e、7fのピッチPとは、何れも、前記各玉4e、4fの直径Dの1.1〜1.5倍{P、P=(1.1〜1.5)D}としている。そして、前記両ピッチP、P同士の差を、20μm以下(|P−P|≦20μm)、より好ましくは10μm以下(|P−P|≦10μm)に抑えている。 Further, the outer ring raceways 6e, the pitch P 6 of 6f, the two inner ring raceway 7e, the pitch P 7 of 7f are both of the respective balls 4e, 4f diameter D 4 of 1.1 to 1.5 Double {P 6 , P 7 = (1.1 to 1.5) D 4 }. The difference between the pitches P 6 and P 7 is suppressed to 20 μm or less (| P 6 −P 7 | ≦ 20 μm), more preferably 10 μm or less (| P 6 −P 7 | ≦ 10 μm).

又、前記各玉4e、4fは、互いに同じ直径Dを有し、前記両外輪軌道6e、6fと前記両内輪軌道7e、7fとの間に、両列同士の間で互いに同じ数ずつ、それぞれ前記両保持器5e、5fに保持した状態で、転動自在に設けている。そして、前記両列の玉軸受11a、11bのラジアル隙間同士の差を、8μm以下、より好ましくは6μm以下としている。尚、これら両列の玉軸受11a、11bのラジアル隙間の値は、アキシアル剛性等、必要とする性能を確保する面から規制する。 Further, the respective balls 4e, 4f has the same diameter D 4 each other, the outer ring raceways 6e, 6f and the two inner ring raceway 7e, between 7f, by several same each other between the two rows to each other, Each of the cages 5e and 5f is provided so as to be freely rollable. The difference between the radial gaps of the ball bearings 11a and 11b in both rows is 8 μm or less, more preferably 6 μm or less. In addition, the value of the radial clearance of the ball bearings 11a and 11b in both rows is regulated from the viewpoint of securing required performance such as axial rigidity.

更に、前記両保持器5e、5fは、ポリアミド樹脂等の自己潤滑性を有する合成樹脂を射出成形して成る冠型保持器で、それぞれが円環状のリム部12の軸方向片側面に複数の弾性爪部13を設けて成り、このリム部12の軸方向片側面と周方向に隣り合う弾性爪部13とにより三方を囲まれる部分を、それぞれポケット14とし、これら各ポケット14内に前記各玉4e、4fを転動自在に保持している。この状態で、前記両保持器5e、5fのリム部12、12は、前記各玉4e、4fを挟んで、軸方向反対側に配置している。この構成により、前記両列の玉軸受11a、11bを構成する各玉4e、4f同士を適度に近付けて、前記外輪2b及び前記内輪3dの幅寸法を過大にせずに、前記各肩部9a、9b、9c、10a、10b、10cの軸方向寸法を、十分に確保し、且つ、これら各肩部9a、9b、9c、10a、10b、10cの軸方向寸法をほぼ均一にしている。   Further, both the cages 5e and 5f are crown-shaped cages formed by injection molding a synthetic resin having self-lubricating properties such as polyamide resin, and each of the cages 5e and 5f includes a plurality of cages on one side surface in the axial direction of the annular rim portion 12. The elastic claw portions 13 are provided, and the portions surrounded on three sides by the axially one side surface of the rim portion 12 and the elastic claw portions 13 adjacent to each other in the circumferential direction are defined as pockets 14. Balls 4e and 4f are held so as to roll freely. In this state, the rim parts 12 and 12 of both the cages 5e and 5f are arranged on the opposite side in the axial direction with the balls 4e and 4f interposed therebetween. With this configuration, each of the shoulder portions 9a, 9b, 4b, 4f, which form the ball bearings 11a, 11b in both rows, is appropriately brought close to each other without excessively increasing the width of the outer ring 2b and the inner ring 3d. The axial dimensions of 9b, 9c, 10a, 10b, and 10c are sufficiently secured, and the axial dimensions of the shoulders 9a, 9b, 9c, 10a, 10b, and 10c are made substantially uniform.

更に、前記両シールリング8a、8bは、全体が円輪状で、ゴムの如きエラストマー製の弾性材を芯金により補強して成る。そして、それぞれの外周縁部を前記外輪2bの両端部内周面に形成した係止溝15a、15bに係止すると共に、それぞれの内周縁部に設けたシールリップ16a、16bを、前記内輪3dの両端部外周面に形成した段差面17a、17bに、全周に亙って摺接させている。この構成により、前記外輪2bの内周面と前記内輪3dの外周面との間で、前記各玉4e、4fを設置した軸受内部空間18の軸方向両端開口部を塞いでいる。   Further, the seal rings 8a and 8b are formed in an annular shape as a whole and are formed by reinforcing an elastic material made of elastomer such as rubber with a cored bar. Then, the outer peripheral edge portions are engaged with the engaging grooves 15a and 15b formed on the inner peripheral surfaces of the both ends of the outer ring 2b, and the seal lips 16a and 16b provided on the inner peripheral edge portions are connected to the inner ring 3d. The stepped surfaces 17a and 17b formed on the outer peripheral surfaces of both ends are brought into sliding contact with the entire periphery. With this configuration, both axial ends of the bearing internal space 18 in which the balls 4e and 4f are installed are closed between the inner peripheral surface of the outer ring 2b and the outer peripheral surface of the inner ring 3d.

上述の様に、各部の寸法差を所定値以下に抑えた、本例の複列玉軸受1bは、それぞれが多数造られた外輪2bと内輪3dと各玉4e、4fとを選択して組み合わせる事により構成する。尚、前述した様に、このうちの外輪2bの内周面の複列の外輪軌道6e、6fの溝底部の内径R6e、R6f同士の差、並びに、内輪3dの外周面の複列の内輪軌道7e、7fの溝底部の外径R7e、R7f同士の差は、何れも6μm以下に抑えておく。又、同じく前述した様に、前記両外輪軌道6e、6f同士のピッチPと、前記両内輪軌道7e、7f同士のピッチPとの相互差に関しても、20μm以下(好ましくは10μm以下)に抑えておく。この為に、前記両外輪軌道6e、6fをロータリドレッサを備えた研磨装置により同時研磨すると共に、前記両内輪軌道7e、7fに関しても、同様にして研磨する。又、前記各玉4e、4fに関しては、予めゲージによりそれぞれの直径を測定して、それぞれの直径差が2〜4μm以下に収まる、単一のレンジ(既定の玉径レンジ)のものを、両列共通で用意しておく。 As described above, the double row ball bearing 1b of this example, in which the dimensional difference between the respective parts is suppressed to a predetermined value or less, selects and combines the outer ring 2b, the inner ring 3d, and the balls 4e, 4f, each of which is formed in large numbers. Consists of things. As described above, the difference between the inner diameters R 6e and R 6f of the groove bottoms of the double row outer ring raceways 6e and 6f on the inner circumferential surface of the outer ring 2b, and the double row on the outer circumferential surface of the inner ring 3d. inner raceway 7e, 7f groove bottom portion of the outer diameter R 7e, the difference between R 7f are all kept suppressed to 6μm or less. Similarly, as described above, the difference between the pitch P 6 between the outer ring raceways 6e and 6f and the pitch P 7 between the inner ring raceways 7e and 7f is also 20 μm or less (preferably 10 μm or less). Keep it down. For this purpose, both the outer ring raceways 6e and 6f are simultaneously polished by a polishing apparatus equipped with a rotary dresser, and the inner ring raceways 7e and 7f are similarly polished. For each of the balls 4e and 4f, the diameters of the balls 4e and 4f are measured in advance with a gauge, and the diameter difference between them is 2 to 4 μm or less. Prepare for all columns.

それぞれが上述の様な条件を満たす、外輪2bと内輪3dと各玉4e、4fとを用意したならば、図2に示す様に、先ず、ステップ1(S1)で、多数造られた外輪2b(又は内輪3d)のうちから、何れか1個の外輪2b(又は内輪3d)を選択する。
次いで、ステップ2(S2)で、この選択した外輪2b(又は内輪3d)の外輪軌道6e、6fの内径R6e、R6f(又は内輪軌道7e、7fの外径R7e、R7f)を測定する。
次いで、ステップ3(S3)で、多数造られた内輪3d(又は外輪2b)のうちから、何れか1個の内輪3d(又は外輪2b)を選択する。
次いで、ステップ4(S4)で、この選択した内輪3d(又は外輪2b)の内輪軌道7e、7fの外径R7e、R7f(又は外輪軌道6e、6fの内径R6e、R6f)を測定する。
次いで、ステップ5(S5)で、両列の玉軸受11a、11bのラジアル隙間の差を小さくできる、前記外輪2bと前記内輪3dとの組み合わせ方向を決定する。
次いで、ステップ6で、ステップ2、4での測定値、前記既定の玉径レンジ、及びステップ5で決定した組み付け方向に基づいて、完成後の複列玉軸受1bの玉軸受11a、11bのラジアル隙間を求め、これら両列の玉軸受11a、11bのラジアル隙間が、既定の値の範囲内に収まるか否かを判定する。この判定の結果、前記両列の玉軸受11a、11bのラジアル隙間を既定の値の範囲内に納められないと判定した場合には、前記ステップ3に戻り、別の内輪3d(又は外輪2b)を選択し、ステップ4(S4)で、新たに選択した内輪3d(又は外輪2b)の内輪軌道7e、7fの外径R7e、R7f(又は外輪軌道6e、6fの内径R6e、R6f)を測定し、ステップ5で前記外輪2bと前記内輪3dとの組み合わせ方向を決定してから、再び前記ステップ6に戻る。
このステップ6で、前記両列の玉軸受11a、11bのラジアル隙間が既定の値の範囲内に収まると判定した場合には、最後のステップ7(S7)で、前記ステップ5で決定した組み合わせ方向に応じて、前記外輪2bの内径側に前記内輪3dを配置し、前述の図10に示す様にして、前記両外輪軌道6e、6fと前記両内輪軌道7e、7fとの間に、前記各玉4e、4fを組み込む。
以上の作業により、各部の寸法を前述の様に規制した、前記複列玉軸受1bを得られる。尚、前記両内輪軌道7e、7fのピッチPと、前記両外輪軌道6e、6fのピッチPとは、それぞれロータリドレッサを備えた研磨装置により精度良く規制されている。この為、何れの外輪2bと内輪3dとの組み合わせに関しても、必ずピッチ差が20μmの範囲内に収まる。従って、このピッチ差に関しては、特に判定のステップを設定する必要はない。
If the outer ring 2b, the inner ring 3d, and the balls 4e and 4f, each satisfying the above conditions, are prepared, as shown in FIG. 2, first, in step 1 (S1), a large number of outer rings 2b are produced. Any one outer ring 2b (or inner ring 3d) is selected from (or inner ring 3d).
Next, in step 2 (S2), the inner diameters R 6e and R 6f of the outer ring raceways 6e and 6f of the selected outer ring 2b (or inner ring 3d) (or the outer diameters R 7e and R 7f of the inner ring raceways 7e and 7f ) are measured. To do.
Next, in Step 3 (S3), any one of the inner rings 3d (or outer rings 2b) is selected from among a large number of inner rings 3d (or outer rings 2b).
Next, in step 4 (S4), the outer diameters R 7e and R 7f of the inner ring raceways 7e and 7f of the selected inner ring 3d (or outer ring 2b) (or the inner diameters R 6e and R 6f of the outer ring raceways 6e and 6f ) are measured. To do.
Next, in step 5 (S5), the combination direction of the outer ring 2b and the inner ring 3d that can reduce the difference in radial clearance between the ball bearings 11a and 11b in both rows is determined.
Next, in Step 6, the radials of the ball bearings 11a and 11b of the double-row ball bearing 1b after completion based on the measured values in Steps 2 and 4, the predetermined ball diameter range, and the assembly direction determined in Step 5 are obtained. A clearance is obtained, and it is determined whether or not the radial clearance between the ball bearings 11a and 11b in both rows falls within a predetermined value range. As a result of this determination, when it is determined that the radial clearances of the ball bearings 11a, 11b in both rows cannot be accommodated within a predetermined value range, the process returns to the step 3, and another inner ring 3d (or outer ring 2b) is returned. In step 4 (S4), the outer diameters R 7e and R 7f of the inner ring raceways 7e and 7f of the newly selected inner ring 3d (or outer ring 2b) (or the inner diameters R 6e and R 6f of the outer ring raceways 6e and 6f) are selected. ) And the combination direction of the outer ring 2b and the inner ring 3d is determined in step 5, and then the process returns to step 6 again.
If it is determined in step 6 that the radial clearances of the ball bearings 11a and 11b in both rows are within a predetermined range, the combination direction determined in step 5 in the last step 7 (S7). Accordingly, the inner ring 3d is disposed on the inner diameter side of the outer ring 2b, and as shown in FIG. 10 described above, between the outer ring raceways 6e, 6f and the inner ring raceways 7e, 7f, Incorporate balls 4e, 4f.
By the above operation, the double row ball bearing 1b in which the dimensions of the respective parts are regulated as described above can be obtained. Note that the two inner ring raceway 7e, the pitch P 7 of 7f, the outer ring raceways 6e, the pitch P 6 of 6f is precisely regulated by a polishing apparatus having a rotary dresser, respectively. For this reason, the pitch difference is always within the range of 20 μm for any combination of the outer ring 2b and the inner ring 3d. Therefore, it is not necessary to set a determination step for this pitch difference.

上述の様にして組み立てられる、前述の様な構成を有する複列玉軸受1bを、例えば自動車用トランスミッションの動力伝達軸の回転支持部に組み込む場合には、前記外輪2bを、例えばケーシング内に設けた保持孔に内嵌固定し、前記内輪3dを動力伝達軸に外嵌固定する。この状態で前記自動車用トランスミッションを運転すると、動力伝達装置を構成するはすば歯車同士の噛合部で生じるギヤ反力により前記複列玉軸受1bに、ラジアル荷重及びアキシアル荷重が加わる。ここで、この複列玉軸受1bのトータルアキシアル隙間差{=前記両外輪軌道6e、6fのピッチと前記両内輪軌道7e、7eのピッチとの差(△1)と、前記両列の玉軸受11a、11bのアキシアル隙間同士の差(△2)との和(△1+△2)}が零の場合には、前記両列の玉軸受11a、11bの分担アキシアル荷重同士の間に、差が生じる事はない。これに対し、前記トータルアキシアル隙間差が零でない場合には、前記両列の玉軸受11a、11bの分担アキシアル荷重を同士の間に差が生じる。そして、この分担アキシアル荷重の差は、前記トータルアキシアル隙間差が大きくなる程、大きくなる。図3は、この関係を示したものである。   When the double-row ball bearing 1b having the above-described configuration assembled as described above is incorporated in, for example, a rotation support portion of a power transmission shaft of an automobile transmission, the outer ring 2b is provided in, for example, a casing. The inner ring 3d is fitted and fixed to the power transmission shaft. When the automobile transmission is operated in this state, a radial load and an axial load are applied to the double row ball bearing 1b by a gear reaction force generated at the meshing portion of the helical gears constituting the power transmission device. Here, the total axial gap difference of the double row ball bearing 1b {= the difference (Δ1) between the pitch of the outer ring raceways 6e, 6f and the pitch of the inner ring raceways 7e, 7e, and the ball bearings of the double row When the sum (Δ1 + Δ2)} of the difference (Δ2) between the axial gaps 11a and 11b is zero, there is a difference between the shared axial loads of the ball bearings 11a and 11b in both rows. It never happens. On the other hand, when the difference between the total axial gaps is not zero, a difference occurs between the shared axial loads of the ball bearings 11a and 11b in both rows. And the difference of this shared axial load becomes large, so that the said total axial gap difference becomes large. FIG. 3 shows this relationship.

この点に関して、本例の複列玉軸受1bの場合には、前記各部の寸法差を、前述の様に僅少に抑える事により、前記トータルアキシアル隙間差を小さく抑えているので、前記両列の玉軸受11a、11bの分担アキシアル荷重同士の差を十分に小さくできる(例えば前記複列玉軸受の基本動定格荷重Corの数%以下に抑えられる)。この為、これら両列毎の玉軸受11a、11bに関する転がり接触部の面圧上昇を抑えられる。 In this regard, in the case of the double row ball bearing 1b of this example, the total axial gap difference is suppressed to be small by suppressing the dimensional difference between the respective parts slightly as described above. ball bearings 11a, can sufficiently reduce the difference in shared axial load between the 11b (e.g. suppressed to less than several% of the basic dynamic load rating C or of the double row ball bearing). For this reason, the surface pressure rise of the rolling contact part regarding these ball bearings 11a and 11b for both rows can be suppressed.

又、本例の複列玉軸受1bの場合、ラジアル荷重に関しては、アキシアル荷重程、前記両列の玉軸受11a、11bが支承する割合に差が生じる事はない。従って、アキシアル荷重の負担割合を小さく抑えれば、ラジアル荷重に関しても、その負担割合を問題ない程度に低く抑えられる。
この結果、前記複列玉軸受1bを構成する、前記外輪2bや前記内輪3d、更には前記各玉4e、4fとして、径の大きな、寸法の嵩むものを使用しなくても、アキシアル荷重に関する負荷容量を大きくできる。この為、大型化を抑えつつ、前記複列玉軸受1bの耐久性を確保できる。
Further, in the case of the double row ball bearing 1b of this example, with respect to the radial load, the axial load does not cause a difference in the ratio of the support of the ball bearings 11a and 11b in both rows. Therefore, if the load ratio of the axial load is kept small, the load ratio of the radial load can be kept low enough to cause no problem.
As a result, the load relating to the axial load can be achieved without using the outer ring 2b, the inner ring 3d, and further each ball 4e, 4f that constitute the double row ball bearing 1b. The capacity can be increased. For this reason, the durability of the double row ball bearing 1b can be ensured while suppressing an increase in size.

尚、前記外輪2bと前記内輪3dとの間に、図4に白抜きの矢印で示す方向にアキシアル荷重Fが作用すると、各部の弾性変形に基づいて、これら外輪2bと内輪3dとが軸方向に相対変位する。そして、この相対変位に伴って、図1、4で右側のシールリング8aのシールリップ16aと前記内輪3dの段差面17aとの摺接部の面圧が上昇し、図1、4で左側のシールリング8bのシールリップ16bと前記内輪3dの段差面17bとの摺接部の面圧が低下乃至は喪失する。そこで、この様な状態で、前記軸受内部空間18内への異物侵入を抑えるべく、前記アキシアル荷重Fの作用方向と、前記ケーシング内を流通する潤滑油の流れ方向との関係を規制する事が好ましい。   When an axial load F acts between the outer ring 2b and the inner ring 3d in the direction indicated by the white arrow in FIG. 4, the outer ring 2b and the inner ring 3d are axially moved based on elastic deformation of each part. Relative displacement. With this relative displacement, the surface pressure of the sliding contact portion between the seal lip 16a of the right seal ring 8a and the step surface 17a of the inner ring 3d increases in FIGS. The surface pressure of the sliding contact portion between the seal lip 16b of the seal ring 8b and the stepped surface 17b of the inner ring 3d is reduced or lost. Therefore, in such a state, in order to suppress entry of foreign matter into the bearing internal space 18, the relationship between the direction of action of the axial load F and the direction of flow of the lubricating oil flowing through the casing may be regulated. preferable.

例えば、前記複列玉軸受1bを自動車用トランスミッションの動力伝達軸の回転支持部に組み込む場合で、使用時間の過半である加速時乃至定速走行時に前記複列玉軸受1bに、図4に白抜きの太矢印で示す方向にアキシアル荷重Fが作用する場合に、潤滑油の流れ方向を、図4の右から左方向とする。これにより、使用時間の過半で作用するアキシアル荷重に基づいて浮き上がる傾向となる、前記シールリップ16bと前記段差面17bとの間の隙間から、歯車の摩耗粉等の異物が、前記軸受内部空間18内に入り込む事を抑えられる。   For example, when the double-row ball bearing 1b is incorporated in the rotation support portion of the power transmission shaft of an automobile transmission, the double-row ball bearing 1b is shown in FIG. When the axial load F is applied in the direction indicated by the thick bold arrow, the flow direction of the lubricating oil is changed from the right to the left in FIG. As a result, foreign matter such as gear wear powder from the gap between the seal lip 16b and the stepped surface 17b, which tends to float on the basis of the axial load acting over the majority of the usage time, is generated in the bearing inner space 18. It can be suppressed to enter.

本発明の効果を確認する為に行った実験に就いて、説明する。実験では、本発明の技術的範囲に属する試料2種類(実施例1、2)と、本発明の技術的範囲から外れる試料3種類(比較例1〜3)との5種類の試料を用意し、それぞれに就いて、耐久性を求める実験を行った。実験の条件は、以下の通りである。
「各試料で共通する条件」
外輪2bの外径 : 55mm
内輪3dの内径 : 30mm
各玉4e、4fの直径D : 7.144mm
各軌道の母線形状の曲率半径R6、R :3.715mm(互いに同じ)
「各試料毎に異なる条件」
実施例1の場合
外輪、内輪各軌道のピッチP、P同士の差 : 10μm
両外輪軌道6e、6fの内径同士の差 : 0μm
両内輪軌道7e、7fの外径同士の差 : 0μm
両玉軸受11a、11bのラジアル隙間同士の差 : 0μm
実施例2の場合
外輪、内輪各軌道のピッチP、P同士の差 : 20μm
両外輪軌道6e、6fの内径同士の差 : 6μm
両内輪軌道7e、7fの外径同士の差 : 6μm
両玉軸受11a、11bのラジアル隙間同士の差 : 8μm
比較例1の場合
外輪、内輪各軌道のピッチP、P同士の差 : 30μm
両外輪軌道6e、6fの内径同士の差 : 6μm
両内輪軌道7e、7fの外径同士の差 : 6μm
両玉軸受11a、11bのラジアル隙間同士の差 : 8μm
比較例2の場合
外輪、内輪各軌道のピッチP、P同士の差 : 20μm
両外輪軌道6e、6fの内径同士の差 : 8μm
両内輪軌道7e、7fの外径同士の差 : 8μm
両玉軸受11a、11bのラジアル隙間同士の差 : 8μm
比較例3の場合
外輪、内輪各軌道のピッチP、P同士の差 : 20μm
両外輪軌道6e、6fの内径同士の差 : 6μm
両内輪軌道7e、7fの外径同士の差 : 6μm
両玉軸受11a、11bのラジアル隙間同士の差 : 10μm
An experiment conducted for confirming the effect of the present invention will be described. In the experiment, five types of samples were prepared: two types of samples belonging to the technical scope of the present invention (Examples 1 and 2), and three types of samples outside the technical scope of the present invention (Comparative Examples 1 to 3). In each case, an experiment for durability was conducted. The experimental conditions are as follows.
"Common conditions for each sample"
Outer diameter of outer ring 2b: 55mm
Inner ring 3d inner diameter: 30 mm
Diameter D 4 of each ball 4e, 4f: 7.144mm
Radius of curvature R 6 , R 7 : 3.715 mm (same for each other)
"Different conditions for each sample"
In the case of Example 1 Difference between pitches P 6 and P 7 of the outer ring and inner ring raceways: 10 μm
Difference between inner diameters of both outer ring raceways 6e and 6f: 0 μm
Difference between outer diameters of both inner ring raceways 7e and 7f: 0 μm
Difference between radial clearances of both ball bearings 11a and 11b: 0 μm
In the case of Example 2 Difference between pitches P 6 and P 7 of the outer ring and inner ring raceways: 20 μm
Difference between inner diameters of both outer ring raceways 6e and 6f: 6 μm
Difference between outer diameters of both inner ring raceways 7e and 7f: 6 μm
Difference between radial clearances of both ball bearings 11a, 11b: 8 μm
In the case of Comparative Example 1, the difference between the outer ring and inner ring pitches P 6 and P 7 : 30 μm
Difference between inner diameters of both outer ring raceways 6e and 6f: 6 μm
Difference between outer diameters of both inner ring raceways 7e and 7f: 6 μm
Difference between radial clearances of both ball bearings 11a, 11b: 8 μm
In the case of Comparative Example 2, the difference between the outer ring and inner ring pitches P 6 and P 7 : 20 μm
Difference between inner diameters of both outer ring raceways 6e and 6f: 8 μm
Difference between outer diameters of both inner ring raceways 7e and 7f: 8 μm
Difference between radial clearances of both ball bearings 11a, 11b: 8 μm
In the case of Comparative Example 3 Difference between pitches P 6 and P 7 of the outer ring and inner ring raceways: 20 μm
Difference between inner diameters of both outer ring raceways 6e and 6f: 6 μm
Difference between outer diameters of both inner ring raceways 7e and 7f: 6 μm
Difference between radial clearances of both ball bearings 11a and 11b: 10 μm

それぞれが上述の様な仕様を有する5種類の複列玉軸受を、同じ条件{内輪回転、回転速度=5000min-1、ラジアル荷重=0、アキシアル荷重=6000N(=0.35Cor)}で運転し、それぞれに就いての転がり疲れ寿命を求めた。その結果を、図5に示す。この図5は、実施例1の転がり疲れ寿命を1とし、他の試料の転がり疲れ寿命は、この実施例1に対する割合で示した。この様な実験結果を記載した図5から分かる様に、外輪、内輪各軌道のピッチP、P同士の差、両外輪軌道6e、6fの内径同士の差、両内輪軌道7e、7fの外径同士の差、両玉軸受11a、11bのラジアル隙間同士の差のうちの、何れか1種類でも本発明が規定する値よりも大きくなると、複列玉軸受の耐久性が大きく損なわれる。逆に言えば、上記各差を何れも所定値以下に規制した本発明によれば、複列玉軸受の耐久性を十分に確保できる。 5 types of double row ball bearings each having the above specifications are operated under the same conditions {inner ring rotation, rotational speed = 5000 min −1 , radial load = 0, axial load = 6000 N (= 0.35 C or )}. The rolling fatigue life of each was determined. The result is shown in FIG. In FIG. 5, the rolling fatigue life of Example 1 is set to 1, and the rolling fatigue life of other samples is shown as a ratio with respect to Example 1. As can be seen from FIG. 5 in which such an experimental result is described, the difference between the pitches P 6 and P 7 of the outer ring and inner ring raceways, the difference between the inner diameters of both outer ring raceways 6e and 6f, the inner ring raceways 7e and 7f If any one of the difference between the outer diameters and the difference between the radial gaps of the ball bearings 11a and 11b is larger than the value defined by the present invention, the durability of the double row ball bearing is greatly impaired. In other words, according to the present invention in which each of the above differences is regulated to a predetermined value or less, the durability of the double row ball bearing can be sufficiently secured.

更に、図6は、前記各試料の前記各寸法差をトータルアキシアル隙間差に換算した値と、これら各試料の転がり疲れ寿命との関係を示している。隙間の差の値のみが異なる、実施例2と比較例3とを比較すれば明らかな通り、ラジアル隙間の差を10μmから8μmにする事で、転がり疲れ寿命を大幅に改善できる。   Furthermore, FIG. 6 shows the relationship between the values obtained by converting the dimensional differences of the samples into total axial gap differences and the rolling fatigue life of the samples. As apparent from a comparison between Example 2 and Comparative Example 3 in which only the difference in gap is different, the rolling fatigue life can be greatly improved by changing the difference in radial gap from 10 μm to 8 μm.

本発明の自動車用のトランスミッションやモータの回転支持部に限らず、運転時にラジアル荷重に加えてアキシアル荷重が加わる、各種回転機械装置の回転支持部に適用できる。   The present invention is not limited to the automobile transmission and motor rotation support portions of the present invention, and can be applied to rotation support portions of various rotary machine devices in which an axial load is applied in addition to a radial load during operation.

1、1a、1b 複列玉軸受
2、2a、2b 外輪
3a、3b、3c、3d 内輪
4a、4b、4c、4d、4e、4f 玉
5a、5b、5c、5d、5e、5f 保持器
6a、6b、6c、6d、6e、6f 外輪軌道
7a、7b、7c、7d、7e、7f 内輪軌道
8a、8b シールリング
9a、9b、9c 外輪肩部
10a、10b、10c 内輪肩部
11a、11b 玉軸受
12 リム部
13 弾性爪部
14 ポケット
15a、15b 係止溝
16a、16b シールリップ
17a、17b 段差面
18 軸受内部空間
1, 1a, 1b Double row ball bearing 2, 2a, 2b Outer ring 3a, 3b, 3c, 3d Inner ring 4a, 4b, 4c, 4d, 4e, 4f Ball 5a, 5b, 5c, 5d, 5e, 5f Cage 6a, 6b, 6c, 6d, 6e, 6f Outer ring raceway 7a, 7b, 7c, 7d, 7e, 7f Inner ring raceway 8a, 8b Seal ring 9a, 9b, 9c Outer ring shoulder 10a, 10b, 10c Inner ring shoulder 11a, 11b Ball bearing 12 Rim part 13 Elastic claw part 14 Pocket 15a, 15b Locking groove 16a, 16b Seal lip 17a, 17b Step surface 18 Bearing internal space

Claims (6)

内周面に複列の外輪軌道を設けた外輪と、外周面に複列の内輪軌道を設けた内輪と、これら両外輪軌道とこれら両内輪軌道との間に、両列毎に複数個ずつ転動自在に設けられた玉とを備えた複列玉軸受に於いて、前記両外輪軌道が、それぞれが深溝型で母線の形状及び寸法が互いにほぼ等しいものであり、前記両内輪軌道が、それぞれが深溝型で母線の形状及び寸法が互いにほぼ等しいものであり、前記各玉が、互いにほぼ等しい直径を有するものであり、前記両外輪軌道のピッチと前記両内輪軌道のピッチとの差が20μm以下であり、これら両外輪軌道の溝底部の内径同士の差、並びに、前記両内輪軌道の溝底部の外径同士の差が、何れも6μm以下であり、それぞれが前記外輪、内輪両軌道と前記各玉とにより構成される両列の玉軸受のラジアル隙間同士の差が、8μm以下である事を特徴とする複列玉軸受。   An outer ring having a double-row outer ring raceway on the inner peripheral surface, an inner ring having a double-row inner ring raceway on the outer peripheral surface, and a plurality of each for both rows between these outer ring raceways and these inner ring raceways. In a double-row ball bearing provided with balls that are freely rollable, the outer ring raceways are deep groove types, and the shape and dimensions of the busbars are substantially equal to each other. Each is a deep groove type, and the shape and dimensions of the bus bar are substantially equal to each other, the balls have diameters substantially equal to each other, and the difference between the pitch of the outer ring raceways and the pitch of the inner ring raceways is The difference between the inner diameters of the groove bottom portions of these outer ring raceways and the difference between the outer diameters of the groove bottom portions of both inner ring raceways are both 6 μm or less. And the ball bearings in both rows composed of the balls. A double row ball bearing characterized in that a difference between radial gaps is 8 μm or less. 前記外輪及び前記内輪と前記各玉とが鉄系合金製であり、前記各玉の直径が5〜20mmであり、前記両外輪軌道及び前記両内輪軌道のピッチが35〜130mmである、請求項1に記載した複列玉軸受。   The outer ring, the inner ring, and the balls are made of an iron-based alloy, the diameter of the balls is 5 to 20 mm, and the pitch of the outer ring raceways and the inner ring raceways is 35 to 130 mm. The double row ball bearing described in 1. 前記両列の玉軸受を構成する各玉を、それぞれが合成樹脂製で、円環状のリム部の軸方向片側面にポケットを設けた1対の冠型保持器により転動自在に保持しており、これら両冠型保持器のリム部を、前記各玉を挟んで、軸方向反対側に配置している、請求項1〜2のうちの何れか1項に記載した複列玉軸受。   Each ball constituting the ball bearings in both rows is made of a synthetic resin, and is held by a pair of crown type cages having a pocket on one side surface in the axial direction of an annular rim portion. The double-row ball bearing according to any one of claims 1 and 2, wherein the rim portions of both the crown type cages are arranged on the opposite side in the axial direction with the balls interposed therebetween. 前記外輪の内周面と前記内輪の外周面との間で、前記各玉を設置した軸受内部空間の軸方向両端開口部を塞ぐ、1対のシールリングを設けている、請求項1〜3のうちの何れか1項に記載した複列玉軸受。   A pair of seal rings are provided between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring to close both axial openings of the bearing internal space where the balls are installed. The double row ball bearing described in any one of the above. 使用状態で前記外輪と前記内輪との間に加わるアキシアル荷重の作用方向が、使用時間の過半で所定方向となる回転支持部に対し、前記両シールリングのうちで、この所定方向に作用するアキシアル荷重に基づいてその周縁が相手面から浮き上がる傾向となる一方のシールリングが、当該回転支持部を流通する潤滑油の流れ方向に関して下流側に設置された状態で組み込まれている、請求項4に記載した複列玉軸受。   Axial load acting between the outer ring and the inner ring in the use state, in which the acting direction of the axial load applied to the predetermined direction in the majority of the use time acts in the predetermined direction of the seal rings. 5. One seal ring, whose peripheral edge tends to be lifted from the mating surface based on the load, is incorporated in a state of being installed downstream with respect to the flow direction of the lubricating oil flowing through the rotation support portion. The double row ball bearing described. 内周面に複列の外輪軌道を設けた外輪と、外周面に複列の内輪軌道を設けた内輪と、これら両外輪軌道とこれら両内輪軌道との間に、両列毎に複数個ずつ転動自在に設けられた玉とを備え、前記両外輪軌道が、それぞれが深溝型で母線の形状及び寸法が互いにほぼ等しく、前記両内輪軌道が、それぞれが深溝型で母線の形状及び寸法が互いにほぼ等しく、前記各玉が、互いにほぼ等しい直径を有する複列玉軸受の製造方法であって、前記両外輪軌道の溝底部の内径同士の差を6μm以下に、前記両内輪軌道の溝底部の外径同士の差を6μm以下に、それぞれ抑えると共に、前記両外輪軌道のピッチと前記両内輪軌道のピッチとの差を20μm以下に抑え、それぞれ複数ずつ造られた前記外輪及び前記内輪のうちから選択された1個ずつの外輪と内輪とを組み合わせ、前記両外輪軌道の溝底部の内径と前記両内輪軌道の溝底部の外径とに応じて、両列のラジアル隙間差が小さくなる様に、前記外輪と前記内輪との組み合わせ方向を規制すると共に、これら各軌道同士の間にほぼ等しい直径を有する前記各玉を転動自在に配置した状態で前記外輪と前記内輪とを組み合わせ、それぞれが前記外輪、内輪両軌道と前記各玉とにより構成される両列の玉軸受のラジアル隙間同士の差を、8μm以下にする複列玉軸受の製造方法。   An outer ring having a double-row outer ring raceway on the inner peripheral surface, an inner ring having a double-row inner ring raceway on the outer peripheral surface, and a plurality of each for both rows between these outer ring raceways and these inner ring raceways. The outer ring raceways are each a deep groove type and the shape and dimensions of the busbars are substantially equal to each other, and the inner ring raceways are each a deep groove type and the shape and dimensions of the busbars are both A method of manufacturing a double row ball bearing, wherein the balls are substantially equal to each other, and the balls have substantially the same diameter, and the difference between the inner diameters of the groove bottoms of the outer ring raceways is 6 μm or less, And the difference between the outer diameters of the inner ring raceway is suppressed to 6 μm or less, and the difference between the pitch of the outer ring raceways and the pitch of the inner ring raceways is suppressed to 20 μm or less. One outer ring selected from A combination of the outer ring and the inner ring so that the radial gap difference between both rows is reduced according to the inner diameter of the groove bottom of the outer ring raceway and the outer diameter of the groove bottom of the inner ring raceway. The outer ring and the inner ring are combined in a state in which the balls having substantially the same diameter between the respective raceways are arranged so as to be capable of rolling, and the outer ring and the inner ring both raceways and the respective raceways are combined. A method for producing a double row ball bearing, wherein the difference between the radial gaps of the ball bearings in both rows composed of balls is 8 μm or less.
JP2013016369A 2013-01-31 2013-01-31 Double-row ball bearing and method of manufacturing the same Pending JP2014148993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013016369A JP2014148993A (en) 2013-01-31 2013-01-31 Double-row ball bearing and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013016369A JP2014148993A (en) 2013-01-31 2013-01-31 Double-row ball bearing and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014148993A true JP2014148993A (en) 2014-08-21

Family

ID=51572140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013016369A Pending JP2014148993A (en) 2013-01-31 2013-01-31 Double-row ball bearing and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014148993A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167139A (en) * 1993-12-17 1995-07-04 Nippon Seiko Kk Double row ball bearing and manufacture thereof with preload
JP2004028144A (en) * 2002-06-21 2004-01-29 Nsk Ltd Hermetic double-row ball bearing for gas compressor
JP2005226686A (en) * 2004-02-10 2005-08-25 Nsk Ltd Rolling bearing with sealing device
JP2008057776A (en) * 2006-08-04 2008-03-13 Nsk Ltd Angular ball bearing
JP2010281352A (en) * 2008-06-06 2010-12-16 Ntn Corp Swing bearing and method of processing raceway groove thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167139A (en) * 1993-12-17 1995-07-04 Nippon Seiko Kk Double row ball bearing and manufacture thereof with preload
JP2004028144A (en) * 2002-06-21 2004-01-29 Nsk Ltd Hermetic double-row ball bearing for gas compressor
JP2005226686A (en) * 2004-02-10 2005-08-25 Nsk Ltd Rolling bearing with sealing device
JP2008057776A (en) * 2006-08-04 2008-03-13 Nsk Ltd Angular ball bearing
JP2010281352A (en) * 2008-06-06 2010-12-16 Ntn Corp Swing bearing and method of processing raceway groove thereof

Similar Documents

Publication Publication Date Title
JP5870563B2 (en) Roller bearing cage and rolling bearing
JP5375969B2 (en) Rotation support device for pinion shaft
US9593718B2 (en) Multipoint contact ball bearing
JP2008240796A (en) Angular contact ball bearing with seal, and spindle device
KR20160074626A (en) Cylindrical roller bearing and bearing device for transmission
JP2008106869A (en) Ball bearing
JP5600958B2 (en) Bearing device
JP5636887B2 (en) Tandem angular contact ball bearings
JP2014105809A (en) Retainer for rolling bearing
JP4910938B2 (en) Double row ball bearing
JP4626183B2 (en) Rolling bearing and transmission for hybrid vehicle or fuel cell vehicle using the same
JP5862162B2 (en) Tandem angular contact ball bearings
JP2014148993A (en) Double-row ball bearing and method of manufacturing the same
JP2008144879A (en) Retainer for rolling bearing and rolling bearing
KR20240023142A (en) wave gear device
JP6064783B2 (en) Rolling bearing
JP2006234100A (en) Double-row angular ball bearing and pinion shaft supporting device for vehicle
JP5909918B2 (en) Roller bearing cage
US11215272B2 (en) Transmission unit, in particular an axle drive or transfer case, having a transmission element mounted therein via at least one double-row angular contact ball bearing
WO2017043425A1 (en) Rolling bearing
JP2013061040A (en) Self-aligning rolling bearing
JP2006170335A (en) Ball bearing for ct scanner device and ct scanner device
JP2024101198A (en) Ball bearing and bearing device
JP2024129966A (en) Cages for roller bearings, rollers with cages and roller bearings
JP2024001664A (en) Angular ball bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206