Nothing Special   »   [go: up one dir, main page]

JP2014145633A - 蛍光光度計及び蛍光光度計用試料容器 - Google Patents

蛍光光度計及び蛍光光度計用試料容器 Download PDF

Info

Publication number
JP2014145633A
JP2014145633A JP2013013781A JP2013013781A JP2014145633A JP 2014145633 A JP2014145633 A JP 2014145633A JP 2013013781 A JP2013013781 A JP 2013013781A JP 2013013781 A JP2013013781 A JP 2013013781A JP 2014145633 A JP2014145633 A JP 2014145633A
Authority
JP
Japan
Prior art keywords
sample
dust
container
measurement
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013013781A
Other languages
English (en)
Other versions
JP6011367B2 (ja
Inventor
Shigeki Matsumoto
茂樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2013013781A priority Critical patent/JP6011367B2/ja
Publication of JP2014145633A publication Critical patent/JP2014145633A/ja
Application granted granted Critical
Publication of JP6011367B2 publication Critical patent/JP6011367B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】 測定値の比を取るだけでは除去できない蛍光測定特有のノイズの問題を解決する。
【解決手段】 試料を収容した試料容器8がケーシング1の開口11から挿入されて容器保持部5に保持される。ケーシング1内に設けられた光源2から放射された励起光が光学系4を介して試料容器8内の試料に照射され、発生した蛍光が光学系4を介して検出器3に捉えられる。試料容器8の着脱の際にケーシング1内に侵入したダストは、ダストトラップ9に溜まる。ダストトラップ9は検出器3から見通せないので、ダストが蛍光物質であってもノイズ源とはならない。
【選択図】 図2

Description

本願の発明は、蛍光光度計に関するものである。
光測定の一分野として、物質が発する蛍光を測定する蛍光測定の技術が知られている。蛍光測定による材料分析(蛍光分析法)は、吸光光度法などに比べて高感度で選択性が高いという特徴があり、試料の同定や定量などを行う際に有効である。
蛍光測定によって試料の同定や定量を行うには、目的物質が蛍光物質である場合に限られるので、汎用性に欠けるとも言える。しかしながら、近年、目的物質を蛍光色素より成る試薬(蛍光試薬)で標識する蛍光標識法が開発されており、様々な物質について各々蛍光試薬が市販されている。このため、様々な目的物質について蛍光測定による同定や定量が可能になってきており、新薬や新材料の研究開発、プラントにおけるプロセス監視、環境評価など、多くの分野での応用が検討されている。
このような蛍光測定において、測定を複数回行い、各測定における測定値(蛍光強度)の比を測定結果とする場合がある。例えば、免疫反応を利用した蛍光測定によって試料の同定や定量を行う技術が特許文献1に開示されている。この技術は、蛍光色素に生じていたクエンチング(蛍光消光)が免疫反応により解消することを利用するものであり、反応の前後における蛍光強度の増大を指標として試料の同定や定量を行う技術である。
特開平10−19892号公報
このように蛍光測定の応用分野が広がっていくと、蛍光測定を実験室や測定室といった特別の部屋で測定するのではなく、他の様々な場所で測定したり、オンサイト即ち試料が採取される現場で測定して迅速に結果を得たりするニーズが生じてくると予想される。例えば、前掲の特許文献1が測定技術を開示しているメタンフェタミンは代表的な覚醒剤であり、いわゆる禁止薬物である。したがって、メタンフェタミンの検出は、例えば空港の税関における荷物検査や、警察による麻薬取締などで行われ得る。
税関における禁止薬物取締には、いわゆる麻薬犬の活動が広く知られているが、大量の手荷物を隈無く検査するには限界があるし、仮に禁止薬物と疑われる物質が見つかったとしても、最終的に摘発を行って法的措置を取るには、発見された物質を科学的に分析して同定しなければならない。このためには、当該手荷物を一時的に取り置き、発見された物質を検査機関に送るなどの措置を取ることが必要で、通関が一時的に保留にされた状態となる。仮に、禁止薬物の取締を行う現場で迅速に発見物質の同定ができれば、通関を一時的に保留にして旅行者を長時間留め置くような面倒はなく、すぐさま摘発や逮捕が行える。したがって、オンサイト(現場)で使用できる実用的な蛍光光度計が必要になってくる。
しかしながら、このようなオンサイトでの測定が可能な実用的な蛍光光度計は開発されていない。また、オンサイトでの測定が可能な蛍光光度計においてどのような点が課題となるのかも教示されていない。
オンサイトでの蛍光測定ということを考慮すると、測定がされる環境が問題になる。実験室や測定室といった特別の施設で蛍光測定を行う場合、清浄な環境で測定を行うことで測定精度の低下が無いようにすることが可能である。しかしながら、オンサイトでの測定では、塵又は埃等の異物(以下、ダストと総称する)が存在する環境で測定することが避けられず、ダストが光度計に侵入することで測定精度が低下してしまうことがあり得る。
とはいえ、前掲の特許文献1のように二つの測定値の比を取って測定結果とする場合、ダストの侵入が測定精度の低下に直結することは少ない。侵入したダストが光学系の要素に付着し、光を遮蔽することで励起光を本来の強さより低下させてしまったり、発生した蛍光をダストが遮蔽することで蛍光が本来の強さで検出器に捉えられなくなってしまったりすることがあり得る。このような場合でも、二つの測定を連続して(又は時間間隔を短くして)行い、一方の測定値を参照用のデータとして用い、他方の測定値の一方の測定値に対する比を測定結果とすれば、測定精度が低下することはない。
しかしながら、発明者の研究によると、蛍光測定においては、比を取るだけでは除去できないノイズが存在し、且つそのノイズの中にはダストに由来した蛍光測定特有の事情によるものがあることが判明した。本願の発明は、この知見に基づくものであって、測定値の比を取るだけでは除去できない蛍光測定特有のノイズの問題を解決すべく為されたものである。
上記課題を解決するため、本願の請求項1記載の発明は、試料が発生させた蛍光の強度を測定する蛍光光度計であって、
試料が投入された試料容器を保持する容器保持部と、
容器保持部に保持された試料容器内の試料に励起光を照射する光源と、
励起光の照射により励起された試料からの蛍光を捉える検出器と、
光源からの励起光を試料に導き、試料からの蛍光を検出器に導く光学系と、
容器保持部、光源、検出器及び光学系が内部に配置されたケーシングと
を備えており、
ケーシングには、試料容器を容器保持部に装着するための開口が形成されており、
ケーシング内には、開口からケーシング内に侵入したダストが溜まる凹部状のダストトラップが設けられており、ダストトラップは、検出器から見通せない位置に配置されているという構成を有する。
また、上記課題を解決するため、請求項2記載の発明は、前記請求項1の構成において、前記試料容器は細長い形状のものであって、前記容器保持部は、前記試料容器の試料を収容した箇所が前記光学系の光軸上の位置になるように前記試料容器を保持するものであるとともに、前記容器保持部は、前記試料容器の長さ方向が前記光学系の光軸に対して交差する姿勢で前記試料容器を保持するものであり、
前記ダストトラップは、前記容器保持部のうち前記光学系の光路を外れた位置に位置する部位であるという構成を有する。
また、上記課題を解決するため、請求項3記載の発明は、前記請求項1又は2の構成において、前記ダストトラップは、前記ケーシングから取り出し可能な状態で設けられており、前記ケーシングには前記ダストトラップを取り出すための取り出し口が形成されているという構成を有する。
また、上記課題を解決するため、請求項4記載の発明は、前記請求項1、2又は3の構成において、前記検出器から出力される測定値を処理する演算処理部が設けられており、演算処理部は、二つの測定値の比を算出して測定結果とすることが可能なものであるという構成を有する。
また、上記課題を解決するため、請求項5記載の発明は、前記請求項1乃至4いずれかの構成において、前記ケーシングは人が手で持てる程度の大きさであって、携帯型であるという構成を有する。
また、上記課題を解決するため、請求項6記載の発明は、前記請求項2に記載の蛍光光度計に使用される試料容器であって、試料が内部に収容される収容部と、前記容器保持部に保持された際に前記ダストトラップに当接する脚部が設けられており、脚部は、前記ダストトラップに当接した際、収容部が前記光軸上に位置し且つ前記ダストトラップから離間した位置に位置する長さを有しているという構成を有する。
以下に説明する通り、本願の請求項1記載の発明によれば、開口からケーシング内に侵入したダストが溜まる凹部状のダストトラップが設けられており、ダストトラップは、検出器から見通せない位置に配置されているので、ダストが相当量存在する環境下で試料容器の抜き差しが行われる場合でも、精度低下を招くことなく蛍光測定が行える。
また、請求項2又は6記載の発明によれば、上記効果に加え、ダストトラップは、容器保持部のうち光学系の光路を外れた位置に位置する部位であるので、ダストトラップ上のダストに光源からの励起光が直射されることがなく、ダストがノイズの発生源となることがない。このため、より精度の高い蛍光測定が行える。
また、請求項3記載の発明によれば、上記効果に加え、ダストトラップがケーシングから取り出し可能なので、大量にダストトラップが溜まってしまって問題(ダストの舞い上がり等)を生じる前にダストを取り除くことができる。
また、請求項4記載の発明によれば、上記効果に加え、二つの測定値の比を算出して測定結果とすることが可能なものであるので、免疫反応を利用して試料の同定又は定量等を行う際に好適なものとなる。
また、請求項5記載の発明によれば、上記効果に加え、携帯型であるので、試料が採取される現場又はそれに近い場所で蛍光測定を行う際に好適なものとなる。
本願発明の第一の実施形態に係る蛍光光度計の斜視概略図である。 図1に示す蛍光光度計の正面断面概略図である。 実施形態の蛍光光度計用試料容器の概略図であり、(1)は外観概略図、(2)は正面断面概略図である。 ダスト侵入による測定精度低下が測定値の比を取るだけでは除去できないことを確認した実験の結果を示す図である。 第二の実施形態の蛍光光度計の正面断面概略図である。
以下、本願発明を実施するための形態(実施形態)について説明する。
図1は、本願発明の第一の実施形態に係る蛍光光度計の斜視概略図である。図2は、図1に示す蛍光光度計の正面断面概略図である。
図1及び図2に示す蛍光光度計は、測定室や実験室といった特別の部屋に常時設置されるものではなく、携帯型の蛍光光度計となっている。また、この蛍光光度計は、液相状態の試料(以下、液相試料)において発生する蛍光の強度を測定するものであり、液相試料を測定位置に保持するための容器(以下、試料容器)を使用して測定するものである。
具体的に説明すると、図1に示すように、蛍光光度計は、全体としては扁平なほぼ直方体の箱状のものである。携帯型であるので、大きさとしては人の手のひらサイズかそれよりも少し大きい程度である。
扁平なほぼ直方体の箱状のケーシング1の上面には、開口11が形成されており、開口11には開閉蓋12が設けられている。ケーシング1内には容器保持部5が設けられており、開閉蓋12を開けると、容器保持具5の上端の挿入孔50が露出するようになっている。図1中不図示の試料容器は、挿入孔50から容器保持具5に挿入され、容器保持具5に保持されることでケーシング1内の所定位置に装着されるようになっている。この他、ケーシング1の前面には、測定に必要な情報や測定結果を表示するためのディスプレイ13、測定ボタン141を含む各種操作ボタン141〜146等が設けられている。
図2に示すように、ケーシング1内には、試料を励起して蛍光を放出させることが可能な波長の光(励起光)を発する光源2と、発生した蛍光を捉える検出器3と、励起光を試料に導き、発生した蛍光を検出器3に導く光学系4と、励起光の照射位置(測定位置)に試料が位置するように試料容器8を保持する容器保持部5等が設けられている。
図3は、実施形態の蛍光光度計用試料容器の概略図であり、(1)は外観概略図、(2)は正面断面概略図である。図3に示す試料容器は、図1及び図2に示す蛍光光度計に使用される容器である。
試料自体が液相状態である場合もあるが、試料は粉末のような固相状態であることが想定されており、溶液に溶かし込んで液相にした上でその発生蛍光を測定するようになっている。このため、試料容器8は、試料を溶かし込むための溶液を提供する目的も兼ねている。また、この例の蛍光光度計は、免疫反応を利用した蛍光測定を行うためのものであり、試料容器8は、二つの溶液を予め収容したものとなっている。
具体的には、試料容器8は、測定位置に位置せしめられる収容部(以下、第一の収容部)81と、これとは別の第二の収容部82とを有している。第一の収容部81には、抗体が溶かし込まれた溶液(以下、抗体溶液)83が予め収容されている。第二の収容部82は、第一の収容部81に対して破断可能な隔壁84で区画されており、ここには、試料を溶かし込んで所定の濃度に調整してから抗体溶液83に投入するための溶液(以下、調整用溶液)85が収容されている。
尚、図3に示すように、試料容器8は細長いものである。容器保持部5は、試料容器8の寸法形状に適合した枠状の部材である。図3に示すように、第一の収容部81は試料容器8の下端部に設けられており、第二の収容部82は中腹部に設けられている。隔壁84は、第二の収容部82の底壁となっている。
試料容器8の上端は開口となっており、この開口にはキャップ状の蓋86が設けられている。試料の投入の際には、蓋86が開けられる。尚、試料容器8が容器保持部5に正しく保持されて装着されると、第一の収容部81が測定位置に位置した状態となる。
一方、図1及び図2に示す蛍光光度計において、ケーシング1内に設けられた光源2には、コスト上の優位性や省消費電力を考慮してLEDランプが使用される。例えば、波長525nmの緑色光を放射するもので、出力2mW程度のものが使用される。
光学系4は、光源2からの光を集光する集光レンズ41と、光路の折り曲げと光の選択を行うためのダイクロイックミラー42と、光路上に配置されたフィルタ43,44等から構成される。光源2は、下方に向けて光を放出する姿勢となっており、ダイクロイックミラー42は、光源2の下方において斜め45°の角度で配置されている。ダイクロイックミラー42は、励起光の波長の光を反射するとともに、測定する蛍光の波長の光を透過するものである。
検出器3は、ダイクロイックミラー42を挟んで容器保持部5とは反対側の位置に配置されている。検出器3には、例えばシリコンフォトダイオードにより光電変換を行うものが使用される。検出器3は、蛍光を受光する光電変換部(この例ではシリコンフォトダイオード)、光電変換部の出力信号を増幅する増幅器、増幅された信号に基づいて蛍光強度の信号として出力する出力回路等を含んでいる。出力回路は、光度を絶対値で表示するための較正回路を必要に応じて含む。
また、光源2とダイクロイックミラー42との間には、励起光用フィルタ43が配置され、ダイクロイックミラー42と検出器3との間には蛍光用フィルタ44が配置されている。525nmの緑色光が励起光として使用される場合、510〜545nm程度の波長域の光を透過し、それ以外の波長域の光を反射するものが励起光用フィルタ43として使用される。この場合、測定する蛍光の波長は550〜630nm程度であり、蛍光用フィルタ44としては、570〜610nm程度の波長域の光を透過し、それ以外の波長域の光を反射するものが使用される。尚、集光レンズ41は、光源2からの光を細いビームにして収容部81内の液相試料に照射するとともに、液相試料から発せられた蛍光を集めて検出器3に入射させるものである。
尚、図2に示すように、光源2、検出器3及び光学系4の各要素は、筐体7によって一体的に保持されている。筐体7は、左右一対のものを接合して内部に閉じた空間を形成したものであり、この空間内に光源2や検出器3、光学系4を保持している。筐体7は、容器保持部5とともに樹脂で一体成形されたものとなっている。このように閉じた空間としているのは、外部の光が励起光や蛍光に紛れることがないようにするためである。
但し、筐体7のうち、容器保持部5との境界部分は、測定用開口70となっており、筐体7内の空間と容器保持部5内の空間とは測定用開口70を通して連通している。試料容器8内の試料に励起光を照射し、また発生した蛍光を捉えるため、測定用開口70が必要となる。
尚、図2に示す制御ボックス6内には、不図示の制御部が設けられている。制御部は、各部の制御や信号処理を行うものであり、各種プログラムを実行するプロセッサ、データやプログラムを記憶するためのメモリ等を備えている。プログラムの中には、操作メニューをディスプレイ13に表示するための表示プログラムや、検出器3からの出力を処理して測定結果を得るための測定プログラムが含まれている。
このような蛍光光度計を使用して測定を行う場合、試料を所定量採取して第二の収容部84に投入して調整用溶液85に溶かし込む。この状態で試料容器8を容器保持部5に装着し、光源2を点灯させて測定を行う。この状態では、試料は第二の収容部82にあるのみであり、測定位置の第一の収容部81には抗体溶液83があるのみである。したがって、試料未投入の状態の抗体溶液83について励起光を照射して発生蛍光を測定していることになる。その後、不図示の治具等を使用して試料容器8の隔壁84を破断し、試料が溶かし込まれている調整用溶液85を抗体溶液82に投入して混合した上で、再度測定を行う。試料が抗原であれば、免疫反応が生じてクエンチングの解消が生じ、抗体溶液83において発生する蛍光が増強される。したがって、2回の測定結果(2つの測定値)の比を算出することで、試料が抗原であるかどうかの同定をすることができる。また、蛍光増強比を所定の較正用データと比較することで、試料の定量を行うこともできる。
尚、不図示のメモリに記憶されたプログラムには、上記測定のためのプログラムが含まれる。具体的には、試料容器8の装着を促す表示をディスプレイ13に表示したり、装着完了後に測定ボタン(光源2を点灯させるボタン)141を押すよう促す表示をディスプレイ13に表示したりするプログラムの他、各回の測定結果をメモリに記憶し、その比を算出して測定結果とするプログラム等である。
さて、上記のような蛍光光度計において、前述したようにケーシング1内にダストが侵入するのが避けられない。ダストの侵入は、試料容器8の装着や取り出しのために開閉蓋12を開けた際には生じ得る。即ち、ダストは、容器保持部5の上端の挿入孔50から侵入し、容器保持部5内を下降した後、測定用開口70を通って筐体7内に侵入する。そして、このダストが、光学系4の要素に付着する。
尚、ケーシング1は、光源2の冷却や制御ボックス60内の電子部品の冷却のために通気口を有する場合がある。この通気口からもダストが侵入し得る場合があるが、通気口にフィルタを設けることでかなり防げる他、通気口からダストが侵入したとしても、筐体内に侵入するのは難しいので、光学系4の要素に付着することは少ない。
発明者の研究によると、ダストがケーシング1内に侵入して光学系4の要素に付着すると、測定値の比を取るだけではノイズが除去できないという予期できない問題が生じることが判明した。以下、この点について説明する。
測定値の比を取るだけでは除去できないノイズの代表的なものは、バックグラウンドノイズである。例えば、検出器3において、全く蛍光が入射していないにもかかわらず僅かながら出力が現れてしまうことがある。また、ケーシング1内に存在する迷光のうち蛍光の波長と範囲が重なるものが蛍光用フィルタ44を透過して検出器3に入射しまうノイズもある。これらノイズは、検出器3からの出力に重畳した形になるので、その大きさを予め調べておき、測定結果から差し引くことで除去することができる。
発明者は、自ら行った蛍光測定の研究において、これらノイズ除去の技術を適用したとしても、無視し得ない測定結果の変動が生じ、これが原因で測定精度を高くできない問題があることが判明した。発明者は、この問題の原因についてさらに鋭意研究を行ったところ、ケーシング1内に侵入ダストの影響であり、特にダストが光学系4の要素に付着することによるものであることが判ってきた。
ケーシング1内に侵入し得るダストには、蛍光物質であるものがある。例えば、衣服等から出た糸くずの破片がダストになる場合が多いが、糸くずが蛍光物質である場合がある。繊維が蛍光物質であったり、蛍光塗料で染色されていたり、蛍光物質を含む洗剤が残留していたりする場合である。この他、人間の皮脂もダストの原因となるが、皮脂にも蛍光成分が含まれている。
これら蛍光物質であるダストは、前述したようにケーシング1内に侵入し、光学系4の要素に付着する。例えば、集光レンズ41の表面に付着する。このダストによって励起光や蛍光が遮られることによるノイズは、前述した通り測定値の比を取ることで除去できる。しかしながら、ダストが蛍光物質であり、且つ発生蛍光の波長が測定波長と範囲が重なっている場合(蛍光用フィルタ44を透過してしまう場合)、検出器3からの出力にそのダスト由来の蛍光が含まれてしまうことになる。
このような光学系4の要素に付着したダストが蛍光物質である場合のノイズは、バックグラウンドノイズと同種のものであり、比を取るだけでは除去できない。したがって、二つの測定を行い、その比を取っているだけでは、この種の測定精度低下は防止できない。
図4は、このようなダスト侵入による測定精度低下が測定値の比を取るだけでは除去できないことを確認した実験の結果を示す図である。図4に結果を示す実験では、同一の蛍光光度計を使用し、前述した試料容器8と同一の構造の容器を試薬容器として使用して測定を行った。試薬容器の第一の収容部に二つの異なる蛍光液相試薬a,bを順次収容し、それぞれについて蛍光強度を測定した。具体的には、蛍光試薬としてTAMRAを使用し、これを異なる濃度で溶液に溶解させたものを液相試薬として用意した。一つは、1ナノモル/リットルであり(液相試薬a)、もう一つは5ナノモル/リットルである(液相試薬b)。実際には、TAMRAをPBS溶液(リン酸緩衝生理食塩水溶液)に溶解して1ナノモル/リットルの濃度とし(液相試薬a)、これを75μリットルの量で第一の収容部81に収容して1回目の測定を行った。次に、第一の収容部の液相試薬試薬をそのままとし、これに、PBS溶液に溶解させて17ナノモル/リットルの濃度としたTAMRAを25μリットル追加して混合した。これにより第一の収容部内に液相試薬bを調製し、この状態で2回目の測定を行った。
尚、実験では、バックグラウンドノイズの量を把握するため、試薬容器を装着しない状態で光源2を点灯させて検出器3の出力を確認し、その値をオフセット値とした。
また、実験では、ダスト侵入の影響を把握するため、ダストを意図的に挿入孔50からケーシング1内に投入し、測定を行った。最初に、ダストを投入しない状態で上記2回の測定(液相試薬a,bについての測定)を行った(第一測定セット)。次に、少量のダストを挿入孔50から投入した上で、同様に2回の測定を行った(第二測定セット)。さらに、ダストを追加した上でさらに2回同様に測定を行った(第三測定セット)。ダストは特別なものではなく、日常的に屋内に存在するものをかき集めて投入した。
図4において、αはオフセット値、Aは試薬溶液aについての測定値、Bは試薬溶液bについての測定値である。各々の測定値からオフセット値を差し引いた値と、最終的に求めた蛍光強度比とが併せて示されている。
液相試薬a,bの組合せにおいて、濃度比は5倍であるので、計算上の蛍光強度比は5倍である。各測定セットにおいて同一の液相試薬a,bの組み合わせが使用されているため、測定結果(蛍光強度比)も同じように5倍程度でなければならないが、図5に示すように、測定結果は不安定に変動している。各回の測定は、時間的に連続して行われているので、光源2の出力変動といった、ダストの意図的な導入以外の変動要因は考えにくい。仮に、各セットの測定のインターバルの間に光源2の出力変動等が生じたとしても、比を取っているので、影響は出ない筈である。また、光学系4へのダストの侵入量が異なるので、バックグラウンドノイズが変動するが、オフセット値として予め測定され、測定値から差し引かれるので、影響は除去される筈であるが、蛍光強度比は変動している。
興味深いのは、ダストを投入し、その量を多くすると、オフセット値が上昇している点である。投入したダストが励起光や蛍光を遮蔽するように作用するだけであれば、オフセット値は変動しない筈である。ダストの投入によってオフセット値が上昇するという事実は、投入したダストが蛍光の発生源として作用していることを端的に示すものと考えられる。
また、第一測定セットと第二測定セットとを比べると、オフセット値は、第二測定セットの方が15.5mV程度大きくなっているのにも拘わらず、測定値A,B(オフセット減算する前の測定値)は、第二測定セットの方が小さい。これは、光学系4に侵入したダストが、蛍光発生源となりつつも、励起光や試薬からの蛍光を遮蔽する作用を多く生じさせているものと考えられる。
その一方、第三測定セットでは、オフセット値はさらに29.0mV程度上昇しており、測定値A,Bは、逆に第二測定セットよりも大きく、第一測定セットよりも大きくなっている。この結果は、光学系4の要素に多くのダストが付着した結果、励起光や試薬からの蛍光を遮蔽する作用よりもダスト自体が蛍光発生源となる作用の方が強くなったことを示していると考えられる。
このように、ケーシング1内にダストが侵入すると、不安定に測定結果が変動する。そして、その変動の影響を除去した測定をすることは困難である。実施形態の蛍光光度計は、このような課題を考慮し、ケーシング1内にダストトラップ9を備えている。
具体的に説明すると、この実施形態では、ダストトラップ9は、容器保持部5の一部として設けられている。図2に示すように、容器保持部5は垂直方向に長い部位である。したがって、容器保持部5の長さ方向は、水平方向に延びる光学系4の光軸Axと垂直に交差している。容器保持部5は、筐体7の下面からさらに下方に延びた部位を有しており、この部位が本実施形態ではダストトラップ9となっている。
図2に示すように、実施形態の蛍光光度計では、励起光の光路はダイクロイックミラー42から水平に延びて測定用開口70を通過し、容器保持部5内の試料容器8の第一の収容部81に達する。また、第一の収容部81内で発生した蛍光の光路は、同じ経路を辿ってダイクロイックミラー42に達し、ダイクロイックミラー42を透過して検出器3に達する。
図2に示すように、ダストトラップ9はこのような光路を外れた位置にあり、また検出器3からは見通せない位置となっている。容器保持部5は、有底筒状の形状であり、その底部がダストトラップ9となっている。光学系4の光路から見ると、ダストトラップ9は、筐体7から下方の突出した部位となっており、上方から落下するダストを受ける凹部状となっている。尚、検出器3からダストトラップ9が見通せないとは、検出器3の受光領域の各点とダストトラップ9の底面の各点とを直線で結んだ際、いずれの直線も筐体7等の部材によって遮蔽されるということである。
また、図3に示すように、試料容器8は左右一対の脚部87を有している。脚部87は、容器の周壁の一部を下方に延長した部位である。試料容器8が容器保持部5に正しく装着された状態では、各脚部87の下端が容器保持部5の底面(ダストトラップ9の底面)に当接した状態となる。即ち、装着状態では、試料容器8は脚部87によってダストトラップ9上に立った状態となる。
また、容器保持部5に試料容器8が正しく装着されると、図3(1)に示すように、光学系4の光軸Axが一対の脚部87の間のちょうど真ん中を貫いて第一の収容部81に達する状態となる。即ち、一対の脚部87は、光源2からの励起光を遮蔽せず、また第一の収容部81内の液相試料からの蛍光を遮蔽しない姿勢となる。
試料容器8がこのような姿勢で保持されるには、周方向の位置が重要である。図1に示すように、容器保持部5はほぼ円形の断面形状であるが、一部に直線状の部分を有する。図3(1)に示すように、試料容器8も側面の一部に平坦面状の部分を有する。平坦面状の部分を容器保持部5の断面直線状の部分に合わせながら試料容器8を挿入孔50から容器保持部5に挿入すると、上記姿勢が達成された状態となる。即ち、容器保持部5の直線状の部分や試料容器8の平坦面状の部分は、このような位置合わせのための部位となっている。
図2において、例えば試料容器8を装着するために開閉蓋12を開けた際、開口11からダストがケーシング1内に侵入したとする。このダストは、容器保持部5内を浮遊しながら落下し、ダストトラップ9に達する。ダストトラップ9は、容器保持部5の下端の部位であり、凹部となっているため、ダストトラップ9に達したダストは、そこからは他の場所に移動しづらい。蛍光光度計の使用回数が進み、試料容器8の取り出し、装着の回数が多くなってダストの侵入量が多くなると、ダストトラップ9内に相当量のダストが溜まる状態となる。
ダストトラップ9は光路から外れた位置にあるため、光源2からの励起光の照射を直接受けることはない。それでも、筐体7内には異常反射や異常屈折等によって迷光となった光源2からの光が僅かに存在し、ダストトラップ9に溜まったダストがこの迷光の照射を受けることがある。この場合、ダストが前述したような蛍光物質である場合、蛍光が発生する。この場合でも、検出器3にとってはダストトラップ9は見通せない位置にあるので、ダストで発生した蛍光の波長が蛍光用フィルタ44を透過できるものであっても、蛍光が検出器3に捉えられることはない。このため、ダストトラップ9内のダストがノイズの発生源となることはない。したがって、ダストが相当量存在する環境下で試料容器8の抜き差しが行われる場合でも、精度低下を招くことなく蛍光測定が行える。
尚、脚部87の長さは、容器保持部5に試料容器8が装着された際、第一の収容部81が光学系4の光軸Ax上に位置するよう、ダストトラップ9の深さや第一の収容部81の高さ等に応じて適宜選定される。第一の収容部81は、脚部87がダストトラップ9の底面に当接することによってダストトラップ9から浮いた(離間した)状態となる。
脚部87が設けられないか又は脚部87が短くて、第一の収容部81の底面がダストトラップ9内に入り込んで底面に当接するような構造でも実施可能であるが、第一の収容部81は少なくとも光学系の光軸Ax上を占める必要がある。このため、第一の収容部がダストトラップ9内に入り込んでしまうと、第一の収容部を不必要に大きくし、液相試料を不必要に多くせざるを得なくなってしまう問題がある。また、第一の収容部81にダストトラップ9内のダストが付着し易くなったり、第一の収容部81がダストトラップ9内のダストを舞い上げてしまったりする問題も生じる。このような問題を未然に防止する意義を、脚部87は有している。
次に、第二の実施形態の蛍光光度計について説明する。
図5は、第二の実施形態の蛍光光度計の正面断面概略図である。第二の実施形態の蛍光光度計は、ダストトラップ9の構造や配置位置が第一の実施形態と異なっている。この実施形態のダストトラップ9は、ケーシング1から取り出し可能な状態で設けられている。
具体的に説明すると、ケーシング1には、開閉蓋12で開閉される開口11とは別に取り出し口が設けられている。取り出し口は、容器保持部5の長さ方向の延長上の位置にある。ケーシング1を垂直な姿勢とした場合、取り出し口は、開閉蓋12で開閉される開口11の直下の位置となる。図5に示すように、容器保持部6は、取り出し口付近の位置まで長さが延長されている。
ダストトラップ9は、この実施形態では、取り出し口を塞ぐキャップ状の部材となっている。ダストトラップ9は、凹部をケーシングの内部側(上側)に向けた姿勢で取り出し口に嵌め込まれるようになっている。図6から解るように、ダストトラップ9は、容器保持部5内の空間を浮遊して落下してきたダストを受けるものとなっている。尚、この実施形態でも、ダストトラップ9は光学系4の光路を外れた位置にあり、且つ検出器3からは見通せない位置にある。
尚、容器保持部5は、測定用開口70より少し下方の位置に突起51を有している。突起は、容器保持部5の内面に沿って周状に延びている。図5に示すように、試料容器8は、突起51の上に載ることで容器保持部5に保持される。
この実施形態においても、試料容器8の着脱のために開閉蓋12が開けられた際に開口11からケーシング1内にダストが侵入しても、ダストトラップ9に達して留まるため、光学系4の要素に付着することがない。このため、ダストが蛍光物質であったとしても、バックグラウンドノイズの発生源となることがなく、測定精度の低下を招くことはない。
また、ダストトラップ9は、取り出し口から取り外すことができ、凹部に溜まったダストをケーシング1から取り出すことができる。このため、ダストがダストトラップ9に大量に溜まってしまって問題(ダストの舞い上がり等)を生じる前にダストを取り除くことができる。
また、第二の実施形態は、試料容器8がダストトラップ9上に立って配置される構造ではない。このため、ダストトラップ9に相当量のダストが溜まっている場合でも、試料容器8の装着や取り外しの際に試料容器8がダストを舞い上げてしまうことが少ない。
尚、容器保持部5が試料容器8を保持する構造としては、試料容器8の上端部分に鍔状の部分を設け、この鍔状の部分が容器保持部5の上端開口の縁に引っ掛かる構造でも良い。
上記各実施形態では、ケーシング1の開口11は開閉蓋12で開閉される構造であったが、開閉蓋12が無く、試料容器が開口11を塞ぐ蓋も兼ねる構造であっても良い。即ち、試料容器の上端部分に、開口11の形状に適合した鍔状の部分を設け、試料容器を容器保持部5に装着すると鍔状の部分が開口11を塞ぐ構造も採用し得る。
1 ケーシング
2 光源
3 検出器
4 光学系
5 容器保持部
6 制御ボックス
7 筐体
8 試料容器
9 ダストトラップ

Claims (6)

  1. 試料が発生させた蛍光の強度を測定する蛍光光度計であって、
    試料が投入された試料容器を保持する容器保持部と、
    容器保持部に保持された試料容器内の試料に励起光を照射する光源と、
    励起光の照射により励起された試料からの蛍光を捉える検出器と、
    光源からの励起光を試料に導き、試料からの蛍光を検出器に導く光学系と、
    容器保持部、光源、検出器及び光学系が内部に配置されたケーシングと
    を備えており、
    ケーシングには、試料容器を容器保持部に装着するための開口が形成されており、
    ケーシング内には、開口からケーシング内に侵入したダストが溜まる凹部状のダストトラップが設けられており、ダストトラップは、検出器から見通せない位置に配置されていることを特徴とする蛍光光度計。
  2. 前記試料容器は細長い形状のものであって、前記容器保持部は、前記試料容器の試料を収容した箇所が前記光学系の光軸上の位置になるように前記試料容器を保持するものであるとともに、前記容器保持部は、前記試料容器の長さ方向が前記光学系の光軸に対して交差する姿勢で前記試料容器を保持するものであり、
    前記ダストトラップは、前記容器保持部のうち前記光学系の光路を外れた位置に位置する部位であることを特徴とする請求項1記載の蛍光光度計。
  3. 前記ダストトラップは、前記ケーシングから取り出し可能な状態で設けられており、前記ケーシングには前記ダストトラップを取り出すための取り出し口が形成されていることを特徴とする請求項1又は2記載の蛍光光度計。
  4. 前記検出器から出力される測定値を処理する演算処理部が設けられており、演算処理部は、二つの測定値の比を算出して測定結果とすることが可能なものであることを特徴とする請求項1乃至3いずれかに記載の蛍光光度計。
  5. 前記ケーシングは人が手で持てる程度の大きさであって、携帯型であることを特徴とする請求項1乃至4いずれかに記載の蛍光光度計。
  6. 請求項2に記載の蛍光光度計に使用される試料容器であって、試料が内部に収容される収容部と、前記容器保持部に保持された際に前記ダストトラップに当接する脚部が設けられており、脚部は、前記ダストトラップに当接した際、収容部が前記光軸上に位置し且つ前記ダストトラップから離間した位置に位置する長さを有していることを特徴とする蛍光光度計用試料容器。
JP2013013781A 2013-01-28 2013-01-28 蛍光光度計及び蛍光光度計用試料容器 Expired - Fee Related JP6011367B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013013781A JP6011367B2 (ja) 2013-01-28 2013-01-28 蛍光光度計及び蛍光光度計用試料容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013781A JP6011367B2 (ja) 2013-01-28 2013-01-28 蛍光光度計及び蛍光光度計用試料容器

Publications (2)

Publication Number Publication Date
JP2014145633A true JP2014145633A (ja) 2014-08-14
JP6011367B2 JP6011367B2 (ja) 2016-10-19

Family

ID=51425995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013781A Expired - Fee Related JP6011367B2 (ja) 2013-01-28 2013-01-28 蛍光光度計及び蛍光光度計用試料容器

Country Status (1)

Country Link
JP (1) JP6011367B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208466A1 (ja) * 2015-06-22 2016-12-29 ウシオ電機株式会社 検出対象物質の検出方法
CN107389644A (zh) * 2017-08-11 2017-11-24 长春理工大学 一种快速荧光定量装置
JP2020003403A (ja) * 2018-06-29 2020-01-09 アサヒビール株式会社 洗浄度判定装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346541A (ja) * 1989-07-10 1991-02-27 General Atomic Co マイクロピペットに保持される試料の吸光度を決定する方法、並びにマイクロピペットを保持するためのアダプタ
JPH10261129A (ja) * 1997-03-21 1998-09-29 Toshiba Corp 硬貨識別装置
JP2002116148A (ja) * 2000-10-11 2002-04-19 Shimadzu Corp 蛍光式プレート解析装置
JP2005536713A (ja) * 2001-09-25 2005-12-02 テネシー・サイエンティフィック・インコーポレイテッド 液体の特性を試験するための機器および方法
JP2010501851A (ja) * 2006-08-24 2010-01-21 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 小型光学検出システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346541A (ja) * 1989-07-10 1991-02-27 General Atomic Co マイクロピペットに保持される試料の吸光度を決定する方法、並びにマイクロピペットを保持するためのアダプタ
JPH10261129A (ja) * 1997-03-21 1998-09-29 Toshiba Corp 硬貨識別装置
JP2002116148A (ja) * 2000-10-11 2002-04-19 Shimadzu Corp 蛍光式プレート解析装置
JP2005536713A (ja) * 2001-09-25 2005-12-02 テネシー・サイエンティフィック・インコーポレイテッド 液体の特性を試験するための機器および方法
JP2010501851A (ja) * 2006-08-24 2010-01-21 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 小型光学検出システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208466A1 (ja) * 2015-06-22 2016-12-29 ウシオ電機株式会社 検出対象物質の検出方法
CN107389644A (zh) * 2017-08-11 2017-11-24 长春理工大学 一种快速荧光定量装置
JP2020003403A (ja) * 2018-06-29 2020-01-09 アサヒビール株式会社 洗浄度判定装置

Also Published As

Publication number Publication date
JP6011367B2 (ja) 2016-10-19

Similar Documents

Publication Publication Date Title
CN103797352B (zh) 用于检测物质的装置和制造这种装置的方法
US9557268B2 (en) Analyte detector and method
US20040155202A1 (en) Methods and apparatus for molecular species detection, inspection and classification using ultraviolet fluorescence
ATE377752T1 (de) Lesevorrichtung, verfahren und system für lateralfluss-assayteststreifen
JP2006300950A (ja) ラテラルフローアッセイシステム及び方法
CN103140752A (zh) 用于检测蛋白质污染的成像系统和相关联的方法
JP6011367B2 (ja) 蛍光光度計及び蛍光光度計用試料容器
JP5942691B2 (ja) 携帯型蛍光光度計及び携帯型蛍光光度計用試料容器
DE60042990D1 (de) Datenverarbeitungseinrichtung für Röntgenfluoreszenzspektroskopie, welche die Empfindlichkeit des Messgerätes für die chemischen Elemente unabhängig von Messbedingungen berücksichtigt
JP6408354B2 (ja) 検査装置及び生産管理方法
JP6011394B2 (ja) 蛍光光度計
JP6149358B2 (ja) 蛍光測定方法及び蛍光測定キット
JP6467572B2 (ja) レーザによる放射線測定方法及びその装置
US20170234797A1 (en) Method and apparatus for measuring inelastic scattering
JP2018011544A (ja) 微生物検出方法及び微生物検出装置
JP6075087B2 (ja) 蛍光光度計点検方法、点検用試薬容器及び蛍光光度計
JP2014071083A (ja) 蛍光光度計
JP2016191567A (ja) 蛍光検出システム、イムノクロマトグラフィーデバイス、イムノクロマトグラフィー方法、および蛍光検出方法
WO2018103487A1 (zh) 非接触式安全检查系统及方法
WO2018202891A1 (en) Pollen sensor and sensing method
JP5635436B2 (ja) 化学発光測定装置および化学発光測定方法
JP2014071084A (ja) 蛍光光度計及び蛍光測定キット
CN111272725A (zh) 一种基于荧光光谱分析的危险品现场检测仪
EP4206656A1 (en) Method for enhancing a raman contribution in a spectrum, spectroscopy system and non-transitory computer-readable storage medium
CN110455760A (zh) 一种基于dmd的色散型afs光源散射干扰扣除方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R150 Certificate of patent or registration of utility model

Ref document number: 6011367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees