JP2014037622A - Continuously cast rod and forging - Google Patents
Continuously cast rod and forging Download PDFInfo
- Publication number
- JP2014037622A JP2014037622A JP2013140875A JP2013140875A JP2014037622A JP 2014037622 A JP2014037622 A JP 2014037622A JP 2013140875 A JP2013140875 A JP 2013140875A JP 2013140875 A JP2013140875 A JP 2013140875A JP 2014037622 A JP2014037622 A JP 2014037622A
- Authority
- JP
- Japan
- Prior art keywords
- added
- ingot
- heat insulating
- strength
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
- Forging (AREA)
Abstract
Description
本発明は、Al−Si系合金の連続鋳造棒と、これを用いた鍛造品に関する。 The present invention relates to an Al—Si alloy continuous cast bar and a forged product using the same.
Siを12.6%以上含有する過共晶Al−Si系合金は、アルミ合金の基材中に初晶Siの結晶粒が点在しており、その効果による高い耐摩耗性・摺動性・高温強度を示すことから、従来よりピストンやコンプレッサー等に用いられている。しかし従来のDC鋳造法によれば、Siの含有量が増えると初晶Siが大きくなり、加工性が低下する問題がある。 Hypereutectic Al-Si alloys containing 12.6% or more of Si are interspersed with primary Si crystal grains in the base material of the aluminum alloy, resulting in high wear resistance and sliding properties.・ Because it shows high temperature strength, it has been used for pistons and compressors. However, according to the conventional DC casting method, when the Si content is increased, the primary crystal Si is increased, and there is a problem that workability is lowered.
特許文献1には、ホットトップDC鋳造法において、初晶Si微細化剤としてP,Caを添加すること、さらには初晶Si微細化補助剤としてMg,Sr,Baを添加することで、初晶Siを微細化することができ且つ初晶Siが均一に分布した過共晶Al−Si系合金の鋳塊が得られることが開示されている。しかし特許文献1のものでも、10〜20μmの初晶Siができており、そのような大きさの初晶Siであっても鍛造加工性に悪影響をおよぼすおそれがある。 In Patent Document 1, in the hot top DC casting method, P and Ca are added as primary Si refinement agents, and Mg, Sr and Ba are added as primary crystal refinement aids. It is disclosed that an ingot of a hypereutectic Al-Si alloy in which the crystal Si can be refined and the primary crystal Si is uniformly distributed is obtained. However, even the thing of patent document 1 has made primary crystal Si of 10-20 micrometers, and even if it is primary crystal Si of such a magnitude | size, there exists a possibility of having a bad influence on forge processability.
本発明は以上に述べた実情に鑑み、初晶Siの出ない微細な組織のAl−Si系合金の連続鋳造棒と、これを用いた鍛造品を提供することを特徴とする。 In view of the above situation, the present invention is characterized by providing a continuously cast rod of an Al—Si alloy having a fine structure free from primary Si and a forged product using the same.
上記の課題を達成するために請求項1記載の発明による連続鋳造棒は、Siを12〜20wt%、Cuを0.5〜6wt%、Mgを0.1〜6wt%、FeとMnをFe>Mn且つFe+Mn=0.3〜2wt%、TiとZrをTi/Zr=0.06〜1且つTi+Zr≦0.3wt%、Srを0.005〜0.025wt%含有し、残部がAl及び不純物であり、断熱鋳型で製造したことを特徴とする。 In order to achieve the above-mentioned object, the continuous casting rod according to the first aspect of the present invention is characterized in that Si is 12 to 20 wt%, Cu is 0.5 to 6 wt%, Mg is 0.1 to 6 wt%, and Fe and Mn are Fe. > Mn and Fe + Mn = 0.3-2 wt%, Ti and Zr contain Ti / Zr = 0.6-1, Ti + Zr ≦ 0.3 wt%, Sr 0.005-0.025 wt%, the balance being Al and It is an impurity and is characterized by being manufactured with a heat insulating mold.
請求項2記載の発明による連続鋳造棒は、Siを12〜20wt%、Cuを0.5〜4wt%、Mgを0.1〜6wt%、FeとMnをFe>Mn且つFe+Mn=0.3〜2wt%、TiとZrをTi/Zr=0.06〜1且つTi+Zr≦0.3wt%、Caを0.005〜0.02wt%含有し、残部がAl及び不純物であり、断熱鋳型で製造したことを特徴とする。 The continuous cast bar according to the second aspect of the present invention is 12 to 20 wt% Si, 0.5 to 4 wt% Cu, 0.1 to 6 wt% Mg, Fe> Mn Fe> Mn and Fe + Mn = 0.3 ~ 2wt%, Ti and Zr contain Ti / Zr = 0.06 ~ 1, Ti + Zr≤0.3wt%, Ca contains 0.005 ~ 0.02wt%, the balance is Al and impurities, manufactured by heat insulation mold It is characterized by that.
請求項3記載の発明による連続鋳造棒は、Siを12〜20wt%、Cuを0.5〜6wt%、Mgを0.1〜6wt%、FeとMnをFe>Mn且つFe+Mn=0.3〜2wt%、TiとZrをTi/Zr=0.06〜1且つTi+Zr≦0.3wt%、SrとCaをSr+Ca=0.004〜0.03wt%含有し、残部がAl及び不純物であり、断熱鋳型で製造したことを特徴とする。 The continuous cast bar according to the invention of claim 3 is made of Si of 12 to 20 wt%, Cu of 0.5 to 6 wt%, Mg of 0.1 to 6 wt%, Fe and Mn of Fe> Mn and Fe + Mn = 0.3. ~ 2 wt%, Ti and Zr contain Ti / Zr = 0.06 to 1 and Ti + Zr ≤ 0.3 wt%, Sr and Ca contain Sr + Ca = 0.004 to 0.03 wt%, the balance being Al and impurities, It is characterized by being manufactured with a heat insulating mold.
請求項4記載の発明による鍛造品は、請求項1〜3の何れかに記載の連続鋳造棒を熱間または冷間鍛造したことを特徴とする。 A forged product according to a fourth aspect of the invention is characterized in that the continuous cast bar according to any one of the first to third aspects is hot or cold forged.
請求項1記載の発明による連続鋳造棒は、Srを0.005〜0.025wt%含有することによる組織を微細化・安定化する作用と、断熱鋳型で製造したことで冷却速度を早くできることにより、Siを12〜20wt%含有しても初晶Siの出ない微細な組織とすることができる。 The continuous cast bar according to the first aspect of the present invention has the effect of refining and stabilizing the structure by containing 0.005 to 0.025 wt% of Sr, and the cooling rate can be increased by manufacturing with a heat insulating mold. Even if Si is contained in an amount of 12 to 20 wt%, a fine structure free from primary Si can be obtained.
請求項2記載の発明による連続鋳造棒は、Caを0.005〜0.02wt%含有することによる組織を微細化・安定化する作用と、断熱鋳型で製造したことで冷却速度を早くできることにより、Siを12〜20wt%含有しても初晶Siの出ない微細な組織とすることができる。CaはSrよりも安価なため、コストを抑えられる。 The continuous cast bar according to the invention of claim 2 has the effect of refining and stabilizing the structure by containing 0.005 to 0.02 wt% of Ca, and the cooling rate can be increased by manufacturing with a heat insulating mold. Even if Si is contained in an amount of 12 to 20 wt%, a fine structure free from primary Si can be obtained. Since Ca is less expensive than Sr, the cost can be reduced.
請求項3記載の発明による連続鋳造棒は、SrとCaをSr+Ca=0.004〜0.03wt%含有することによる組織を微細化・安定化する作用と、断熱鋳型で製造したことで冷却速度を早くできることにより、Siを12〜20wt%含有しても初晶Siの出ない微細な組織とすることができる。SrとCaを複合添加することで、単独で添加するよりも微細な組織が安定して得られると共に、総量を少なくできる。 The continuous cast bar according to the invention of claim 3 has an effect of refining and stabilizing the structure by containing Sr and Ca of Sr + Ca = 0.004 to 0.03 wt%, and a cooling rate by being manufactured with a heat insulating mold. This makes it possible to form a fine structure in which primary Si does not appear even if Si is contained in an amount of 12 to 20 wt%. By adding Sr and Ca in combination, a fine structure can be stably obtained and the total amount can be reduced as compared with the case of adding Sr and Ca alone.
請求項4記載の鍛造品は、請求項1〜3の何れかに記載の連続鋳造棒を熱間または冷間鍛造したので、初晶Siの出ない微細な組織なため鍛造加工性が良く、精密な鍛造品が安定して得られる。Siを12〜20wt%含有しているので、耐摩耗性や高温強度が高い。 Since the forged product according to claim 4 is hot or cold forged from the continuous cast bar according to any one of claims 1 to 3, forging workability is good because it is a fine structure with no primary crystal Si, Precise forged products can be obtained stably. Since Si is contained in an amount of 12 to 20 wt%, the wear resistance and high temperature strength are high.
以下、本発明の実施の形態を図面に基づいて説明する。本発明の連続鋳造棒は、Siを12〜20wt%含有するいわゆる過共晶Al−Si系合金において、SrとCaの何れか、又はSrとCaの両方を添加することと、断熱鋳型を用いて鋳造することにより、初晶Siの出ない微細な組織としている。さらに本発明の連続鋳造棒は、強度、耐熱性、耐摩耗性、加工性等の特性を得るために、Fe、Cu、Ti、Mn、Mg、Zrが所定量添加される。以下、各元素の作用と含有量等について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The continuous cast bar of the present invention is a so-called hypereutectic Al-Si alloy containing 12 to 20 wt% of Si, using either Sr and Ca, or both Sr and Ca, and using a heat insulating mold As a result of casting, a fine structure with no primary crystal Si is produced. Further, the continuous cast bar of the present invention is added with a predetermined amount of Fe, Cu, Ti, Mn, Mg, Zr in order to obtain properties such as strength, heat resistance, wear resistance, and workability. Hereinafter, the action and content of each element will be described.
Si:12〜20wt%
Siは、低熱膨張性と耐摩耗性の向上に寄与する元素である。しかしながら、多量に添加すると粗大な初晶Siが晶出し、材料の強度や靱性、加工性を低下させることになる。
従って、本発明では充分な効果を得るため、その下限を12wt%とし、充分な靱性及び加工性を確保するため、その上限を20wt%とする。
Si: 12-20 wt%
Si is an element that contributes to the improvement of low thermal expansion and wear resistance. However, if added in a large amount, coarse primary crystal Si is crystallized, and the strength, toughness and workability of the material are lowered.
Accordingly, in the present invention, in order to obtain a sufficient effect, the lower limit is set to 12 wt%, and in order to ensure sufficient toughness and workability, the upper limit is set to 20 wt%.
Cu:0.5〜6wt%、又は0.5〜4wt%(Caのみを添加する場合)
Cuは、Al2Cuの析出により高温強度向上に寄与する元素である。しかしながら、多量に添加すると粗大化合物やポロシティーが生じ、強度や靱性を低下させ、また比重を増加させることにもなる。
従ってCuは、200℃において最低限必要な強度を得るため、その下限を0.5wt%とし、粗大化合物やポロシティーの発生を防止すると共に比重の増加を抑えるため、その上限を6wt%とする。なお、Srを添加しないでCaのみを添加する場合は、Cuが4wt%よりも多いとCa添加による組織を微細化・安定化する効果が発揮されなくなるため、Cuの上限を4wt%とする。
Cu: 0.5 to 6 wt%, or 0.5 to 4 wt% (when adding only Ca)
Cu is an element that contributes to improving high-temperature strength by precipitation of Al 2 Cu. However, when added in a large amount, coarse compounds and porosity are generated, which reduces the strength and toughness and increases the specific gravity.
Therefore, to obtain the minimum required strength at 200 ° C., the lower limit is 0.5 wt%, and in order to prevent the generation of coarse compounds and porosity and to suppress the increase in specific gravity, the upper limit is 6 wt%. . When only Ca is added without adding Sr, if the amount of Cu is more than 4 wt%, the effect of refining and stabilizing the structure due to the addition of Ca will not be exhibited, so the upper limit of Cu is set to 4 wt%.
Mg:0.1〜6wt%
Mgは、Mg2Siの析出により強度向上に寄与する元素であるが、多量に添加すると化合物が粗大化し、強度と靱性を低下させる。よってMgは、強度向上の効果が認められ且つ粗大化合物が生じない範囲として、0.1〜6wt%としている。
Mg: 0.1-6 wt%
Mg is an element that contributes to improving the strength by precipitation of Mg 2 Si, but if added in a large amount, the compound becomes coarse and the strength and toughness are lowered. Therefore, Mg is 0.1 to 6 wt% as a range in which the effect of improving the strength is recognized and no coarse compound is generated.
Fe,Mn:Fe>Mn且つFe+Mn=0.3〜2wt%
Feは、Alとの化合物の析出により高温強度向上に寄与する元素である。単体では、Al−Fe−Si化合物として晶出する。Mnも高温強度を向上させるための元素であり、Feと同時に添加するとAl6(Fe,Mn)化合物を形成する。高温強度にはAl−Fe−Si化合物が効くため、FeをMnよりも多くしている。また、Feを2wt%以上添加すると化合物が粗大化して強度・靱性の低下を招き、0.3wt%以下では高温強度を向上させる効果が十分得られないため、Fe+Mn<0.3〜2wt%としている。
Fe, Mn: Fe> Mn and Fe + Mn = 0.3-2 wt%
Fe is an element that contributes to high temperature strength improvement by precipitation of a compound with Al. A simple substance crystallizes as an Al-Fe-Si compound. Mn is also an element for improving the high temperature strength, and when added simultaneously with Fe, an Al 6 (Fe, Mn) compound is formed. Since the Al—Fe—Si compound works for high-temperature strength, Fe is made more than Mn. Further, if Fe is added in an amount of 2 wt% or more, the compound becomes coarse and the strength and toughness are reduced. If 0.3 wt% or less, the effect of improving the high temperature strength cannot be sufficiently obtained. Yes.
Ti,Zr:Ti/Zr=0.06〜1且つTi+Zr≦0.3wt%
TiとZrは、ともに組織微細化と耐熱性に寄与する元素である。特にZrは鍛造後の強度向上に寄与するため、Zrの添加量をTiよりも多くしている。TiとZrの総量が0.3wt%以上では粗大晶出物が発生するため、Ti+Zr≦0.3wt%としている。
Ti, Zr: Ti / Zr = 0.6-1 and Ti + Zr ≦ 0.3 wt%
Ti and Zr are both elements that contribute to refinement of the structure and heat resistance. In particular, Zr contributes to improving the strength after forging, so the amount of Zr added is larger than that of Ti. When the total amount of Ti and Zr is 0.3 wt% or more, coarse crystals are generated, so Ti + Zr ≦ 0.3 wt%.
Sr:0.005〜0.025wt%
Srは上記のSi等の添加元素の組織を微細化し、組織を安定化する働きがある。Srの含有量が0.005wt%よりも少ないとこの効果が不安定になり、0.025wt%よりも多いとポロシティーが発生するおそれがある。よってSrは0.005〜0.025wt%とした。
Sr: 0.005-0.025 wt%
Sr has a function of refining the structure of the additive element such as Si and stabilizing the structure. When the Sr content is less than 0.005 wt%, this effect becomes unstable, and when it is more than 0.025 wt%, porosity may be generated. Therefore, Sr is set to 0.005 to 0.025 wt%.
Ca:0.005〜0.02wt%
Caは、Srと同様にSi等の添加元素の組織を微細化し、組織を安定化する働きがある。Caの含有量が0.005wt%よりも少ないとこの効果が不安定になり、0.02wt%よりも多いとポロシティーが発生するおそれがある。よってCaは0.005〜0.025wt%とした。
Ca: 0.005-0.02 wt%
Ca, like Sr, has a function of refining the structure of additive elements such as Si and stabilizing the structure. If the Ca content is less than 0.005 wt%, this effect becomes unstable, and if it is more than 0.02 wt%, porosity may be generated. Therefore, Ca was 0.005 to 0.025 wt%.
Sr,Ca:Sr+Ca=0.004〜0.03wt%
CaはSrと比べて安価であるが効果が不安定な場合があり、SrとCaを複合添加することで、Caでは不安定な部分を同じ効果を持つ少量のSrで補い、組織を微細化・安定化する効果を安定して得ることができる。また、SrとCaをそれぞれ単独で添加するよりも、総添加量を少なくすることができる。SrとCaを合わせた量が0.004wt%よりも少ないと効果が不安定で、0.03wt%よりも多いとポロシティーが発生するおそれがあるため、Sr+Ca=0.004〜0.03wt%とした。
Sr, Ca: Sr + Ca = 0.004 to 0.03 wt%
Ca is less expensive than Sr, but the effect may be unstable. By adding Sr and Ca in combination, the unstable part of Ca is supplemented with a small amount of Sr having the same effect, and the structure is refined.・ Stable effects can be obtained. Moreover, the total addition amount can be reduced rather than adding Sr and Ca each independently. If the combined amount of Sr and Ca is less than 0.004 wt%, the effect is unstable, and if it exceeds 0.03 wt%, porosity may occur, so Sr + Ca = 0.004 to 0.03 wt% It was.
Znについて
ADC12Z等のダイカスト用アルミニウム合金は、流通量が多く比較的安価であるが、不純物としてZnを含有しており、Znを含有すると耐食性が低下するなどの不具合が生ずるため、従来は使用していなかった。本発明の連続鋳造棒は、Znを含有してもそのような不具合が生じず、Znを含有しないものと同じように微細な安定した組織になる。そのため、ダイカスト用アルミニウム合金を原料に用いることが可能で、これによりコストダウンを図ることができる。Znの含有量は、限定されるものではないが、おおむね0.8wt%以下が好ましい。
About Zn Aluminum alloys for die casting such as ADC12Z have a large amount of flow and are relatively inexpensive, but contain Zn as an impurity. If Zn is contained, problems such as a decrease in corrosion resistance occur. It wasn't. Even if the continuous cast bar of the present invention contains Zn, such a problem does not occur, and it becomes a fine and stable structure as in the case of containing no Zn. For this reason, an aluminum alloy for die casting can be used as a raw material, thereby reducing costs. The content of Zn is not limited, but is preferably about 0.8 wt% or less.
CuとFeの含有量は、本発明の連続鋳造棒から製作される製品の使用環境に応じて変えることが好ましい。具体的には、200℃以下での強度が必要な場合はCuを5%近くまで添加し、200℃以上での強度が必要な場合はFeを1%近くまで添加することが好ましい。 The contents of Cu and Fe are preferably changed according to the use environment of a product manufactured from the continuous casting rod of the present invention. Specifically, when strength at 200 ° C. or lower is required, Cu is added to nearly 5%, and when strength at 200 ° C. or higher is required, Fe is preferably added to near 1%.
本発明の連続鋳造棒の鋳造に用いる連続鋳造装置の例を図3に示す。この連続鋳造装置は、溶湯を流し込む受湯部1と、受湯部1の下部に設けた上下に貫通した断熱鋳型2を有している。断熱鋳型2の材質としては黒鉛鋳型を用いた。断熱鋳型2の上部側壁には断熱層3を有し、下部側壁の周囲には水冷ジャケット4を設けてある。水冷ジャケット4は、給水口4b、冷却水室4c及び冷却水噴射ノズル4aを有している。冷却水噴射ノズル4aは、断熱鋳型2の外側の下端部2aに向けて冷却水が噴射するようになっており、断熱鋳型2の下端部2aを局部的に冷却するようになっている。また、断熱鋳型2の下端部2aの局部的冷却効果を向上させる観点から、断熱鋳型2の下側の肉厚を上側に比較して薄くしてある。溶湯Mは断熱鋳型2の上部から入り、断熱鋳型2の下端部内側2bで冷却され凝固界面Mcを形成しつつ、断熱鋳型2の下部からビレット等の連続した鋳塊Msとして先端底部を受台6にて受けながら連続鋳造する。
上述のように、断熱鋳型2の外側の下端部2aを局部的に冷却していることで、従来の断熱型連続鋳造法に比較して固液共存温度域の幅dが小さくなる。
断熱鋳型2の下端部2aに噴射した冷却水5は、鋳塊Msの表面に沿って下方向に流水部5aを形成しながら流下する。
An example of a continuous casting apparatus used for casting the continuous casting rod of the present invention is shown in FIG. This continuous casting apparatus has a hot water receiving part 1 for pouring molten metal and a heat insulating mold 2 penetrating vertically in a lower part of the hot water receiving part 1. A graphite mold was used as the material of the heat insulating mold 2. A heat insulating layer 3 is provided on the upper side wall of the heat insulating mold 2, and a water cooling jacket 4 is provided around the lower side wall. The water cooling jacket 4 has a water supply port 4b, a cooling water chamber 4c, and a cooling water injection nozzle 4a. The cooling water injection nozzle 4 a is configured to inject cooling water toward the lower end 2 a outside the heat insulating mold 2, and locally cools the lower end 2 a of the heat insulating mold 2. Further, from the viewpoint of improving the local cooling effect of the lower end portion 2a of the heat insulating mold 2, the thickness on the lower side of the heat insulating mold 2 is made thinner than that on the upper side. Molten metal M enters from the upper part of the heat insulating mold 2 and is cooled by the inner side 2b of the lower end part of the heat insulating mold 2 to form a solidification interface Mc. Continuous casting while receiving at 6.
As described above, by locally cooling the lower end portion 2a outside the heat insulating mold 2, the width d of the solid-liquid coexisting temperature region becomes smaller than that of the conventional heat insulating continuous casting method.
The cooling water 5 sprayed to the lower end portion 2a of the heat insulating mold 2 flows down while forming the flowing water portion 5a along the surface of the ingot Ms.
上述のように断熱鋳型2の下端部2aを冷却水5で局部的に冷却すると共に、鋳塊Msの表面に沿って流下する冷却水(流水部5a)により、鋳塊Msを45〜65℃/sの高い冷却速度で冷却することができる。これによりアルミニウム合金溶湯の凝固が速やかに完了するため、鋳塊表面が平滑になり、また鋳塊内部は固液共存温度域が狭くなるため金属間化合物の成長が抑制され、内部組織が微細で均一なものになる。冷却速度は、鋳塊Msの中心に熱電対7を上方より差し入れ、熱電対7を受台6と同期して下降させ、熱電対7により測定される温度の変化より求められる。冷却速度は、鋳造速度と冷却水の量を適宜調節することで変化させられる。 As described above, the lower end portion 2a of the heat insulating mold 2 is locally cooled with the cooling water 5, and the ingot Ms is cooled to 45 to 65 ° C by the cooling water (running water portion 5a) flowing down along the surface of the ingot Ms. It is possible to cool at a high cooling rate of / s. As a result, the solidification of the molten aluminum alloy is completed quickly, the ingot surface becomes smooth, and the solid-liquid coexistence temperature range becomes narrow inside the ingot, so that the growth of intermetallic compounds is suppressed and the internal structure is fine. It becomes uniform. The cooling rate is obtained from a change in temperature measured by the thermocouple 7 by inserting the thermocouple 7 into the center of the ingot Ms from above, lowering the thermocouple 7 in synchronization with the cradle 6. The cooling rate can be changed by appropriately adjusting the casting rate and the amount of cooling water.
図4は、連続鋳造装置の他の実施形態を示している。図3のものと異なる点を説明すると、水冷ジャケット4は鋳型冷却水噴射ノズル14aと、鋳塊表面冷却水噴射ノズル14bとを上下二段に有しており、鋳型冷却水噴射ノズル14aから噴射した冷却水で鋳型下端部2aを局部的に冷却し、さらに鋳塊表面冷却水噴射ノズル14bから鋳塊Msの表面に向けて冷却水5を噴射している。鋳塊表面冷却水噴射ノズル14bから噴射した冷却水は、断熱鋳型2の下端部2aに噴射した冷却水の流れ5aによる流下水膜を破るように鋳塊Ms表面を冷却し、これにより二次冷却効果が高まり凝固界面近傍の温度勾配を大きくすることができ、鋳型内側下端部Sの冷却能力を一層高められる。 FIG. 4 shows another embodiment of the continuous casting apparatus. Explaining the difference from FIG. 3, the water cooling jacket 4 has a mold cooling water injection nozzle 14 a and an ingot surface cooling water injection nozzle 14 b in two stages, and is injected from the mold cooling water injection nozzle 14 a. The lower end 2a of the mold is locally cooled with the cooled water, and the cooling water 5 is sprayed from the ingot surface cooling water spray nozzle 14b toward the surface of the ingot Ms. The cooling water sprayed from the ingot surface cooling water spray nozzle 14b cools the surface of the ingot Ms so as to break the falling water film formed by the flow 5a of the cooling water sprayed to the lower end 2a of the heat insulating mold 2, thereby secondary The cooling effect is enhanced and the temperature gradient in the vicinity of the solidification interface can be increased, and the cooling ability of the mold inner lower end S can be further enhanced.
鋳型形状としては、図3,4に示したような鋳型内周径が鉛直方向に同じであるストレート型に限定されるものではなく、下側が径の大きいテーパー型でもよく、断面形状も円形のみならず異形断面でもよい。 The mold shape is not limited to the straight type having the same mold inner peripheral diameter in the vertical direction as shown in FIGS. 3 and 4, but the lower side may be a tapered type having a large diameter, and the cross-sectional shape is only circular. Alternatively, an irregular cross section may be used.
上述の連続鋳造装置により、図2の表に示す合金成分の連続鋳造棒を鋳造し、その内部組織の観察、T6室温強度の測定、鍛造試験を行った。
実施例1はCaを添加したものであり、実施例2はSrを添加したものであり、実施例3はSrとCaを複合添加したものであり、実施例4はSrとZnを添加したものである。比較例1は、実施例1〜4と同じように断熱鋳型で鋳造し、SrとCaを何れも添加しないもの、比較例2はDC鋳造法により鋳造し、Srを添加したものである。なおT6室温強度とは、T6処理という熱処理を行い強度を高めた状態にして、引っ張り試験を行ったときの最大強さである。
The above-described continuous casting apparatus was used to cast continuous casting rods of the alloy components shown in the table of FIG. 2, and the internal structure was observed, the T6 room temperature strength was measured, and the forging test was performed.
Example 1 is obtained by adding Ca, Example 2 is obtained by adding Sr, Example 3 is obtained by adding Sr and Ca in combination, and Example 4 is obtained by adding Sr and Zn. It is. Comparative Example 1 was cast with a heat-insulating mold in the same manner as in Examples 1 to 4, and neither Sr nor Ca was added, and Comparative Example 2 was cast by a DC casting method and Sr was added. The T6 room temperature strength is the maximum strength when a tensile test is performed in a state where the strength is increased by performing a heat treatment called T6 treatment.
図1の写真より明らかなように、SrとCaの何れか又は両方を添加した実施例1〜4の組織は、何れも初晶Siの出ない微細な組織になっている。Znを含有する実施例4も、実施例1〜3と同様に初晶Siの出ない微細な組織になっている。実施例1について、晶出物(図中の黒い点々)のサイズを測定したところ、平均値が2μmであった。他の実施例も、実施例1と同じ程度に微細化されている。また実施例1〜4は、ポロシティーの発生もなかった。実施例1,2と実施例3,4とでは鋳塊の径が異なるが(実施例1,2は105mm、実施例3,4は60mm)、本発明によれば鋳塊の径によらず初晶Siの出ない微細な組織が安定して得られる。
一方、比較例1の組織は、実施例1と比較して晶出物が針状で大きくなっており、またポロシティーの発生も見られる。比較例1について、晶出物のサイズを測定したところ、平均値が8μmであった。このように、断熱鋳型で鋳造しても、SrとCaの何れも添加しない場合には、細かい組織が安定的に得られにくい。
比較例2の組織は、20μm程度の初晶Siが分散して晶出しており、また針状の晶出物も見られ、実施例1〜4とは全く異なった組織になっている。このようにSrを添加したとしても、DC鋳造法により鋳造すると、冷却速度が早くないため20μm程度の初晶Siが晶出する。
As is clear from the photograph in FIG. 1, the structures of Examples 1 to 4 to which either or both of Sr and Ca are added are fine structures in which primary Si does not appear. Example 4 containing Zn also has a fine structure in which primary Si does not appear as in Examples 1 to 3. About Example 1, when the size of the crystallization thing (black dots in a figure) was measured, the average value was 2 micrometers. Other embodiments are also miniaturized to the same extent as in the first embodiment. In Examples 1 to 4, no porosity was generated. Examples 1 and 2 and Examples 3 and 4 have different ingot diameters (Examples 1 and 2 are 105 mm, Examples 3 and 4 are 60 mm). A fine structure free from primary Si can be obtained stably.
On the other hand, in the structure of Comparative Example 1, the crystallization product is needle-like and larger as compared with Example 1, and the generation of porosity is also observed. About Comparative Example 1, when the size of the crystallized product was measured, the average value was 8 μm. Thus, even if it casts with a heat insulation mold, when neither Sr nor Ca is added, it is difficult to stably obtain a fine structure.
In the structure of Comparative Example 2, primary crystal Si of about 20 μm is dispersed and crystallized, and a needle-like crystallized product is also observed, which is completely different from Examples 1-4. Even if Sr is added in this way, when cast by the DC casting method, the primary crystal Si of about 20 μm is crystallized because the cooling rate is not fast.
実施例1〜4の連続鋳造棒を鍛造して図5に示す形状のピストン7を製作した。その結果、割れ等の不具合が発生せず、良好な鍛造性を有することを確認した。また実施例1について据え込み鍛造を行ったところ、図6に示すように、72%まで潰しても割れが発生しなかった。
一方、比較例2について据え込み鍛造を行ったところ、60%ちょっとで割れが発生した。このように鍛造性が劣るのは、組織が粗大なためと考えられる。
The piston 7 having the shape shown in FIG. 5 was manufactured by forging the continuous casting rods of Examples 1 to 4. As a result, it was confirmed that defects such as cracks did not occur and the forgeability was good. Further, when upset forging was performed on Example 1, as shown in FIG. 6, no cracking occurred even when crushed to 72%.
On the other hand, when upsetting forging was performed for Comparative Example 2, cracking occurred in a little 60%. The reason why the forgeability is inferior is considered to be due to the coarse structure.
T6室温強度を見ると、実施例2〜4は略同じ程度の高い値を示し、比較例1,2よりも強度が高いことが分る。特にZnを含有する実施例4が一番高い値を示した。このことから、初晶Siがなくても高い強度が得られることが分る。 When T6 room temperature intensity | strength is seen, Example 2-4 shows the high value of the substantially same grade, and it turns out that intensity | strength is higher than the comparative examples 1 and 2. FIG. In particular, Example 4 containing Zn showed the highest value. From this, it can be seen that high strength can be obtained without primary crystal Si.
図7,8は、鋳塊径が176mmと大きい場合に、Srを添加したときとしないときで鋳塊組織にどのような違いが見られるか実験した結果を示している。
図8の写真より明らかなように、Srを添加した実施例5は、Srを添加しない比較例3よりもSi粒子が小さくなっている。Srを添加しない比較例3には、図中の矢印で示すような大きなSi粒子が確認されるが、Srを添加した実施例5にはそのような大きなSi粒子は見られない。
FIGS. 7 and 8 show the results of experiments on what difference is seen in the ingot structure when Sr is added and when Sr is not added when the ingot diameter is as large as 176 mm.
As apparent from the photograph of FIG. 8, Example 5 to which Sr was added had smaller Si particles than Comparative Example 3 to which Sr was not added. In Comparative Example 3 in which Sr is not added, large Si particles as indicated by arrows in the figure are confirmed, but in Example 5 to which Sr is added, such large Si particles are not seen.
図9,10は、Srの量を変化させた場合に、鋳塊組織にどのような違いが見られるか実験した結果を示している。図10の写真より明らかなように、Srを添加しない比較例4と、Srを0.004wt%添加した比較例5では初晶Siが確認され、またSrを0.05wt%添加した比較例6では、ポロシティーが発生した。Srを0.02wt%添加した実施例6では、初晶Siもポロシティーも無い微細な組織になった。以上の結果より、Srの添加量は0.004wt%では少なく、またSrの量が多すぎるとポロシティーが発生することが分かる。鋳塊径60mmと120mmの2種類で実験したが、鋳塊径が異なっても傾向は同じであった。 9 and 10 show the results of an experiment to see what difference is seen in the ingot structure when the amount of Sr is changed. As is apparent from the photograph of FIG. 10, primary Si was confirmed in Comparative Example 4 in which Sr was not added and Comparative Example 5 in which 0.004 wt% Sr was added, and Comparative Example 6 in which 0.05 wt% Sr was added. Then, porosity occurred. In Example 6 in which 0.02 wt% of Sr was added, a fine structure without primary Si and porosity was obtained. From the above results, it can be seen that the amount of Sr added is small at 0.004 wt%, and porosity is generated when the amount of Sr is too large. Although the experiment was conducted with two types of ingot diameters of 60 mm and 120 mm, the tendency was the same even if the ingot diameter was different.
さらに、図11,12,13に示すように、Srの量を0.005〜0.025wt%の範囲内で変化させ、鋳塊組織の観察と引張強さの測定を行った。図12の写真より明らかなように、Srを0.005〜0.025wt%の範囲内で添加した実施例7〜12は、何れも初晶Siもポロシティーも無い微細な組織になった。また、図13のグラフに示すように、Srを0.005〜0.025wt%の範囲内で添加すると、400MPa以上の略一定の高い引張強さを有することが確認された。鋳塊径60mmと120mmの2種類で実験したが、鋳塊径が異なっても傾向は同じであった。 Furthermore, as shown in FIGS. 11, 12, and 13, the amount of Sr was changed within a range of 0.005 to 0.025 wt%, and the ingot structure was observed and the tensile strength was measured. As is clear from the photograph of FIG. 12, Examples 7 to 12 to which Sr was added in the range of 0.005 to 0.025 wt% all had a fine structure with neither primary Si nor porosity. Moreover, as shown in the graph of FIG. 13, when Sr was added in the range of 0.005-0.025 wt%, it was confirmed that it had a substantially constant high tensile strength of 400 MPa or more. Although the experiment was conducted with two types of ingot diameters of 60 mm and 120 mm, the tendency was the same even if the ingot diameter was different.
図14,15は、Caの量を変化させた場合に、鋳塊組織にどのような違いが見られるか実験した結果を示している。図15の写真より明らかなように、Caを0.004wt%添加した比較例7では初晶Siが確認され、またCaを0.025wt%添加した比較例8では、ポロシティーが発生した。Caを0.009wt%添加した実施例13では、初晶Siもポロシティーも無い微細な組織になった。以上の結果より、Caの添加量は0.004wt%では少なく、またCaの量が多すぎるとポロシティーが発生することが分かる。 14 and 15 show the results of an experiment to see what difference is seen in the ingot structure when the amount of Ca is changed. As apparent from the photograph of FIG. 15, primary crystal Si was confirmed in Comparative Example 7 in which 0.004 wt% of Ca was added, and porosity was generated in Comparative Example 8 in which 0.025 wt% of Ca was added. In Example 13 to which 0.009 wt% of Ca was added, a fine structure having neither primary Si nor porosity was obtained. From the above results, it can be seen that the amount of Ca added is small at 0.004 wt%, and porosity is generated when the amount of Ca is too large.
図16,17は、SrとCaを複合添加する場合で、Sr及びCaの量を変化させた場合に、鋳塊組織にどのような違いが見られるか実験した結果を示している。図17の写真より明らかなように、Sr+Ca=0.004〜0.03wt%の範囲内であれば、初晶Siもポロシティーも無い微細な組織が得られることを確認した。 FIGS. 16 and 17 show the results of an experiment on what difference is seen in the ingot structure when the amounts of Sr and Ca are changed when Sr and Ca are added in combination. As is clear from the photograph in FIG. 17, it was confirmed that a fine structure having neither primary Si nor porosity was obtained within the range of Sr + Ca = 0.004 to 0.03 wt%.
以上に述べたように本発明の連続鋳造棒は、SrやCaを添加することによる組織を微細化・安定化する作用と、断熱鋳型で鋳造したことでアルミニウム合金溶湯の凝固が速やかに完了することとがあいまって、初晶Siの出ない微細な組織とすることができる。これにより鍛造等の加工性が著しく向上する。本発明は、鋳塊径が異なっても同じ効果が得られ、鋳塊径150mm以上の大径のものにも有効である。また本発明の連続鋳造棒を鍛造した鍛造品は、SiやCu等の添加物を多く含有することで、強度や耐摩耗性が優れており、しかも初晶Siの無い微細な組織のため加工性も良好であり、ピストンやコンプレッサー等として好適に用いることができる。 As described above, the continuous casting rod of the present invention has the effect of refining and stabilizing the structure by adding Sr and Ca, and the solidification of the molten aluminum alloy is completed quickly by casting with a heat insulating mold. In combination with this, a fine structure free from primary Si can be obtained. Thereby, workability such as forging is remarkably improved. The present invention can obtain the same effect even if the ingot diameter is different, and is also effective for a large diameter ingot diameter of 150 mm or more. In addition, the forged product obtained by forging the continuous cast bar of the present invention contains a large amount of additives such as Si and Cu, so that it has excellent strength and wear resistance and has a fine structure free from primary Si. It has good properties and can be suitably used as a piston, a compressor, or the like.
本発明は以上に述べた実施形態に限定されない。合金成分は、特許請求の範囲に記載した範囲内で適宜変更することができる。また、特許請求の範囲に記載のない成分を含有するものであってもよい。連続鋳造棒の径は、特に限定されない。鍛造品の具体的な形状や用途は任意であり、鍛造加工の方法も特に限定されない。 The present invention is not limited to the embodiments described above. The alloy components can be appropriately changed within the scope described in the claims. Moreover, you may contain the component which is not described in a claim. The diameter of the continuous casting rod is not particularly limited. The specific shape and application of the forged product are arbitrary, and the forging method is not particularly limited.
2 断熱鋳型
7 ピストン(鍛造品)
Ms 鋳塊(連続鋳造棒)
2 Insulation mold 7 Piston (forged product)
Ms ingot (continuous casting rod)
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013140875A JP2014037622A (en) | 2012-07-17 | 2013-07-04 | Continuously cast rod and forging |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012158719 | 2012-07-17 | ||
JP2012158719 | 2012-07-17 | ||
JP2013140875A JP2014037622A (en) | 2012-07-17 | 2013-07-04 | Continuously cast rod and forging |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014037622A true JP2014037622A (en) | 2014-02-27 |
Family
ID=50285968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013140875A Pending JP2014037622A (en) | 2012-07-17 | 2013-07-04 | Continuously cast rod and forging |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014037622A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107779696A (en) * | 2017-11-08 | 2018-03-09 | 河南科技大学 | A kind of multi-element alloyed aluminum alloy materials, cylinder jacket and preparation method thereof |
CN110592440A (en) * | 2019-08-27 | 2019-12-20 | 江苏大学 | Short-process preparation method of high-performance and high-stability Al-Si-Cu series cast aluminum alloy component |
CN111500905A (en) * | 2020-04-30 | 2020-08-07 | 南京航空航天大学 | High-silicon aluminum alloy modified based on selective laser melting nano ceramic |
JP2022014813A (en) * | 2020-07-07 | 2022-01-20 | 昭和電工株式会社 | Method and apparatus for manufacturing ingot |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6439339A (en) * | 1987-08-03 | 1989-02-09 | Kobe Steel Ltd | Wear-resistant aluminum alloy cast rod and its production |
JPH07109537A (en) * | 1993-10-12 | 1995-04-25 | Nippon Light Metal Co Ltd | Hypo-eutectic al-si alloy and casting method therefor |
JPH08134578A (en) * | 1994-11-02 | 1996-05-28 | Nippon Light Metal Co Ltd | Aluminum alloy for die casting, excellent in high temperature strength and toughness, and its production |
US5853508A (en) * | 1996-02-14 | 1998-12-29 | Hoogovens Aluminium Nv | Wear resistant extruded aluminium alloy with a high resistance to corrosion |
JP2000220667A (en) * | 1999-02-01 | 2000-08-08 | Nippon Light Metal Co Ltd | Aluminum-made integrated caliper body and its manufacture |
JP2008018467A (en) * | 2006-07-14 | 2008-01-31 | Toyama Gokin Kk | CONTINUOUS CASTING METHOD OF Al-Si-BASED ALUMINUM ALLOY |
JP2011143471A (en) * | 2009-12-18 | 2011-07-28 | Sankyo Material Inc | CONTINUOUS CASTING METHOD OF Al-Si-BASED ALUMINUM ALLOY |
-
2013
- 2013-07-04 JP JP2013140875A patent/JP2014037622A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6439339A (en) * | 1987-08-03 | 1989-02-09 | Kobe Steel Ltd | Wear-resistant aluminum alloy cast rod and its production |
JPH07109537A (en) * | 1993-10-12 | 1995-04-25 | Nippon Light Metal Co Ltd | Hypo-eutectic al-si alloy and casting method therefor |
JPH08134578A (en) * | 1994-11-02 | 1996-05-28 | Nippon Light Metal Co Ltd | Aluminum alloy for die casting, excellent in high temperature strength and toughness, and its production |
US5853508A (en) * | 1996-02-14 | 1998-12-29 | Hoogovens Aluminium Nv | Wear resistant extruded aluminium alloy with a high resistance to corrosion |
JP2000220667A (en) * | 1999-02-01 | 2000-08-08 | Nippon Light Metal Co Ltd | Aluminum-made integrated caliper body and its manufacture |
JP2008018467A (en) * | 2006-07-14 | 2008-01-31 | Toyama Gokin Kk | CONTINUOUS CASTING METHOD OF Al-Si-BASED ALUMINUM ALLOY |
JP2011143471A (en) * | 2009-12-18 | 2011-07-28 | Sankyo Material Inc | CONTINUOUS CASTING METHOD OF Al-Si-BASED ALUMINUM ALLOY |
Non-Patent Citations (1)
Title |
---|
神尾彰彦: "アルミニウム合金の凝固組織の微細化", 鋳造工学, vol. 第68巻,第12号, JPN6017008667, December 1996 (1996-12-01), JP, pages 1075 - 1083, ISSN: 0003518100 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107779696A (en) * | 2017-11-08 | 2018-03-09 | 河南科技大学 | A kind of multi-element alloyed aluminum alloy materials, cylinder jacket and preparation method thereof |
CN110592440A (en) * | 2019-08-27 | 2019-12-20 | 江苏大学 | Short-process preparation method of high-performance and high-stability Al-Si-Cu series cast aluminum alloy component |
CN111500905A (en) * | 2020-04-30 | 2020-08-07 | 南京航空航天大学 | High-silicon aluminum alloy modified based on selective laser melting nano ceramic |
JP2022014813A (en) * | 2020-07-07 | 2022-01-20 | 昭和電工株式会社 | Method and apparatus for manufacturing ingot |
JP7505302B2 (en) | 2020-07-07 | 2024-06-25 | 株式会社レゾナック | Ingot manufacturing equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4982159B2 (en) | Aluminum alloy billet | |
WO2008016169A1 (en) | Process for production of aluminum alloy formings, aluminum alloy formings and production system | |
JP6495246B2 (en) | Aluminum alloy and die casting method | |
JP2009191367A (en) | Method for producing aluminum-alloy molded product | |
JP5691477B2 (en) | Al-Si alloy and method for producing the same | |
JP2016079419A (en) | Aluminum alloy continuous cast material and manufacturing method therefor | |
JP4907248B2 (en) | Continuous casting method of Al-Si aluminum alloy | |
JP2014037622A (en) | Continuously cast rod and forging | |
JP2005290545A (en) | Method for producing shaped-product of aluminum alloy, shaped-product of aluminum alloy and production system | |
JP6594663B2 (en) | Heat-resistant magnesium casting alloy and its manufacturing method | |
JP5157684B2 (en) | Hypereutectic Al-Si alloy casting method and ingot | |
EP2692883B1 (en) | Mg-al-ca-based master alloy for mg alloys, and a production method therefor | |
JP5689669B2 (en) | Continuous casting method of Al-Si aluminum alloy | |
JP2010000514A (en) | Method for producing magnesium alloy member | |
CN105002409B (en) | A kind of Mg Mn intermediate alloys and preparation method thereof | |
JP5777782B2 (en) | Manufacturing method of extruded aluminum alloy with excellent machinability | |
JP6417133B2 (en) | Aluminum alloy for continuous casting and method for producing continuous cast material | |
JP2023161784A (en) | Aluminum alloy forging and method for manufacturing the same | |
KR102374306B1 (en) | Method for producing radiating fin formed of aluminum alloy | |
JP2004034135A (en) | Aluminum alloy with superior formability in semi-molten state and manufacturing method of its cast ingot | |
US11840748B2 (en) | Aluminum alloy forging | |
JP6017625B2 (en) | Aluminum alloy extruded material with excellent machinability | |
JP7533746B2 (en) | Aluminum alloy forging material, aluminum alloy forging product and manufacturing method thereof | |
JP7533745B2 (en) | Aluminum alloy forging material, aluminum alloy forging product and manufacturing method thereof | |
JP2018070899A (en) | Hypereutectic Al-Mn Aluminum Alloy Casting Material and Method for Producing the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170314 |