Nothing Special   »   [go: up one dir, main page]

JP2014019675A - Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid - Google Patents

Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid Download PDF

Info

Publication number
JP2014019675A
JP2014019675A JP2012161353A JP2012161353A JP2014019675A JP 2014019675 A JP2014019675 A JP 2014019675A JP 2012161353 A JP2012161353 A JP 2012161353A JP 2012161353 A JP2012161353 A JP 2012161353A JP 2014019675 A JP2014019675 A JP 2014019675A
Authority
JP
Japan
Prior art keywords
catalyst
raw material
catalyst layer
temperature
acrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012161353A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Kuragami
竜彦 倉上
Susumu Matsumoto
進 松本
Atsushi Sudo
渥 須藤
Kazuo Shiraishi
一男 白石
Tadashi Hashiba
正 橋場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2012161353A priority Critical patent/JP2014019675A/en
Priority to BR112015000862A priority patent/BR112015000862A2/en
Priority to RU2015105763A priority patent/RU2621715C2/en
Priority to PCT/JP2013/069465 priority patent/WO2014014041A1/en
Priority to TW102125899A priority patent/TW201412696A/en
Publication of JP2014019675A publication Critical patent/JP2014019675A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a safe and stable, high-yield process for producing acrolein, acrylic acid, methacrolein and methacrylic acid, which can, when catalytically oxidizing propylene, isobutylene or the like in a gas phase, avoid a phenomenon where an abnormal reaction is caused by considerable increase in temperature of a catalyst loaded in a reaction tube at an inlet side of a raw material than that at an outlet side of the raw material gas.SOLUTION: There is provided a production process, wherein catalyst and catalyst loading specifications are designed so that a specific condition of 0.5≤Cmax-Ccrs is satisfied, wherein Cmax represents a rate of raw material conversion at which a yield of a desired product becomes maximum; and Ccrs represents a rate of raw material conversion at which, when a maximum temperature of a catalyst layer Zin is denoted by Tin and the maximum temperature of a catalyst layer Zout is denoted by Tout, a magnitude relation of Tin and Tout reverses.

Description

本発明は、プロピレンを分子状酸素または分子状酸素含有ガスにより気相接触酸化しアクロレインおよびアクリル酸を製造する方法、または、イソブチレン、ターシャリーブタノールを分子状酸素または分子状酸素含有ガスにより気相接触酸化してメタクロレインおよびメタクリル酸を製造する方法に関する。   The present invention is a method for producing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with molecular oxygen or a molecular oxygen-containing gas, or isobutylene and tertiary butanol with a molecular oxygen or a molecular oxygen-containing gas in a gas phase. The present invention relates to a method for producing methacrolein and methacrylic acid by catalytic oxidation.

プロピレン、イソブチレン、ターシャリーブタノールを原料にして対応する不飽和アルデヒド、不飽和カルボン酸を製造する方法は工業的に広く実施されているが、触媒層における局所的な高温部分(ホットスポット)の発生が大きな問題となっている。ホットスポットの発生は触媒寿命の短縮、過度の酸化反応による収率の低下、最悪の場合は暴走反応につながるため、ホットスポットを抑制する技術はいくつか提案されている。例えば特許文献1には担持量を変えて活性を調節した触媒を使用すること、触媒の焼成温度を変えて活性を調節した触媒を使用することでホットスポット温度を低下させる技術が開示されている。特許文献2には触媒の見かけ密度の比を変えることで活性を調節した触媒を使用する技術が開示されている。特許文献3には触媒成型体の不活性成分の含有量を変えるとともに、触媒成型体の占有容積、アルカリ金属の種類および/または量、触媒の焼成温度を変えることで活性を調節した触媒を使用する技術が開示されている。特許文献4には触媒成型体の占有容積を変えた反応帯を設け、すくなくとも一つの反応帯に不活性物質を混合する技術が開示されている。特許文献5には触媒の焼成温度を変えることで活性を調節した触媒を使用する技術が開示されている。特許文献6には触媒の占有容積と、焼成温度および/またはアルカリ金属の種類、量を変えることで活性を調節した触媒を使用する技術が開示されている。   The production of corresponding unsaturated aldehydes and unsaturated carboxylic acids from propylene, isobutylene and tertiary butanol as raw materials is widely practiced industrially, but local high temperature portions (hot spots) are generated in the catalyst layer. Is a big problem. Since generation of hot spots leads to shortening of catalyst life, reduction of yield due to excessive oxidation reaction, and in the worst case, runaway reaction, several techniques for suppressing hot spots have been proposed. For example, Patent Document 1 discloses a technique for reducing the hot spot temperature by using a catalyst whose activity is adjusted by changing the loading amount, or by using a catalyst whose activity is adjusted by changing the calcination temperature of the catalyst. . Patent Document 2 discloses a technique of using a catalyst whose activity is adjusted by changing the ratio of the apparent density of the catalyst. Patent Document 3 uses a catalyst whose activity is adjusted by changing the content of the inactive component of the catalyst molded body, changing the occupied volume of the catalyst molded body, the type and / or amount of alkali metal, and the firing temperature of the catalyst. Techniques to do this are disclosed. Patent Document 4 discloses a technique in which a reaction zone in which the occupied volume of a catalyst molded body is changed is provided and an inert substance is mixed in at least one reaction zone. Patent Document 5 discloses a technique of using a catalyst whose activity is adjusted by changing the calcination temperature of the catalyst. Patent Document 6 discloses a technique of using a catalyst whose activity is adjusted by changing the occupied volume of the catalyst and the calcination temperature and / or the type and amount of alkali metal.

日本国特許第3775872号Japanese Patent No. 3775872 日本国特開20042209Japanese Unexamined Patent Publication No. 20004209 日本国特開2001328951Japanese Unexamined Patent Application Publication No. 20011328951 日本国特開2005320315Japanese Laid-Open Patent Publication No. 2005320315 日本国特開平8−3093Japanese Unexamined Patent Publication No. 8-3093 日本国特開2001226302Japanese Patent Laid-Open No. 2001226302

上記手段をもってホットスポットの抑制をはかっても、未だ十分ではなかった。さらには工業プラントにおいて期待した触媒性能、寿命が必ずしも得られないことがあるという問題点があり改善が望まれていた。たとえば、
1)触媒の占有容積を変化させることで、活性を調節した触媒を使用する方法は、ホットスポットの抑制方法として有用な方法であるが、工業プラントには数万本の反応管が存在し、反応管内径が20mmから30mmの内径の場合、誤差がプラスマイナス0.2mm程度生じてしまうことがある。占有容積の小さい触媒であれば、これらの影響は無視できる程度であるが、占有容積の大きい触媒すなわち、触媒粒径が大きい触媒ではその影響は無視できなくなる場合があることが分かった。具体的には充填の際に反応管内でブリッジを形成してしまい、その修正に多大な労力を要すること、充填量、充填密度の変化により圧力損失の差が反応管ごとにばらつきやすくなり、原料ガス流量の偏在を引き起こすこと、その修正にも多大な労力を要することが挙げられる。触媒形状が球状でない場合、この問題がより顕著になることは容易に想像できる。
2)更には、工業プラントでは前述のような反応管径のばらつきのみならず、反応器構造由来の除熱能力のばらつき、水平方向、垂直方向での熱媒温度分布、反応管ごとのガス流速分布が生じてしまうことがあり、全ての反応管内で同一の状態で触媒が使用されるということはほぼありえない。本発明者らが、工業プラントで使用された触媒を分析したところ、原料ガス入口部分の触媒が集中して劣化している反応管や、全体にわたって触媒が緩やかに劣化している反応管、さらに驚くべきことに原料ガス出口部分の触媒が入口部分の触媒よりも劣化している反応管が、見受けられた。これは、原料ガス出口側の触媒層のホットスポット温度が異常に高かった可能性を示唆しており、最悪の場合、暴走反応を引き起こす危険がある。これは、前述した工業プラントにおける反応管径のばらつき、反応器の構造由来の除熱能力のばらつき、水平方向、垂直方向での熱媒温度分布、反応管ごとのガス流速分布により、原料炭化水素の転化率が異なり、温度分布の形状が異なったことが原因と予想され、工業プラントにおいても安全に安定して長期にわたって高い収率を維持できる技術の開発が課題として挙げられた。
Even if the hot spot is suppressed by the above means, it is still not sufficient. Furthermore, there has been a problem that catalyst performance and life expected in an industrial plant may not always be obtained, and improvement has been desired. For example,
1) The method of using a catalyst whose activity is adjusted by changing the occupied volume of the catalyst is a useful method for suppressing hot spots, but there are tens of thousands of reaction tubes in an industrial plant, When the inner diameter of the reaction tube is 20 mm to 30 mm, an error may occur about ± 0.2 mm. In the case of a catalyst with a small occupied volume, these effects are negligible. However, it has been found that the influence may not be negligible with a catalyst with a large occupied volume, that is, a catalyst with a large catalyst particle size. Specifically, a bridge is formed in the reaction tube at the time of filling, which requires a lot of labor to correct it, and the difference in pressure loss tends to vary from reaction tube to reaction tube due to changes in the filling amount and packing density. In other words, the gas flow rate is unevenly distributed, and correction thereof requires a great deal of labor. It can be easily imagined that this problem becomes more prominent when the catalyst shape is not spherical.
2) Furthermore, in industrial plants, not only the variation in reaction tube diameter as described above, but also the variation in heat removal capacity derived from the reactor structure, the heat medium temperature distribution in the horizontal and vertical directions, and the gas flow rate for each reaction tube. Distribution may occur, and it is almost impossible that the catalyst is used in the same state in all reaction tubes. When the present inventors analyzed the catalyst used in the industrial plant, the reaction tube in which the catalyst in the raw material gas inlet portion is concentrated and deteriorated, the reaction tube in which the catalyst is gradually deteriorated over the whole, Surprisingly, a reaction tube was found in which the catalyst at the outlet portion of the raw material gas was deteriorated more than the catalyst at the inlet portion. This suggests that the hot spot temperature of the catalyst layer on the source gas outlet side may be abnormally high, and in the worst case, there is a risk of causing a runaway reaction. This is due to the variation in the reaction tube diameter in the industrial plant mentioned above, the variation in the heat removal capability derived from the reactor structure, the heat medium temperature distribution in the horizontal and vertical directions, and the gas flow velocity distribution in each reaction tube. The conversion rate was different and the shape of the temperature distribution was expected to be the cause, and the development of a technology that can safely and stably maintain a high yield over a long period was cited as an issue in industrial plants.

本発明者らは、工業プラントは触媒が最大収率を出す原料転化率で運転するのが好ましく、多くの反応管はその原料転化率で使用する触媒の使用上限温度を越えないように触媒が選定されるが、前述した工業プラントにおける反応条件の偏差が存在するため、全体の反応器の中にはプロピレン等の原料転化率が小さくなる反応管が存在し原料ガス出口側の触媒層温度Zoutが触媒の使用上限温度を越えることがあり、結果として反応収率の不足、触媒寿命の不足、暴走反応の危険があるという事実を発見し、この解決をはかる方法として、原料ガス流れ方向に複数に形成された触媒層を設けた反応管を用いる方法において、目的生成物の収率が最大になる原料転化率と、最も反応ガス入口側にある触媒層と最も反応ガス出口側にある触媒層の各最高温度の大小関係が逆転する際の原料転化率との関係が、特定の条件を満たすように触媒、触媒充填仕様を設計することで上記課題を解決できることを見いだし、本発明を完成させるに至った。   The inventors of the present invention preferably operate the industrial plant at a raw material conversion rate at which the catalyst yields the maximum yield, and in many reaction tubes, the catalyst is used so that the upper limit temperature of the catalyst used at the raw material conversion rate is not exceeded. Although there are deviations in the reaction conditions in the industrial plant described above, there are reaction tubes in which the raw material conversion rate such as propylene becomes small in the entire reactor, and the catalyst layer temperature Zout on the raw material gas outlet side May exceed the upper limit temperature of the catalyst, resulting in insufficient reaction yield, insufficient catalyst life, and risk of runaway reaction. In the method using the reaction tube provided with the catalyst layer formed in the above, the raw material conversion rate that maximizes the yield of the target product, the catalyst layer closest to the reaction gas inlet, and the catalyst layer closest to the reaction gas outlet To find out that the above problems can be solved by designing the catalyst and catalyst filling specifications so that the relationship with the raw material conversion rate when the magnitude relationship of each maximum temperature is reversed satisfies a specific condition. It came.

すなわち本発明は、
(1)固定床多管型反応器を用いてプロピレン、または、イソブチレンおよびターシャリーブタノールから選ばれる少なくとも1種を、分子状酸素を含有するガスにより気相接触酸化してアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸を製造するにあたり、
A)反応管の原料ガス流れ方向にN分割(Nは2以上の整数)して形成された複数の触媒層を設け、該触媒層のうち最も反応ガス入口側にある触媒層をZin、最も反応ガス出口側にある触媒層をZoutとし、
B)Zoutに充填する触媒の活性がZinに充填する触媒の活性より高くなるように触媒を充填し、以下の式(1)を満足させるようにするアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法、
0.5≦Cmax−Ccrs 式(1)
Cmax:目的生成物の収率が最大になる原料転化率
Ccrs:触媒層Zinの最高温度をTin、触媒層Zoutの最高温度をToutとし、原料転化率を変化させたときにTinとToutの大小関係が逆転するときの原料転化率、
(2)0.5≦Cmax−Ccrs≦10 を満足する(1)記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法、
(3)0.5≦Cmax−Ccrs≦5 を満足する(1)記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法、
(4)Nが3以下で、かつZinに充填する触媒の焼成温度をZoutに充填する触媒の焼成温度よりも高温にし、さらにZinに触媒と不活性物質成型体の混合物を充填する上記(1)〜(3)記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法、
(5)触媒が不活性物質に活性粉末を担持してなる球状担持触媒である上記(1)〜(4)記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法、
(6)各触媒層に充填される触媒の粒径が全層にわたり同一である上記(1)〜(5)のいずれか記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法、
に関する。
That is, the present invention
(1) Acrolein and acrylic acid obtained by gas phase catalytic oxidation of propylene or at least one selected from isobutylene and tertiary butanol with a gas containing molecular oxygen using a fixed bed multitubular reactor, or In producing methacrolein and methacrylic acid,
A) A plurality of catalyst layers formed by N division (N is an integer of 2 or more) in the direction of the raw material gas flow in the reaction tube are provided, and the catalyst layer on the most reaction gas inlet side among the catalyst layers is Zin, The catalyst layer on the reaction gas outlet side is Zout,
B) Acrolein and acrylic acid or methacrolein and methacrylic are charged so that the activity of the catalyst charged in Zout is higher than the activity of the catalyst charged in Zin and satisfies the following formula (1): Acid production method,
0.5 ≦ Cmax−Ccrs Formula (1)
Cmax: Raw material conversion rate at which the yield of the target product is maximized Ccrs: The maximum temperature of the catalyst layer Zin is Tin, the maximum temperature of the catalyst layer Zout is Tout, and the magnitude of Tin and Tout is changed when the raw material conversion rate is changed Raw material conversion rate when relationship is reversed,
(2) The process for producing acrolein and acrylic acid or methacrolein and methacrylic acid according to (1), which satisfies 0.5 ≦ Cmax−Ccrs ≦ 10,
(3) The process for producing acrolein and acrylic acid or methacrolein and methacrylic acid according to (1), which satisfies 0.5 ≦ Cmax−Ccrs ≦ 5,
(4) N is 3 or less, and the firing temperature of the catalyst filled in Zin is set to be higher than the firing temperature of the catalyst filled in Zout, and Zin is filled with the mixture of the catalyst and the inert substance molding (1) ) To (3), acrolein and acrylic acid, or a method for producing methacrolein and methacrylic acid,
(5) The method for producing acrolein and acrylic acid or methacrolein and methacrylic acid according to the above (1) to (4), wherein the catalyst is a spherical supported catalyst obtained by supporting an active powder on an inert substance.
(6) The method for producing acrolein and acrylic acid or methacrolein and methacrylic acid according to any one of the above (1) to (5), wherein the particle size of the catalyst filled in each catalyst layer is the same throughout all layers.
About.

本発明によれば、通常の工業プラントは特別な事情がない限り収率が最も高くなる原料転化率で運転され、多くの反応管に充填された触媒は所望の原料転化率で反応しており、結果として原料ガス入口部分の触媒層ホットスポット温度が原料ガス出口側の触媒のホットスポット温度よりも高い状態にあるものの、工業プラント特有の事象により、原料転化率が低くなる反応管が存在し、結果としてその反応管に充填された触媒の温度は原料ガス出口側のほうが原料ガス入口側よりも相当高くなることで異常反応が発生するという現象を回避することが可能で、安全安定的にアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸を高い収率で製造することが可能になる。
このような現象は、当然のことながら触媒の組成、形状、反応条件などによって生じやすさやその程度が異なる為一概には言えないが、使用する反応管の内径が25mm以上の場合や、原料ガスのプロピレンに対する水のモル比が3.0以下の場合により顕著な課題となる傾向にある。
According to the present invention, a normal industrial plant is operated at a raw material conversion rate that yields the highest yield unless there are special circumstances, and a catalyst packed in many reaction tubes is reacted at a desired raw material conversion rate. As a result, although the catalyst layer hot spot temperature at the source gas inlet portion is higher than the hot spot temperature of the catalyst at the source gas outlet side, there is a reaction tube in which the raw material conversion rate decreases due to an event peculiar to an industrial plant. As a result, the temperature of the catalyst filled in the reaction tube is considerably higher on the source gas outlet side than on the source gas inlet side, so that it is possible to avoid a phenomenon in which an abnormal reaction occurs, and safely and stably. It becomes possible to produce acrolein and acrylic acid or methacrolein and methacrylic acid in high yield.
Such a phenomenon cannot be unequivocally stated because it is likely to occur depending on the composition, shape, reaction conditions, etc. of the catalyst, and the degree thereof. However, when the inner diameter of the reaction tube to be used is 25 mm or more, the raw material gas When the molar ratio of water to propylene is 3.0 or less, the problem tends to become more prominent.

次に本発明を実施するに当たり、好ましい形態を記載する。
本発明の触媒自体は、公知の方法で調製することが出来、例えば下記の一般式で表される。
Next, preferred modes for carrying out the present invention will be described.
The catalyst itself of the present invention can be prepared by a known method, and is represented by the following general formula, for example.

MoBiNiCoFe Mo a Bi b Ni c Co d Fe f X g Y h O x

(式中、Mo、Bi、Ni、Co、Feはそれぞれモリブデン、ビスマス、ニッケル、コバルトおよび鉄を表しXはタングステン、アンチモン、錫、亜鉛、クロム、マンガン、マグネシウム、シリカ、アルミニウム、セリウムおよびチタンから選ばれる少なくとも一種の元素、Yはカリウム、ルビジウム、タリウムおよびセシウムから選ばれる少なくとも一種の元素を意味するものであり、a、b、c、d、f、g、h、xはモリブデン、ビスマス、ニッケル、コバルト、鉄、X、Yおよび酸素の原子数を表し、a=12、b=0.1〜7、好ましくはb=0.5〜4、c+d=0.5〜20、より好ましくはc+d=1〜12、f=0.5〜8、さらに好ましくはf=0.5〜5、g=0〜2、特に好ましくはg=0〜1、h=0.005〜2、最も好ましくはh=0.01〜0.5であり、x=各元素の酸化状態によって決まる値である。) (Wherein Mo, Bi, Ni, Co, and Fe represent molybdenum, bismuth, nickel, cobalt, and iron, respectively, and X represents tungsten, antimony, tin, zinc, chromium, manganese, magnesium, silica, aluminum, cerium, and titanium. At least one element selected, Y means at least one element selected from potassium, rubidium, thallium and cesium; a, b, c, d, f, g, h, x are molybdenum, bismuth, Represents the number of atoms of nickel, cobalt, iron, X, Y and oxygen, a = 12, b = 0.1-7, preferably b = 0.5-4, c + d = 0.5-20, more preferably c + d = 1 to 12, f = 0.5 to 8, more preferably f = 0.5 to 5, g = 0 to 2, particularly preferably g = 0 to 1, h = 0.005 2, most preferably h = 0.01 to 0.5, x = a value determined by the oxidation state of each element.)

ここで、触媒活性成分を含有する粉末は共沈法、噴霧乾燥法など公知の方法で調製され、得られた粉末を好ましくは200〜600℃、より好ましくは300〜500℃で、好ましくは空気または窒素気流中にて焼成し触媒活性成分(以下、予備焼成粉末という)を得ることができる。   Here, the powder containing the catalytically active component is prepared by a known method such as a coprecipitation method or a spray drying method, and the obtained powder is preferably 200 to 600 ° C., more preferably 300 to 500 ° C., preferably air. Alternatively, the catalyst active component (hereinafter referred to as pre-calcined powder) can be obtained by firing in a nitrogen stream.

こうして得られた予備焼成粉末は、このままでも触媒として使用できるが、生産効率、作業性を考慮し成型して本発明の触媒とする。成型物の形状は球状、円柱状、リング状など特に限定されず、触媒の製造効率、機械的強度などを考慮して形状を選択すべきであるが、球状であることが好ましい。成型に際しては、単独の予備焼成粉末を使用し、成型するのが一般的であるが、別々に調製した鉄やコバルト、ニッケル、アルカリ金属などの成分組成が異なる顆粒の予備焼成粉末を任意の割合であらかじめ混合し成型してもよいし、不活性担体上に異種の予備焼成粉末の担持する操作を繰り返して、複層に予備焼成粉末が成型されるような手法を採用してもよい。尚、成型する際には結晶性セルロースなどの成型助剤および/またはセラミックウイスカーなどの強度向上剤を混合することが好ましい。成型助剤および/または強度向上剤の使用量は予備焼成粉末に対しそれぞれ30重量%以下であることが好ましい。また、成型助剤および/または強度向上剤は上記予備焼成粉末と成型前にあらかじめ混合してもよいし、成型機に予備焼成粉末を添加するのと同時または前後に添加してもよい。   The pre-calcined powder thus obtained can be used as a catalyst as it is, but is molded into the catalyst of the present invention in consideration of production efficiency and workability. The shape of the molded product is not particularly limited, such as a spherical shape, a cylindrical shape, or a ring shape. The shape should be selected in consideration of the production efficiency of the catalyst, the mechanical strength, etc., but the spherical shape is preferable. When molding, it is common to use a single pre-baked powder and mold it, but separately prepared pre-baked powder of granules with different component compositions such as iron, cobalt, nickel, alkali metal etc. May be mixed and molded in advance, or a method may be employed in which the precalcined powder is molded into multiple layers by repeating the operation of supporting different types of precalcined powder on the inert carrier. In molding, it is preferable to mix a molding aid such as crystalline cellulose and / or a strength improver such as a ceramic whisker. The amount of the molding aid and / or strength improver used is preferably 30% by weight or less with respect to the pre-fired powder. Further, the molding aid and / or the strength improver may be mixed in advance with the above pre-fired powder before molding, or may be added at the same time as or before or after the pre-fired powder is added to the molding machine.

成型方法に特に制限はないが円柱状、リング状に成型する際には打錠成型機、押し出し成型機などを用いた方法が好ましい。
さらに好ましくは、球状に成型する場合であり、成型機で予備焼成粉末を球形に成型しても良いが、予備焼成粉体(必要により成型助剤、強度向上剤を含む)を不活性なセラミック等の担体に担持させる方法が好ましい。ここで担持方法としては転動造粒法、遠心流動コーティング装置を用いる方法、ウォッシュコート等予備焼成粉末が担体に均一に担持できる方法で有れば特に限定されないが、触媒の製造効率等を考慮した場合、固定円筒容器の底部に、平らな、あるいは凹凸のある円盤を有する装置で、円盤を高速で回転させることにより、容器内に仕込まれた担体を、担体自体の自転運動と公転運動の繰り返しにより激しく撹拌させ、ここに予備焼成粉体並びに必要により、成型助剤及び強度向上剤を添加することにより粉体成分を担体に担持させる方法が好ましい。尚、担持に際して、バインダーを使用するのが好ましい。用いうるバインダーの具体例としては、水やエタノール、メタノール、プロパノール、多価アルコール、高分子系バインダーのポリビニールアルコール、無機系バインダーのシリカゾル水溶液等が挙げられるが、エタノール、メタノール、プロパノール、多価アルコールが好ましく、エチレングリコール等のジオールやグリセリン等のトリオール等が好ましく、グリセリンの濃度5重量%以上の水溶液が好ましい。グリセリン水溶液を適量使用することにより成型性が良好となり、機械的強度の高い、高活性な高性能な触媒が得られる。
これらバインダーの使用量は、予備焼成粉末100重量部に対して通常2〜60重量部であるが、グリセリン水溶液の場合は10〜30重量部が好ましい。担持に際してバインダーは予備焼成粉末と予め混合してあっても、予備焼成粉末を転動造粒機に供給しながら添加してもよい。
不活性担体は、通常2〜15mm程度の径のものを使用し、これに予備焼成粉末を担持させるが、その担持量は触媒使用条件、たとえば空間速度、原料炭化水素濃度を考慮して決定される。
成型した触媒は反応に使用する前に再度焼成する。再度焼成する際の焼成温度は通常450〜650℃、焼成時間は通常3〜30時間、好ましくは4〜15時間であり、使用する反応条件に応じて適宜設定される。このとき原料ガス入口側に設置する触媒の焼成温度は、その組成によらず、ガス出口側の触媒よりも高い温度で焼成することで活性を抑制するのが好ましい。焼成の雰囲気は空気雰囲気、窒素雰囲気などいずれでもかまわないが、工業的には空気雰囲気が好ましい。
Although there is no particular limitation on the molding method, a method using a tableting molding machine, an extrusion molding machine or the like is preferable when molding into a cylindrical shape or a ring shape.
More preferably, it is a case of forming into a spherical shape, and the pre-fired powder may be formed into a spherical shape with a molding machine, but the pre-fired powder (including a molding aid and a strength improver if necessary) is an inert ceramic. A method of supporting it on a carrier such as the like is preferable. Here, the loading method is not particularly limited as long as it is a rolling granulation method, a method using a centrifugal fluidized coating apparatus, or a method in which a pre-fired powder such as wash coat can be uniformly loaded on a carrier, but considering the production efficiency of the catalyst, etc. In this case, the carrier loaded in the container can be rotated and revolved by rotating the disk at a high speed with a device having a flat or uneven disk at the bottom of the fixed cylindrical container. A method in which the powder component is supported on a carrier by repeatedly stirring vigorously and adding a pre-calcined powder and, if necessary, a molding aid and a strength improver is preferable. In addition, it is preferable to use a binder for carrying. Specific examples of the binder that can be used include water, ethanol, methanol, propanol, polyhydric alcohol, polyvinyl alcohol as a polymer binder, silica sol aqueous solution of an inorganic binder, etc., ethanol, methanol, propanol, polyhydric alcohol, etc. Alcohols are preferred, diols such as ethylene glycol and triols such as glycerin are preferred, and aqueous solutions having a glycerin concentration of 5% by weight or more are preferred. By using an appropriate amount of an aqueous glycerin solution, the moldability becomes good, and a highly active high performance catalyst with high mechanical strength can be obtained.
The amount of these binders used is usually 2 to 60 parts by weight with respect to 100 parts by weight of the pre-fired powder. The binder may be pre-mixed with the pre-fired powder during loading, or may be added while supplying the pre-fired powder to the rolling granulator.
An inert carrier having a diameter of about 2 to 15 mm is usually used, and pre-calcined powder is supported on the inert carrier, but the amount supported is determined in consideration of the conditions for using the catalyst, such as space velocity and raw hydrocarbon concentration. The
The molded catalyst is calcined again before use in the reaction. The firing temperature at the time of firing again is usually 450 to 650 ° C., the firing time is usually 3 to 30 hours, preferably 4 to 15 hours, and is appropriately set according to the reaction conditions to be used. At this time, the firing temperature of the catalyst installed on the raw material gas inlet side is preferably controlled by firing at a higher temperature than the catalyst on the gas outlet side, regardless of the composition. The firing atmosphere may be either an air atmosphere or a nitrogen atmosphere, but industrially an air atmosphere is preferred.

こうして得られた触媒は、プロピレンを分子状酸素または分子状酸素含有ガスにより気相接触酸化しアクロレインおよびアクリル酸を製造する工程、または、イソブチレン、ターシャリーブタノールを分子状酸素または分子状酸素含有ガスにより気相接触酸化しメタクロレインおよびメタクリル酸を製造する工程に使用できる。本発明の製造方法において原料ガスの流通方法は、通常の単流通法でもあるいはリサイクル法でもよく、一般に用いられている条件下で実施することができ特に限定されない。たとえば、出発原料物質としてのプロピレン、イソブチレン、ターシャリーブタノールが常温で好ましくは1〜10容量%、より好ましくは4〜9容量%、分子状酸素が好ましくは3〜20容量%、より好ましくは4〜18容量%、水蒸気が好ましくは0〜60容量%、より好ましくは4〜50容量%、二酸化炭素、窒素等の不活性ガスが好ましくは20〜80容量%、より好ましくは30〜60容量%からなる混合ガスを反応管中に充填した本発明の触媒上に、250〜450℃で、常圧〜10気圧の圧力下で、空間速度300〜5000h−1で導入し反応を行う。上記反応は触媒層に単独の一種類の触媒を使用して実施することも可能であるが、本発明の方法では、N(Nは2以上の整数)の分割した触媒層を設置することでホットスポット温度を低下させられる。
そして、本発明の方法においては、
反応管の原料ガス流れ方向に複数に分割して形成された触媒層のうち、最も反応ガス入口側にある触媒層をZin、最も反応ガス出口側にある触媒層をZoutとし、
Zoutに充填する触媒の活性がZinに充填する触媒の活性より高くなるように触媒を充填し、以下の式(1)を満足させるようにする。
0.5≦Cmax−Ccrs 式(1)
Cmax:目的生成物の収率が最大になる原料転化率。
Ccrs:触媒層Zinの最高温度をTin、触媒層Zoutの最高温度をToutとし、原料転化率を変化させたときにTinとToutの大小関係が逆転するときの原料転化率。
式(1)は0.5≦Cmax−Ccrs≦10であることが好ましく、より好ましくは0.5≦Cmax−Ccrs≦5である。
The catalyst thus obtained is a step of producing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with molecular oxygen or a molecular oxygen-containing gas, or isobutylene, tertiary butanol with molecular oxygen or a molecular oxygen-containing gas. Can be used in the step of producing methacrolein and methacrylic acid by gas phase catalytic oxidation. In the production method of the present invention, the flow method of the source gas may be a normal single flow method or a recycle method, and can be carried out under generally used conditions and is not particularly limited. For example, propylene, isobutylene and tertiary butanol as starting materials are preferably 1 to 10% by volume, more preferably 4 to 9% by volume, and molecular oxygen is preferably 3 to 20% by volume, more preferably 4 at room temperature. ~ 18% by volume, water vapor is preferably 0 ~ 60% by volume, more preferably 4 ~ 50% by volume, inert gas such as carbon dioxide and nitrogen is preferably 20 ~ 80% by volume, more preferably 30 ~ 60% by volume The reaction is carried out on a catalyst of the present invention filled with a mixed gas consisting of the following at 250 to 450 ° C. under atmospheric pressure to 10 atm at a space velocity of 300 to 5000 h −1 . The above reaction can be carried out using a single type of catalyst in the catalyst layer, but in the method of the present invention, N (N is an integer of 2 or more) divided catalyst layers are provided. The hot spot temperature can be lowered.
And in the method of the present invention,
Of the catalyst layers formed by dividing the reaction tube in the raw material gas flow direction, the catalyst layer closest to the reaction gas inlet is Zin, the catalyst layer closest to the reaction gas outlet is Zout,
The catalyst is filled so that the activity of the catalyst filling Zout is higher than the activity of the catalyst filling Zin so as to satisfy the following formula (1).
0.5 ≦ Cmax−Ccrs Formula (1)
Cmax: Raw material conversion rate at which the yield of the desired product is maximized.
Ccrs: Raw material conversion rate when the maximum temperature of the catalyst layer Zin is Tin, the maximum temperature of the catalyst layer Zout is Tout, and the magnitude relationship between Tin and Tout is reversed when the raw material conversion rate is changed.
In the formula (1), 0.5 ≦ Cmax−Ccrs ≦ 10 is preferable, and 0.5 ≦ Cmax−Ccrs ≦ 5 is more preferable.

より詳細には、原料ガス入口側の触媒の組成、焼成温度、不活性物質との混合割合、充填長、原料ガス出口側の触媒の組成、焼成温度、充填長を、0.5≦Cmax−Ccrsを満足するように決定する。なお、Cmax−Ccrsは運転の経時時間でも変化するが、本発明の効果を発揮するには少なくとも触媒使用開始から1年間、好ましくは触媒を交換するまでの間0.5≦Cmax−Ccrsを満たすことが好ましい。これは、使用開始直後の触媒は、原料転化率が小さくなることで特にZoutの値が大きくなる傾向にあるためである。また、一般にCmax−Ccrsは経過時間に伴うZinに充填された触媒の劣化により小さくなる傾向がある。そのため、使用する触媒にもよるが反応開始時には0.5よりも大きな値、好ましくは1以上となるように充填仕様を設計することで長期間にわたって本発明の効果を維持することが出来る。上記検討は工業プラントで使用する前にそれと同一条件で試験可能な実験装置にて触媒の充填条件を決定することが好ましく、コンピューターによるシミュレーションを併用することも可能である。
コンピューターによるシミュレーションには、CFD(Computational Fluid Dynamics)を使用するのが一般的である。市販のソフトウエアに使用する触媒の物性値、反応速度定数、反応熱などのデータを入れて計算することで所望の反応条件における原料転化率、アクロレインおよびアクリル酸などの収率、触媒層内の温度分布を計算することが出来る。
工業プラントや、実験装置においてCmaxやCcrsを求めるにあたっては、触媒層の温度分布を10cmより小さい測定幅で熱電対を用いて測定する。10cmよりも大きい測定幅で測定すると、ホットスポットの温度を正確にとらえることが出来なくなることがあり、好ましくない。また、原料ガスの転化率は反応浴温度を意図的に変化させて、各反応浴温度における原料転化率、各原料転化率における有効成分の収率、ホットスポット温度を測定し、グラフ化し、データを内挿することでCmaxやCcrsを求める。反応浴温度は5℃より小さい測定幅で変化させることで、より正確なデータを得ることが出来る。
本発明により、0.5≦Cmax−Ccrsとすることで工業プラントにおける反応器内部の反応温度の偏差、ガス流れ状態の偏差、反応管ごとの差圧偏差があっても、ほぼ全ての反応管において原料ガス出口側の触媒のホットスポット温度(すなわちTout)が異常に高くなることを回避でき、安定安全に運転することが可能になる。またCmax−Ccrs≦5とすることでTinを比較的低い温度に制御することが出来る傾向がある。
上述のように、運転条件によって触媒充填仕様の微妙な調整が求められるが、本発明のように原料ガス入り口側に使用する触媒の調製時の焼成温度をガス出口側に使用する触媒の調製時の焼成温度よりも高くし、不活性物質を用いて希釈することで、比較的容易に充填仕様を変更することが可能となる。
More specifically, the composition of the catalyst on the raw material gas inlet side, the calcination temperature, the mixing ratio with the inert material, the filling length, the composition of the catalyst on the raw material gas outlet side, the calcination temperature, and the filling length are set to 0.5 ≦ Cmax−. Determine to satisfy Ccrs. Note that Cmax-Ccrs varies with the time of operation, but in order to exert the effects of the present invention, 0.5 ≦ Cmax-Ccrs is satisfied for at least one year from the start of use of the catalyst, preferably until the catalyst is replaced. It is preferable. This is because the catalyst immediately after the start of use tends to increase the value of Zout in particular because the raw material conversion rate decreases. In general, Cmax-Ccrs tends to be small due to deterioration of the catalyst filled in Zin with the passage of time. Therefore, although depending on the catalyst used, the effect of the present invention can be maintained over a long period of time by designing the packing specifications so that the value is larger than 0.5, preferably 1 or more at the start of the reaction. In the above examination, it is preferable to determine the packing conditions of the catalyst with an experimental apparatus that can be tested under the same conditions before use in an industrial plant, and it is also possible to use a computer simulation together.
For computer simulation, CFD (Computational Fluid Dynamics) is generally used. Calculate by including data such as physical property values, reaction rate constants, reaction heat, etc. of catalysts used in commercially available software, conversion rate of raw materials under desired reaction conditions, yield of acrolein and acrylic acid, etc. Temperature distribution can be calculated.
In obtaining Cmax and Ccrs in an industrial plant or an experimental apparatus, the temperature distribution of the catalyst layer is measured using a thermocouple with a measurement width smaller than 10 cm. Measurement with a measurement width larger than 10 cm is not preferable because the temperature of the hot spot may not be accurately captured. In addition, the conversion rate of the raw material gas was changed by intentionally changing the reaction bath temperature, and the raw material conversion rate at each reaction bath temperature, the yield of active ingredients at each raw material conversion rate, and the hot spot temperature were measured, graphed, and data Cmax and Ccrs are obtained by interpolating. More accurate data can be obtained by changing the reaction bath temperature with a measurement width smaller than 5 ° C.
According to the present invention, by setting 0.5 ≦ Cmax−Ccrs, almost all reaction tubes can be obtained even if there is a deviation in reaction temperature inside the reactor, a deviation in gas flow state, and a differential pressure deviation in each reaction tube in an industrial plant. Thus, the hot spot temperature (ie, Tout) of the catalyst on the raw material gas outlet side can be prevented from becoming abnormally high, and stable and safe operation can be achieved. Further, by setting Cmax−Ccrs ≦ 5, there is a tendency that Tin can be controlled to a relatively low temperature.
As described above, subtle adjustment of the catalyst filling specifications is required depending on the operating conditions, but as in the present invention, the calcination temperature at the time of preparation of the catalyst used on the raw material gas inlet side is adjusted at the time of preparation of the catalyst used on the gas outlet side. The filling specification can be changed relatively easily by making the temperature higher than the baking temperature and diluting with an inert substance.

以下、実施例をあげて本発明をさらに具体的に説明するが、本発明は実施例に限定されるものではない。
なお、本発明における転化率、選択率および収率はそれぞれ次の通り定義される。
プロピレン転化率(モル%)
=反応したプロピレンのモル数/供給したプロピレンのモル数×100
アクロレイン収率(モル%)
=生成したアクロレインのモル数/供給したプロピレンのモル数×100
アクリル酸収率(モル%)
=生成したアクリル酸のモル数/供給したプロピレンのモル数×100
原料がプロピレンのかわりに、イソブチレンおよび/またはターシャリーブタノールの場合はアクロレインをメタクロレインに、アクリル酸をメタクリル酸に置き換えることができる。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
The conversion, selectivity and yield in the present invention are defined as follows.
Propylene conversion (mol%)
= Number of moles of propylene reacted / number of moles of propylene fed x 100
Acrolein yield (mol%)
= Number of moles of acrolein produced / number of moles of propylene supplied x 100
Acrylic acid yield (mol%)
= Number of moles of acrylic acid produced / number of moles of propylene supplied x 100
When the raw material is isobutylene and / or tertiary butanol instead of propylene, acrolein can be replaced with methacrolein and acrylic acid can be replaced with methacrylic acid.

実施例1
(触媒の調製)
蒸留水3000重量部を加熱攪拌しながらモリブデン酸アンモニウム423.8重量部と硝酸カリウム1.64重量部を溶解して水溶液(A1)を得た。別に、硝酸コバルト302.7重量部、硝酸ニッケル162.9重量部、硝酸第二鉄145.4重量部を蒸留水1000重量部に溶解して水溶液(B1)を、また濃硝酸42重量部を加えて酸性にした蒸留水200重量部に硝酸ビスマス164.9重量部を溶解して水溶液(C1)をそれぞれ調製した。上記水溶液(A1)に(B1)、(C1)を順次、激しく攪拌しながら混合し、生成した懸濁液をスプレードライヤーを用いて乾燥し440℃で6時間焼成し予備焼成粉末(D1)を得た。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=1.7、Ni=2.8、Fe=1.8、Co=5.2、K=0.15であった。
その後予備焼成粉末100重量部に結晶セルロース5重量部を混合した粉末を不活性担体(アルミナ、シリカを主成分とする直径4.5mmの球状物質)に成型後の触媒に対して50重量%を占める割合になるよう20重量%グリセリン水溶液をバインダーとして直径5.2mmの球状に担持成型して担持触媒(E1)を得た。
担持触媒(E1)を、焼成温度530℃で4時間、空気雰囲気下で焼成することで触媒(F1)を得た。
次に、蒸留水3000重量部を加熱攪拌しながらモリブデン酸アンモニウム423.8重量部と硝酸カリウム1.08重量部を溶解して水溶液(A2)を得た。別に、硝酸コバルト302.7重量部、硝酸ニッケル162.9重量部、硝酸第二鉄145.4重量部を蒸留水1000重量部に溶解して水溶液(B2)を、また濃硝酸42重量部を加えて酸性にした蒸留水200重量部に硝酸ビスマス164.9重量部を溶解して水溶液(C2)をそれぞれ調製した。上記水溶液(A2)に(B2)、(C2)を順次、激しく攪拌しながら混合し、生成した懸濁液をスプレードライヤーを用いて乾燥し440℃で6時間焼成し予備焼成粉末(D2)を得た。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=1.7、Ni=2.8、Fe=1.8、Co=5.2、K=0.10であった。
その後予備焼成粉末100重量部に結晶セルロース5重量部を混合した粉末を不活性担体(アルミナ、シリカを主成分とする直径4.5mmの球状物質)に成型後の触媒に対して50重量%を占める割合になるよう20重量%グリセリン水溶液をバインダーとして直径5.2mmの球状に担持成型して担持触媒(E2)を得た。
担持触媒(E2)を、530℃で4時間焼成して触媒(F2)を得た。担持触媒(E2)を510℃で4時間焼成して触媒(F3)を得た。
Example 1
(Preparation of catalyst)
While heating and stirring 3000 parts by weight of distilled water, 423.8 parts by weight of ammonium molybdate and 1.64 parts by weight of potassium nitrate were dissolved to obtain an aqueous solution (A1). Separately, 302.7 parts by weight of cobalt nitrate, 162.9 parts by weight of nickel nitrate, and 145.4 parts by weight of ferric nitrate are dissolved in 1000 parts by weight of distilled water to prepare an aqueous solution (B1), and 42 parts by weight of concentrated nitric acid. In addition, 164.9 parts by weight of bismuth nitrate was dissolved in 200 parts by weight of distilled water acidified to prepare aqueous solutions (C1). (B1) and (C1) are sequentially mixed with the aqueous solution (A1) with vigorous stirring, and the resulting suspension is dried using a spray dryer and calcined at 440 ° C. for 6 hours to obtain a pre-calcined powder (D1). Obtained. At this time, the composition ratio of the catalytically active component excluding oxygen is Mo = 12, Bi = 1.7, Ni = 2.8, Fe = 1.8, Co = 5.2, K = 0.15 in atomic ratio. Met.
Thereafter, a powder obtained by mixing 5 parts by weight of crystalline cellulose with 100 parts by weight of the pre-fired powder is formed into an inert carrier (a spherical substance having a diameter of 4.5 mm mainly composed of alumina and silica), and 50% by weight based on the catalyst after molding. A supported catalyst (E1) was obtained by supporting and molding into a spherical shape having a diameter of 5.2 mm using a 20% by weight glycerin aqueous solution as a binder so as to be occupied.
The supported catalyst (E1) was calcined in an air atmosphere at a calcining temperature of 530 ° C. for 4 hours to obtain a catalyst (F1).
Next, while heating and stirring 3000 parts by weight of distilled water, 423.8 parts by weight of ammonium molybdate and 1.08 parts by weight of potassium nitrate were dissolved to obtain an aqueous solution (A2). Separately, 302.7 parts by weight of cobalt nitrate, 162.9 parts by weight of nickel nitrate, and 145.4 parts by weight of ferric nitrate are dissolved in 1000 parts by weight of distilled water to prepare an aqueous solution (B2), and 42 parts by weight of concentrated nitric acid. In addition, 164.9 parts by weight of bismuth nitrate was dissolved in 200 parts by weight of distilled water acidified to prepare aqueous solutions (C2). (B2) and (C2) are mixed with the above aqueous solution (A2) successively with vigorous stirring, and the resulting suspension is dried using a spray dryer and calcined at 440 ° C. for 6 hours to obtain a pre-calcined powder (D2). Obtained. At this time, the composition ratio of the catalytically active component excluding oxygen is Mo = 12, Bi = 1.7, Ni = 2.8, Fe = 1.8, Co = 5.2, K = 0.10 in atomic ratio. Met.
Thereafter, a powder obtained by mixing 5 parts by weight of crystalline cellulose with 100 parts by weight of the pre-fired powder is formed into an inert carrier (a spherical substance having a diameter of 4.5 mm mainly composed of alumina and silica), and 50% by weight based on the catalyst after molding. A supported catalyst (E2) was obtained by supporting and molding into a spherical shape having a diameter of 5.2 mm using a 20% by weight glycerin aqueous solution as a binder so as to be occupied.
The supported catalyst (E2) was calcined at 530 ° C. for 4 hours to obtain a catalyst (F2). The supported catalyst (E2) was calcined at 510 ° C. for 4 hours to obtain a catalyst (F3).

(酸化反応試験)
熱媒体として溶融塩を循環させるためのジャケット及び触媒層温度を測定するための熱電対を管軸に設置した、内径25.4mmのステンレス製反応器の原料ガス入口側から直径5.2mmのシリカ―アルミナ球を20cm、酸化触媒層第一層(原料ガス入口側)として酸化触媒(F1)と直径5.2mmのシリカ−アルミナ混合物不活性担体を重量比4:1で混合した希釈触媒100cm、酸化触媒第二層(ガス出口側)として酸化触媒(F3)を250cmの順で充填し、反応浴温度を330℃にした。ここに原料モル比がプロピレン:酸素:窒素:水=1:1.7:8.8:1となるようにプロピレン、空気、窒素、水の供給量を設定したガスを空間速度1500h−1で酸化反応器内へ導入し、反応器出口圧力を70kPaGとして反応開始後200時間経過したとき、反応浴温度2℃刻みで変化させて、原料転化率、アクロレイン、アクリル酸収率、ホットスポット温度を測定する試験(以降反応温度変化試験という)を実施したところ原料転化率97.8%、でアクロレインとアクリル酸の収率の合計が最大91.8%となった。このときの反応浴温度は330℃でガス入口側の触媒層のホットスポット温度は434℃で、ガス出口側の触媒層のホットスポット温度は378℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率95.5%のときに逆転した。すなわち、Cmax−Ccrs=2.3であった。反応浴温度320℃ではプロピレン転化率93%となったが、ガス入口側の触媒層のホットスポット温度は352℃、ガス出口側の触媒層のホットスポット温度は401℃であった。このように、プロピレン転化率が大きく低下した場合でもガス出口側の触媒層のホットスポット温度が極端に高くなることが無く、長期にわたって安定した運転が可能であることが示唆された。
(Oxidation reaction test)
Silica having a diameter of 5.2 mm from the raw material gas inlet side of a stainless steel reactor having an inner diameter of 25.4 mm, in which a jacket for circulating the molten salt as a heat medium and a thermocouple for measuring the catalyst layer temperature are installed on the tube axis -20 cm of alumina spheres, 100 cm of a diluted catalyst in which the oxidation catalyst (F1) and a silica-alumina mixture inert carrier having a diameter of 5.2 mm were mixed at a weight ratio of 4: 1 as the first oxidation catalyst layer (raw material gas inlet side), The oxidation catalyst (F3) was filled in the order of 250 cm as the oxidation catalyst second layer (gas outlet side), and the reaction bath temperature was set to 330 ° C. Here, a gas in which the supply amounts of propylene, air, nitrogen and water are set so that the raw material molar ratio is propylene: oxygen: nitrogen: water = 1: 1.7: 8.8: 1 at a space velocity of 1500 h −1 . When introduced into the oxidation reactor and the reactor outlet pressure is 70 kPaG and 200 hours have elapsed after the start of the reaction, the reaction bath temperature is changed in increments of 2 ° C., and the raw material conversion, acrolein, acrylic acid yield, and hot spot temperature are changed. When a test to be measured (hereinafter referred to as reaction temperature change test) was carried out, the raw material conversion was 97.8%, and the total yield of acrolein and acrylic acid was 91.8% at the maximum. At this time, the reaction bath temperature was 330 ° C., the hot spot temperature of the catalyst layer on the gas inlet side was 434 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 378 ° C. The magnitude relationship between these two hot spot temperatures was reversed when the raw material conversion rate was 95.5%. That is, Cmax−Ccrs = 2.3. The propylene conversion was 93% at a reaction bath temperature of 320 ° C., but the hot spot temperature of the catalyst layer on the gas inlet side was 352 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 401 ° C. Thus, it was suggested that even when the propylene conversion rate greatly decreased, the hot spot temperature of the catalyst layer on the gas outlet side did not become extremely high, and stable operation was possible for a long period of time.

実施例2
実施例1の酸化反応条件において原料ガス入口部分に充填する触媒をF2と直径5.2mmのシリカ−アルミナ混合物不活性担体を重量比4:1で混合した希釈触媒120cmとし、原料ガス出口部分に充填する触媒をF3触媒230cmとしたこと以外は実施例1と同様の方法でプロピレンの酸化反応を実施した。
反応温度変化試験を実施したところ原料転化率97.2%、でアクロレインとアクリル酸の収率の合計が最大92.1%となった。このときの反応浴温度は332℃でガス入口側の触媒層のホットスポット温度は431℃で、ガス出口側の触媒層のホットスポット温度は372℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率95.1%のときに逆転した。すなわち、Cmax−Ccrs=2.1であった。反応浴温度322℃ではプロピレン転化率93%となったが、ガス入口側の触媒層のホットスポット温度は353℃、ガス出口側の触媒層のホットスポット温度は398℃であった。このように、プロピレン転化率が大きく低下した場合でもガス出口側の触媒層のホットスポット温度が極端に高くなることが無く、長期にわたって安定した運転が可能であることが示唆された。
Example 2
The catalyst charged in the raw material gas inlet portion under the oxidation reaction conditions of Example 1 is a diluted catalyst of 120 cm in which F2 and a silica-alumina mixture inert carrier having a diameter of 5.2 mm are mixed at a weight ratio of 4: 1. The propylene oxidation reaction was carried out in the same manner as in Example 1 except that the catalyst to be filled was 230 cm of F3 catalyst.
When the reaction temperature change test was conducted, the raw material conversion was 97.2%, and the total yield of acrolein and acrylic acid was 92.1% at the maximum. At this time, the reaction bath temperature was 332 ° C., the hot spot temperature of the catalyst layer on the gas inlet side was 431 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 372 ° C. The magnitude relationship between these two hot spot temperatures was reversed when the raw material conversion rate was 95.1%. That is, Cmax−Ccrs = 2.1. The propylene conversion was 93% at a reaction bath temperature of 322 ° C., but the hot spot temperature of the catalyst layer on the gas inlet side was 353 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 398 ° C. Thus, it was suggested that even when the propylene conversion rate greatly decreased, the hot spot temperature of the catalyst layer on the gas outlet side did not become extremely high, and stable operation was possible for a long period of time.

実施例3
実施例2において、原料モル比がプロピレン:酸素:窒素:水=1:1.8:10:1.5となるようにプロピレン、空気、窒素、水の供給量を設定したガスを空間速度1500h−1で酸化反応器内へ導入し、反応器出口圧力を55kPaGとしたこと以外は実施例2と同様に試験したところ原料転化率97.9%、でアクロレインとアクリル酸の収率の合計が最大92.3%となった。このときの反応浴温度は330℃でガス入口側の触媒層のホットスポット温度は424℃で、ガス出口側の触媒層のホットスポット温度は370℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率96.2%のときに逆転した。すなわち、Cmax−Ccrs=1.7であった。反応浴温度318℃ではプロピレン転化率95%となったが、ガス入口側の触媒層のホットスポット温度は348℃、ガス出口側の触媒層のホットスポット温度は410℃であった。このように、プロピレン転化率が大きく低下した場合でもガス出口側の触媒層のホットスポット温度が極端に高くなることが無く、長期にわたって安定した運転が可能であることが示唆された。
Example 3
In Example 2, a gas having a feed rate of propylene, air, nitrogen, and water so that the raw material molar ratio is propylene: oxygen: nitrogen: water = 1: 1.8: 10: 1.5 is a space velocity of 1500 h. -1 was introduced into the oxidation reactor and tested in the same manner as in Example 2 except that the reactor outlet pressure was 55 kPaG. The raw material conversion was 97.9%, and the total yield of acrolein and acrylic acid was The maximum was 92.3%. At this time, the reaction bath temperature was 330 ° C., the hot spot temperature of the catalyst layer on the gas inlet side was 424 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 370 ° C. The magnitude relationship between these two hot spot temperatures was reversed when the raw material conversion rate was 96.2%. That is, Cmax−Ccrs = 1.7. The propylene conversion was 95% at a reaction bath temperature of 318 ° C., but the hot spot temperature of the catalyst layer on the gas inlet side was 348 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 410 ° C. Thus, it was suggested that even when the propylene conversion rate greatly decreased, the hot spot temperature of the catalyst layer on the gas outlet side did not become extremely high, and stable operation was possible for a long period of time.

実施例4
実施例3において、空間速度を1715h−1で酸化反応器内へ導入し、反応器出口圧力を70kPaGとしたこと以外は実施例3と同様に試験したところ原料転化率97.8%、でアクロレインとアクリル酸の収率の合計が最大91.6%となった。このときの反応浴温度は332℃でガス入口側の触媒層のホットスポット温度は429℃で、ガス出口側の触媒層のホットスポット温度は371℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率96.1%のときに逆転した。すなわち、Cmax−Ccrs=1.7であった。反応浴温度319℃ではプロピレン転化率95%となったが、ガス入口側の触媒層のホットスポット温度は350℃、ガス出口側の触媒層のホットスポット温度は414℃であった。このように、プロピレン転化率が大きく低下した場合でもガス出口側の触媒層のホットスポット温度が極端に高くなることが無く、長期にわたって安定した運転が可能であることが示唆された。
Example 4
In Example 3, when the space velocity was introduced into the oxidation reactor at 1715 h −1 and the reactor outlet pressure was set to 70 kPaG, a test was conducted in the same manner as in Example 3 to find that the raw material conversion was 97.8% and that acrolein was used. And the total yield of acrylic acid was 91.6% at maximum. At this time, the reaction bath temperature was 332 ° C., the hot spot temperature of the catalyst layer on the gas inlet side was 429 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 371 ° C. The magnitude relationship between these two hot spot temperatures was reversed when the raw material conversion rate was 96.1%. That is, Cmax−Ccrs = 1.7. The propylene conversion was 95% at a reaction bath temperature of 319 ° C., but the hot spot temperature of the catalyst layer on the gas inlet side was 350 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 414 ° C. Thus, it was suggested that even when the propylene conversion rate greatly decreased, the hot spot temperature of the catalyst layer on the gas outlet side did not become extremely high, and stable operation was possible for a long period of time.

実施例5
実施例2において、原料モル比がプロピレン:酸素:窒素:水=1:1.9:12:1となるようにプロピレン、空気、窒素、水の供給量を設定したガスを空間速度2000h−1で酸化反応器内へ導入し、反応器出口圧力を65kPaGとし、アクロレインを目的生成物としたこと以外は実施例2と同様に試験したところ原料転化率96.5%、でアクロレイン収率が最大85.2%となった。このときの反応浴温度は334℃でガス入口側の触媒層のホットスポット温度は420℃で、ガス出口側の触媒層のホットスポット温度は385℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率95.5%のときに逆転した。すなわち、Cmax−Ccrs=1.0であった。反応浴温度326℃ではプロピレン転化率94%となったが、ガス入口側の触媒層のホットスポット温度は347℃、ガス出口側の触媒層のホットスポット温度は415℃であった。このように、プロピレン転化率が大きく低下した場合でもガス出口側の触媒層のホットスポット温度が極端に高くなることが無く、長期にわたって安定した運転が可能であることが示唆された。
Example 5
In Example 2, a gas having a feed rate of propylene, air, nitrogen, and water so that the raw material molar ratio is propylene: oxygen: nitrogen: water = 1: 1.9: 12: 1 is a space velocity of 2000 h −1. Was introduced into the oxidation reactor, the reactor outlet pressure was 65 kPaG, and acrolein was used as the target product, and the test was conducted in the same manner as in Example 2. As a result, the raw material conversion was 96.5% and the acrolein yield was the highest. It became 85.2%. At this time, the reaction bath temperature was 334 ° C., the hot spot temperature of the catalyst layer on the gas inlet side was 420 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 385 ° C. The magnitude relationship between these two hot spot temperatures was reversed when the raw material conversion rate was 95.5%. That is, Cmax−Ccrs = 1.0. The propylene conversion was 94% at a reaction bath temperature of 326 ° C., but the hot spot temperature of the catalyst layer on the gas inlet side was 347 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 415 ° C. Thus, it was suggested that even when the propylene conversion rate greatly decreased, the hot spot temperature of the catalyst layer on the gas outlet side did not become extremely high, and stable operation was possible for a long period of time.

実施例6
熱媒体として溶融塩を循環させるためのジャケット及び触媒層温度を測定するための熱電対を管軸に設置した、内径27.2mmのステンレス製反応器の原料ガス入口側から直径5.2mmのシリカ―アルミナ球を20cm、酸化触媒層第一層(原料ガス入口側)として酸化触媒(F1)と直径5.2mmのシリカ−アルミナ混合物不活性担体を重量比3:1で混合した希釈触媒100cm、酸化触媒第二層(ガス出口側)として酸化触媒(F3)を210cmの順で充填し、反応浴温度を325℃にした。ここに原料モル比がプロピレン:酸素:窒素:水=1:1.7:8.8:1となるようにプロピレン、空気、窒素、水の供給量を設定したガスを空間速度1250h−1で酸化反応器内へ導入し、反応器出口圧力を50kPaGとして反応開始後200時間経過したとき、反応浴温度を2℃刻みで変化させて反応温度変化試験を実施したところ原料転化率97.8%、でアクロレインとアクリル酸の収率の合計が最大91.5%となった。このときの反応浴温度は322℃でガス入口側の触媒層のホットスポット温度は424℃で、ガス出口側の触媒層のホットスポット温度は373℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率96.6%のときに逆転した。すなわち、Cmax−Ccrs=1.2であった。反応浴温度310℃ではプロピレン転化率92%となったが、ガス入口側の触媒層のホットスポット温度は330℃、ガス出口側の触媒層のホットスポット温度は400℃であった。このように、プロピレン転化率が大きく低下した場合でもガス出口側の触媒層のホットスポット温度が極端に高くなることが無く、長期にわたって安定した運転が可能であることが示唆された。
Example 6
Silica having a diameter of 5.2 mm from the raw material gas inlet side of a stainless steel reactor having an inner diameter of 27.2 mm, in which a jacket for circulating the molten salt as a heat medium and a thermocouple for measuring the catalyst layer temperature are installed on the tube axis -20 cm of alumina spheres, 100 cm of a diluted catalyst obtained by mixing the oxidation catalyst (F1) and a silica-alumina mixture inert carrier having a diameter of 5.2 mm at a weight ratio of 3: 1 as an oxidation catalyst layer first layer (source gas inlet side), The oxidation catalyst (F3) was packed in the order of 210 cm as the oxidation catalyst second layer (gas outlet side), and the reaction bath temperature was 325 ° C. Here, a gas in which the supply amounts of propylene, air, nitrogen, and water are set so that the raw material molar ratio is propylene: oxygen: nitrogen: water = 1: 1.7: 8.8: 1 at a space velocity of 1250 h −1 . When introduced into the oxidation reactor and the reactor outlet pressure was 50 kPaG and 200 hours had passed after the start of the reaction, a reaction temperature change test was conducted by changing the reaction bath temperature in increments of 2 ° C., and the raw material conversion rate was 97.8%. The total yield of acrolein and acrylic acid was 91.5% at maximum. At this time, the reaction bath temperature was 322 ° C., the hot spot temperature of the catalyst layer on the gas inlet side was 424 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 373 ° C. The magnitude relationship between these two hot spot temperatures was reversed when the raw material conversion rate was 96.6%. That is, Cmax−Ccrs = 1.2. The propylene conversion was 92% at a reaction bath temperature of 310 ° C., but the hot spot temperature of the catalyst layer on the gas inlet side was 330 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 400 ° C. Thus, it was suggested that even when the propylene conversion rate greatly decreased, the hot spot temperature of the catalyst layer on the gas outlet side did not become extremely high, and stable operation was possible for a long period of time.

比較例1
実施例1の酸化反応条件において、原料ガス入口部分に充填する触媒をF3と直径5.2mmのシリカ−アルミナ混合物不活性担体を重量比2:1で混合した希釈触媒100cmとし、原料ガス出口部分に充填する触媒をF3触媒250cmとしたこと以外は実施例1と同様の方法でプロピレンの酸化反応を実施した。反応温度変化試験を実施したところ原料転化率98.5%、でアクロレインとアクリル酸の収率の合計が最大91.9%となった。このときの反応浴温度は335℃でガス入口側の触媒層のホットスポット温度は418℃で、ガス出口側の触媒層のホットスポット温度は380℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率98.2%のときに逆転した。すなわち、Cmax−Ccrs=0.3であった。反応浴温度326℃ではプロピレン転化率95.5%となり、ガス入口側の触媒層のホットスポット温度は358℃、ガス出口側の触媒層のホットスポット温度は445℃であった。比較例に比べ、プロピレン転化率が大きく低下した場合においてガス出口側の触媒層のホットスポット温度が極端に高くなった。
Comparative Example 1
In the oxidation reaction conditions of Example 1, the catalyst charged in the raw material gas inlet portion is a dilute catalyst 100 cm in which F3 and a silica-alumina mixture inert carrier having a diameter of 5.2 mm are mixed at a weight ratio of 2: 1, and the raw material gas outlet portion. The oxidation reaction of propylene was carried out in the same manner as in Example 1 except that the catalyst charged in the catalyst was changed to 250 cm F3 catalyst. When the reaction temperature change test was conducted, the raw material conversion rate was 98.5%, and the total yield of acrolein and acrylic acid was 91.9% at the maximum. At this time, the reaction bath temperature was 335 ° C., the hot spot temperature of the catalyst layer on the gas inlet side was 418 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 380 ° C. The magnitude relationship between these two hot spot temperatures was reversed when the raw material conversion rate was 98.2%. That is, Cmax−Ccrs = 0.3. When the reaction bath temperature was 326 ° C., the propylene conversion was 95.5%, the hot spot temperature of the catalyst layer on the gas inlet side was 358 ° C., and the hot spot temperature of the catalyst layer on the gas outlet side was 445 ° C. Compared with the comparative example, when the propylene conversion rate was greatly reduced, the hot spot temperature of the catalyst layer on the gas outlet side became extremely high.

本発明によれば、安全安定的にアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸を高い収率で製造することが可能になる。   According to the present invention, acrolein and acrylic acid, or methacrolein and methacrylic acid can be produced in a high yield in a safe and stable manner.

本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。   Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.

Claims (6)

固定床多管型反応器を用いて、プロピレン、または、イソブチレンおよびターシャリーブタノールから選ばれる少なくとも1種を、分子状酸素を含有するガスにより気相接触酸化して、アクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸を製造するにあたり、
A)反応管の原料ガス流れ方向にN分割(Nは2以上の整数)して形成された複数の触媒層を設け、該触媒層のうち最も反応ガス入口側にある触媒層をZin、最も反応ガス出口側にある触媒層をZoutとし、
B)Zoutに充填する触媒の活性がZinに充填する触媒の活性より高くなるように触媒を充填し、以下の式(1)を満足させるようにするアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法。
0.5≦Cmax−Ccrs 式(1)
Cmax:目的生成物の収率が最大になる原料転化率。
Ccrs:触媒層Zinの最高温度をTin、触媒層Zoutの最高温度をToutとし、原料転化率を変化させたときにTinとToutの大小関係が逆転するときの原料転化率。
Using a fixed bed multi-tubular reactor, at least one selected from propylene or isobutylene and tertiary butanol is subjected to gas phase catalytic oxidation with a gas containing molecular oxygen, and acrolein and acrylic acid, or In producing methacrolein and methacrylic acid,
A) A plurality of catalyst layers formed by N division (N is an integer of 2 or more) in the direction of the raw material gas flow in the reaction tube are provided, and the catalyst layer on the most reaction gas inlet side among the catalyst layers is Zin, The catalyst layer on the reaction gas outlet side is Zout,
B) Acrolein and acrylic acid or methacrolein and methacrylic are charged so that the activity of the catalyst charged in Zout is higher than the activity of the catalyst charged in Zin and satisfies the following formula (1): Acid production method.
0.5 ≦ Cmax−Ccrs Formula (1)
Cmax: Raw material conversion rate at which the yield of the desired product is maximized.
Ccrs: Raw material conversion rate when the maximum temperature of the catalyst layer Zin is Tin, the maximum temperature of the catalyst layer Zout is Tout, and the magnitude relationship between Tin and Tout is reversed when the raw material conversion rate is changed.
0.5≦Cmax−Ccrs≦10 を満足する請求項1記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法。 The method for producing acrolein and acrylic acid or methacrolein and methacrylic acid according to claim 1, wherein 0.5 ≦ Cmax−Ccrs ≦ 10 is satisfied. 0.5≦Cmax−Ccrs≦5 を満足する請求項1記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法。 The method for producing acrolein and acrylic acid or methacrolein and methacrylic acid according to claim 1, wherein 0.5 ≦ Cmax−Ccrs ≦ 5 is satisfied. Nが3以下で、かつZinに充填する触媒の焼成温度をZoutに充填する触媒の焼成温度よりも高温にし、さらにZinに触媒と不活性物質成型体の混合物を充填する上記請求項1から3いずれか記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法。 The N is 3 or less, the firing temperature of the catalyst filled in Zin is set higher than the firing temperature of the catalyst filled in Zout, and Zin is filled with the mixture of the catalyst and the inert substance molding. The method for producing any one of acrolein and acrylic acid, or methacrolein and methacrylic acid. 触媒が不活性物質に活性粉末を担持してなる球状担持触媒である上記請求項1から4いずれか記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法。 The method for producing acrolein and acrylic acid or methacrolein and methacrylic acid according to any one of claims 1 to 4, wherein the catalyst is a spherical supported catalyst obtained by supporting an active powder on an inert substance. 各触媒層に充填される触媒の粒径が全層にわたり同一である上記請求項1から5いずれか記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法である。 The method for producing acrolein and acrylic acid, or methacrolein and methacrylic acid according to any one of claims 1 to 5, wherein the particle size of the catalyst filled in each catalyst layer is the same throughout all layers.
JP2012161353A 2012-07-20 2012-07-20 Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid Pending JP2014019675A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012161353A JP2014019675A (en) 2012-07-20 2012-07-20 Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid
BR112015000862A BR112015000862A2 (en) 2012-07-20 2013-07-18 method for manufacturing unsaturated aldehyde and / or unsaturated carboxylic acid
RU2015105763A RU2621715C2 (en) 2012-07-20 2013-07-18 Method of obtaining an unsaturated aldehyde and/or unsaturated carboxylic acid
PCT/JP2013/069465 WO2014014041A1 (en) 2012-07-20 2013-07-18 Production method for unsaturated aldehyde and/or unsaturated carboxylic acid
TW102125899A TW201412696A (en) 2012-07-20 2013-07-19 Production method for unsaturated aldehyde and/or unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012161353A JP2014019675A (en) 2012-07-20 2012-07-20 Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015229110A Division JP2016106082A (en) 2015-11-24 2015-11-24 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Publications (1)

Publication Number Publication Date
JP2014019675A true JP2014019675A (en) 2014-02-03

Family

ID=49948864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012161353A Pending JP2014019675A (en) 2012-07-20 2012-07-20 Process for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Country Status (5)

Country Link
JP (1) JP2014019675A (en)
BR (1) BR112015000862A2 (en)
RU (1) RU2621715C2 (en)
TW (1) TW201412696A (en)
WO (1) WO2014014041A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008814A1 (en) 2013-07-18 2015-01-22 日本化薬株式会社 Method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
DE102015001219A1 (en) 2014-02-04 2015-08-06 Ngk Insulators, Ltd. honeycomb structure
JP2016106082A (en) * 2015-11-24 2016-06-16 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
WO2019198763A1 (en) 2018-04-10 2019-10-17 日本化薬株式会社 Method for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid, and catalyst for production of at least one of unsaturated aldehyde and unsaturated carboxylic acid
WO2022250030A1 (en) * 2021-05-25 2022-12-01 三菱ケミカル株式会社 Method of producing (meth)acrolein and/or (meth)acrylic acid
WO2023157870A1 (en) * 2022-02-17 2023-08-24 三菱ケミカル株式会社 Method for producing methacrolein and/or methacrylic acid, and method for producing methacrylic acid ester

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658191B2 (en) 2015-09-04 2020-05-19 Taiwan Semiconductor Manufacturing Company, Ltd. Conformal middle layer for a lithography process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083093A (en) * 1994-06-20 1996-01-09 Sumitomo Chem Co Ltd Production of acrolein and acrylic acid
JP2001226302A (en) * 2000-02-16 2001-08-21 Nippon Shokubai Co Ltd Method of manufacturing acrolein and acrylic acid
JP2005170909A (en) * 2003-12-15 2005-06-30 Mitsubishi Chemicals Corp Method for manufacturing (meth)acrylic acid or (meth)acrolein
JP2007326787A (en) * 2006-06-06 2007-12-20 Sumitomo Chemical Co Ltd Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2008535784A (en) * 2005-02-25 2008-09-04 エルジー・ケム・リミテッド Process for producing unsaturated aldehyde and / or unsaturated acid
JP2011246384A (en) * 2010-05-26 2011-12-08 Mitsubishi Rayon Co Ltd Method for producing unsaturated aldehyde and unsaturated carboxylic acid
WO2012105304A1 (en) * 2011-02-02 2012-08-09 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083093A (en) * 1994-06-20 1996-01-09 Sumitomo Chem Co Ltd Production of acrolein and acrylic acid
JP2001226302A (en) * 2000-02-16 2001-08-21 Nippon Shokubai Co Ltd Method of manufacturing acrolein and acrylic acid
JP2005170909A (en) * 2003-12-15 2005-06-30 Mitsubishi Chemicals Corp Method for manufacturing (meth)acrylic acid or (meth)acrolein
JP2008535784A (en) * 2005-02-25 2008-09-04 エルジー・ケム・リミテッド Process for producing unsaturated aldehyde and / or unsaturated acid
JP2007326787A (en) * 2006-06-06 2007-12-20 Sumitomo Chemical Co Ltd Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2011246384A (en) * 2010-05-26 2011-12-08 Mitsubishi Rayon Co Ltd Method for producing unsaturated aldehyde and unsaturated carboxylic acid
WO2012105304A1 (en) * 2011-02-02 2012-08-09 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008814A1 (en) 2013-07-18 2015-01-22 日本化薬株式会社 Method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
US9580376B2 (en) 2013-07-18 2017-02-28 Nippon Kayaku Kabushiki Kaisha Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JPWO2015008814A1 (en) * 2013-07-18 2017-03-02 日本化薬株式会社 Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
DE102015001219A1 (en) 2014-02-04 2015-08-06 Ngk Insulators, Ltd. honeycomb structure
JP2016106082A (en) * 2015-11-24 2016-06-16 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
WO2019198763A1 (en) 2018-04-10 2019-10-17 日本化薬株式会社 Method for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid, and catalyst for production of at least one of unsaturated aldehyde and unsaturated carboxylic acid
US11254634B2 (en) 2018-04-10 2022-02-22 Nippon Kayaku Kabushiki Kaisha Method for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid and catalyst for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid
WO2022250030A1 (en) * 2021-05-25 2022-12-01 三菱ケミカル株式会社 Method of producing (meth)acrolein and/or (meth)acrylic acid
WO2023157870A1 (en) * 2022-02-17 2023-08-24 三菱ケミカル株式会社 Method for producing methacrolein and/or methacrylic acid, and method for producing methacrylic acid ester

Also Published As

Publication number Publication date
RU2015105763A (en) 2016-09-10
TW201412696A (en) 2014-04-01
BR112015000862A2 (en) 2017-06-27
WO2014014041A1 (en) 2014-01-23
RU2621715C2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP6527499B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP6294883B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
WO2014014041A1 (en) Production method for unsaturated aldehyde and/or unsaturated carboxylic acid
JPH1028877A (en) Catalyst and production of unsaturated aldehyde and unsaturated acid
JP6199972B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP7506031B2 (en) Method for producing unsaturated aldehydes
JPWO2014181839A1 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
KR101558941B1 (en) Process For Producing Methacrolein And/Or Methacrylic Acid
WO2012060281A1 (en) Catalyst and production method for acrylic acid
WO2019198763A1 (en) Method for producing at least one of unsaturated aldehyde and unsaturated carboxylic acid, and catalyst for production of at least one of unsaturated aldehyde and unsaturated carboxylic acid
JP2016106082A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
WO2024080208A1 (en) Method for producing unsaturated aldehyde and device for producing unsaturated aldehyde
WO2024080203A1 (en) Method for producing unsaturated aldehyde, and apparatus for producing unsaturated aldehyde
JP5479803B2 (en) Method for producing (meth) acrolein or (meth) acrylic acid
JP5902374B2 (en) Acrylic acid production method
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2009084167A (en) Manufacturing method of acrolein and/or acrylic acid
JP2011102248A (en) Method of producing acrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150420

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150422

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151208

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160212