JP2014071015A - Measurement instrument and measurement method - Google Patents
Measurement instrument and measurement method Download PDFInfo
- Publication number
- JP2014071015A JP2014071015A JP2012217753A JP2012217753A JP2014071015A JP 2014071015 A JP2014071015 A JP 2014071015A JP 2012217753 A JP2012217753 A JP 2012217753A JP 2012217753 A JP2012217753 A JP 2012217753A JP 2014071015 A JP2014071015 A JP 2014071015A
- Authority
- JP
- Japan
- Prior art keywords
- suspension
- solute concentration
- measuring
- solute
- absorbing material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
本発明は、例えば懸濁質水溶液中の溶質成分の濃度を簡単に測定できる技術に関する。 The present invention relates to a technique capable of easily measuring, for example, the concentration of a solute component in an aqueous suspension solution.
懸濁液、例えば懸濁質水溶液は、水系溶媒および水溶性の溶質を含む溶液中に、不溶性の固形粒子が分散したものである。この種の懸濁液としては、例えば泥水、建設発生土、セメントスラリ(フレッシュモルタルとかフレッシュコンクリート)、鉱産物の洗浄廃液などが挙げられる。懸濁液は、一般に、非常に微細な固形粒子が分散している。従って、懸濁液における固液分離は非常に困難である。しかし、懸濁液における溶質の濃度が求められる場合、固液分離は必須である。固液分離操作としては、例えば自然沈降(静置)、遠心分離、濾過などが知られている。 A suspension, for example, an aqueous suspension, is an insoluble solid particle dispersed in a solution containing an aqueous solvent and a water-soluble solute. Examples of this type of suspension include muddy water, construction generated soil, cement slurry (fresh mortar or fresh concrete), mineral waste washing liquid, and the like. In general, very fine solid particles are dispersed in the suspension. Therefore, solid-liquid separation in the suspension is very difficult. However, solid-liquid separation is essential when the concentration of the solute in the suspension is required. As solid-liquid separation operations, for example, natural sedimentation (stationary), centrifugation, filtration and the like are known.
懸濁液中の溶質成分が測定される例として、土壌中の含有成分の測定が挙げられる。土壌中の水溶性成分、例えば塩化ナトリウムの濃度(塩分濃度)は、農作物の収穫に大きな影響を及ぼす。すなわち、塩分濃度が上昇すると、Na+,Cl−により、Ca,K等の養分の吸収が阻害される。この結果、生育障害が起き、収穫が減少する。このようなことから、高波や津波等で海水が浸水した土壌は、除塩作業が必要になる。どの程度の除塩作業が必要かを正確に把握する為、土壌中の塩分濃度の測定が必要である。 As an example in which the solute component in the suspension is measured, measurement of the content component in the soil can be mentioned. The concentration (salt concentration) of water-soluble components such as sodium chloride in the soil has a great influence on the crop yield. That is, when the salt concentration increases, the absorption of nutrients such as Ca and K is inhibited by Na + and Cl − . As a result, growth failure occurs and yield is reduced. For this reason, it is necessary to demineralize the soil in which seawater is flooded by high waves and tsunamis. In order to grasp exactly how much salt removal work is necessary, it is necessary to measure the salinity in the soil.
土壌中の塩分濃度の測定技術として、「調査対象の汚染土壌(有姿土壌)から除礫などして篩いに通した未風乾土壌の含水率を測定し、前記土壌を一定量秤量し、これに有機溶媒を加えて混合し約1分間の手振りによる振とうを行い、約30分間静置した後、遠心分離を行い、フィルターで濾過した濾液を溶出検液として用い、簡易分析法、イオン電極法、吸光光度法、原子吸光分析法、ICP発光分析法又は蛍光X線分析法などにて液中の重金属等を定量測定することを特徴とする重金属等の土壌溶出簡易試験方法」の技術(特開2005−331409号公報)を利用することが出来るかも知れない。 As a technique for measuring the salinity of soil, the moisture content of undried dry soil that has been passed through a sieve with debris, etc., from the polluted soil (solid soil) to be investigated is weighed and weighed a certain amount of the soil. Add organic solvent to the mixture, shake by shaking for about 1 minute, let stand for about 30 minutes, centrifuge, use the filtrate filtered through a filter as the elution test solution, simple analysis method, ion electrode Technology for simple soil elution test for heavy metals, etc., characterized by quantitative measurement of heavy metals, etc. in liquids by the method, spectrophotometry, atomic absorption spectrometry, ICP emission spectrometry, or fluorescent X-ray analysis Japanese Patent Application Laid-Open No. 2005-331409 may be available.
或いは、「硬化コンクリートからドリルによって採取した粉末をそのまま均一に混合して試料とし、その一定量を計り取り、80℃以上の加熱蒸留水を一定量添加して一定時間塩素イオンを溶出させ、上澄み水を採取してJIS A 1154に示された電量滴定法と同等の精度を有する電量滴定式等のポ−タブル塩分計を用いて測定することを特徴とする硬化コンクリート中の塩素イオン濃度迅速測定方法」「硬化コンクリートからドリルによって採取した粉末をそのまま均一に混合して試料とし、その一定量を計り取り、常温蒸留水を一定量添加し、80℃以上に加熱して一定時間塩素イオンを溶出させ、上澄み水を採取してJIS A 1154に示された電量滴定法と同等の精度を有する電量滴定式等のポ−タブル塩分計を用いて測定することを特徴とする硬化コンクリート中の塩素イオン濃度迅速測定方法」の技術(特開2011−158437号公報)を利用することが出来るかも知れない。 Or, “Powder collected from hardened concrete with a drill is mixed evenly and used as a sample. A certain amount is measured, and a certain amount of heated distilled water at 80 ° C or higher is added to elute chlorine ions for a certain period of time. Rapid measurement of chloride ion concentration in hardened concrete characterized by collecting water and measuring it using a portable salinometer such as a coulometric titration method having the same accuracy as the coulometric titration method shown in JIS A 1154 Method "" Powder collected from hardened concrete with a drill is mixed evenly to make a sample, weigh a certain amount, add a certain amount of room-temperature distilled water, heat to 80 ° C or more and elute chlorine ions for a certain period of time. The supernatant water was collected and measured using a portable salt meter such as a coulometric titration method having the same accuracy as the coulometric titration method shown in JIS A 1154 Might be able to utilize Rukoto the curing concrete, wherein the chloride ion concentration rapidly measuring method "technique (JP 2011-158437).
前記特許文献1の技術では、静置後、遠心分離を行い、フィルターで濾過した濾液を試料とし、この試料中の塩素濃度を所定の分析装置で測定することになる。
In the technique of
前記特許文献2の技術では、計り取った試料に80℃以上の加熱蒸留水を一定量添加して一定時間塩素イオンを溶出させた後で上澄水を採取、又は計り取った試料に常温蒸留水を一定量添加した後に80℃以上に加熱して一定時間塩素イオンを溶出させた後で上澄水を採取し、この上澄水中の塩素濃度を所定の分析装置で測定することになる。
In the technique of
何れの技術でも、分析装置に掛ける試料(溶液)は濁りが無く、固形粒子を含まない液体であることが必須である。 In any technique, it is essential that the sample (solution) to be applied to the analyzer is a liquid that is not turbid and does not contain solid particles.
しかしながら、対象である懸濁液は、多くの場合、粘土質粒子のような微粒子を含有することが多い。この種の懸濁液から透明な上澄液を簡単に短時間で得ることは困難である。例えば、静置と言った手法では、微粒子の沈降には長時間が掛かる。従って、懸濁液から、透明な上澄液は、短時間では得られない。静置以外の遠心分離や濾過と言った手法を用いる場合には、それなりの装置が必要である。従って、この場合には、現場で簡単に実施でき難い。 However, the suspensions of interest often contain fine particles such as clayey particles. It is difficult to easily obtain a clear supernatant from such a suspension in a short time. For example, in the technique of standing still, it takes a long time for the fine particles to settle. Therefore, a clear supernatant cannot be obtained from the suspension in a short time. When using a method other than stationary, such as centrifugation or filtration, an appropriate device is required. Therefore, in this case, it is difficult to carry out easily on site.
従って、本発明が解決しようとする課題は、懸濁液中の溶質濃度を、現場において、簡単に測定でき、しかも測定時間は短時間で済む技術を提供することである。例えば、遠心分離などの操作は不要で、簡便な器具を用いて、懸濁液中の溶質濃度を、迅速に求めることが出来、そして求められた溶質濃度の値に大きな狂いが無い技術を提供することである。 Therefore, the problem to be solved by the present invention is to provide a technique that can easily measure the solute concentration in the suspension in the field and that requires only a short measurement time. For example, there is no need for operations such as centrifugation, and it is possible to quickly determine the solute concentration in the suspension using a simple instrument, and to provide a technology that does not cause a large error in the calculated solute concentration value. It is to be.
前記課題を解決する為の検討が、鋭意、推し進められて行く中で、本発明者は、懸濁液から毛細管現象で吸い上げられた液は透明度が高いことに気付くに至った。しかも、毛細管現象で吸い上げられる速度は以外と速いことに気付くに至った。更に、毛細管現象で吸い上げられた液に含まれる塩分(Cl−等)濃度と、懸濁液に含まれる塩分(Cl−等)濃度との間に大差が無いことも判って来た。すなわち、毛細管現象で吸い上げられた液に含まれる塩分(Cl−等)濃度を測定した場合、この塩分(Cl−等)濃度は、懸濁液に含まれる塩分(Cl−等)濃度に相当していることが判った。 As studies for solving the above-mentioned problems have been intensively promoted, the present inventor has come to realize that the liquid sucked up from the suspension by capillary action has high transparency. Moreover, they have come to realize that the speed of suction by capillary action is very fast. Furthermore, it has been found that there is no great difference between the concentration of salt (Cl − etc.) contained in the liquid sucked up by capillary action and the concentration of salt (Cl − etc.) contained in the suspension. That is, when the salt (Cl − etc.) concentration contained in the liquid sucked up by capillary action is measured, this salt (Cl − etc.) concentration corresponds to the salt (Cl − etc.) concentration contained in the suspension. I found out.
上記知見に基づいて本発明が達成された。 Based on the above findings, the present invention has been achieved.
すなわち、前記課題は、
吸液材が懸濁液中に浸される浸漬工程と、
前記浸漬工程で前記吸液材に吸い上げられた液中に含まれている溶質濃度が測定される測定工程
とを有することを特徴とする懸濁液中の溶質濃度測定方法によって解決される。
That is, the problem is
An immersion process in which the liquid-absorbing material is immersed in the suspension;
It is solved by a method for measuring a solute concentration in a suspension, characterized in that it includes a measurement step in which the solute concentration contained in the liquid sucked up by the liquid absorbing material in the immersion step is measured.
前記懸濁液中の溶質濃度測定方法であって、好ましくは、前記浸漬工程は、吸液材と該吸液材に連接された溶質濃度測定部とを具備する溶質濃度測定装置の前記吸液材が懸濁液中に浸される工程であり、前記測定工程は、前記吸液材に吸い上げられた液が前記溶質濃度測定部に移行して測定される工程であることを特徴とする懸濁液中の溶質濃度測定方法によって解決される。 A method for measuring a solute concentration in a suspension, preferably, wherein the dipping step includes the liquid absorption of a solute concentration measurement apparatus including a liquid absorption material and a solute concentration measurement unit connected to the liquid absorption material. The material is immersed in a suspension, and the measurement step is a step in which the liquid sucked up by the liquid absorbent material is transferred to the solute concentration measuring unit and measured. It is solved by the method of measuring the solute concentration in the suspension.
前記懸濁液中の溶質濃度測定方法であって、好ましくは、前記吸液材は、JIS P 8141に準拠した方法による吸水度が3cm以上であることを特徴とする懸濁液中の溶質濃度測定方法によって解決される。 A solute concentration measuring method in the suspension, preferably, the liquid absorbing material has a water absorption of 3 cm or more according to a method based on JIS P 8141. It is solved by the measuring method.
前記懸濁液中の溶質濃度測定方法であって、好ましくは、前記懸濁液はCl−を含有することを特徴とする懸濁液中の溶質濃度測定方法によって解決される。 A solute concentration measuring method of the suspension, preferably the suspension Cl - are solved by a solute concentration measurement method of suspension, characterized in that it contains.
前記懸濁液中の溶質濃度測定方法であって、好ましくは、前記懸濁液は、溶媒成分100質量部に対し、粒径が100μm以下の不溶性微粒子を3〜30質量部含むことを特徴とする懸濁液中の溶質濃度測定方法によって解決される。 A method for measuring a solute concentration in a suspension, wherein the suspension preferably includes 3 to 30 parts by mass of insoluble fine particles having a particle size of 100 μm or less with respect to 100 parts by mass of a solvent component. This is solved by a method for measuring the solute concentration in the suspension.
前記懸濁液中の溶質濃度測定方法であって、好ましくは、前記測定工程は、溶質に感応し、該溶質の濃度毎に固有の変色又は発色を呈する検知用成分を含浸した検出用紙片、又は前記検知用成分が担持してなる検出用媒体を用いて行われることを特徴とする懸濁液中の溶質濃度測定方法によって解決される。 A method for measuring a solute concentration in the suspension, preferably, the measurement step is a detection paper piece impregnated with a detection component sensitive to a solute and exhibiting a specific color change or color development for each concentration of the solute, Alternatively, the problem is solved by a method for measuring a solute concentration in a suspension, which is performed using a detection medium carrying the detection component.
前記懸濁液中の溶質濃度測定方法であって、好ましくは、前記測定工程は、溶質に感応して変色又は発色を呈する検知用成分を含浸した検出用紙片、又は前記検知用成分が担持してなる検出用媒体が用いられ、前記紙片又は前記媒体中の変色又は発色部分の面積割合が求められることで定量されることを特徴とする懸濁液中の溶質濃度測定方法によって解決される。 A method for measuring the concentration of a solute in the suspension, preferably, the measuring step is carried by a detection paper piece impregnated with a detection component that changes color or develops color in response to the solute, or the detection component. This is solved by a method for measuring the solute concentration in a suspension, characterized in that the detection medium is used to determine the area ratio of the discolored or colored portion in the paper piece or the medium.
例えば、土壌などの微粒子を含有する懸濁液中の溶質濃度を、現場において、簡単に測定でき、しかも測定時間は短時間で済む。例えば、遠心分離などの操作は不要である。簡便な器具を用いて、懸濁液中の溶質濃度を、迅速に求めることが出来、求められた溶質濃度の値に大きな狂いは無い。すなわち、精度はかなり高い。 For example, the solute concentration in a suspension containing fine particles such as soil can be easily measured in the field, and the measurement time is short. For example, operations such as centrifugation are unnecessary. Using a simple instrument, the solute concentration in the suspension can be determined quickly, and there is no significant deviation in the calculated solute concentration value. That is, the accuracy is quite high.
第1の発明は溶質濃度測定装置である。本溶質濃度測定装置は吸液材を具備する。本溶質濃度測定装置は溶質濃度測定部を具備する。前記吸液材と前記溶質濃度測定部とは連接している。ここで、連接とは、吸液材(板状体)の一端側において前記溶質濃度測定部が設けられている場合をも含む。すなわち、前記溶質濃度測定部のベースが前記吸液材であっても差し支えない。言い換えるならば、前記溶質濃度測定部から前記吸液材(板状体)が食み出して設けられていると言うことも出来る。 The first invention is a solute concentration measuring apparatus. The solute concentration measuring apparatus includes a liquid absorbing material. The solute concentration measuring apparatus includes a solute concentration measuring unit. The liquid absorbing material and the solute concentration measuring unit are connected. Here, the connection includes the case where the solute concentration measuring unit is provided on one end side of the liquid-absorbing material (plate-like body). That is, the base of the solute concentration measuring unit may be the liquid absorbing material. In other words, it can also be said that the liquid-absorbing material (plate-like body) protrudes from the solute concentration measuring section.
前記吸液材は、好ましくは、吸水材である。特に好ましくは、JIS P 8141に準拠した方法による吸水度が3cm以上のものである。上限値に格別な制約は無い。大きな値であれば、吸液(吸水)速度が速い。従って、測定時間が、それだけ、短くなる。尚、現状では、前記吸水度は20cm程度が上限値である。 The liquid absorbing material is preferably a water absorbing material. Particularly preferably, the water absorption by a method based on JIS P 8141 is 3 cm or more. There is no particular restriction on the upper limit. If the value is large, the liquid absorption (water absorption) speed is high. Therefore, the measurement time is shortened accordingly. Currently, the upper limit of the water absorption is about 20 cm.
前記吸液材には各種の形態のものが用いることができ、特に限定されるものではない。例えば、板状体、紐状体などが挙げられる。ここで、板状体とは、シートやフィルムをも含む概念で用いられる。すなわち、面積が広い主面(表面、裏面)に対して、厚さ方向の面(側面)が小さなものである。 The liquid absorbing material can be used in various forms, and is not particularly limited. For example, a plate-shaped body, a string-shaped body, etc. are mentioned. Here, the plate-like body is used in a concept including a sheet and a film. That is, the surface (side surface) in the thickness direction is smaller than the main surface (front surface, back surface) having a large area.
前記吸液材は吸液性を示すものである。従って、基本的に、表面には、撥水剤などで覆われていない。好ましくは、前記主面は撥水剤などで覆われていない。前記吸液性は毛細管現象によって発現する。 The liquid absorbing material exhibits liquid absorbing properties. Therefore, basically, the surface is not covered with a water repellent or the like. Preferably, the main surface is not covered with a water repellent or the like. The liquid absorbency is manifested by capillary action.
前記吸液材は、例えば繊維材で構成される。微細径の繊維が密集しているものが好ましい。例えば、束上にした繊維や網まれた繊維からなるシートは好ましい。繊維は長繊維でも短繊維でも用いられる。不定方向に凝集した繊維からなるシートの場合は、短繊維製のものが好ましい。具体例としては、濾紙の他、和紙や洋紙などの一般紙も使用できる。吸水性が良好な定量濾紙やクロマトグラフィ用濾紙は特に好ましい。 The liquid absorbing material is made of, for example, a fiber material. Those in which fine fibers are densely packed are preferable. For example, a sheet made of bundled fibers or meshed fibers is preferable. The fiber may be a long fiber or a short fiber. In the case of a sheet made of fibers aggregated in an indefinite direction, those made of short fibers are preferable. As a specific example, general paper such as Japanese paper or Western paper can be used in addition to filter paper. Quantitative filter paper and chromatographic filter paper having good water absorption are particularly preferred.
前記繊維は親水性繊維が好ましい。例えば、セルロース、化学繊維、ガラス繊維、シリカ繊維などが挙げられる。勿論、これに限定されるものではない。 The fiber is preferably a hydrophilic fiber. Examples thereof include cellulose, chemical fiber, glass fiber, and silica fiber. Of course, it is not limited to this.
前記溶質濃度測定部には各種の測定装置が採用できる。測定装置は特別なものに限定されない。次のような測定装置は、簡便なものであるから、好ましい。例えば、濃度に応じた色指標と検出色とを比較して濃度を決定する比色法が採用された装置である。或いは、一定量の溶液と反応させて変色した面積を計測することで、濃度を算出する方が採用された装置である。 Various measuring devices can be used for the solute concentration measuring unit. The measuring device is not limited to a special one. The following measuring apparatus is preferable because it is simple. For example, the apparatus employs a colorimetric method that determines a density by comparing a color index corresponding to the density with a detected color. Alternatively, it is an apparatus that employs a method of calculating the concentration by measuring the area that has changed color by reacting with a certain amount of solution.
前記比色法は、反応で発色した色が溶液濃度に応じて濃さが変化するものに使用される。濃度に応じて色の濃さが変化するものとしてはランバートベールの法則が知られている。濃度に応じた標準色と比較して濃度が決定される。標準色の個数により測定精度が決まる為、半定量である。 The colorimetric method is used when the color developed by the reaction changes in density according to the solution concentration. Lambert-Beer's law is known as the color density that changes according to the density. The density is determined by comparison with a standard color corresponding to the density. Since the measurement accuracy is determined by the number of standard colors, it is semi-quantitative.
変色域等の面積を測定する方法は、一定量の検液を試験紙に浸し、反応により発色する面積を計測して濃度が求められる。面積で測定する為、精度の高い定量が可能である。 In the method of measuring the area such as the color change area, the concentration is obtained by immersing a certain amount of test solution in a test paper and measuring the area that develops color by reaction. Because it measures by area, quantitative measurement with high accuracy is possible.
前記測定装置の具体例としては、例えば溶質に感応(例えば、反応)し、該溶質の濃度毎に固有の変色又は発色を呈する検知用成分を含浸した検出用紙片である。或いは、前記検知用成分が担持してなる検出用媒体である。 A specific example of the measuring device is, for example, a detection paper piece which is impregnated with a detection component that is sensitive (for example, reacts) to a solute and exhibits a specific color change or color development for each concentration of the solute. Alternatively, it is a detection medium carrying the detection component.
若しくは、溶質に感応(例えば、反応)して変色又は発色を呈する検知用成分を含浸した検出用紙片、又は前記検知用成分が担持してなる検出用媒体であって、前記紙片又は前記媒体中の変色又は発色部分の面積割合が求められるものである。 Alternatively, a detection paper piece impregnated with a detection component that is sensitive (for example, reacts) to a solute to exhibit discoloration or color development, or a detection medium carried by the detection component, the paper piece or the medium The area ratio of the discolored or colored portion is required.
尚、懸濁液中の塩素濃度を測定する為、塩素に反応して変色又は発色する方法として、モール法やシリンガルダジン法が例示される。塩素以外の、例えば六価クロム濃度の測定では、1,5−ジフェニルカルボノヒドラジド(ジフェニルカルバジド)等が例示される。勿論、これに限定されない。 In addition, in order to measure the chlorine concentration in the suspension, the Mole method or the syringaldazine method is exemplified as a method of changing color or coloring in response to chlorine. In the measurement of, for example, hexavalent chromium concentration other than chlorine, 1,5-diphenylcarbonohydrazide (diphenylcarbazide) and the like are exemplified. Of course, it is not limited to this.
より具体的には、比色法による検出紙として、アドバンテック社の試験紙、日産化学工業社製のアクアチェック(商品名)(登録商標)が挙げられる。面積で濃度を算出する例として、太平洋マテリアル社が販売するカンタブ(商品名)(登録商標)が挙げられる。勿論、これ等に限られない。 More specifically, as a detection paper by the colorimetric method, Advantech test paper and Aqua Chemical (trade name) (registered trademark) manufactured by Nissan Chemical Industries, Ltd. may be mentioned. An example of calculating the concentration by area is Cantab (trade name) (registered trademark) sold by Taiheiyo Material Co., Ltd. Of course, it is not limited to these.
第2の発明は懸濁液中の溶質濃度測定方法である。本方法は、例えば前記第1の発明の溶質濃度測定装置を用いた溶質濃度測定方法である。本方法は浸漬工程を具備する。この浸漬工程は、吸液材が懸濁液中に浸される工程である。前記浸漬工程は、好ましくは、吸液材と該吸液材に連接された溶質濃度測定部とを具備する溶質濃度測定装置の前記吸液材が懸濁液中に浸される工程である。本方法は測定工程を具備する。この測定工程は、前記浸漬工程で前記吸液材に吸い上げられた液中に含まれている溶質濃度が測定される工程である。前記測定工程は、好ましくは、前記吸液材に吸い上げられた液が前記溶質濃度測定部に移行して測定される工程である。 The second invention is a method for measuring a solute concentration in a suspension. This method is a solute concentration measuring method using, for example, the solute concentration measuring apparatus of the first invention. The method includes a dipping process. This dipping step is a step in which the liquid absorbing material is dipped in the suspension. The dipping step is preferably a step in which the liquid absorbing material of a solute concentration measuring device including a liquid absorbing material and a solute concentration measuring unit connected to the liquid absorbing material is immersed in a suspension. The method comprises a measuring step. This measurement step is a step in which the solute concentration contained in the liquid sucked up by the liquid absorbing material in the immersion step is measured. The measurement step is preferably a step in which the liquid sucked up by the liquid absorbing material is transferred to the solute concentration measuring unit and measured.
前記懸濁液(測定対象物)は、例えば水に不溶な微粒子と、水系溶媒と、該水系溶媒中に溶解する溶質を含有する。前記微粒子は、水と実質反応しないものであれば限定されるものではない。具体的には、例えば粘土、石灰石や珪石などの鉱物粉、水硬性物質(例えば、セメントや石膏など)の水和硬化粒、金属粉、硬質樹脂粉などが挙げられる。微粒子の大きさは、特に制限されるものではない。但し、水中で自然沈降しないもの、又は沈降速度が著しく遅いような粒径のものである。例えば、地盤工学上のシルト〜粘土質の土粒子以下の粒径が該当する。粒子サイズとしては100μm以下(下限値に格別な制約は無い。)のものである。これ以上の大きな粒径のもののみであれば、自然沈降による固液分離が容易である。前記懸濁液は、固形分濃度が、溶媒100質量部に対して不溶性微粒子3〜30質量部である。不溶性微粒子が30質量部を越えると、毛細管現象による液体の吸い上げが低下するからである。前記懸濁液は、一般的には、有色液(着色液)である。例えば、濁っている。例えば、無色では無い。例えば、不透明ないしは半透明である。前記懸濁液は、例えばCl−を含有している。例えば、津波や海水汚染による土壌の塩害(影響)を調べることを目的とする場合、一般的には、測定対象物である前記懸濁液に含有されているCl−がターゲットになる。勿論、測定対象は塩素に限られない。必要に応じて、適宜、選択される。 The suspension (measuring object) contains, for example, fine particles insoluble in water, an aqueous solvent, and a solute that dissolves in the aqueous solvent. The fine particles are not limited as long as they do not substantially react with water. Specific examples include mineral powders such as clay, limestone, and silica, hydrated and cured particles of hydraulic substances (such as cement and gypsum), metal powders, and hard resin powders. The size of the fine particles is not particularly limited. However, it does not spontaneously settle in water or has a particle size such that the sedimentation rate is extremely slow. For example, a particle size equal to or less than silt to clayey soil particles in geotechnical engineering is applicable. The particle size is 100 μm or less (there is no particular restriction on the lower limit value). If it has only a larger particle size than this, solid-liquid separation by natural sedimentation is easy. The suspension has a solid concentration of 3 to 30 parts by mass of insoluble fine particles with respect to 100 parts by mass of the solvent. This is because if the amount of insoluble fine particles exceeds 30 parts by mass, liquid suction due to capillary action is reduced. The suspension is generally a colored liquid (colored liquid). For example, it is cloudy. For example, it is not colorless. For example, it is opaque or translucent. The suspension contains, for example, Cl − . For example, when the purpose is to examine salt damage (influence) of soil due to tsunami or seawater contamination, generally, Cl − contained in the suspension as a measurement target is the target. Of course, the measuring object is not limited to chlorine. It is appropriately selected as necessary.
前記吸液材が前記懸濁液中に浸される。例えば、前記吸液材の長さの先端側から半分位の領域まで浸される。これによって、懸濁液の構成成分(例えば、水、及び水に溶解している塩素イオン等の溶質成分:濁りの原因物質である微粒子は除かれる。)が、毛細管現象によって、上昇して来る。この上昇液を採取し、この採取した液が前記溶質濃度測定部(濃度検出用媒体又は紙片)に当てられる。勿論、前記溶質濃度測定部(濃度検出用媒体又は紙片)が前記吸液材の他端側(後端側)に連接している場合(例えば、前記溶質濃度測定部(濃度検出用媒体又は紙片)の一端側に前記吸液材の他端側(後端側)が貼付されている場合)、前記液は自動的に前記溶質濃度測定部に移行する(当てられる)。これにより、結果が判る。 The liquid absorbing material is immersed in the suspension. For example, it is immersed from the front end side of the length of the liquid-absorbing material to a half region. As a result, the components of the suspension (for example, water and solute components such as chloride ions dissolved in water: fine particles that cause turbidity are removed) are increased by capillary action. . The ascending liquid is collected, and the collected liquid is applied to the solute concentration measuring unit (concentration detection medium or paper piece). Of course, when the solute concentration measurement unit (concentration detection medium or paper piece) is connected to the other end side (rear end side) of the liquid absorbing material (for example, the solute concentration measurement unit (concentration detection medium or paper piece). When the other end side (rear end side) of the liquid absorbing material is affixed to one end side), the liquid automatically moves (applies) to the solute concentration measurement unit. This gives the result.
以下、更に具体的に説明される。尚、本発明は以下の実施例によって何等の限定を受けるものではない。 More specific description will be given below. It should be noted that the present invention is not limited in any way by the following examples.
本実施例においては、吸水性シートの一端側が、溶質濃度測定装置(例えば、前記カンタブ又はアクアチェック)の一端側に接続(貼付)された溶質濃度測定装置が用いられる。 In the present embodiment, a solute concentration measuring device in which one end side of the water absorbent sheet is connected (attached) to one end side of a solute concentration measuring device (for example, the cantab or aqua check) is used.
この溶質濃度測定装置の一例が図1,2に示される。図1,2中、1は吸水性シートである。吸水性シート1の長さは、例えば1〜20cmである。2は溶質濃度測定装置である。溶質濃度測定装置2の溶質濃度測定部3に吸水性シート1の一端側に貼り合わされている。吸水性シート1が水溶液(懸濁液)4中に浸された場合(図3参照)、吸水性シート1が持つ毛細管現象により、水溶液が吸水性シート1を上昇して来る。吸水性シート1を上昇して来た水溶液は水溶液(懸濁液)に浸かっていない溶質濃度測定部3側に移行して来る。これによって、溶質濃度が求められる。
An example of this solute concentration measuring apparatus is shown in FIGS. 1 and 2, 1 is a water-absorbent sheet. The length of the water
尚、溶質濃度測定装置2の表面は遮水性材料で被覆されている。しかし、吸水性シート1の少なくとも水溶液(懸濁液)中に浸される先端側部分は、遮水性材料で被覆されていない。例えば、吸水性シート1の全領域が遮水性材料で被覆されていると、吸水作用(毛細管現象)が発現しないからである。
The surface of the solute
以下、本実施例が好適であることを検討した。なお、本実施例で使用した土は、塩害の被害で塩分濃度が高い水田の土で、土質は粘土質であった。水溶性成分は塩素イオン(Cl−)濃度とした。 Hereinafter, it was examined that this example is suitable. The soil used in this example was a paddy soil having a high salinity due to salt damage, and the soil was clay. The water-soluble component was chloride ion (Cl − ) concentration.
使用した検出紙(溶質濃度測定部)は、比色法によるものとして日産化学工業社の商品名「アクアチェックHC」、面積で濃度を測定する方法として太平洋マテリアル社製の商品名「カンタブ(低濃度)」を使用した。一方、従来技術の一例として、硝酸銀水溶液での滴定方法を用いた。 The detection paper (solute concentration measurement part) used is the product name “Aquacheck HC” of Nissan Chemical Industries, Ltd. as a colorimetric method, and the product name “Cantab (Low Concentration) ”was used. On the other hand, a titration method using an aqueous silver nitrate solution was used as an example of the prior art.
〔懸濁液の作製〕
1000mlの栓付きポリ容器に、乾燥した土壌試料100gと、蒸留水500gを計量して入れ、栓をして密封し、このポリ容器を振とう機で約2時間振とうしたものを懸濁液とした。
(Preparation of suspension)
100 g of dry soil sample and 500 g of distilled water are weighed and put into a 1000 ml stoppered plastic container, sealed with stopper, and this plastic container is shaken for about 2 hours with a shaker. It was.
〔硝酸銀水溶液での滴定方法〕
懸濁液をメンブレンフィルター(孔径0.45μm)で濾過し、濾液を分取して試料溶液とし、これを自動滴定装置(COM-1600、平沼産業社製)に設置し、滴定液として0.1規定/Lの硝酸銀水溶液を用い、電位差が変化した点を滴定点として塩素濃度を測定し、溶出に用いた土壌と蒸留水の比率から土壌塩素濃度を算出した。
[Titration method with silver nitrate aqueous solution]
The suspension was filtered through a membrane filter (pore size 0.45 μm), and the filtrate was collected to obtain a sample solution, which was placed in an automatic titrator (COM-1600, manufactured by Hiranuma Sangyo Co., Ltd.) and used as a titrant. Using a normal / L silver nitrate aqueous solution, the chlorine concentration was measured using the point at which the potential difference changed as a titration point, and the soil chlorine concentration was calculated from the ratio of soil and distilled water used for elution.
〔アクアチェックの使用方法〕
試料溶液にアクアチェックを所定時間浸し、ボトルに表記している比色表で濃度を判定し、溶出に用いた土壌と蒸留水の比率から土壌塩素濃度を算出した。
[How to use Aqua Check]
Aqua check was immersed in the sample solution for a predetermined time, the concentration was determined by a colorimetric table written on the bottle, and the soil chlorine concentration was calculated from the ratio of soil and distilled water used for elution.
〔カンタブの使用方法〕
試料溶液にカンタブの先端部を浸し、湿気指示部(溶質濃度測定部)が暗青色に変色するまで静置し、変色後、変色域の値を読み取り、換算表にて塩素濃度を算出し、溶出に用いた土壌と蒸留水の比率から土壌塩素濃度を算出した。
[How to use Cantab]
Immerse the tip of the cantab in the sample solution and let it stand until the humidity indicator (solute concentration measuring part) turns dark blue. After changing the color, read the value of the discolored area and calculate the chlorine concentration using the conversion table. Soil chlorine concentration was calculated from the ratio of soil and distilled water used for elution.
〔吸水性シートの装着〕
各種(下記A4〜A10)吸水性シートを、長さ20mm、幅5〜10mmに切断し、検出紙先端部に密着させる。吸水性シートを懸濁液に浸して毛細管現象で上昇してきた水をそのまま試験紙に移行できるようにして測定を行った。
[Installation of water absorbent sheet]
Various water-absorbing sheets (A4-A10 below) are cut into a length of 20 mm and a width of 5-10 mm, and are brought into close contact with the leading edge of the detection paper. The water-absorbing sheet was immersed in the suspension, and the measurement was carried out so that the water rising by the capillary phenomenon could be transferred to the test paper as it was.
〔吸水度の測定〕
各種(下記A4〜A10)吸水性シートの吸水度を測定した。JIS P 8141の方法に準拠した。吸水性シート先端部を水に浸け、10分後に上昇してきた高さを測定した。
(Measurement of water absorption)
The water absorption of various water absorbing sheets (A4 to A10 below) was measured. It conformed to the method of JIS P 8141. The tip of the water absorbent sheet was immersed in water, and the height rising after 10 minutes was measured.
(実施例1)
吸水性シートの吸水度について検討した。試験結果を表1に示す。A1〜A4は比較例であり、A4〜A9は実施例である。
Example 1
The water absorption of the water absorbent sheet was examined. The test results are shown in Table 1. A1 to A4 are comparative examples, and A4 to A9 are examples.
A1では、フィルター濾過後、硝酸銀水溶液で滴定した。従来技術であり、問題なく塩素濃度を測定できた。 In A1, the solution was filtered and then titrated with an aqueous silver nitrate solution. This is a conventional technique, and the chlorine concentration could be measured without problems.
A2およびA3では、本発明の特徴である吸水性シートがない。A2では検出紙にアクアチェックを用い、A3では検出紙にカンタブを用いた。ともに、吸水が困難であり、A2では色の判別ができず、A3ではカンタブ先端で目詰まりが生じ、変色を確認できなかった。その結果、塩素濃度を測定できなかった。 In A2 and A3, there is no water-absorbent sheet that is a feature of the present invention. In A2, an aqua check was used for the detection paper, and in A3, a cantab was used for the detection paper. In both cases, it was difficult to absorb water, the color could not be discriminated at A2, and the tip of the cantab was clogged at A3, and the color change could not be confirmed. As a result, the chlorine concentration could not be measured.
A4では、フィルター濾過後、吸水性シートを装着せず、カンタブを用いた。A3とは異なり、塩素濃度を測定できた。 In A4, a cantab was used after filter filtration without attaching a water absorbent sheet. Unlike A3, the chlorine concentration could be measured.
A5およびA6では、吸水性シートとして定量ろ紙No.5A(東洋濾紙製)を用いた。定量ろ紙No.5Aの吸水度は9.5であった。A5では検出紙にアクアチェックを用い、A6では検出紙にカンタブを用いた。ともに、吸水性シートの機能が発揮され、毛細管現象により固液の液分のみが上昇し、この液分が検出紙に移行した。その結果、変色を確認でき、塩素濃度を測定できた。測定結果も従来技術(A1)と同様であり、精度に問題がないことも確認できた。 In A5 and A6, quantitative filter paper No. 5A (manufactured by Toyo Filter Paper) was used as the water-absorbent sheet. The water absorption of the quantitative filter paper No. 5A was 9.5. In A5, an aqua check was used for the detection paper, and in A6, a cantab was used for the detection paper. In both cases, the function of the water-absorbent sheet was exhibited, and only the liquid content of the solid liquid rose due to the capillary phenomenon, and this liquid content transferred to the detection paper. As a result, discoloration could be confirmed and the chlorine concentration could be measured. The measurement results were also the same as in the prior art (A1), and it was confirmed that there was no problem in accuracy.
A7〜A9では、検出紙にカンタブを用いた。吸水性シートとしてA7では(東洋濾紙製)定量ろ紙No.3を用い、A8ではクロマトグラフィー用ろ紙No.50(東洋濾紙製)を用い、A9ではキムワイプ(商品名、日本製紙クレシア製)(登録商標)を用いた。定量ろ紙No.3の吸水度は7.5であり、クロマトグラフィー用ろ紙No.50の吸水度は6であり、日本製紙キムワイプの吸水度は3.5であった。ともに、吸水性シートの機能が発揮され、変色を確認でき、塩素濃度を測定できた。また、精度に問題がないことも確認できた。 In A7 to A9, a cantab was used as the detection paper. As the water-absorbent sheet, quantitative filter paper No. 3 (made by Toyo Roshi) is used for A7, chromatographic filter paper No. 50 (made by Toyo Roshi) is used for A8, and Kimwipe (trade name, made by Nippon Paper Crecia) (registered) for A9 Trademark) was used. The water absorption of the quantitative filter paper No. 3 was 7.5, the water absorption of the chromatographic filter paper No. 50 was 6, and the water absorption of Nippon Paper Kimwipe was 3.5. In both cases, the function of the water-absorbent sheet was demonstrated, discoloration could be confirmed, and the chlorine concentration could be measured. It was also confirmed that there was no problem in accuracy.
すなわち、上記実施例では、吸水性シートの吸水度を3cm以上とすれば吸水性シートの機能が発揮されることを確認した。したがって、吸水性シートの吸水度を3cm以上とすることが好ましい。勿論、本発明はこれに限定されるものでなく、測定対象や諸条件によって適宜変更できる。 That is, in the said Example, if the water absorption of the water absorbing sheet was 3 cm or more, it was confirmed that the function of the water absorbing sheet was exhibited. Therefore, the water absorption of the water absorbent sheet is preferably 3 cm or more. Of course, the present invention is not limited to this, and can be appropriately changed depending on the measurement object and various conditions.
(実施例2)
実施例1で使用した土壌試料を使用し、懸濁液の濃度を変えて(B1〜B5)、懸濁液濃度の測定範囲を検討した。吸水性シートとして定量ろ紙No.5Aを用い、検出紙にカンタブを用いた(上記A5参照)。試験結果を表2に示す。
(Example 2)
Using the soil sample used in Example 1, the suspension concentration was changed (B1 to B5), and the measurement range of the suspension concentration was examined. A quantitative filter paper No. 5A was used as the water-absorbent sheet, and a cantab was used as the detection paper (see A5 above). The test results are shown in Table 2.
懸濁液中の溶媒(水)100質量部に対し、不溶性無機成分(土)の量が30質量部以下である場合には検出紙の測定できることを確認した。一方、不溶性無機成分が多くなり過ぎると、ろ紙から溶媒の吸い上げが著しく悪くなり、検出紙まで溶媒が移動する時間が著しく長くなり、好適な測定ができないおそれがある。なお、不溶性無機成分が1質量部でも測定は可能であるが、ろ紙(吸水性シート)を使用しなくても、懸濁液に透明度があるため、吸水性シートなしでの測定が可能である。 It was confirmed that the detection paper can be measured when the amount of the insoluble inorganic component (soil) is 30 parts by mass or less with respect to 100 parts by mass of the solvent (water) in the suspension. On the other hand, if the amount of the insoluble inorganic component is excessive, the absorption of the solvent from the filter paper is remarkably deteriorated, and the time required for the solvent to move to the detection paper is remarkably increased. Measurement is possible even with 1 part by mass of the insoluble inorganic component, but measurement without a water-absorbing sheet is possible because the suspension has transparency without using filter paper (water-absorbing sheet). .
したがって、懸濁液中の溶媒100質量部に対して不溶性微粒子3〜30質量部であることが好ましい。 Therefore, the amount of insoluble fine particles is preferably 3 to 30 parts by mass with respect to 100 parts by mass of the solvent in the suspension.
1 吸水性シート
2 溶質濃度測定装置
3 溶質濃度測定部
4 水溶液(懸濁液)
1
Claims (7)
前記浸漬工程で前記吸液材に吸い上げられた液中に含まれている溶質濃度が測定される測定工程
とを有することを特徴とする懸濁液中の溶質濃度測定方法。 An immersion process in which the liquid-absorbing material is immersed in the suspension;
And a measuring step of measuring a solute concentration contained in the liquid sucked up by the liquid absorbing material in the dipping step.
吸液材と該吸液材に連接された溶質濃度測定部とを具備する溶質濃度測定装置の前記吸液材が懸濁液中に浸される工程であり、
前記測定工程は、
前記吸液材に吸い上げられた液が前記溶質濃度測定部に移行して測定される工程である
ことを特徴とする請求項1の懸濁液中の溶質濃度測定方法。 The dipping process includes
A step of immersing the liquid absorbing material in a suspension of a solute concentration measuring device comprising a liquid absorbing material and a solute concentration measuring unit connected to the liquid absorbing material;
The measurement step includes
2. The method for measuring a solute concentration in a suspension according to claim 1, wherein the liquid sucked up by the liquid absorbing material is transferred to the solute concentration measuring unit and measured.
ことを特徴とする請求項2の懸濁液中の溶質濃度測定方法。 The method for measuring a solute concentration in a suspension according to claim 2, wherein the liquid absorbing material has a water absorption of 3 cm or more according to a method in accordance with JIS P 8141.
ことを特徴とする請求項1〜請求項3の懸濁液中の溶質濃度測定方法。 The said suspension contains 3-30 mass parts of insoluble fine particles with a particle size of 100 micrometers or less with respect to 100 mass parts of solvent components, The solute concentration measurement in the suspension of Claims 1-3 characterized by the above-mentioned. Method.
ことを特徴とする請求項1〜請求項4いずれかの懸濁液中の溶質濃度測定方法。 The suspension Cl - claims 1 to 4 either solute concentration measuring method in the suspension, characterized in that it contains.
溶質に感応し、該溶質の濃度毎に固有の変色又は発色を呈する検知用成分を含浸した検出用紙片、又は前記検知用成分が担持してなる検出用媒体を用いて行われる
ことを特徴とする請求項1〜請求項5いずれかの懸濁液中の溶質濃度測定方法。 The measurement step includes
It is performed using a detection paper piece impregnated with a detection component that is sensitive to a solute and exhibits a specific color change or color development for each concentration of the solute, or a detection medium that carries the detection component. A method for measuring a solute concentration in a suspension according to any one of claims 1 to 5.
溶質に感応して変色又は発色を呈する検知用成分を含浸した検出用紙片、又は前記検知用成分が担持してなる検出用媒体が用いられ、前記紙片又は前記媒体中の変色又は発色部分の面積割合が求められることで定量される
ことを特徴とする請求項1〜請求項5いずれかの懸濁液中の溶質濃度測定方法。 The measurement step includes
A detection paper piece impregnated with a detection component that changes color or color in response to a solute, or a detection medium carrying the detection component is used, and the area of the color change or color development portion in the paper piece or the medium The method for measuring a solute concentration in a suspension according to any one of claims 1 to 5, wherein the quantification is performed by obtaining the ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012217753A JP2014071015A (en) | 2012-09-28 | 2012-09-28 | Measurement instrument and measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012217753A JP2014071015A (en) | 2012-09-28 | 2012-09-28 | Measurement instrument and measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014071015A true JP2014071015A (en) | 2014-04-21 |
JP2014071015A5 JP2014071015A5 (en) | 2015-11-12 |
Family
ID=50746349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012217753A Pending JP2014071015A (en) | 2012-09-28 | 2012-09-28 | Measurement instrument and measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014071015A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6292647B1 (en) * | 2017-04-03 | 2018-03-14 | 独立行政法人国立高等専門学校機構 | Detection tool, method for manufacturing the same, and method for evaluating a test substance |
CN112964591A (en) * | 2021-02-01 | 2021-06-15 | 河北农业大学 | Technical device for determining soil particle analysis and micro-aggregates by simple straw method |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50105887U (en) * | 1974-02-08 | 1975-08-30 | ||
JPS58144263U (en) * | 1982-03-24 | 1983-09-28 | 脇 正 | Soil acidity alkalinity measuring device for plant growth |
JPS6358753U (en) * | 1986-10-03 | 1988-04-19 | ||
JPS63168858U (en) * | 1987-04-23 | 1988-11-02 | ||
JPH05333019A (en) * | 1990-01-23 | 1993-12-17 | Lab Theranol | Analyzer for liquid sample |
JPH0650957A (en) * | 1992-04-21 | 1994-02-25 | Environment Test Syst Inc | Improved solid testing tool and halogenide measurement and method therefor |
JPH0736017B2 (en) * | 1986-09-29 | 1995-04-19 | アボット ラボラトリーズ | Microdot immunoassay device |
JPH0746107B2 (en) * | 1987-04-27 | 1995-05-17 | ユニリーバー・ナームローゼ・ベンノートシヤープ | Test method |
JPH11502016A (en) * | 1995-03-06 | 1999-02-16 | アレン・エイ・ミッチェル | Analysis of compounds in consumables |
JPH11237374A (en) * | 1991-11-18 | 1999-08-31 | Daiki:Kk | Sanitary implement |
JP2000503776A (en) * | 1997-04-22 | 2000-03-28 | エンヴァイロメンタル テスト システムズ インコーポレイテッド | Method and apparatus for colorimetric determination of an analyte in the presence of particulate interfering substances |
JP2002028632A (en) * | 2000-07-18 | 2002-01-29 | Taisei Corp | Method for evaluation of cleaning ability of soil, or the like, by enzyme associative with decomposing environmental pollutant |
JP3834520B2 (en) * | 2002-03-25 | 2006-10-18 | 直敏 谷本 | Soil acidity determination stick |
WO2009069412A1 (en) * | 2007-11-30 | 2009-06-04 | Morinaga Milk Industry Co., Ltd. | Test container, test piece, test kit and test method |
JP2009244047A (en) * | 2008-03-31 | 2009-10-22 | Tdk Corp | Sample for ph measurement, ph measurement apparatus and ph measurement method |
JP2010197815A (en) * | 2009-02-26 | 2010-09-09 | Daio Paper Corp | Indicator pasteboard |
EP2506005A1 (en) * | 2011-03-29 | 2012-10-03 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | pH-sensor |
-
2012
- 2012-09-28 JP JP2012217753A patent/JP2014071015A/en active Pending
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5310945Y2 (en) * | 1974-02-08 | 1978-03-24 | ||
JPS50105887U (en) * | 1974-02-08 | 1975-08-30 | ||
JPS58144263U (en) * | 1982-03-24 | 1983-09-28 | 脇 正 | Soil acidity alkalinity measuring device for plant growth |
JPH0736017B2 (en) * | 1986-09-29 | 1995-04-19 | アボット ラボラトリーズ | Microdot immunoassay device |
JPS6358753U (en) * | 1986-10-03 | 1988-04-19 | ||
JPS63168858U (en) * | 1987-04-23 | 1988-11-02 | ||
JPH0746107B2 (en) * | 1987-04-27 | 1995-05-17 | ユニリーバー・ナームローゼ・ベンノートシヤープ | Test method |
JPH05333019A (en) * | 1990-01-23 | 1993-12-17 | Lab Theranol | Analyzer for liquid sample |
JPH11237374A (en) * | 1991-11-18 | 1999-08-31 | Daiki:Kk | Sanitary implement |
JP3157935B2 (en) * | 1991-11-18 | 2001-04-23 | 株式会社大貴 | Test specimen for measurement |
JPH0650957A (en) * | 1992-04-21 | 1994-02-25 | Environment Test Syst Inc | Improved solid testing tool and halogenide measurement and method therefor |
JPH11502016A (en) * | 1995-03-06 | 1999-02-16 | アレン・エイ・ミッチェル | Analysis of compounds in consumables |
JP2000503776A (en) * | 1997-04-22 | 2000-03-28 | エンヴァイロメンタル テスト システムズ インコーポレイテッド | Method and apparatus for colorimetric determination of an analyte in the presence of particulate interfering substances |
JP2002028632A (en) * | 2000-07-18 | 2002-01-29 | Taisei Corp | Method for evaluation of cleaning ability of soil, or the like, by enzyme associative with decomposing environmental pollutant |
JP3834520B2 (en) * | 2002-03-25 | 2006-10-18 | 直敏 谷本 | Soil acidity determination stick |
WO2009069412A1 (en) * | 2007-11-30 | 2009-06-04 | Morinaga Milk Industry Co., Ltd. | Test container, test piece, test kit and test method |
JP2009244047A (en) * | 2008-03-31 | 2009-10-22 | Tdk Corp | Sample for ph measurement, ph measurement apparatus and ph measurement method |
JP2010197815A (en) * | 2009-02-26 | 2010-09-09 | Daio Paper Corp | Indicator pasteboard |
EP2506005A1 (en) * | 2011-03-29 | 2012-10-03 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | pH-sensor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6292647B1 (en) * | 2017-04-03 | 2018-03-14 | 独立行政法人国立高等専門学校機構 | Detection tool, method for manufacturing the same, and method for evaluating a test substance |
JP2018179511A (en) * | 2017-04-03 | 2018-11-15 | 独立行政法人国立高等専門学校機構 | Detection tool and manufacturing method thereof, and evaluation method for material to be inspected |
CN112964591A (en) * | 2021-02-01 | 2021-06-15 | 河北农业大学 | Technical device for determining soil particle analysis and micro-aggregates by simple straw method |
CN112964591B (en) * | 2021-02-01 | 2023-10-20 | 河北农业大学 | Method for measuring soil particles and micro-aggregates by using simple straw method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Flegal et al. | Current needs for increased accuracy and precision in measurements of low levels of lead in blood | |
Lindberg et al. | Mercury-organic matter associations in estuarine sediments and interstitial water | |
Pesavento et al. | Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: A review | |
Scindia et al. | Coupled-diffusion transport of Cr (VI) across anion-exchange membranes prepared by physical and chemical immobilization methods | |
Alfaro-De la Torre et al. | In situ measurement of trace metals in lakewater using the dialysis and DGT techniques | |
Christl et al. | Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding | |
Chang et al. | Performance characteristics for the measurement of Cs and Sr by diffusive gradients in thin films (DGT) | |
Kalyan et al. | Membrane optode for mercury (II) determination in aqueous samples | |
Elias et al. | Development of a new binding phase for the diffusive gradients in thin films technique based on an ionic liquid for mercury determination | |
CN107144563B (en) | Novel technology for manufacturing and applying colorimetric test paper for rapidly detecting, enriching and separating heavy metal mercury ions | |
Borovec et al. | Distribution of some metals in sediments of the central part of the Labe (Elbe) River: Czech Republic | |
Elhefnawy | A new optical sensor for spectrophotometric determination of uranium (VI) and thorium (IV) in acidic medium | |
Turner et al. | Evaluation of diffusive gradients in thin-films using a Diphonix® resin for monitoring dissolved uranium in natural waters | |
Gorny et al. | Determination of total arsenic using a novel Zn-ferrite binding gel for DGT techniques: Application to the redox speciation of arsenic in river sediments | |
O'Brien et al. | A novel method for the in situ calibration of flow effects on a phosphate passive sampler | |
Moustafa et al. | A novel bulk optode for ultra-trace detection of antimony coupled with spectrophotometry in food and environmental samples | |
JP2014071015A (en) | Measurement instrument and measurement method | |
CN103487432A (en) | Lead ion detection test paper, and preparation method and use method thereof | |
Huu Nguyen et al. | Predicting mercury bioavailability in soil for earthworm Eisenia fetida using the diffusive gradients in thin films technique | |
CN105289541B (en) | A kind of adsorbed film of fixed fluorine ion and preparation method thereof | |
Tan et al. | Ceria oxide nanoparticle-based diffusive gradients in thin films for in situ measurement of dissolved reactive phosphorus in waters and sewage sludge | |
JP2013167567A (en) | Method for measuring soil salinity concentration | |
Filik et al. | Rapid sensing of molybdenum by combined colorimetric solid-phase extraction—reflectance spectroscopy | |
Kalyan et al. | Membrane optode for uranium (VI) ions preconcentration and quantification based on a synergistic combination of 4-(2-thiazolylazo)-resorcinol with 8-hydroxyquinaldine | |
Yamini et al. | Determination of trace elements in natural water using X‐ray fluorescence spectrometry after preconcentration with powdered silica gel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150918 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150918 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170208 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170823 |