JP2013533907A - Hydrotalcite whose sodium content is controlled to a very small amount, its production method, and synthetic resin composition containing the same - Google Patents
Hydrotalcite whose sodium content is controlled to a very small amount, its production method, and synthetic resin composition containing the same Download PDFInfo
- Publication number
- JP2013533907A JP2013533907A JP2013514119A JP2013514119A JP2013533907A JP 2013533907 A JP2013533907 A JP 2013533907A JP 2013514119 A JP2013514119 A JP 2013514119A JP 2013514119 A JP2013514119 A JP 2013514119A JP 2013533907 A JP2013533907 A JP 2013533907A
- Authority
- JP
- Japan
- Prior art keywords
- hydrotalcite
- ppm
- content
- secondary particle
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 title claims abstract description 128
- 229960001545 hydrotalcite Drugs 0.000 title claims abstract description 128
- 229910001701 hydrotalcite Inorganic materials 0.000 title claims abstract description 128
- 239000011734 sodium Substances 0.000 title claims abstract description 92
- 229910052708 sodium Inorganic materials 0.000 title claims abstract description 34
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000000203 mixture Substances 0.000 title claims abstract description 9
- 229920003002 synthetic resin Polymers 0.000 title claims abstract description 9
- 239000000057 synthetic resin Substances 0.000 title claims abstract description 9
- 239000011163 secondary particle Substances 0.000 claims abstract description 48
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000002245 particle Substances 0.000 claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 239000011572 manganese Substances 0.000 claims abstract description 8
- 238000000790 scattering method Methods 0.000 claims abstract description 5
- 238000004438 BET method Methods 0.000 claims abstract description 4
- 150000002506 iron compounds Chemical class 0.000 claims abstract description 4
- 150000002697 manganese compounds Chemical class 0.000 claims abstract description 4
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 36
- 239000011777 magnesium Substances 0.000 claims description 25
- 238000010298 pulverizing process Methods 0.000 claims description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- 235000021355 Stearic acid Nutrition 0.000 claims description 11
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 11
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 claims description 11
- 239000008117 stearic acid Substances 0.000 claims description 11
- 239000011575 calcium Substances 0.000 claims description 7
- 230000006866 deterioration Effects 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- -1 hydrotalcite compound Chemical class 0.000 claims description 6
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M lithium hydroxide Inorganic materials [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 2
- 229910021450 lithium metal oxide Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000003945 anionic surfactant Substances 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 239000007864 aqueous solution Substances 0.000 description 57
- 239000002994 raw material Substances 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 38
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 30
- 229920005989 resin Polymers 0.000 description 29
- 239000011347 resin Substances 0.000 description 29
- 238000003756 stirring Methods 0.000 description 29
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 24
- 239000000395 magnesium oxide Substances 0.000 description 24
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 24
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 24
- 238000004381 surface treatment Methods 0.000 description 24
- 239000002002 slurry Substances 0.000 description 23
- 238000005406 washing Methods 0.000 description 21
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 20
- 238000000034 method Methods 0.000 description 20
- 238000012360 testing method Methods 0.000 description 20
- 239000012153 distilled water Substances 0.000 description 16
- 229910052742 iron Inorganic materials 0.000 description 13
- 238000002156 mixing Methods 0.000 description 13
- 229920000915 polyvinyl chloride Polymers 0.000 description 13
- 239000004800 polyvinyl chloride Substances 0.000 description 13
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 238000001914 filtration Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000012535 impurity Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000000376 reactant Substances 0.000 description 10
- 229910000029 sodium carbonate Inorganic materials 0.000 description 10
- 235000011121 sodium hydroxide Nutrition 0.000 description 10
- 238000001816 cooling Methods 0.000 description 9
- 238000013112 stability test Methods 0.000 description 9
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 8
- 239000006227 byproduct Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 150000001450 anions Chemical class 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 7
- 230000032683 aging Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 5
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 239000011343 solid material Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000004040 coloring Methods 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 235000019341 magnesium sulphate Nutrition 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000006077 pvc stabilizer Substances 0.000 description 4
- 239000012925 reference material Substances 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- 239000011787 zinc oxide Substances 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 3
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 3
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 102100035474 DNA polymerase kappa Human genes 0.000 description 2
- 101710108091 DNA polymerase kappa Proteins 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 2
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229940049964 oleate Drugs 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000013558 reference substance Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- WZUNUACWCJJERC-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)butyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(CC)(CO)CO WZUNUACWCJJERC-UHFFFAOYSA-N 0.000 description 1
- JZODKRWQWUWGCD-UHFFFAOYSA-N 2,5-di-tert-butylbenzene-1,4-diol Chemical compound CC(C)(C)C1=CC(O)=C(C(C)(C)C)C=C1O JZODKRWQWUWGCD-UHFFFAOYSA-N 0.000 description 1
- XHALKWMTKWHQLO-UHFFFAOYSA-N 2-tert-butyl-4-(3-tert-butyl-4-hydroxyphenyl)sulfanylphenol Chemical compound C1=C(O)C(C(C)(C)C)=CC(SC=2C=C(C(O)=CC=2)C(C)(C)C)=C1 XHALKWMTKWHQLO-UHFFFAOYSA-N 0.000 description 1
- HXIQYSLFEXIOAV-UHFFFAOYSA-N 2-tert-butyl-4-(5-tert-butyl-4-hydroxy-2-methylphenyl)sulfanyl-5-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1SC1=CC(C(C)(C)C)=C(O)C=C1C HXIQYSLFEXIOAV-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- IAJNXBNRYMEYAZ-UHFFFAOYSA-N ethyl 2-cyano-3,3-diphenylprop-2-enoate Chemical compound C=1C=CC=CC=1C(=C(C#N)C(=O)OCC)C1=CC=CC=C1 IAJNXBNRYMEYAZ-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 1
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000002888 oleic acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229940031953 sorbitan monopalmitate Drugs 0.000 description 1
- 235000011071 sorbitan monopalmitate Nutrition 0.000 description 1
- 239000001570 sorbitan monopalmitate Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/78—Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
- C01F7/784—Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
- C01F7/785—Hydrotalcite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
- C01P2004/52—Particles with a specific particle size distribution highly monodisperse size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】 本発明は特性を持って、ナトリウムの含量が極微量に制御されたハイドロタルサイト、その製造方法及びこれを含有する合成樹脂組成物ハイドロタルサイトを開示する。
【解決手段】
(1)一般式
[M(II)y M(II)z]1-x(Al)x(OH)2(CO3)2- (x)/n・mH2O
式中、 M(II)は 2価の金属イオンであるMg2+、Zn2+、 Ca2+、
Li2+を示し、
x、y、z及びmは下記条件を満足させる値を示す。
0.2≦x<0.4、 y+z=1、 0.7≦y≦1、 0≦z≦0.3、
0≦m<1;
(2)ハイドロタルサイト粒子はレーザー回折散乱法で測定の時0.5〜2μmの平均
2次粒径を有する;
(3)ハイドロタルサイト粒子中のナトリウム成分は80質量ppm以下である。
(4)ハイドロタルサイト粒子は鉄化合物及びマンガン化合物を金属(Fe+Mn)に 換算して0.005質量%以下の総量で含有する。
(5)ハイドロタルサイト粒子はBET法で測定の時5〜40m2/g、望ましくは5 〜20m2/gの比表面積を有する。PROBLEM TO BE SOLVED: To disclose a hydrotalcite having characteristics and having a sodium content controlled to a very small amount, a method for producing the hydrotalcite, and a synthetic resin composition hydrotalcite containing the hydrotalcite.
[Solution]
(1) General formula
[M (II) y M (II) z ] 1-x (Al) x (OH) 2 (CO 3 ) 2- (x) / n・ mH 2 O
In the formula, M (II) is a divalent metal ion, Mg 2+ , Zn 2+ , Ca 2+ ,
Li 2+
x, y, z, and m represent values that satisfy the following conditions.
0.2 ≦ x <0.4, y + z = 1, 0.7 ≦ y ≦ 1, 0 ≦ z ≦ 0.3,
0 ≦ m <1;
(2) Hydrotalcite particles have an average secondary particle size of 0.5-2 μm when measured by laser diffraction scattering method;
(3) The sodium component in the hydrotalcite particles is 80 ppm by mass or less.
(4) Hydrotalcite particles contain an iron compound and a manganese compound in a total amount of 0.005% by mass or less in terms of metal (Fe + Mn).
(5) the hydrotalcite particles have a 5 to 40 m 2 / g, a specific surface area of preferably 5 to 20 m 2 / g when measured by BET method.
Description
本発明は、ナトリウムの含量が極微量に制御されたハイドロタルサイト粒子、その製造方法、これを含有する樹脂組成物及び成形体に関する。更に詳しくは合成樹脂の加熱成型加工の時に耐熱劣化性が優れ、樹脂に対して高分散性、非凝集性、耐衝撃強度の如き優れた物性を付与でき、特にナトリウムイオンをほとんど含まない新規な物性を有するハイドロタルサイト、その製造方法、これを含有する樹脂組成物及び成形体に関する。 The present invention relates to hydrotalcite particles whose sodium content is controlled to a very small amount, a method for producing the same, a resin composition containing the hydrotalcite particles, and a molded article. More specifically, it has excellent heat resistance during the heat molding process of synthetic resins, and can impart excellent physical properties such as high dispersibility, non-aggregation and impact strength to the resin, and it is a novel material that contains almost no sodium ions. The present invention relates to a hydrotalcite having physical properties, a method for producing the same, a resin composition containing the hydrotalcite, and a molded body.
従来、触媒及び/または担体成分としてハロゲン含有化合物を用いたチーグラー型重合触媒を用いて製造されたオレフィン類の重合体もしくはその共重合体または後塩素化ポリエチレンなどのような重合用触媒もしくは後ハロゲン化に由来するハロゲンを含有するオレフィン類、ポリオレフィン類などによって製造された樹脂やそのポリマーブレンド樹脂には、これらに含有されたハロゲン化合物による熱劣化を防止するためにずいぶん前からハイドロタルサイトが使われて来た(参照、特許文献1乃至9号参照)。 Conventionally, a catalyst for polymerization or a post-halogen such as a polymer of olefins or a copolymer thereof or a post-chlorinated polyethylene produced using a Ziegler-type polymerization catalyst using a halogen-containing compound as a catalyst and / or a carrier component. Hydrotalcite has been used for a long time to prevent thermal degradation caused by halogen compounds contained in resins and polymer blend resins made of halogen-containing olefins and polyolefins derived from chemical conversion. (Refer to patent documents 1 to 9).
上記各特許文献では、ハイドロタルサイトを製造するために水溶性金属化合物を使用していた。ところが、これら化合物の製造の時、ハイドロタルサイトの中に含有されるナトリウム(Na)成分及び発生される副産物を除去するために、数回洗浄しなければならなかった。このような洗浄によって発生される多量の廃水及び副産物によって生産性が低下し、製造コストが高くなり、環境を悪化させる問題点があった。このような問題点を解決するために副産物の発生が抑制される結晶性金属水酸化物を出発物質として使う方法が提案されたが(参照、特許文献1及び2)、このような方法では低い反応性及び結晶性水酸化物が有する固有の粒形、粒子サイズによる性能低下が起こるので、これを解決するために水溶性化合物を添加するとか、pHを調節するための添加物などが使用されていた。このような方法で、副産物及び廃水の発生をある程度減らすことができるが、高塩基性や高酸性のpHを使う場合、生成物の溶解による未反応物の発生する可能性が高く、0.1μmぐらいの粒度の低い粒子に再凝集されて2次粒度が大きくなることがあるし、不規則で大きい粒子サイズの場合、合成樹脂の初期熱安定性が低下する場合があるので、上記特許文献に開示された発明は実際産業に適用するにはあまり満足のゆくものではなかった。 In each said patent document, in order to manufacture a hydrotalcite, the water-soluble metal compound was used. However, during the production of these compounds, it has been necessary to wash several times in order to remove the sodium (Na) component contained in the hydrotalcite and the by-products generated. A large amount of waste water and by-products generated by such washing have a problem that productivity is lowered, manufacturing costs are increased, and the environment is deteriorated. In order to solve such problems, a method using a crystalline metal hydroxide that suppresses the generation of by-products as a starting material has been proposed (see Patent Documents 1 and 2), but such a method is low. The inherent particle shape of reactive and crystalline hydroxides, and performance degradation due to particle size occurs. To solve this, water-soluble compounds are added, or additives for adjusting pH are used. It was. By such a method, the generation of by-products and waste water can be reduced to some extent, but when using a highly basic or highly acidic pH, there is a high possibility that unreacted substances are generated due to dissolution of the product, and 0.1 μm. Since the secondary particle size may be increased by re-aggregation into particles with a low particle size, and the irregular and large particle size may reduce the initial thermal stability of the synthetic resin, The disclosed invention has not been very satisfactory for practical industry applications.
また、ハイドロタルサイトを塩化ビニル樹脂等のハロゲン含有ポリオレフィン類に配合する場合、その粒子の2次平均粒子が大きいとか比表面積が小さな場合、樹脂との分散性が良くなく、更に鉄やマンガンのような重金属またはそれらのイオンが含有されている場合、耐熱劣化性に悪影響を与えること(特許文献3)が開示されている。
また、ハイドロタルサイト中のNaの含有量が100ppmを超過する場合、これを樹脂、特に塩化ビニル樹脂中に配合すると、電気抵抗が低下し、熱や紫外線に対する樹脂安全性が悪く、圧出加工の時に樹脂劣化による黄変などが発生して残物が多量発生する問題点があることが知られている(参照、特許文献4)。このためにハイドロタルサイトを製造する時、塩化ナトリウムなどの塩分を除去するために多量の水を使って洗浄しているが、塩の水に対する溶解度があまり大きくないので、多量の水(溶媒)を使わなければならないし、その洗浄工程も数回にわたって洗浄しなければならないのが現状である。
In addition, when hydrotalcite is blended with halogen-containing polyolefins such as vinyl chloride resin, when the secondary average particle of the particle is large or the specific surface area is small, the dispersibility with the resin is not good, and iron or manganese When such heavy metals or ions thereof are contained, it is disclosed that the heat resistance deterioration is adversely affected (Patent Document 3).
Moreover, when the Na content in hydrotalcite exceeds 100 ppm, if this is blended in a resin, particularly a vinyl chloride resin, the electrical resistance is lowered, the resin safety against heat and ultraviolet rays is poor, and extrusion processing is performed. It is known that there is a problem in that yellowing or the like due to resin deterioration occurs and a large amount of residue is generated (see Patent Document 4). For this reason, when hydrotalcite is produced, it is washed with a large amount of water to remove salt such as sodium chloride, but the solubility of the salt in water is not so high, so a large amount of water (solvent) At present, the cleaning process must be performed several times.
本発明者は上記の数多くの技術的課題を克服し、また少量の配合で熱劣化性乃至着色性の問題点を防止することができ、また熱や紫外線に対する樹脂安全性を向上させ、圧出加工の時に樹脂劣化による黄変などの発生を抑制することができるようなハイドロタルサイトを製造することを意図した。そして、出発物質として結晶性無機金属化合物を使用し、この化合物を反応性及び粒子サイズの調節のために湿式または乾式粉砕工程を経って微粒子にした後、反応させ、陰イオン供給源として二酸化炭素(CO2)ガスを使用することによって、炭酸塩のアルカリ金属化合物の使用した場合の、最終生成物へのナトリウムイオンの混入をあらかじめ防止した、副産物発生がなく、その製造コストも低下した、均一で小さな2次粒度を有するハイドロタルサイトを製造することができることを見出し、本発明を完成した。 The present inventor has overcome the above-mentioned many technical problems, can prevent the problems of heat deterioration and colorability with a small amount of compounding, improves the resin safety against heat and ultraviolet rays, It was intended to produce a hydrotalcite that can suppress the occurrence of yellowing due to resin degradation during processing. Then, a crystalline inorganic metal compound is used as a starting material, and the compound is subjected to a wet or dry pulverization process to adjust the reactivity and particle size, and then reacted to react with carbon dioxide as an anion supply source. By using (CO 2 ) gas, when alkali metal compound of carbonate is used, mixing of sodium ions into the final product is prevented in advance, there is no by-product generation, and its production cost is reduced, uniform And found that hydrotalcite having a small secondary particle size can be produced.
本発明によれば、製品の生産の時に副産物発生がなく、製造コストも低下し、均一で、小さな2次粒度を有するハイドロタルサイトを製造することができる。そして、これを配合した合成樹脂は、合成樹脂の加熱成型加工の時に耐熱劣化性が優れ、樹脂に対して高分散性、非凝集性、耐衝撃強度のような優秀な物性を付与でき、特にナトリウムイオンを80ppm以下しか含まないので樹脂の圧出加工での着色が抑制されて、残物の発生を抑制することができる。 According to the present invention, there is no generation of by-products at the time of product production, the production cost is reduced, and a hydrotalcite having a uniform and small secondary particle size can be produced. And the synthetic resin blended with this resin has excellent heat deterioration resistance during the heat molding process of the synthetic resin, and can impart excellent physical properties such as high dispersibility, non-agglomeration and impact strength to the resin. Since it contains only 80 ppm or less of sodium ions, coloring during resin extrusion can be suppressed, and generation of residues can be suppressed.
以下、本発明を具体的に説明する。
本発明によって製造されるハイドロタルサイトは下記特徴を有する。
(1)一般式
[M(II)y M(II)z]1-x(Al)x(OH)2(CO3)2- (x)/n・mH2O
但し、式中、M(II)は2価の金属イオンであるMg2+、Zn2+、Ca2+、
Li2+を示し、
x、y、z及びmは下記条件を満足する値を示す。
0.2≦x<0.4、 y+z=1、0.7≦y≦1、 0≦z≦0.3、
0≦m<1;
(2)ハイドロタルサイト粒子はレーザー回折散乱法で測定の時0.5〜2μmの平均2 次粒径を有する。
(3)ハイドロタルサイト粒子中のナトリウム成分は80質量ppm以下である。
(4)ハイドロタルサイト粒子は鉄化合物及びマンガン化合物を金属(Fe+Mn)に換 算して0.005質量%以下で含有している。
(5)ハイドロタルサイト粒子はBET法で測定の時5〜40m2/g、望ましくは5〜
20m2/gの比表面積を有する。
Hereinafter, the present invention will be specifically described.
The hydrotalcite produced by the present invention has the following characteristics.
(1) General formula
[M (II) y M (II) z ] 1-x (Al) x (OH) 2 (CO 3 ) 2- (x) / n・ mH 2 O
However, in the formula, M (II) is a divalent metal ion, Mg 2+ , Zn 2+ , Ca 2+ ,
Li 2+
x, y, z, and m represent values that satisfy the following conditions.
0.2 ≦ x <0.4, y + z = 1, 0.7 ≦ y ≦ 1, 0 ≦ z ≦ 0.3,
0 ≦ m <1;
(2) Hydrotalcite particles have an average secondary particle size of 0.5 to 2 μm when measured by a laser diffraction scattering method.
(3) The sodium component in the hydrotalcite particles is 80 ppm by mass or less.
(4) Hydrotalcite particles contain an iron compound and a manganese compound in an amount of 0.005% by mass or less converted to metal (Fe + Mn).
(5) Hydrotalcite particles are 5 to 40 m 2 / g, preferably 5 to 5 when measured by the BET method.
It has a specific surface area of 20 m 2 / g.
本発明のナトリウム、鉄、マンガン成分が含有されないハイドロタルサイト類は、2価の金属である、マグネシウム、亜鉛、カルシウム、リチウム金属の酸化物または水酸化物、M(II)を用いて、望ましくはその金属酸化物を用いて製造することができる。3価の金属であるM(III)はAlの酸化物または水酸化物を示し、特に水酸化アルミニウムが望ましい。これら原材料である金属塩は、それらの純度が99.9%以上のものを使用する。原材料に不純物が混入されていれば、得られるハイドロタルサイトに不純物が含まれるから、これら不純物、特にナトリウムや鉄、マンガン成分を除去するために別途の工程を経るとか、水洗しなければならず、これによって廃水などが多量に発生してしまい望ましくない。本発明では従来と違い、上記金属の酸化物及び/または水酸化物のみを使用し、硫酸塩は使わない。硫酸塩、すなわち硫酸アルミニウムや硫酸マグネシウムを使う場合、これら硫酸塩化合物は水に対する溶解性が良くて反応性の面では望ましいが、反応後の溶解された硫酸基(SO4 −2)を除去するためにアルカリ水酸化物や炭酸化物、すなわち、苛性ソーダや炭酸ナトリウムのようなアルカリで中和させ、中和の後にナトリウム成分を除去ために何回も洗浄しなければならないから本発明ではこれら硫酸塩金属化合物を使わない。 The hydrotalcite containing no sodium, iron, or manganese component of the present invention is preferably a divalent metal such as magnesium, zinc, calcium, lithium metal oxide or hydroxide, M (II). Can be produced using the metal oxide. M (III), which is a trivalent metal, represents an oxide or hydroxide of Al, and aluminum hydroxide is particularly desirable. The metal salt which is these raw materials uses those whose purity is 99.9% or more. If impurities are mixed in the raw material, the resulting hydrotalcite contains impurities, so these impurities, especially sodium, iron, and manganese components must be removed through separate steps or washed with water. As a result, a large amount of waste water is generated, which is not desirable. In the present invention, unlike the prior art, only the metal oxide and / or hydroxide is used, and no sulfate is used. When sulfates, that is, aluminum sulfate or magnesium sulfate are used, these sulfate compounds have good solubility in water and are desirable in terms of reactivity, but remove the dissolved sulfate groups (SO 4 -2 ) after the reaction. In order to remove the sodium component after neutralization with alkali hydroxides or carbonates, that is, alkalis such as caustic soda or sodium carbonate, the sulfates are used in the present invention. Do not use metal compounds.
上記のような高純度の原材料を準備し、このように用意した2価金属及び3価金属原料を分散させる。原料金属の反応のための混合の割合は従来の方法に準じる。すなわち、従来ハイドロタルサイトの製法で知られた日本国公開昭46−2280号、日本国公開昭47−32198号、日本国公開昭50−30039号、日本国公開昭48−29477号、日本国公開昭51−29129号などに記載した方法に準じて反応のための混合を行う。これら混合した原材料は、乾式または湿式粉砕機を用いて粉碎する。粉砕機の種類としては特に限定するものではないが、湿式粉砕機(wet mill)が望ましい。湿式粉砕機を用いて粉碎する場合、湿式粉砕機の回転速度及び時間とスラリー濃度は特に限定されるものではないが、粉砕後の2次粒径、D100が2μm以下、望ましくは1μm以下になるまでミーリングして粉砕するのが最終目的物で得られるハイドロタルサイトの粒径を調整するのに有利である。もし粉砕後の2次粒径、D100が4μm以上であれば最終的に得られるハイドロタルサイトの2次粒径、D100が10μm以上になって樹脂と配合する時、分散性が低下するなどの問題点が発生して望ましくない。 The high-purity raw material as described above is prepared, and the bivalent metal and trivalent metal raw material thus prepared are dispersed. The mixing ratio for the reaction of the raw metal is in accordance with the conventional method. That is, Japanese publication Sho 46-2280, Japanese publication Sho 47-32198, Japanese publication Sho 50-30039, Japanese publication Sho 48-29477, Japan Mixing for the reaction is carried out according to the method described in JP-A-51-29129. These mixed raw materials are pulverized using a dry or wet pulverizer. The type of pulverizer is not particularly limited, but a wet pulverizer is preferable. When milling using a wet pulverizer, the rotational speed and time of the wet pulverizer and the slurry concentration are not particularly limited, but the secondary particle size after pulverization, D100, is 2 μm or less, preferably 1 μm or less. It is advantageous to adjust the particle size of the hydrotalcite obtained from the final object. If the secondary particle size after pulverization, D100 is 4 μm or more, the final particle size of the hydrotalcite finally obtained, and when D100 is 10 μm or more and blended with the resin, the dispersibility is lowered, etc. Problems occur and are undesirable.
上記で粉砕された混合水溶液を反応タンクに入れて、密閉した後、二酸化炭素ガスを注入する。注入量は従来の方法による炭酸塩(CO3 2−)のモル比に依存し、高圧容器を使ってCO3 2−のモル比と等量のCO2量を計量する。投入方法は撹拌中の反応物がいれてある密閉された高圧反応器に、気体圧が0kg/cm2になるまで注入することで行われる。 The mixed aqueous solution crushed above is put into a reaction tank and sealed, and then carbon dioxide gas is injected. The injection amount depends on the molar ratio of carbonate (CO 3 2− ) according to the conventional method, and the amount of CO 2 equivalent to the molar ratio of CO 3 2− is measured using a high pressure vessel. The charging method is performed by injecting into a sealed high-pressure reactor containing the reactants being stirred until the gas pressure becomes 0 kg / cm 2 .
本発明においては、陰イオンとして前述したように、二酸化炭素ガスを用いて2価の炭酸陰イオンを含有するハイドロタルサイトを製造することであり、その以外の他の陰イオン、例えば、硫酸イオン、窒酸イオン、塩素イオンのような2価の陰イオンを使用し、これらを有するハイドロタルサイトを製造するものではない。硫酸イオン、窒酸イオン、塩素イオンのような2価の陰イオンを有するハイドロタルサイトを製造する場合、硫酸塩、窒酸塩、塩酸塩化合物を使わなければならないし、これら塩を使う場合、これら塩を形成するアルカリ金属による副産物、ナトリウム成分などを除去ために何回の洗浄などの工程を避けることができないので、前述の陰イオンを使用せず、二酸化炭素ガスを用いて調製した陰イオン2価炭酸塩に限定する。 In the present invention, as described above as anions, it is to produce hydrotalcite containing divalent carbonate anions using carbon dioxide gas, and other anions such as sulfate ions. In addition, divalent anions such as nitrate ions and chloride ions are used, and hydrotalcite having these ions is not produced. When producing hydrotalcite with divalent anions such as sulfate ion, nitrate ion, and chloride ion, you must use sulfate, nitrate, and hydrochloride compounds. When using these salts, An anion prepared using carbon dioxide gas without using the aforementioned anion, because it is not possible to avoid the steps such as washing to remove by-products and sodium components by alkali metals that form these salts. Limited to divalent carbonates.
二酸化炭素ガスの注入が完了した後、混合水溶液を通常の水熱合成法で処理することでハイドロタルサイトを製造することができる。具体例をあげれば、上記に記載した方法により得られるハイドロタルサイト類をオートクレーブ中、約150℃以上の温度、例えば約150〜250℃の温度で約5〜30時間、水性媒体の中で加熱処理することで本発明ハイドロタルサイトを得ることができる。上記加熱処理は前述のBET比表面積条件を満足するようになるまで加圧条件下で水熱処理すればよいし、低温の方より高温の方を採用するのがより望ましい。 After the injection of carbon dioxide gas is completed, hydrotalcite can be produced by treating the mixed aqueous solution with a normal hydrothermal synthesis method. As a specific example, the hydrotalcite obtained by the above-described method is heated in an aqueous medium in an autoclave at a temperature of about 150 ° C. or higher, for example, about 150 to 250 ° C. for about 5 to 30 hours. The hydrotalcite of this invention can be obtained by processing. The heat treatment may be performed by hydrothermal treatment under pressure until the BET specific surface area condition described above is satisfied, and it is more desirable to employ a higher temperature than a lower temperature.
このように得られたハイドロタルサイト類は当分野の通常の方法、例えば、ステアリン酸やオレイン酸アルカリ金属塩のような高級アルキルアリールスルホン酸アルカリ金属塩及び界面活性剤などで表面処理して使うことができる。 The hydrotalcites thus obtained are surface-treated with a conventional method in the art, for example, a higher alkylaryl sulfonic acid alkali metal salt such as stearic acid or an alkali metal oleate and a surfactant. be able to.
上記で得られたスラリー状のハイドロタルサイトは濾過、乾燥した後、粉砕する。このような工程は当分野に公知の方法であり、具体的には例えば、約95〜120℃で約5〜24時間乾燥し、ハンマーミルで粉砕することが挙げられる。 The slurry-like hydrotalcite obtained above is filtered, dried and then pulverized. Such a step is a method known in the art, and specifically includes, for example, drying at about 95 to 120 ° C. for about 5 to 24 hours, and pulverizing with a hammer mill.
以下、前述の本発明の上記ハイドロタルサイトを含有する樹脂組成物に関して説明する。 Hereinafter, the resin composition containing the above hydrotalcite of the present invention will be described.
本発明の実施では塩化ビニル樹脂などのハロゲン含有ポリオレフィン類に上記特定のハイドロタルサイト類を約0.001〜30重量部、望ましくは約0.001〜20重量部、もっと望ましくは約0.001〜10の量で配合すればよく、このようにして本発明組成物を提供することができる。 In the practice of the present invention, about 0.001 to 30 parts by weight, preferably about 0.001 to 20 parts by weight, more preferably about 0.001 part of the specific hydrotalcite is added to halogen-containing polyolefins such as vinyl chloride resin. The composition of the present invention can be provided in this way.
上記配合手段それ自体には特別な制約はなく、例えば、安定剤や充填剤などをこれら樹脂に配合する慣用手段やこれと均等な配合手段を用いて配合することができる。例えば、リボンブレンダー、高速ミキサーコニド、ペレッタライザー、ミックシングロ−ル、圧出機、インテンシブミキサーのような手段が例示される。 The blending means itself is not particularly limited, and for example, the blending means can be blended using conventional means for blending stabilizers, fillers, and the like with these resins, or blending means equivalent thereto. For example, means such as a ribbon blender, a high-speed mixer conid, a pelletizer, a mixing roll, an extruder, and an intensive mixer are exemplified.
本発明の実施では上記特定のハイドロタルサイト類の配合以外に、ポリオレフィン類に慣用の他の添加剤類を配合することができる。このような添加剤としては、例えば、2,6−ジ−t−ブチル−p−クレゾール、2,5−ジ−t−ブチルハイドロキノン、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、4,4’−チオビス−(6−t−ブチルフェノール)、4,4’−チオビス−(6−t−ブチル−m−クレゾール)、オクタデシル3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオン酸塩のような酸化防止剤類;例えば、2−ヒドロキシ−4−オキトシベンゾフェノン、2−(2’−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、エチル−2−シアノ−3,3−ジフェニルアクリル酸塩のような紫外線吸収剤類;例えば、ペンタエリスリトールモノステアリン酸塩、ソルビタンモノパルミチン酸塩、硫酸化オレイン酸、ポリエチレンオキシド、カーボワックスのような帯電防止制;例えば、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸ブチル、エチレンビスステアロアミドのような滑剤類;例えば、フタル酸ジメチル、フタル酸ジエチル、オレイン酸エステル、リン酸エステル、ワックス、流動パラフィンのような可塑剤類;例えば、カーボンブラック、フタロシアニン、キナクリドン、インドリン、アゾ顔料、酸化チタン、ベンガラのような着色剤類;例えば、アスベスト、ガラスファイバー、タルク、マイカー、ベラストナイト、ケイ酸カルシウム、ケイ酸アルミニウム、炭酸カルシウムのような充填剤類;などが挙げられる。これら添加剤の配合量は適当に選択することができ、例えば、ハロゲン含有ポリオレフィン重量に対して約0.01〜約1.0%の酸化防止剤類、約0.01〜約1.0%の紫外線吸収剤類、約0.01〜約1%の帯電防止制類、約0.1〜約5%の滑剤類、約0.1〜約50%の充填剤類のような配合量が例示される。 In the practice of the present invention, other conventional additives can be added to the polyolefins in addition to the specific hydrotalcite. Examples of such additives include 2,6-di-t-butyl-p-cresol, 2,5-di-t-butylhydroquinone, 2,2′-methylene-bis (4-methyl-6- t-butylphenol), 4,4′-thiobis- (6-tert-butylphenol), 4,4′-thiobis- (6-tert-butyl-m-cresol), octadecyl 3- (3 ′, 5′-di) Antioxidants such as -t-butyl-4'-hydroxyphenyl) propionate; for example, 2-hydroxy-4-oxy-benzophenone, 2- (2'-hydroxy-5-methylphenyl) benzotriazole, UV absorbers such as ethyl-2-cyano-3,3-diphenylacrylate; for example, pentaerythritol monostearate, sorbitan monopalmitate, sulfated oleic acid Antistatic agents such as polyethylene oxide, carbowax; lubricants such as calcium stearate, zinc stearate, butyl stearate, ethylene bisstearamide; eg dimethyl phthalate, diethyl phthalate, oleate Plasticizers such as phosphate esters, waxes, liquid paraffin; colorants such as carbon black, phthalocyanine, quinacridone, indoline, azo pigments, titanium oxide, bengara; for example, asbestos, glass fiber, talc, And fillers such as miker, belastonite, calcium silicate, aluminum silicate, and calcium carbonate. The amount of these additives can be appropriately selected. For example, about 0.01 to about 1.0% of antioxidants, about 0.01 to about 1.0% based on the weight of the halogen-containing polyolefin. UV absorbers, about 0.01 to about 1% antistatics, about 0.1 to about 5% lubricants, about 0.1 to about 50% fillers Illustrated.
以下、実施例及び比較例として本発明を更に詳しく説明する。比較例で使う各原料物質すなわち、硫酸マグネシウム7水和物、水酸化ナトリウム、炭酸ナトリウムは何れも高純度、すなわち、99.9%以上のものを使用し、本発明の実施例のハイドロタルサイトと比べた。 Hereinafter, the present invention will be described in more detail as examples and comparative examples. The raw materials used in the comparative examples, ie, magnesium sulfate heptahydrate, sodium hydroxide, and sodium carbonate are all of high purity, that is, 99.9% or more, and the hydrotalcite of the examples of the present invention. Compared with.
実 施 例 1
3L容の原料タンク(1)に蒸溜水2Lを加え、酸化マグネシウム0.903molと水酸化アルミニウム0.42molとをゆっくり分散させた。この混合水溶液(A)を湿式粉砕機(wet mill、Netzsch社 bead mill、ジルコニアball 0.1mm、SUS304)を用いて3、000rpmで、60分間粉砕し、粉砕された混合水溶液の2次粒径がD50 0.75μm/D100 1μmになるようにした。粉砕された混合水溶液(B)2Lを3L容の反応タンクに入れ、密閉した後、高圧容器にCO2 0.21molを定量計量し、これを撹拌中の反応物が入っている反応タンクに圧力が「0kg/cm2」になるまで注入した。CO2注入が完了した混合水溶液(C)を170℃で、6時間水熱合成した。以後冷却して得られたスラリーを3L容の表面処理タンクに移送して80℃に維持した後、撹拌しながらステアリン酸3gを投入した。その後、1時間撹拌して表面処理を完了した。以後スラリーを含水率70%で濾過し、得られた固体物質を熱風乾燥機を用い、105℃で、12時間以上乾燥した後、ハンマーミルで粉砕してハイドロタルサイトを得た。
Example 1
Distilled water (2 L) was added to a 3 L-volume raw material tank (1), and 0.903 mol of magnesium oxide and 0.42 mol of aluminum hydroxide were slowly dispersed. The mixed aqueous solution (A) was pulverized for 60 minutes at 3,000 rpm using a wet pulverizer (wet mill, Netzsch bead mill, zirconia ball 0.1 mm, SUS304), and the secondary particle size of the pulverized mixed aqueous solution was pulverized. D50 0.75 μm / D100 1 μm. 2 L of the pulverized mixed aqueous solution (B) is put into a 3 L reaction tank and sealed, and 0.21 mol of CO 2 is quantitatively weighed in a high-pressure vessel, and the pressure is applied to the reaction tank containing the stirring reactant. Was injected until “0 kg / cm 2 ” was reached. The mixed aqueous solution (C) in which CO 2 injection was completed was hydrothermally synthesized at 170 ° C. for 6 hours. Thereafter, the slurry obtained by cooling was transferred to a 3 L surface treatment tank and maintained at 80 ° C., and then 3 g of stearic acid was added while stirring. Thereafter, the surface treatment was completed by stirring for 1 hour. Thereafter, the slurry was filtered at a moisture content of 70%, and the obtained solid substance was dried at 105 ° C. for 12 hours or more using a hot air dryer, and then pulverized with a hammer mill to obtain hydrotalcite.
上記から得られたハイドロタルサイトを分析したところ、その構造式はMg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであった。Na含量は3ppmであり、得られたハイドロタルサイトの比表面積は12m2/gであった。2次粒径はD50 1.95μm/D100 6μmであることを確認した。 When the hydrotalcite obtained from the above was analyzed, the structural formula thereof was Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O. The Na content was 3 ppm, and the specific surface area of the obtained hydrotalcite was 12 m 2 / g. It was confirmed that the secondary particle size was D50 1.95 μm / D100 6 μm.
上記で使用した酸化マグネシウムのNa含量は5ppm、Fe含量は106ppmであり、水酸化アルミニウムのNaとFe含量はそれぞれ5ppmであった。 The magnesium oxide used above had a Na content of 5 ppm and a Fe content of 106 ppm, and the aluminum hydroxide had a Na and Fe content of 5 ppm each.
比 較 例 1
上記実施例1と等しい原料と量を準備し、これを混合して湿式粉砕機作業を3000rpmで、30分行い、粉砕後の混合水溶液の2次粒径を、D50 1.2μm/D100 4μmにした。粉砕された混合水溶液2Lを反応タンク(7)に入れ、密閉した後CO2の注入及び反応/熟成/表面処理/乾燥/粉砕を行って、ハイドロタルサイトを製造した。
Comparative Example 1
Prepare the same raw materials and amount as in Example 1 above, mix them and perform the wet pulverizer operation at 3000 rpm for 30 minutes, and the secondary particle size of the mixed aqueous solution after pulverization to D50 1.2 μm / D100 4 μm did. 2 L of the pulverized mixed aqueous solution was placed in a reaction tank (7) and sealed, and then injected with CO 2 and subjected to reaction / aging / surface treatment / drying / pulverization to produce hydrotalcite.
上記製造工程で得られたハイドロタルサイトを分析した結果、その一般式はMg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は3ppm、比表面積は11m2/gであり、その2次粒径はD50 2.19μm/D100 10μmであることを確認した。 As a result of analyzing the hydrotalcite obtained in the above production process, the general formula is Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, and the Na content is It was confirmed that 3 ppm, the specific surface area was 11 m 2 / g, and the secondary particle size was D50 2.19 μm / D100 10 μm.
上記で使用した酸化マグネシウムのNa含量は5ppm、Fe含量は106ppmであり、水酸化アルミニウムのNaとFe含量はそれぞれ5ppmであった。 The magnesium oxide used above had a Na content of 5 ppm and a Fe content of 106 ppm, and the aluminum hydroxide had a Na and Fe content of 5 ppm each.
比 較 例 2
上記実施例1と等しい原料と量とを準備し、これらを混合して湿式粉砕機作業を3000rpmで10分遂行し、粉砕後の混合水溶液の2次粒径がD50 2.7μm/D100 12μmになるようにした。粉砕された混合水溶液2Lを反応タンクに入れ、密閉した後、CO2の注入及び反応/熟成/表面処理/乾燥/粉砕を行ってハイドロタルサイトを製造した。
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は3ppm、比表面積は9m2/gであり、2次粒径はD50 2.62μm/D100 18μmであることを確認した。
上記で使用した酸化マグネシウムのNa含量は5ppm、Fe含量は106ppmであり、水酸化アルミニウムのNaとFe含量はそれぞれ5ppmであった。
Comparative Example 2
The same raw materials and amounts as in Example 1 were prepared, and these were mixed and the wet pulverizer operation was performed at 3000 rpm for 10 minutes. The secondary particle size of the mixed aqueous solution after pulverization was D50 2.7 μm / D100 12 μm. It was made to become. 2 L of the pulverized mixed aqueous solution was put in a reaction tank, sealed, and then injected with CO 2 and subjected to reaction / aging / surface treatment / drying / pulverization to produce hydrotalcite.
As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, the Na content is 3 ppm, It was confirmed that the specific surface area was 9 m 2 / g and the secondary particle size was D50 2.62 μm / D100 18 μm.
The magnesium oxide used above had a Na content of 5 ppm and a Fe content of 106 ppm, and the aluminum hydroxide had a Na and Fe content of 5 ppm each.
実 施 例 2
3L容の原料タンク(1)に蒸溜水2Lを加え、酸化マグネシウム0.861molと水酸化アルミニウム0.42molとをゆっくり分散させた。この混合水溶液(A)を湿式粉砕機を使用し、3000rpmで、60分間粉砕して、混合水溶液の2次粒径がD50 0.75μm/D100 1μmになるようにした。粉砕された混合水溶液(B)2Lを反応タンクに入れ、密閉した後、高圧容器にCO2 0.21molを定量計量し、これを撹拌中である反応物が入っている反応タンクに、計量器の圧力表示が「0kg/cm2」になるまで注入した。CO2注入が完了した混合水溶液(C)を、170℃で、6時間の間水熱合成した。以後冷却して得られたスラリーを3L容の表面処理タンクに移送して80℃に維持した後、撹拌しながらステアリン酸20gを投入し、1時間撹拌して表面処理を完了した。以後スラリーを含水率70%で濾過し、得られた固体物質を熱風乾燥機を用い、105℃で、12時間以上乾燥した後、ハマーミルで粉砕してハイドロタルサイトを製造した。
Example 2
2 L of distilled water was added to a 3 L-volume raw material tank (1), and 0.861 mol of magnesium oxide and 0.42 mol of aluminum hydroxide were slowly dispersed. This mixed aqueous solution (A) was pulverized at 3000 rpm for 60 minutes using a wet pulverizer so that the secondary particle size of the mixed aqueous solution was D50 0.75 μm / D100 1 μm. After putting 2 L of the pulverized mixed aqueous solution (B) into a reaction tank and sealing it, 0.21 mol of CO 2 is quantitatively weighed in a high-pressure vessel, and this is put into a reaction tank containing the reactant being stirred, Until the pressure display becomes “0 kg / cm 2 ”. The mixed aqueous solution (C) in which CO 2 injection was completed was hydrothermally synthesized at 170 ° C. for 6 hours. Thereafter, the slurry obtained by cooling was transferred to a 3 L surface treatment tank and maintained at 80 ° C. Then, 20 g of stearic acid was added while stirring, and the surface treatment was completed by stirring for 1 hour. Thereafter, the slurry was filtered with a water content of 70%, and the obtained solid substance was dried at 105 ° C. for 12 hours or more using a hot air dryer, and then pulverized with a Hammer mill to produce hydrotalcite.
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.67Al0.33(OH)2(CO2)0.17・H2Oであり、Na含量は3ppm、比表面積は12m2/gであり、2次粒径はD50 1.97μm/D100 6μmであることを確認した。
上記で使用した酸化マグネシウムのNa含量は5ppm、Fe含量は106ppmであり、水酸化アルミニウムのNaとFe含量はそれぞれ5ppmであった。
As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.67 Al 0.33 (OH) 2 (CO 2 ) 0.17 · H 2 O, the Na content is 3 ppm, and the specific surface area Was 12 m 2 / g, and the secondary particle size was confirmed to be D50 1.97 μm / D100 6 μm.
The magnesium oxide used above had a Na content of 5 ppm and a Fe content of 106 ppm, and the aluminum hydroxide had a Na and Fe content of 5 ppm each.
実 施 例 3
3L容の原料タンク(1)に蒸溜水2Lを入れ、酸化マグネシウム0.945molと水酸化アルミニウム0.42molとをゆっくり分散させた。この混合水溶液(A)を湿式粉砕機を用い3000rpmで、60分間粉砕し、混合水溶液の2次粒径がD50 0.75μm/D100 1μmになるようにした。粉砕された混合水溶液(B)2Lを反応タンクに入れ、密閉した後、高圧容器にCO2 0.21molを定量計量し、これを撹拌中の反応物が入っている反応タンクに計量器の圧力表示が「0kg/cm2」になるまで注入した。CO2注入が完了した混合水溶液(C)を170℃で、6時間水熱合成した。以後冷却して得られたスラリーを3L容の表面処理タンクに移送して80℃に維持した後、撹拌しながらステアリン酸3gを投入し、1時間撹拌して表面処理を完了した。以後スラリーを含水率70%で濾過して得られた固体物質を熱風乾燥機を用い、105℃で12時間以上乾燥した後、ハマーミルで粉砕してハイドロタルサイトを得た。
Example 3
2 L of distilled water was placed in a 3 L raw material tank (1), and 0.945 mol of magnesium oxide and 0.42 mol of aluminum hydroxide were slowly dispersed. This mixed aqueous solution (A) was pulverized at 3000 rpm for 60 minutes using a wet pulverizer so that the secondary particle size of the mixed aqueous solution was D50 0.75 μm / D100 1 μm. After putting 2 L of the pulverized mixed aqueous solution (B) into a reaction tank and sealing it, 0.21 mol of CO 2 is quantitatively weighed in a high-pressure container, and the pressure of the meter is added to the reaction tank containing the reactants being stirred. The injection was performed until the display became “0 kg / cm 2 ”. The mixed aqueous solution (C) in which CO 2 injection was completed was hydrothermally synthesized at 170 ° C. for 6 hours. Thereafter, the slurry obtained by cooling was transferred to a 3 L surface treatment tank and maintained at 80 ° C. Then, 3 g of stearic acid was added while stirring, and the surface treatment was completed by stirring for 1 hour. Thereafter, the solid material obtained by filtering the slurry at a moisture content of 70% was dried at 105 ° C. for 12 hours or more using a hot air dryer, and then pulverized with a Hammer mill to obtain hydrotalcite.
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.69Al0.31(OH)2(CO2)0.15・0.54H2Oであり、Na含量は3ppm、比表面積は12m2/gであり、2次粒径はD50 1.89μm/D100 6μmであることを確認した。 As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.69 Al 0.31 (OH) 2 (CO 2 ) 0.15 · 0.54H 2 O, the Na content is 3 ppm, It was confirmed that the specific surface area was 12 m 2 / g and the secondary particle size was D50 1.89 μm / D100 6 μm.
上記で使用した酸化マグネシウムのNa含量は5ppm、Fe含量は104ppmであったし、水酸化アルミニウムのNaとFe含量はそれぞれ5ppmであった。 The magnesium oxide used above had a Na content of 5 ppm and a Fe content of 104 ppm, and the aluminum hydroxide had a Na and Fe content of 5 ppm.
実 施 例 4
3L容の原料タンク(1)に蒸溜水2Lを加え、酸化マグネシウム0.903molと水酸化アルミニウム0.42molとをゆっくり分散させた。生成した混合水溶液(A)を湿式粉砕機を用い3000rpmで、60分間粉砕した。得られた混合水溶液の2次粒径はD50 0.75μm/D100 1μmであった。粉砕された混合水溶液(B)2Lを3L容の反応タンクに入れ、密閉した後、高圧容器にCO2 0.21molを定量計量し、これを撹拌中の反応物が入っている反応タンクに圧力「0kg/cm2」になるまで注入した。以後実施例1と等しく熟成/コーティング/乾燥/粉砕してハイドロタルサイトを製造した。
Example 4
Distilled water (2 L) was added to a 3 L-volume raw material tank (1), and 0.903 mol of magnesium oxide and 0.42 mol of aluminum hydroxide were slowly dispersed. The produced mixed aqueous solution (A) was pulverized at 3000 rpm for 60 minutes using a wet pulverizer. The secondary particle diameter of the obtained mixed aqueous solution was D50 0.75 μm / D100 1 μm. 2 L of the pulverized mixed aqueous solution (B) is put into a 3 L reaction tank and sealed, and 0.21 mol of CO 2 is quantitatively weighed in a high-pressure vessel, and the pressure is applied to the reaction tank containing the stirring reactant. The injection was performed until “0 kg / cm 2 ” was reached. Thereafter, hydrotalcite was produced by aging / coating / drying / pulverizing in the same manner as in Example 1.
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は40ppm、比表面積は12m2/gであり、2次粒径はD50 1.97μm/D100 6μmであることを確認した。 As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, the Na content is 40 ppm, It was confirmed that the specific surface area was 12 m 2 / g and the secondary particle size was D50 1.97 μm / D100 6 μm.
上記で使用した酸化マグネシウムのNa含量は5ppm、Fe含量は106ppmであり、水酸化アルミニウムのNa含量は117ppmであり、Fe含量は5ppmであった。 The magnesium oxide used above had an Na content of 5 ppm and an Fe content of 106 ppm. Aluminum hydroxide had an Na content of 117 ppm and an Fe content of 5 ppm.
実 施 例 5
3L容の原料タンク(1)に蒸溜水2Lを加え、酸化マグネシウム0.903molと水酸化アルミニウム0.42molとをゆっくり分散させた。この混合水溶液(A)を湿式粉砕機を用い3000rpmで60分間粉砕した。粉砕された混合水溶液の2次粒径はD50 0.75μm/D100 1μmであることを確認した。粉砕された混合水溶液(B)2Lを3L容の反応タンクに入れ、密閉した後、高圧容器にCO20.21molを定量計量し、これを撹拌中の反応物が入っている反応タンクに圧力「0kg/cm2」になるまで注入した。以後実施例1と等しく熟成/コーティング/乾燥/粉砕してハイドロタルサイトを製造した。
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は48ppm、比表面積は12m2/gであり、2次粒径はD50 2.01μm/D100 8μmであることを確認した。
Example 5
Distilled water (2 L) was added to a 3 L-volume raw material tank (1), and 0.903 mol of magnesium oxide and 0.42 mol of aluminum hydroxide were slowly dispersed. This mixed aqueous solution (A) was pulverized at 3000 rpm for 60 minutes using a wet pulverizer. It was confirmed that the secondary particle diameter of the pulverized mixed aqueous solution was D50 0.75 μm / D100 1 μm. 2 L of the pulverized mixed aqueous solution (B) is put into a 3 L reaction tank and sealed, and 0.21 mol of CO 2 is quantitatively weighed in a high-pressure vessel, and the pressure is applied to the reaction tank containing the stirring reactant. The injection was performed until “0 kg / cm 2 ” was reached. Thereafter, hydrotalcite was produced by aging / coating / drying / pulverizing in the same manner as in Example 1.
As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, the Na content is 48 ppm, It was confirmed that the specific surface area was 12 m 2 / g and the secondary particle size was D50 2.01 μm / D100 8 μm.
上記で使用した酸化マグネシウムのNa含量は5ppm、Fe含量は106ppmであり、水酸化アルミニウムのNa含量は240ppm、Fe含量は5ppmだった。 The magnesium oxide used above had an Na content of 5 ppm and an Fe content of 106 ppm, and the aluminum hydroxide had an Na content of 240 ppm and an Fe content of 5 ppm.
比 較 例 3
3L容の原料タンク(1)に蒸溜水2Lを入れ、酸化マグネシウム0.903molと水酸化アルミニウム0.42molとをゆっくり分散させる。得られた混合水溶液(A)を湿式粉砕機を用い3000rpmで、60分間粉砕する。粉砕された混合水溶液の2次粒径は D50 0.75μm/D100 1μmであった。粉砕された混合水溶液(B)2Lを3L容の反応タンクに入れ、密閉した後、高圧容器にCO20.21molを定量計量し、これを撹拌中の反応物が入っている反応タンクに圧力「0kg/cm2」になるまで注入する。以後実施例1と等しく熟成/コーティング/乾燥/粉砕してハイドロタルサイトを製造した。
Comparative Example 3
2 L of distilled water is put into a 3 L raw material tank (1), and 0.903 mol of magnesium oxide and 0.42 mol of aluminum hydroxide are slowly dispersed. The obtained mixed aqueous solution (A) is pulverized at 3000 rpm for 60 minutes using a wet pulverizer. The secondary particle size of the pulverized mixed aqueous solution was D50 0.75 μm / D100 1 μm. 2 L of the pulverized mixed aqueous solution (B) is put into a 3 L reaction tank and sealed, and 0.21 mol of CO 2 is quantitatively weighed in a high-pressure vessel, and the pressure is applied to the reaction tank containing the stirring reactant. Inject until “0 kg / cm 2 ”. Thereafter, hydrotalcite was produced by aging / coating / drying / pulverizing in the same manner as in Example 1.
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は200ppm、比表面積は12m2/gであり、2次粒径はD50 2.08μm/D100 8μmであることを確認した。 As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, the Na content is 200 ppm, It was confirmed that the specific surface area was 12 m 2 / g and the secondary particle size was D50 2.08 μm / D100 8 μm.
上記で使用した酸化マグネシウムのNa含量は5ppmであり、Fe含量は106ppmであり、水酸化アルミニウムのNa含量は609ppmであり、Fe含量は5ppmだった。 The magnesium oxide used above had an Na content of 5 ppm, an Fe content of 106 ppm, an aluminum hydroxide had an Na content of 609 ppm, and an Fe content of 5 ppm.
実 施 例 6
3L容の原料タンク(1)に蒸溜水20Lを入れ、酸化マグネシウム6.93molと酸化亜鉛2.1mol、そして水酸化アルミニウム4.2molとをゆっくり加えて分散させた。この混合水溶液(A)を湿式粉砕機を用い3000rpmで60分間粉砕した。粉砕された混合水溶液の2次粒径は0.75μm/1μmであった。粉砕された混合水溶液(B)2Lを反応タンクに入れ、密閉した後、高圧容器にCO2 0.21molを定量計量し、これを撹拌中である反応物が入っている反応タンクに圧力「0kg/cm2」になるまで注入した。CO2注入が完了した混合水溶液(C)を170℃、6時間の間水熱合成した。以後冷却して得られたスラリーを3L容の表面処理タンクに移送して80℃に維持した後、撹拌しながらステアリン酸3gを投入し、1時間撹拌して表面処理を完了する。以後スラリーを含水率70%で濾過して得られた固体物質を熱風乾燥機を使用し105℃で、12時間乾燥した後、ハンマーミルで粉砕してハイドロタルサイトを製造した。
Example 6
20 L of distilled water was placed in a 3 L raw material tank (1), and 6.93 mol of magnesium oxide, 2.1 mol of zinc oxide, and 4.2 mol of aluminum hydroxide were slowly added and dispersed. This mixed aqueous solution (A) was pulverized at 3000 rpm for 60 minutes using a wet pulverizer. The secondary particle diameter of the pulverized mixed aqueous solution was 0.75 μm / 1 μm. After putting 2 L of the pulverized mixed aqueous solution (B) in a reaction tank and sealing it, 0.21 mol of CO 2 is quantitatively weighed in a high-pressure container, and the pressure “0 kg” is added to the reaction tank containing the reactant being stirred. / Cm 2 ”. The mixed aqueous solution (C) in which CO 2 injection was completed was hydrothermally synthesized at 170 ° C. for 6 hours. Thereafter, the slurry obtained by cooling is transferred to a 3 L surface treatment tank and maintained at 80 ° C. Then, 3 g of stearic acid is added while stirring, and the surface treatment is completed by stirring for 1 hour. Thereafter, the solid material obtained by filtering the slurry at a moisture content of 70% was dried at 105 ° C. for 12 hours using a hot air dryer, and then pulverized with a hammer mill to produce hydrotalcite.
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.52Zn0.16Al0.32(OH)2(CO2)0.16・0.55H2Oで、Na含量は3ppm、比表面積は11m2/gであり、2次粒径はD50 1.72μm/D100 6μmであることを確認した。 As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.52 Zn 0.16 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, and the Na content Was 3 ppm, the specific surface area was 11 m 2 / g, and the secondary particle size was confirmed to be D50 1.72 μm / D100 6 μm.
上記で使用した酸化マグネシウムのNa含量は3ppm、Fe含量は147ppmであり、酸化亜鉛Na含量は3ppm、Fe含量は5ppm、水酸化アルミニウムのNaとFe含量はそれぞれ5ppmであった。 The magnesium oxide used above had an Na content of 3 ppm and an Fe content of 147 ppm, a zinc oxide Na content of 3 ppm, an Fe content of 5 ppm, and an aluminum hydroxide with an Na and Fe content of 5 ppm.
実 施 例 7
3L容の原料タンク(1)に蒸溜水20Lを入れ、酸化マグネシウム6.93molと酸化カルシウム2.1molそして水酸化アルミニウム4.2molとをゆっくり分散させた。この混合水溶液(A)を湿式粉砕機を用い3000rpmで、60分間粉砕した。粉砕された混合水溶液の2次粒径は0.75μm/1μmであった。粉砕された混合水溶液(B)2Lを反応タンクに入れ、密閉した後、高圧容器にCO2 0.21molを定量計量し、これを撹拌中の反応物が入っている反応タンクに圧力「0kg/cm2」になるまで注入した。CO2注入が完了した混合水溶液(C)を170℃で、6時間の間水熱合成した。以後冷却して得られたスラリーを3L容の表面処理タンクに移送し、80℃に維持した後、撹拌しながらステアリン酸3gを投入し、1時間撹拌して表面処理を完了した。以後スラリーを含水率70%で濾過して得られた固体物質を熱風乾燥機を使用して105℃で、12時間乾燥した後、ハンマーミルで粉砕してハイドロタルサイトを製造した。
Example 7
20 L of distilled water was put into a 3 L raw material tank (1), and 6.93 mol of magnesium oxide, 2.1 mol of calcium oxide and 4.2 mol of aluminum hydroxide were slowly dispersed. This mixed aqueous solution (A) was pulverized at 3000 rpm for 60 minutes using a wet pulverizer. The secondary particle diameter of the pulverized mixed aqueous solution was 0.75 μm / 1 μm. After putting 2 L of the pulverized mixed aqueous solution (B) into the reaction tank and sealing it, 0.21 mol of CO 2 was quantitatively weighed in a high-pressure vessel, and this was added to the reaction tank containing the stirring reactant with a pressure of “0 kg / It inject | poured until it became "cm < 2 >". The mixed aqueous solution (C) in which CO 2 injection was completed was hydrothermally synthesized at 170 ° C. for 6 hours. Thereafter, the slurry obtained by cooling was transferred to a 3 L surface treatment tank and maintained at 80 ° C. Then, 3 g of stearic acid was added while stirring, and the surface treatment was completed by stirring for 1 hour. Thereafter, the solid material obtained by filtering the slurry at a moisture content of 70% was dried at 105 ° C. for 12 hours using a hot air dryer, and then pulverized with a hammer mill to produce hydrotalcite.
上記製造過程で得られたハイドロタルサイトを分析した結果、その一般式はMg0.52Ca0.16Al0.32(OH)2(CO2)0.16・0.55H2Oで、Na含量は3ppm、比表面積は11m2/gであり、2次粒径はD50 1.82μm/D100 6μmであることを確認した。 As a result of analyzing the hydrotalcite obtained in the above production process, the general formula is Mg 0.52 Ca 0.16 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, It was confirmed that the Na content was 3 ppm, the specific surface area was 11 m 2 / g, and the secondary particle size was D50 1.82 μm / D100 6 μm.
上記で使用した酸化マグネシウムのNa含量は3ppm、Fe含量は141ppmであり、酸化亜鉛Na含量は3ppm、Fe含量は5ppm、水酸化アルミニウムのNaとFe含量はそれぞれ5ppmであった。 The magnesium oxide used above had an Na content of 3 ppm and an Fe content of 141 ppm, a zinc oxide Na content of 3 ppm and an Fe content of 5 ppm, and the Na and Fe contents of aluminum hydroxide were 5 ppm each.
実 施 例 8
3L容の原料タンク(1)に蒸溜水20Lを入れ、酸化マグネシウム6.93molと酸化リチウム2.1molそして水酸化アルミニウム4.2molとをゆっくり分散させた。この混合水溶液(A)を湿式粉砕機を用い3000rpmで、60分間粉砕する。粉砕された混合水溶液の2次粒径は0.75μm/1μmであった。粉砕された混合水溶液(B)2Lを反応タンクに入れ、密閉した後、高圧容器にCO2 0.21molを定量計量し、これを撹拌中の反応物が入っている反応タンクに圧力「0kg/cm2」になるまで注入した。CO2注入が完了した混合水溶液(C)を170℃で、6時間の間水熱合成した。以後冷却して得られたスラリーを3L容の表面処理タンクに移送して80℃に維持した後、撹拌しながらステアリン酸3gを投入し、1時間撹拌して表面処理を完了した。以後スラリーを含水率70%で濾過して得られた固体物質を熱風乾燥機を用い105℃で、12時間乾燥した後、ハンマーミルで粉砕してハイドロタルサイトを製造した。
Example 8
20 L of distilled water was put into a 3 L raw material tank (1), and 6.93 mol of magnesium oxide, 2.1 mol of lithium oxide and 4.2 mol of aluminum hydroxide were slowly dispersed. This mixed aqueous solution (A) is pulverized at 3000 rpm for 60 minutes using a wet pulverizer. The secondary particle diameter of the pulverized mixed aqueous solution was 0.75 μm / 1 μm. After putting 2 L of the pulverized mixed aqueous solution (B) into the reaction tank and sealing it, 0.21 mol of CO 2 was quantitatively weighed in a high-pressure vessel, and this was added to the reaction tank containing the stirring reactant with a pressure of “0 kg / It was injected until it became “cm 2 ”. The mixed aqueous solution (C) in which CO 2 injection was completed was hydrothermally synthesized at 170 ° C. for 6 hours. Thereafter, the slurry obtained by cooling was transferred to a 3 L surface treatment tank and maintained at 80 ° C. Then, 3 g of stearic acid was added while stirring, and the surface treatment was completed by stirring for 1 hour. Thereafter, the solid material obtained by filtering the slurry at a moisture content of 70% was dried at 105 ° C. for 12 hours using a hot air dryer, and then pulverized with a hammer mill to produce hydrotalcite.
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.52Li0.16Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は3ppm、比表面積は12m2/gであり、2次粒径はD50 1.92μm/D100 6μmであることを確認した。 As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.52 Li 0.16 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, Na It was confirmed that the content was 3 ppm, the specific surface area was 12 m 2 / g, and the secondary particle size was D50 1.92 μm / D100 6 μm.
上記で使用した酸化マグネシウムのNa含量は3ppm、Fe含量は132ppmであり、酸化亜鉛Na含量は3ppm、Fe含量は5ppm、水酸化アルミニウムのNaとFe含量はそれぞれ5ppmであった。 The magnesium oxide used above had an Na content of 3 ppm and an Fe content of 132 ppm, a zinc oxide Na content of 3 ppm, an Fe content of 5 ppm, and an aluminum hydroxide with an Na and Fe content of 5 ppm.
比 較 例 4
実施例(1)と等しい原料を同一濃度割合で投入し、この湿式粉砕機作業を経ない混合水溶液2Lを反応タンクに入れて密閉し、CO2 2.1molを圧力「0kg/cm2」になるまで注入した。CO2注入が完了した混合水溶液を170℃で、6時間の間水熱合成した。以後冷却して得られたスラリーを3L容の表面処理タンクに移送して80℃に維持した後、撹拌しながらステアリン酸3gを投入し、1時間撹拌して表面処理を完了した。以後スラリーを含水率70%で濾過して得られた固体物質を熱風乾燥機を用い105℃で、12時間以上乾燥した後、ハンマーミルで粉砕してハイドロタルサイトを製造した。
Comparative Example 4
The same raw material as in Example (1) is charged at the same concentration ratio, 2 L of the mixed aqueous solution not subjected to the wet pulverizer operation is put in a reaction tank and sealed, and 2.1 mol of CO 2 is set to a pressure of “0 kg / cm 2 ”. Infused until. The mixed aqueous solution in which CO 2 injection was completed was hydrothermally synthesized at 170 ° C. for 6 hours. Thereafter, the slurry obtained by cooling was transferred to a 3 L surface treatment tank and maintained at 80 ° C. Then, 3 g of stearic acid was added while stirring, and the surface treatment was completed by stirring for 1 hour. Thereafter, the solid material obtained by filtering the slurry at a moisture content of 70% was dried at 105 ° C. for 12 hours or more using a hot air dryer, and then pulverized with a hammer mill to produce hydrotalcite.
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は3ppm、2次粒径はD50 2.84μm/D100 18μmであることを確認した。 As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, the Na content is 3 ppm, It was confirmed that the secondary particle size was D50 2.84 μm / D100 18 μm.
上記で使用した酸化マグネシウムのNa含量は5ppm、Fe含量は106ppmであり、水酸化アルミニウムのNaとFe含量はそれぞれ5ppmであった。 The magnesium oxide used above had a Na content of 5 ppm and a Fe content of 106 ppm, and the aluminum hydroxide had a Na and Fe content of 5 ppm each.
比 較 例 5
2L容の原料タンク(1)に0.5Lの蒸溜水を入れ、酸化マグネシウムを0.903molをゆっくり分散させた。引き継いで2L容の原料タンク(2)に硫酸アルミニウムを0.42mol/Lになるように調剤した。以後3L容の混合タンク(1)に上記Mg水溶液とAl水溶液とをそれぞれ0.5Lの等しい割合で撹拌しながら投入して混合水溶液(A)1Lを製造した。2L容の原料タンク(3)に蒸溜水0.5Lを入れ、苛性ソーダ0.84molを投入して溶かした後、2L容の原料タンク(4)に蒸溜水0.5Lを入れ、炭酸ナトリウムを0.21molを投入して溶かした。混合タンク(2)に上記苛性ソーダ水溶液と炭酸ナトリウム水溶液を撹拌しながら投入して混合水溶液(B)を製造した。混合水溶液(A)を反応タンク(7)に取り、引き続いて混合水溶液(B)を反応タンク(7)に撹拌しながら徐々に投入した。投入が完了した反応タンクを170℃で、6時間の間水熱合成した。以後冷却して得られたスラリーを表面処理タンク(8)に移送して80℃に維持した後、撹拌しながらステアリン酸3gを投入し、1時間撹拌して表面処理を完了した。以後スラリーを含水率70%で濾過し、得られた固体物質を反応物に対して1倍の水に分散後濾過して洗浄した。洗浄作業をさらに1回繰り返して洗浄し、熱風乾燥機を用い105℃で12時間乾燥した後、ハンマーミルで粉砕してハイドロタルサイトを製造した。
Comparative Example 5
0.5 L of distilled water was placed in a 2 L raw material tank (1), and 0.903 mol of magnesium oxide was slowly dispersed. In succession, aluminum sulfate was dispensed in a 2 L-volume raw material tank (2) to a concentration of 0.42 mol / L. Thereafter, the Mg aqueous solution and the Al aqueous solution were charged into a 3 L mixing tank (1) at an equal ratio of 0.5 L, respectively, to produce 1 L of the mixed aqueous solution (A). Distilled water 0.5L is put into a 2 L raw material tank (3), 0.84 mol of caustic soda is introduced and dissolved, 0.5 L of distilled water is put into a 2 L raw material tank (4), and sodium carbonate is reduced to 0. .21 mol was added and dissolved. The caustic soda aqueous solution and sodium carbonate aqueous solution were added to the mixing tank (2) with stirring to produce a mixed aqueous solution (B). The mixed aqueous solution (A) was taken into the reaction tank (7), and then the mixed aqueous solution (B) was gradually added to the reaction tank (7) with stirring. The reaction tank that had been charged was hydrothermally synthesized at 170 ° C. for 6 hours. Thereafter, the slurry obtained by cooling was transferred to the surface treatment tank (8) and maintained at 80 ° C. Then, 3 g of stearic acid was added while stirring, and the surface treatment was completed by stirring for 1 hour. Thereafter, the slurry was filtered with a water content of 70%, and the obtained solid substance was dispersed in water of 1 time with respect to the reaction product, followed by filtration and washing. The washing operation was further repeated once to wash, dried at 105 ° C. for 12 hours using a hot air dryer, and then pulverized with a hammer mill to produce hydrotalcite.
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は720ppm、比表面積は12m2/gであり、2次粒径はD50 7.42μm/D100 45μmであることを確認した。 As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, the Na content is 720 ppm, It was confirmed that the specific surface area was 12 m 2 / g and the secondary particle size was D50 7.42 μm / D100 45 μm.
上記で使用した酸化マグネシウムのNa含量は1ppm、Fe含量は64ppmであり、硫酸アルミニウムのNa含量は1、Fe含量は5ppm、苛性ソーダと炭酸ナトリウムのFe含量はそれぞれ5ppmであった。 The magnesium oxide used had an Na content of 1 ppm and an Fe content of 64 ppm, an aluminum sulfate had an Na content of 1, an Fe content of 5 ppm, and caustic soda and sodium carbonate each had an Fe content of 5 ppm.
比 較 例 6
比較例5と等しい原材料及び投入濃度で水熱合成した後、等しい方法で表面処理を完了した。以後スラリーを含水率70%で濾過し、得られた固体物質を反応物に対して1倍の水に分散後、濾過をして洗浄する。洗浄作業を2回さらに繰り返して洗浄し、熱風乾燥機で105℃、12時間乾燥した後、ハンマーミルで粉砕してハイドロタルサイトを製造した。
上記製造過程で得られたハイドロタルサイトを分析した結果、その一般式は1 Mg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は260ppm、比表面積は12m2/gであり、2次粒径はD50 4.18μm/D100 36μmであることを確認した。
Comparative Example 6
After hydrothermal synthesis with the same raw materials and input concentration as in Comparative Example 5, the surface treatment was completed in the same manner. Thereafter, the slurry is filtered with a water content of 70%, and the obtained solid substance is dispersed in water that is 1 times the amount of the reaction product, followed by filtration and washing. The washing operation was repeated twice more, washed with a hot air dryer at 105 ° C. for 12 hours, and then pulverized with a hammer mill to produce hydrotalcite.
As a result of analyzing the hydrotalcite obtained in the above production process, the general formula is 1 Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, and the Na content Was 260 ppm, the specific surface area was 12 m 2 / g, and the secondary particle size was confirmed to be D50 4.18 μm / D100 36 μm.
比 較 例 7
比較例5と等しい原材料及び投入濃度で水熱合成した後、等しい方法で表面処理を完了した。以後スラリーを含水率70%で濾過し、得られた固体物質を反応物に対して1倍の水に分散後濾過して洗浄した。洗浄作業を3回さらに繰り返して洗浄し、熱風乾燥機を用いて105℃で、12時間乾燥した後、ハンマーミルで粉砕してハイドロタルサイトを製造した。
Comparative Example 7
After hydrothermal synthesis with the same raw materials and input concentration as in Comparative Example 5, the surface treatment was completed in the same manner. Thereafter, the slurry was filtered with a water content of 70%, and the obtained solid substance was dispersed in water of 1 time with respect to the reaction product, followed by filtration and washing. The washing operation was further repeated three times for washing, dried at 105 ° C. for 12 hours using a hot air dryer, and then pulverized with a hammer mill to produce hydrotalcite.
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は110ppm、比表面積は12m2/gであり、2次粒径はD50 2.93μm/D100 30μmであることを確認した。 As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, the Na content is 110 ppm, It was confirmed that the specific surface area was 12 m 2 / g and the secondary particle size was D50 2.93 μm / D100 30 μm.
比 較 例 8
2L容の原料タンク(1)に硫酸マグネシウムを1.806mol/Lになるように調剤した。引き継いで2L容の原料タンク(2)に硫酸アルミニウムを0.42mol/Lになるように調剤した。以後、3L容の混合タンク(1)に上記Mg水溶液とAl水溶液をそれぞれ0.5Lの等しい割合で撹拌しながら投入して混合水溶液(A)1Lを調剤した。引き続いて、2L容の原料タンク(3)に蒸溜水0.5Lを入れ、これに苛性ソーダ2.016molを投入して溶かした。引き続いて2L容の原料タンク(4)に蒸溜水0.5Lを入れ、これに炭酸ナトリウムを0.21molを投入して溶かした。混合タンク(2)に上記苛性ソーダ水溶液と炭酸ナトリウム水溶液を撹拌しながら投入して混合水溶液(B)を調剤した。混合水溶液(A)を反応タンク(7)に入れ、引き続いて混合水溶液(B)を反応タンク(7)に撹拌しながら徐々に投入した。投入が完了した反応タンクを170℃で、6時間の間水熱合成した。以後冷却して得られたスラリーを表面処理タンク(8)に移送し、80℃に維持した後、撹拌しながらステアリン酸3gを投入し、1時間撹拌して表面処理を完了した。以後スラリーを含水率70%で濾過し、得られた固体物質を反応物に対して1倍の水に分散後濾過をして洗浄した。洗浄作業を1回もう繰り返して洗浄し、熱風乾燥機用い105℃で12時間乾燥した後、ハンマーミルで粉砕してハイドロタルサイトを製造した。
Comparative Example 8
Magnesium sulfate was dispensed at a rate of 1.806 mol / L in a 2 L raw material tank (1). In succession, aluminum sulfate was dispensed in a 2 L-volume raw material tank (2) to a concentration of 0.42 mol / L. Thereafter, the Mg aqueous solution and the Al aqueous solution were respectively added to a 3 L mixing tank (1) while stirring at an equal ratio of 0.5 L to prepare 1 L of the mixed aqueous solution (A). Subsequently, 0.5 L of distilled water was placed in a 2 L raw material tank (3), and 2.016 mol of caustic soda was added to dissolve it. Subsequently, 0.5 L of distilled water was put into a 2 L-volume raw material tank (4), and 0.21 mol of sodium carbonate was put into this and dissolved. The caustic soda aqueous solution and sodium carbonate aqueous solution were added to the mixing tank (2) while stirring to prepare the mixed aqueous solution (B). The mixed aqueous solution (A) was put into the reaction tank (7), and then the mixed aqueous solution (B) was gradually added to the reaction tank (7) with stirring. The reaction tank that had been charged was hydrothermally synthesized at 170 ° C. for 6 hours. Thereafter, the slurry obtained by cooling was transferred to the surface treatment tank (8) and maintained at 80 ° C. Then, 3 g of stearic acid was added while stirring, and the surface treatment was completed by stirring for 1 hour. Thereafter, the slurry was filtered at a moisture content of 70%, and the obtained solid substance was dispersed in water 1 time as much as the reaction product, followed by filtration and washing. The washing operation was repeated once more, washed with a hot air dryer at 105 ° C. for 12 hours, and then pulverized with a hammer mill to produce hydrotalcite.
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は930ppm、比表面積は12m2/gであり、2次粒径はD50 8.29μm/D100 45μmであることを確認した。上記で使用した酸化マグネシウムのNa含量は0ppm、Fe含量は9ppmであり、硫酸アルミニウムのNa含量は1ppm、Fe含量は5ppm、苛性ソーダのFe含量は6ppm、炭酸ナトリウムのFe含量は5ppmであった。 As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, the Na content is 930 ppm, It was confirmed that the specific surface area was 12 m 2 / g and the secondary particle size was D50 8.29 μm / D100 45 μm. The magnesium oxide used had an Na content of 0 ppm and an Fe content of 9 ppm. The aluminum sulfate had an Na content of 1 ppm, an Fe content of 5 ppm, caustic soda had an Fe content of 6 ppm, and sodium carbonate had an Fe content of 5 ppm.
比 較 例 9
比較例8と等しい原材料及び投入濃度で水熱合成した後、等しい方法で表面処理した。以後スラリーを含水率70%で濾過し、得られた固体物質を反応物に対して1倍の水に分散後濾過をして洗浄した。洗浄作業をもう2回繰り返して洗浄し、熱風乾燥機を用いて105℃で、12時間乾燥した後、ハンマーミルで粉砕してハイドロタルサイトを製造した。
Comparative Example 9
After hydrothermal synthesis with the same raw materials and input concentration as in Comparative Example 8, surface treatment was performed in the same manner. Thereafter, the slurry was filtered at a moisture content of 70%, and the obtained solid substance was dispersed in water 1 time as much as the reaction product, followed by filtration and washing. The washing operation was repeated twice more, washed with a hot air dryer at 105 ° C. for 12 hours, and then pulverized with a hammer mill to produce hydrotalcite.
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は380ppm、比表面積は12m2/gであり、2次粒径はD50 5.74μm/D100 36μmであることを確認した。 As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, the Na content is 380 ppm, It was confirmed that the specific surface area was 12 m 2 / g and the secondary particle size was D50 5.74 μm / D100 36 μm.
比 較 例 10
比較例8と等しい原材料及び投入濃度で水熱合成した後、等しい方法で表面処理した。以後スラリーを含水率70%で濾過し、得られた固体物質を反応物に対して1倍の水に分散後濾過をして洗浄した。洗浄作業をさらに3回繰り返して洗浄し、熱風乾燥機を用いて105℃で、12時間乾燥した後、ハンマーミルで粉砕してハイドロタルサイトを製造した。
Comparative Example 10
After hydrothermal synthesis with the same raw materials and input concentration as in Comparative Example 8, surface treatment was performed in the same manner. Thereafter, the slurry was filtered at a moisture content of 70%, and the obtained solid substance was dispersed in water 1 time as much as the reaction product, followed by filtration and washing. The washing operation was further repeated three times for washing, dried at 105 ° C. for 12 hours using a hot air dryer, and then pulverized with a hammer mill to produce hydrotalcite.
上記で得られたハイドロタルサイトを分析した結果、その一般式はMg0.68Al0.32(OH)2(CO2)0.16・0.55H2Oであり、Na含量は230ppm、比表面積は12m2/gであり、2次粒径はD50 3.53μm/D100 36μmであることを確認した。 As a result of analyzing the hydrotalcite obtained above, the general formula is Mg 0.68 Al 0.32 (OH) 2 (CO 2 ) 0.16 · 0.55H 2 O, the Na content is 230 ppm, It was confirmed that the specific surface area was 12 m 2 / g and the secondary particle size was D50 3.53 μm / D100 36 μm.
試 験 例
不純物含量分析:
上記実施例1で製造されたハイドロタルサイトを1g採取し、これを不純物が含有されない蒸溜水とジエチルエテルがそれぞれ50mlずつ入れた分別フラスコに入れ、1:1塩酸15mlを添加した。試料が完全にとけるまで交ぜた後、無機物がとけている水層を分離して濾過し、60℃の温水浴で2時間加熱した後、100m丸底フラスコに移して蒸溜水で100mlを満たした後、原子吸光分光光度計でNa、Ca、Fe、Mn、Cu、Ni、Co、V、Crなどの不純物含量をppm単位で測定した。
実施例2〜8及び比較例1〜10までのハイドロタルサイトも等しい方法で不純物含量を測定した。
比表面積測定:
窒素の吸着程度を用いるBET測定法(KS A 0094)を試験方法にした。
2次粒径:
実施例1で製造されたハイドロタルサイト0.05gを試料にしてレーザー回折散乱法を用いる粒子サイズ分析機(Particle size analyzer、Cilas社、1180)を用いてD50、D100の2次粒径を測定した。
実施例2〜8及び比較例1〜10までのハイドロタルサイトも等しい方法で2次粒径を測定した。
Test example
Impurity content analysis :
1 g of the hydrotalcite produced in Example 1 was sampled and placed in a separate flask containing 50 ml each of distilled water and diethyl ether containing no impurities, and 15 ml of 1: 1 hydrochloric acid was added. After mixing the sample until it was completely dissolved, the aqueous layer in which the inorganic material was dissolved was separated and filtered, heated in a hot water bath at 60 ° C. for 2 hours, then transferred to a 100 m round bottom flask and filled with distilled water to 100 ml. Thereafter, the content of impurities such as Na, Ca, Fe, Mn, Cu, Ni, Co, V, and Cr was measured in ppm with an atomic absorption spectrophotometer.
The hydrotalcite of Examples 2 to 8 and Comparative Examples 1 to 10 were also measured for impurity content by the same method.
Specific surface area measurement :
The BET measurement method (KS A 0094) using the degree of nitrogen adsorption was used as the test method.
Secondary particle size :
Measurement of secondary particle diameters of D50 and D100 using 0.05 g of hydrotalcite produced in Example 1 as a sample and a particle size analyzer (Particle size analyzer, Cilas, 1180) using a laser diffraction scattering method did.
The secondary particle diameters of the hydrotalcites of Examples 2 to 8 and Comparative Examples 1 to 10 were also measured by the same method.
上記実施例及び比較で得たハイドロタルサイトの分析結果の分析値を下記表1に整理した。 The analysis values of the analysis results of the hydrotalcite obtained in the above examples and comparison are summarized in Table 1 below.
上記分析結果から、実施例1〜6のハイドロタルサイトと比較例1、2のハイドロタルサイトを比べると、実施例のハイドロタルサイトと比較例1、2のハイドロタルサイト製造の時は、共に等しい2価金属酸化物と3価水酸化物の原材料を使うことでそのNa含量が3ppm以上には検出されなかった。これは原料によるNa不純物以外混入がないことを示す。
しかし、これら比較例では実施例に比べて原材料の粉砕時間を1/2、1/6短縮してハイドロタルサイトを製造したので、その2次粒径D50及びD100での粒径が実施例のハイドロタルサイトの粒径に比べて大きくなり分散性が悪くなることを示す。
From the above analysis results, when comparing the hydrotalcite of Examples 1 to 6 and the hydrotalcite of Comparative Examples 1 and 2, when producing the hydrotalcite of Example and Comparative Examples 1 and 2, By using the same raw material of divalent metal oxide and trivalent hydroxide, the Na content was not detected above 3 ppm. This indicates that there is no contamination other than Na impurities due to the raw material.
However, in these comparative examples, the hydrotalcite was produced by reducing the pulverization time of the raw materials by 1/2 and 1/6 as compared with the examples, so that the particle diameters at the secondary particle diameters D50 and D100 are the same as those of the examples. It is larger than the particle size of hydrotalcite, indicating that the dispersibility is poor.
上記実施例4乃至5ではハイドロタルサイト製造の時、原材料である水酸化アルミニウムとしてNa含量が高いものを使って実施例3と等しく操作して製造したものであり、この結果、実施例1のような範囲の粒径を有し、Na含量が40乃至200ppmのハイドロタルサイトが得られた。Na含量は原料のNa不純物の混入よるものであり、それ以外の混入はないことを示す。 In the above Examples 4 to 5, when hydrotalcite was produced, the raw material aluminum hydroxide having a high Na content was used and operated in the same manner as in Example 3. As a result, in Example 1, Hydrotalcite having a particle size in such a range and Na content of 40 to 200 ppm was obtained. The Na content is due to contamination of Na impurities in the raw material, and indicates no other contamination.
すなわち、実施例1〜9で得られたハイドロタルサイトは上記各分析結果から分かるように、原材料の湿式粉砕機操作を通じて製品の1次粒径が0.5μm以下、2次粒度が、D50で2μm以下、D100で10μm以下であり、原料によるNa不純物以外のNaが混入されない製品を製造することができることを分かる。 That is, the hydrotalcite obtained in Examples 1 to 9 has a primary particle size of 0.5 μm or less and a secondary particle size of D50 through the operation of the raw material wet pulverizer, as can be seen from the above analysis results. It can be seen that a product that is 2 μm or less and D100 is 10 μm or less and does not contain Na other than Na impurities due to the raw material can be produced.
また、上記実施例1と比較例4〜10のハイドロタルサイトの分析結果を下記表2に示す。 The analysis results of the hydrotalcite of Example 1 and Comparative Examples 4 to 10 are shown in Table 2 below.
比較例4は、実施例1と等しい原料を等しい割合で反応させても、湿式粉砕機工程を経ないでハイドロタルサイトを製造した結果、ハイドロタルサイトのD50、 D100での2次粒径が2.84μm及び18μmと大きく、分散性が悪くなって樹脂に用いることが難しいことを現わしている。 In Comparative Example 4, even when the same raw materials as in Example 1 were reacted at the same ratio, the hydrotalcite was produced without passing through the wet pulverizer step. As a result, the secondary particle size at D50 and D100 of hydrotalcite was 2.84 [mu] m and 18 [mu] m are large, indicating that the dispersibility is poor and it is difficult to use the resin.
また、比較例5〜10は原料として硫酸マグネシウムと炭酸ナトリウム、苛性ソーダを使う場合を示した。これら実施例では、硫酸マグネシウム及び炭酸ナトリウム/苛性ソーダを水に溶解して使用するから、発生するナトリウムを除去するために、各比較例では洗浄工程を1回またはそれ以上行った場合を実験した結果である。これら比較例に現われたように、洗浄工程の回数を高めるほどハイドロタルサイト中のナトリウムの含量はある程度減少させることができるが、相変らず多いナトリウムが含有されている。2、3価金属の原材料の中で1またはその以上を、水溶性塩の原材料として使う場合には、工程中ナトリウムの除去のために投入されなければならない大量の洗浄用水が必要で、それにより大量のNa含有廃水が発生する。また洗浄工程で使わなければならない洗浄用水は、ナトリウムがない用水を使わなければならないのでナトリウム除去設備を加えられなければならない。 Moreover, Comparative Examples 5-10 showed the case where magnesium sulfate, sodium carbonate, and caustic soda were used as a raw material. In these examples, magnesium sulfate and sodium carbonate / caustic soda are dissolved in water and used. Therefore, in order to remove the generated sodium, each comparative example is a result of an experiment in which one or more washing steps were performed. It is. As shown in these comparative examples, the sodium content in the hydrotalcite can be reduced to some extent as the number of washing steps is increased, but still contains a large amount of sodium. When one or more of the raw materials of 2, 3 or 3 metal is used as the raw material of the water-soluble salt, a large amount of washing water that must be input for removing sodium during the process is required. A large amount of Na-containing wastewater is generated. The cleaning water that must be used in the cleaning process must use water that does not contain sodium, so a sodium removal facility must be added.
また、市販されるハイドロタルサイトを購入して本願発明実施例1のハイドロタルサイトと比べた。その結果を下記表3に示す。 Moreover, the commercially available hydrotalcite was purchased and compared with the hydrotalcite of Example 1 of this invention. The results are shown in Table 3 below.
表中、参照物質1はPVC安定剤用LDHとして広く使われているKyowa ChemicalのAlcamizer−1であり、参照物質2はPVC安定剤用LDHで広く使われているTODA KOGYO社のNaox−33である。 In the table, reference material 1 is Kyowa Chemical's Alcamizer-1, which is widely used as an LDH for PVC stabilizers, and reference material 2 is Naox-33 of TODA KOGYO, which is widely used in LDHs for PVC stabilizers. is there.
上記表3に示したように、実施例1で製造されたハイドロタルサイトは参照物質1及び2に比べてNa含量を大幅に減少しながら、2次粒度が殆ど等しいので、優秀な性能を有することが分かる。 As shown in Table 3 above, the hydrotalcite produced in Example 1 has excellent performance since the secondary particle size is almost equal while significantly reducing the Na content compared to the reference materials 1 and 2. I understand that.
試験例 1
ポリ塩化ビニル樹脂用安定剤として性能評価のためのPVCシーツの製作。
PVC樹脂に対し、100重量比基準で、実施例1から得られたハイドロタルサイト1.8重量部、ステアリン酸亜鉛1.2重量部、可塑剤でDINP 50重量部を均一に混合した後、170℃に加熱した8インチローラ(関西、japan)で5分間混練して0.6mm厚さのシーツを製造した。
ギアオーブン熱安定性試験
通常のポリ塩化ビニル樹脂用安定剤の性能評価は熱による変形及び着色、劣化度を試す。ギアオーブン熱安定性試験はPVC加工の後、空気中に露出した加工品が熱による変形や着生及び炭化程度苛酷条件で試して評価する。
上記で製造されたシーツを用いて横/縦各1cm×1.5cmの大きさの試片11枚を準備した後、これを190℃のギアオーブンに入れて10分毎に取り出してシーツの劣化度を測定する。
プレス熱安定性試験
プレス熱安定性試験はポリ塩化ビニル用安定剤の性能を評価する通常の方法であり、ポリ塩化ビニル樹脂の加工中に器機内部で高圧、高温、詳しくは160℃〜220℃の高温条件で密閉された空間に定置する。この時、安定剤は高温、高圧による加工物の物性及び変形、着色等を防止する役目をするようになるので、加工中の高温、高圧の同一条件の劣化試験法で通常のプレス熱安定性試験を使う。
ポリ塩化ビニル樹脂用安定剤の使用時加工中の着色及び劣化はハイドロタルサイトの内部または表面のNaが大きい程影響を及ぼす。上記で製造されたシーツを用いて横/縦 5cm×5cmの試片を5枚準備する。これを10cm×10cm×1mmのプレス枠に比較試片と一緒に入れて、180℃から30分、60分、120分間それぞれテストを行う。
嵩固有抵抗値測定
軟質PVC樹脂、特に被覆電線用塩化ビニル樹脂は熱による変形及び着色に対する性能評価以外に、通常電気抵抗性能の評価が行われる(ASTM D257)。被覆電線用塩化ビニル樹脂用安定剤の使用の時、電気抵抗の低下問題はハイドロタルサイトの内部または表面のNaが大きい影響を及ぼす。
上記で製造されたシーツを使って10cm×10cm×1mmのプレス枠に合わせてプレスシーツを製造して、嵩固有抵抗測定装置を使って固有抵抗値を測定する。測定機器はULTRA MEGOHMMETER(SM−8210、TOA Electronics社、Japan)を使用した
Test example 1
Production of PVC sheets for performance evaluation as stabilizers for polyvinyl chloride resin.
For PVC resin, based on 100 parts by weight ratio, 1.8 parts by weight of hydrotalcite obtained from Example 1, 1.2 parts by weight of zinc stearate, and 50 parts by weight of DINP with a plasticizer were uniformly mixed. A sheet having a thickness of 0.6 mm was manufactured by kneading for 5 minutes with an 8-inch roller (Japan, Kansai) heated to 170 ° C.
Gear Oven Thermal Stability Test Performance evaluation of ordinary stabilizers for polyvinyl chloride resin tests the degree of deformation, coloring, and deterioration due to heat. In the gear oven thermal stability test, after PVC processing, the workpiece exposed in the air is evaluated under severe conditions such as thermal deformation, curing and carbonization.
After preparing 11 test pieces each having a size of 1 cm × 1.5 cm in width / length using the sheet manufactured above, the sheet was put into a gear oven at 190 ° C. and taken out every 10 minutes to deteriorate the sheet. Measure the degree.
Press thermal stability test The press thermal stability test is a normal method for evaluating the performance of stabilizers for polyvinyl chloride. During the processing of polyvinyl chloride resin, high pressure and high temperature inside the equipment, more specifically 160 to 220 ° C. Place in a closed space under high temperature conditions. At this time, the stabilizer serves to prevent physical properties, deformation, coloring, etc. of the workpiece due to high temperature and high pressure, so normal press heat stability in the degradation test method under the same conditions of high temperature and high pressure during processing. Use the test.
When using the stabilizer for polyvinyl chloride resin, the coloration and deterioration during processing have an effect as the amount of Na in the hydrotalcite or on the surface increases. Five sheets of 5 cm × 5 cm in width / length are prepared using the sheets manufactured above. This is put together with a comparative specimen in a 10 cm × 10 cm × 1 mm press frame and tested from 180 ° C. for 30 minutes, 60 minutes, and 120 minutes.
Bulk specific resistance measurement soft PVC resin, particularly vinyl chloride resin for coated electric wire, is usually evaluated for electric resistance performance in addition to performance evaluation for deformation and coloring by heat (ASTM D257). When using a stabilizer for a vinyl chloride resin for a coated electric wire, Na in the hydrotalcite or on the surface has a great influence on the problem of a decrease in electrical resistance.
A press sheet is manufactured in accordance with a 10 cm × 10 cm × 1 mm press frame using the manufactured sheet, and a specific resistance value is measured using a bulk specific resistance measuring device. The measuring instrument used was ULTRA MEGOHMMETER (SM-8210, TOA Electronics, Japan).
試験例 2〜11
ハイドロタルサイトとして比較例3〜10で得られたハイドロタルサイトを使うこと以外には試験例1と等しくシーツを製作した後、ギアオーブン熱安定性試験、プレス熱安定性試験、嵩固有抵抗値を測定する。
Test Examples 2-11
Except for using the hydrotalcite obtained in Comparative Examples 3 to 10 as the hydrotalcite, a sheet was manufactured in the same manner as in Test Example 1, and then the gear oven thermal stability test, press thermal stability test, bulk resistivity value Measure.
試験例12〜13
ハイドロタルサイトとして参照物質1、2を使うこと以外には試験例1と等しくシーツを製作した後、ギアオーブン熱安定性試験、プレス熱安定性試験、嵩固有抵抗値を測定する。
Test Examples 12-13
A sheet is manufactured in the same manner as in Test Example 1 except that the reference materials 1 and 2 are used as the hydrotalcite, and then the gear oven thermal stability test, the press thermal stability test, and the bulk resistivity value are measured.
下記表に配合物組成と熱安定性テスト結果を下記表4に整理した。 Table 4 below shows the composition of the composition and the results of the thermal stability test.
2点:不良、1点:非常に不良を表示する。
2 points: defective, 1 point: very poor.
各評価項目別4点以上であるハイドロタルサイトは、PVC安定剤用として使用可能である。これは参照物質1、2のテスト結果から確認することができる。 Hydrotalcite, which is 4 points or more for each evaluation item, can be used for PVC stabilizers. This can be confirmed from the test results of the reference substances 1 and 2.
*上記表の中で、ポリ塩化ビニル樹脂の性能評価の時、使用されたPVC樹脂は重合度1000、製品名P−1000、韓化(株)製品であり、DINPは愛京油化(株)製品であり、ステアリン酸亜鉛は日本ジュンセイ(Junsei)製品であった。 * In the above table, when evaluating the performance of the polyvinyl chloride resin, the PVC resin used was a polymerization degree of 1000, product name P-1000, Hanka Co., Ltd., and DINP was manufactured by Aikyo Yuka Co., Ltd. ) Product and zinc stearate was a Junsei product of Japan.
上記ポリ塩化ビニル樹脂の耐熱劣化剤としてのハイドロタルサイト評価結果として、本発明の試験例1(実施例1のハイドロタルサイト使用)は、その他製品と比較から非常に優秀な耐熱安定性を有することが分かる。試験例1と粉砕を経ない試験例5(比較例3のハイドロタルサイト使用)を比べると、試験例5ではオーブン及びプレス、電気抵抗性能などの性能が低下することが示された。 As a result of evaluating hydrotalcite as a heat-deteriorating agent for the above polyvinyl chloride resin, Test Example 1 of the present invention (use of hydrotalcite of Example 1) has very excellent heat stability compared to other products. I understand that. A comparison between Test Example 1 and Test Example 5 that did not undergo pulverization (use of hydrotalcite of Comparative Example 3) showed that Test Example 5 had reduced performance such as oven, press, and electrical resistance performance.
試験例2〜11のテスト結果から製品のNa含量が高いほどギアオーブン、プレス及び嵩固有抵抗性能が低下し、Na含量が80ppm以上になる製品はPVC熱安定剤としての適用が難しいことを分かる(試験例4、5、6、7、9、10、11)。 From the test results of Test Examples 2 to 11, it can be seen that the higher the Na content of the product, the lower the gear oven, press and bulk resistivity performance, and the product whose Na content is 80 ppm or more is difficult to apply as a PVC heat stabilizer. (Test Examples 4, 5, 6, 7, 9, 10, 11).
試験例8(比較例7のハイドロタルサイト使用)はNa含量が200ppm以下で、PVC安定剤として使用は可能だが、製造過程の中においてNaが除去された洗浄水を多量に使う問題を含んでいる。これは本発明が非水溶性化合物の原料を使用することで製造過程の中で洗浄水の使用がなく、副産物も発生せず、製品のNa含量を效果的に制御することができる技術であることを確認させてくれる。 Test Example 8 (use of hydrotalcite of Comparative Example 7) has a Na content of 200 ppm or less and can be used as a PVC stabilizer, but includes a problem of using a large amount of washing water from which Na has been removed in the production process. Yes. This is a technique in which the present invention uses a water-insoluble compound raw material, so that no washing water is used in the production process, no by-product is generated, and the Na content of the product can be effectively controlled. Let me confirm that.
また、試験例12〜13(参照物質1〜2のハイドロタルサイト使用)のテストの結果を通じて、本発明による実施例1のハイドロタルサイトが一般的に通用するハイドロタルサイトと比べ、耐熱劣化性及び電気抵抗性において、これらと等しいか、あるいは優秀なことが分かる。 Further, through the results of tests in Test Examples 12 to 13 (use of hydrotalcite of reference substances 1 and 2), the heat aging resistance of the hydrotalcite of Example 1 according to the present invention is generally higher than that of hydrotalcite. It can be seen that these are equal to or excellent in electrical resistance.
Claims (8)
(A) 100重量部の合成樹脂
(B)下記(1)乃至(6)に定義された0.001ないし30重量部のハイドロタル
サイト粒子:
(1)一般式
[M(II)y M(II)z]1-x(Al)x(OH)2(CO3)2- (x)/n・mH2O
式中、 M(II)は 2価の金属イオンであるMg2+、Zn2+、Ca2+、
Li2+を示し、
x、y、z及びmは下記条件を満足させる値を示す。
0.2≦x<0.4、 y+z=1、0.7≦y≦1、 0≦z≦0.3、
0≦m<1;
(2)ハイドロタルサイト粒子はレーザー回折散乱法で測定の時、0.5〜2μmの平 均2次粒径を有する;
(3)ハイドロタルサイト粒子中のナトリウム成分は80質量ppm以下である。
(4)ハイドロタルサイト粒子は鉄化合物及びマンガン化合物を金属(Fe+Mn)に
換算して0.005質量%以下の総量で含有する。
(5)ハイドロタルサイト粒子はBET法で測定の時5〜40m2/gの比表面積を有 する。 A synthetic resin composition having heat deterioration resistance comprising the following components.
(A) 100 parts by weight of synthetic resin (B) 0.001 to 30 parts by weight of hydrotalcite particles defined in (1) to (6) below:
(1) General formula
[M (II) y M (II) z ] 1-x (Al) x (OH) 2 (CO 3 ) 2- (x) / n・ mH 2 O
In the formula, M (II) is a divalent metal ion Mg 2+ , Zn 2+ , Ca 2+ ,
Li 2+
x, y, z, and m represent values that satisfy the following conditions.
0.2 ≦ x <0.4, y + z = 1, 0.7 ≦ y ≦ 1, 0 ≦ z ≦ 0.3,
0 ≦ m <1;
(2) Hydrotalcite particles have an average secondary particle size of 0.5-2 μm when measured by laser diffraction scattering method;
(3) The sodium component in the hydrotalcite particles is 80 ppm by mass or less.
(4) Hydrotalcite particles contain an iron compound and a manganese compound in a total amount of 0.005% by mass or less in terms of metal (Fe + Mn).
(5) Hydrotalcite particles have a specific surface area of 5 to 40 m 2 / g when measured by the BET method.
(1)一般式
[M(II)y M(II)z]1-x(Al)x(OH)2(CO3)2- (x)/n・mH2O
式中、 M(II)は2価の金属イオンであるMg2+、Zn2+、 Ca2+、
Li2+を示し、
x、y、z及びmは下記条件を満足させる値を示す。
0.2≦x<0.4、 y+z=1、 0.7≦y≦1、 0≦z≦0.3、
0≦m<1;
(2)ハイドロタルサイト粒子はレーザー回折散乱法で測定の時0.5〜2μmの平均
2次粒径を有する;
(3)ハイドロタルサイト粒子中のナトリウム成分は80質量ppm以下である。
(4)ハイドロタルサイト粒子は鉄化合物及びマンガン化合物を金属(Fe+Mn)に
換算して0.005質量%以下の総量で含有する。
(5)ハイドロタルサイト粒子はBET法で測定の時5〜40m2/g、望ましくは5 〜20m2/gの比表面積を有する。 Hydrotalcite compounds having the following characteristics, with a very small amount of sodium controlled.
(1) General formula
[M (II) y M (II) z ] 1-x (Al) x (OH) 2 (CO 3 ) 2- (x) / n・ mH 2 O
In the formula, M (II) is a divalent metal ion, Mg 2+ , Zn 2+ , Ca 2+ ,
Li 2+
x, y, z, and m represent values that satisfy the following conditions.
0.2 ≦ x <0.4, y + z = 1, 0.7 ≦ y ≦ 1, 0 ≦ z ≦ 0.3,
0 ≦ m <1;
(2) Hydrotalcite particles have an average secondary particle size of 0.5-2 μm when measured by laser diffraction scattering method;
(3) The sodium component in the hydrotalcite particles is 80 ppm by mass or less.
(4) Hydrotalcite particles contain an iron compound and a manganese compound in a total amount of 0.005% by mass or less in terms of metal (Fe + Mn).
(5) the hydrotalcite particles have a 5 to 40 m 2 / g, a specific surface area of preferably 5 to 20 m 2 / g when measured by BET method.
The hydrotalcite compound having a secondary particle diameter D50 of 2 μm or less in Item 7.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100054980A KR101228880B1 (en) | 2010-06-10 | 2010-06-10 | Hydrotalcite with extremely low content of sodium, process for preparing it and synthetic resin composition comprising it |
KR10-2010-0054980 | 2010-06-10 | ||
PCT/KR2011/004249 WO2011155787A2 (en) | 2010-06-10 | 2011-06-10 | Hydrotalcite having sodium content limited to ultra-low volume, method for preparing same, and synthetic resin composition containing same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014051239A Division JP2014133698A (en) | 2010-06-10 | 2014-03-14 | Hydrotalcite having sodium content limited to ultra-low volume, method for preparing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013533907A true JP2013533907A (en) | 2013-08-29 |
Family
ID=45098547
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013514119A Pending JP2013533907A (en) | 2010-06-10 | 2011-06-10 | Hydrotalcite whose sodium content is controlled to a very small amount, its production method, and synthetic resin composition containing the same |
JP2014051239A Pending JP2014133698A (en) | 2010-06-10 | 2014-03-14 | Hydrotalcite having sodium content limited to ultra-low volume, method for preparing the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014051239A Pending JP2014133698A (en) | 2010-06-10 | 2014-03-14 | Hydrotalcite having sodium content limited to ultra-low volume, method for preparing the same |
Country Status (4)
Country | Link |
---|---|
JP (2) | JP2013533907A (en) |
KR (1) | KR101228880B1 (en) |
CN (1) | CN103108907B (en) |
WO (1) | WO2011155787A2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016108427A (en) * | 2014-12-05 | 2016-06-20 | 丸尾カルシウム株式会社 | Hydrotalcite composition, resin composition containing the composition and molded body thereof |
WO2016174987A1 (en) * | 2015-04-30 | 2016-11-03 | 協和化学工業株式会社 | Method for producing transparent synthetic resin molded article using hydrotalcite particles |
JP2017178652A (en) * | 2016-03-29 | 2017-10-05 | 堺化学工業株式会社 | Hydrotalcite type particle and production method thereof |
WO2018012403A1 (en) * | 2016-07-14 | 2018-01-18 | 堺化学工業株式会社 | Chlorine-containing resin composition |
WO2018168496A1 (en) * | 2017-03-17 | 2018-09-20 | 堺化学工業株式会社 | Hydrotalcite substance composition, and resin additive containing said composition |
WO2019124270A1 (en) * | 2017-12-18 | 2019-06-27 | 日本碍子株式会社 | Ldh separator and zinc secondary battery |
WO2019131705A1 (en) * | 2017-12-26 | 2019-07-04 | 堺化学工業株式会社 | Chlorine-containing resin composition for wire covering material |
JPWO2019131281A1 (en) * | 2017-12-25 | 2020-12-24 | 戸田工業株式会社 | Hydrotalcite particles, a method for producing the same, and a resin stabilizer and a resin composition comprising the same. |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6663640B2 (en) * | 2014-12-05 | 2020-03-13 | 丸尾カルシウム株式会社 | Hydrotalcite compounds, resin composition containing the compound, and molded article |
CN104672504A (en) * | 2015-02-02 | 2015-06-03 | 安徽玉堂雨具有限公司 | Anti-static biodegradable plastic and preparation method thereof |
CN108137339B (en) * | 2015-09-24 | 2020-06-16 | 丹石产业株式会社 | Hydrotalcite and process for producing the same |
KR102070329B1 (en) * | 2015-09-24 | 2020-01-28 | 주식회사 단석산업 | Hydrotalcite Particles and Manufacturing Method Thereof |
US11591234B2 (en) | 2017-03-17 | 2023-02-28 | Setolas Holdings, Inc. | Microparticulate hydrotalcite, method for producing same, resin composition of same, and suspension of same |
CN110467226B (en) * | 2018-05-10 | 2022-02-22 | 李大鹏 | Preparation method of iron-based hydrotalcite |
CN114956142B (en) * | 2022-05-06 | 2023-08-22 | 山东长泽新材料科技有限公司 | Crystal-adjustable nano hydrotalcite supercritical synthesis process |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999001509A1 (en) * | 1997-07-04 | 1999-01-14 | Kyowa Chemical Industry Co., Ltd. | Synthetic resin composition having resistance to thermal deterioration and molded articles |
KR100388097B1 (en) * | 2000-06-01 | 2003-06-18 | 주식회사 두본 | Process for producing hydroxide |
JP2004531448A (en) * | 2001-04-19 | 2004-10-14 | ジュート−ヒェミー アクチェンゲゼルシャフト | Method for producing hydrotalcite |
WO2006043352A1 (en) * | 2004-10-20 | 2006-04-27 | Sakai Chemical Industry Co., Ltd. | Hydrotalcite and synthetic resin composition |
JP2008001756A (en) * | 2006-06-20 | 2008-01-10 | Kyowa Chem Ind Co Ltd | Acid acceptor having improved electrical insulating property, composition containing the same and its molded article |
JP2008274032A (en) * | 2007-04-26 | 2008-11-13 | Adeka Corp | Hydrotalcite and synthetic resin composition containing the hydrotalcite |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HU221280B1 (en) * | 1994-08-15 | 2002-09-28 | Aluminum Co Of America | Two powder synthesis of hydrotalcite and hydrotalcite-like compounds |
CA2381287A1 (en) * | 1999-08-11 | 2001-02-22 | Akzo Nobel N.V. | Polytype mg-ai hydrotalcite |
KR100349974B1 (en) * | 2000-03-16 | 2002-08-23 | 동남합성공업 주식회사 | Mixed metal oxide catalysts of controlled surface active component concentration, and their preparation method using hydrotalcite type compounds |
JP2004099391A (en) * | 2002-09-11 | 2004-04-02 | Mizusawa Ind Chem Ltd | Method of manufacturing layered double hydroxide |
KR101068728B1 (en) * | 2008-11-03 | 2011-09-28 | 권오령 | Process for preparing hydrotalcite |
-
2010
- 2010-06-10 KR KR1020100054980A patent/KR101228880B1/en active IP Right Review Request
-
2011
- 2011-06-10 JP JP2013514119A patent/JP2013533907A/en active Pending
- 2011-06-10 WO PCT/KR2011/004249 patent/WO2011155787A2/en active Application Filing
- 2011-06-10 CN CN201180028461.4A patent/CN103108907B/en active Active
-
2014
- 2014-03-14 JP JP2014051239A patent/JP2014133698A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999001509A1 (en) * | 1997-07-04 | 1999-01-14 | Kyowa Chemical Industry Co., Ltd. | Synthetic resin composition having resistance to thermal deterioration and molded articles |
JP2004225052A (en) * | 1997-07-04 | 2004-08-12 | Kyowa Chem Ind Co Ltd | Thermal-degradation inhibitor |
KR100388097B1 (en) * | 2000-06-01 | 2003-06-18 | 주식회사 두본 | Process for producing hydroxide |
JP2004531448A (en) * | 2001-04-19 | 2004-10-14 | ジュート−ヒェミー アクチェンゲゼルシャフト | Method for producing hydrotalcite |
WO2006043352A1 (en) * | 2004-10-20 | 2006-04-27 | Sakai Chemical Industry Co., Ltd. | Hydrotalcite and synthetic resin composition |
JP2008001756A (en) * | 2006-06-20 | 2008-01-10 | Kyowa Chem Ind Co Ltd | Acid acceptor having improved electrical insulating property, composition containing the same and its molded article |
JP2008274032A (en) * | 2007-04-26 | 2008-11-13 | Adeka Corp | Hydrotalcite and synthetic resin composition containing the hydrotalcite |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016108427A (en) * | 2014-12-05 | 2016-06-20 | 丸尾カルシウム株式会社 | Hydrotalcite composition, resin composition containing the composition and molded body thereof |
WO2016174987A1 (en) * | 2015-04-30 | 2016-11-03 | 協和化学工業株式会社 | Method for producing transparent synthetic resin molded article using hydrotalcite particles |
JPWO2016174987A1 (en) * | 2015-04-30 | 2018-02-22 | 協和化学工業株式会社 | Production method of transparent synthetic resin molding using hydrotalcite particles |
JP2017178652A (en) * | 2016-03-29 | 2017-10-05 | 堺化学工業株式会社 | Hydrotalcite type particle and production method thereof |
JPWO2018012403A1 (en) * | 2016-07-14 | 2019-04-25 | 堺化学工業株式会社 | Chlorine-containing resin composition |
WO2018012403A1 (en) * | 2016-07-14 | 2018-01-18 | 堺化学工業株式会社 | Chlorine-containing resin composition |
US10947377B2 (en) | 2016-07-14 | 2021-03-16 | Sakai Chemical Industry Co., Ltd. | Chlorine-containing resin composition |
JP2018154526A (en) * | 2017-03-17 | 2018-10-04 | 堺化学工業株式会社 | Hydrotalcite composition, and resin additive containing the composition |
CN110475750A (en) * | 2017-03-17 | 2019-11-19 | 堺化学工业株式会社 | Hydrotalcite composition and resin additive containing the composition |
WO2018168496A1 (en) * | 2017-03-17 | 2018-09-20 | 堺化学工業株式会社 | Hydrotalcite substance composition, and resin additive containing said composition |
WO2019124270A1 (en) * | 2017-12-18 | 2019-06-27 | 日本碍子株式会社 | Ldh separator and zinc secondary battery |
US11545719B2 (en) | 2017-12-18 | 2023-01-03 | Ngk Insulators, Ltd. | LDH separator and secondary zinc battery |
JPWO2019131281A1 (en) * | 2017-12-25 | 2020-12-24 | 戸田工業株式会社 | Hydrotalcite particles, a method for producing the same, and a resin stabilizer and a resin composition comprising the same. |
JP7239492B2 (en) | 2017-12-25 | 2023-03-14 | 戸田工業株式会社 | Hydrotalcite particles, method for producing the same, and resin stabilizer and resin composition comprising the same |
WO2019131705A1 (en) * | 2017-12-26 | 2019-07-04 | 堺化学工業株式会社 | Chlorine-containing resin composition for wire covering material |
Also Published As
Publication number | Publication date |
---|---|
CN103108907A (en) | 2013-05-15 |
KR101228880B1 (en) | 2013-02-19 |
CN103108907B (en) | 2015-01-28 |
WO2011155787A2 (en) | 2011-12-15 |
WO2011155787A3 (en) | 2012-05-03 |
JP2014133698A (en) | 2014-07-24 |
KR20110135205A (en) | 2011-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013533907A (en) | Hydrotalcite whose sodium content is controlled to a very small amount, its production method, and synthetic resin composition containing the same | |
JP4789422B2 (en) | Heat-resistant deterioration agent | |
EP1951803B1 (en) | Treated filler and process for producing | |
EP0949305B1 (en) | Process for the production of coupling agent-treated inorganic particles and use thereof | |
JP4775950B2 (en) | Resin composition and molded article containing calcium hydroxide | |
KR20060123611A (en) | Particles of aluminum salt hydroxide containing organic acid anion, method for production thereof and use thereof | |
KR950013148B1 (en) | Anti-blocking agents and compositions for synthetic resin films | |
KR101895093B1 (en) | Fibrous basic magnesium sulfate powder and method for producing same | |
JP5394380B2 (en) | Flame retardant resin composition | |
KR102070333B1 (en) | Hydrotalcite Particles and Manufacturing Method Thereof | |
KR101996073B1 (en) | Acid modified natural mineral filler to initialize the beta-nucleation of polypropylene | |
US11078087B2 (en) | Plate-shaped hydrotalcite with high aspect ratio, method for manufacturing same and resin composition | |
JPS6348809B2 (en) | ||
JP2001525312A (en) | Cationic layered compound and its production method and use | |
JPWO2006118325A1 (en) | Resin composition | |
WO2007123264A1 (en) | Novel aluminum complex hydroxide salt and method for producing the same | |
JPH0345012B2 (en) | ||
CN117062779A (en) | Hydrotalcite-like compound, resin composition, and resin molded article | |
EP3746513A1 (en) | Antacids for polymers | |
JPH0351653B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141028 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20150121 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150728 |