Nothing Special   »   [go: up one dir, main page]

JP2013214115A - Optical coupling device - Google Patents

Optical coupling device Download PDF

Info

Publication number
JP2013214115A
JP2013214115A JP2013154183A JP2013154183A JP2013214115A JP 2013214115 A JP2013214115 A JP 2013214115A JP 2013154183 A JP2013154183 A JP 2013154183A JP 2013154183 A JP2013154183 A JP 2013154183A JP 2013214115 A JP2013214115 A JP 2013214115A
Authority
JP
Japan
Prior art keywords
substrate
optical
adhesive
coupling device
adhesive reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013154183A
Other languages
Japanese (ja)
Inventor
Kenji Kono
健治 河野
Masaya Nanami
雅也 名波
Yuji Sato
勇治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2013154183A priority Critical patent/JP2013214115A/en
Publication of JP2013214115A publication Critical patent/JP2013214115A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical coupling device for coupling optical waveguides, such as an optical waveguide and an optical fiber, with each other with high reliability.SOLUTION: The sum of the thicknesses of a first fixture 5 and a first substrate 2 is made smaller than the sum of the thicknesses of a second fixture 10 and a second substrate 6. In a step part generated by the difference of the sum of the thickness between the upper face of the first fixture 5 and the edge of the second fixture 10, a first adhesive reservoir 14 is formed in a state where adhesive projects into the upper face of the first fixture 5. In a step part generated by the difference of the sum of the thickness between the lower face of the first substrate 2 and the edge of the second substrate 6, a second adhesive reservoir 12 is formed in a state where the adhesive projects into the lower face of the first substrate 2. Consequently, the stress in a substrate thickness direction generated in the first adhesive reservoir 14 and the stress in the substrate thickness direction generated in the second adhesive reservoir 12 are canceled with each other.

Description

本発明は、光導波路や光ファイバなどの光導波路同士を高い信頼性で結合させる光結合装置に関するものである。   The present invention relates to an optical coupling device that couples optical waveguides such as optical waveguides and optical fibers with high reliability.

(従来技術)
リチウムナイオベート(LiNbO、あるいはLN)基板に形成した光導波路と石英光導波路、及び石英光導波路と光ファイバとを光結合するための光結合装置が知られている。図6に、リチウムナイオベート基板に形成した光導波路と光ファイバとを光結合するための光結合装置の概略斜視図を示す。
(Conventional technology)
There are known optical coupling devices for optically coupling an optical waveguide and a quartz optical waveguide formed on a lithium niobate (LiNbO 3 or LN) substrate, and a quartz optical waveguide and an optical fiber. FIG. 6 is a schematic perspective view of an optical coupling device for optically coupling an optical waveguide formed on a lithium niobate substrate and an optical fiber.

1はパッケージの筺体の一部でありここでは台座と呼ぶ。2はLNなどからなる第1の基板、3a、3b、3cはTiを1100℃で12時間かけて拡散して形成した光導波路、4はSiOバッファ層である。5はLNなどからなる第1のヤトイ、6はガラスブロックなどからなる第2の基板、7a、7b、7cはV溝、8a´、8b´、8c´は光ファイバ、8a、8b、8cは光ファイバ8a´、8b´、8c´のコア、9a、9b、9cは光ファイバ8a´、8b´、8c´のクラッド、10はガラスブロックなどからなる第2のヤトイである。光ファイバ8a´、8b´、8c´は接着剤によりV溝7a、7b、7cに固定されている。 Reference numeral 1 denotes a part of the package housing, which is called a pedestal here. 2 is a first substrate made of LN or the like, 3a, 3b and 3c are optical waveguides formed by diffusing Ti at 1100 ° C. for 12 hours, and 4 is a SiO 2 buffer layer. 5 is a first Yatoi made of LN, 6 is a second substrate made of a glass block, 7a, 7b and 7c are V grooves, 8a ', 8b' and 8c 'are optical fibers, 8a, 8b and 8c are The cores of the optical fibers 8a ′, 8b ′, and 8c ′, 9a, 9b, and 9c are clads of the optical fibers 8a ′, 8b ′, and 8c ′, and 10 is a second Yatoi made of a glass block or the like. The optical fibers 8a ′, 8b ′ and 8c ′ are fixed to the V grooves 7a, 7b and 7c by an adhesive.

なお、第1のヤトイ5は第1の基板2に向かい合う面で接着されており、第2のヤトイ10は第2の基板6に向かい合う面で接着されている(なお、後述する図7ではその接着剤の図示を省略している)。11は第1の基板2と第2の基板6とを、また第1のヤトイ5と第2のヤトイ10とをそれらの端面で接着している接着剤であり、通常光学接着剤が用いられる。なお、この光学接着剤としては紫外線硬化接着剤(UV接着剤)が好適である。   Note that the first Yatoi 5 is bonded on the surface facing the first substrate 2, and the second Yatoi 10 is bonded on the surface facing the second substrate 6 (in FIG. The illustration of the adhesive is omitted). Reference numeral 11 denotes an adhesive that bonds the first substrate 2 and the second substrate 6, and the first Yatoi 5 and the second Yatoi 10 at their end faces, and usually an optical adhesive is used. . As this optical adhesive, an ultraviolet curable adhesive (UV adhesive) is suitable.

図6のA−A´における断面図を図7に示す。図7からわかるように、第1の基板2の下面2´と第2の基板6の下面6´は同じ水平面状にはなく、それらの間には段差Hが存在する。そのため、図6や図7に示すような、対向する基板間からはみ出た光学接着剤溜まり部12が形成される。つまり、第1の基板2の下面2´の方が第2の基板6の下面6´よりも段差Hだけ高い。   FIG. 7 shows a cross-sectional view taken along line AA ′ of FIG. As can be seen from FIG. 7, the lower surface 2 ′ of the first substrate 2 and the lower surface 6 ′ of the second substrate 6 are not in the same horizontal plane, and there is a step H between them. Therefore, as shown in FIGS. 6 and 7, an optical adhesive reservoir 12 protruding from between the opposing substrates is formed. That is, the lower surface 2 ′ of the first substrate 2 is higher than the lower surface 6 ′ of the second substrate 6 by the step H.

一般に、図6や図7の光導波路3a、3b、3cは高速光変調器の光導波路として使用される。特許文献1に記載があるように、この高速光変調器ではLN基板2の厚みが厚いと基板の共振が発生し易い。つまり、15GHzあるいはそれ以上の高周波において光変調特性にディップが生じる。そしてこのことは40GHzなどの超高周波帯域において特に深刻になる。この基板共振の発生を避けるにはLN基板を薄くすることが有効である。例えば、ガラスブロック6が1〜2mm程度の厚みの場合、LN基板2は0.3mm程度と、ガラスブロック6に比べてその厚みを大変薄くする必要がある。なお、これらのことはガラスブロック6が石英光導波路の場合でも同様である。   In general, the optical waveguides 3a, 3b, and 3c shown in FIGS. 6 and 7 are used as optical waveguides of a high-speed optical modulator. As described in Patent Document 1, in this high-speed optical modulator, if the thickness of the LN substrate 2 is thick, the substrate tends to resonate. That is, a dip occurs in the light modulation characteristics at a high frequency of 15 GHz or higher. This is particularly serious in an ultrahigh frequency band such as 40 GHz. In order to avoid the occurrence of this substrate resonance, it is effective to make the LN substrate thinner. For example, when the glass block 6 has a thickness of about 1 to 2 mm, the LN substrate 2 needs to be much thinner than the glass block 6, about 0.3 mm. These are the same even when the glass block 6 is a quartz optical waveguide.

次に、図7のB−B´における断面図を図8に示す。光学接着剤溜まり部12は表面張力のために図8に示すように第2の基板6の中央付近に厚く溜まり易い。   Next, FIG. 8 shows a cross-sectional view taken along the line BB ′ of FIG. Due to surface tension, the optical adhesive reservoir 12 tends to accumulate thickly near the center of the second substrate 6 as shown in FIG.

従来技術の光結合装置を−40〜80℃のヒートサイクル試験にかけると、光学接着剤溜まり部12は熱膨張と熱収縮を繰り返し、図8の13の矢印で示したような応力が発生し、第2の基板6を上方向(第2のヤトイ10が在る方向)に引っ張る力が働く。なお、応力13の矢印の向きは応力の方向を、また長さは応力の大きさを表している。   When the optical coupling device of the prior art is subjected to a heat cycle test at −40 to 80 ° C., the optical adhesive reservoir 12 repeats thermal expansion and thermal contraction, and stress as indicated by the arrow 13 in FIG. 8 is generated. The force pulling the second substrate 6 upward (the direction in which the second Yatoi 10 is present) acts. The direction of the arrow of the stress 13 represents the direction of the stress, and the length represents the magnitude of the stress.

図7からわかるように、第1のヤトイ5と第2のヤトイ10、第1の基板2と第2の基板6とを接着固定している光学接着剤11の面積(各ヤトイ同士間と各基板同士間が対向している部分の面積)と光学接着剤溜まり部12の面積(第2の基板6に接している面積)を比較すると、前者の方が大変広い。このことは、光学接着剤11の方が大きな接着力を有していることを意味している。   As can be seen from FIG. 7, the area of the optical adhesive 11 that bonds and fixes the first and second yatoes 5 and 10 and the first and second substrates 2 and 6 (between each yatoi and each Comparing the area of the portion where the substrates face each other) and the area of the optical adhesive reservoir 12 (area contacting the second substrate 6), the former is much wider. This means that the optical adhesive 11 has a larger adhesive force.

しかしながら、ヒートサイクル試験の際には、第1のヤトイ5と第2のヤトイ10、第1の基板2と第2の基板6とを接着している光学接着剤11の固定する力の方向(各ヤトイと各基板の対向する面における法線方向)に対してせん断方向(基板厚さ方向)に光学接着剤溜まり部12が収縮と膨張による応力13を加えることになる。そして、このせん断方向(基板厚さ方向)であることが事態を深刻にしている。   However, in the heat cycle test, the direction of the fixing force of the optical adhesive 11 that bonds the first Yatoi 5 and the second Yatoi 10 and the first substrate 2 and the second substrate 6 ( The optical adhesive reservoir 12 applies a stress 13 due to contraction and expansion in the shear direction (substrate thickness direction) with respect to the normal direction of the opposing surfaces of each yatoi and each substrate. And it is a serious situation that this shear direction (substrate thickness direction).

つまり、例え光学接着剤11が対向面法線方向に強固に接着する力を発揮していても、その力に垂直な方向に光学接着剤溜まり部12が応力13を生じるために、ヒートサイクル試験時には光ファイバのコア8a、8b、8cと光導波路3a、3b、3cとの上下方向(基板厚さ方向)における相対位置を確実に徐々にずらしてしまう。その結果、光ファイバのコア8a、8b、8cから光導波路3a、3b、3cへ透過する光の挿入損失が次第に増加する。   That is, even if the optical adhesive 11 exerts a force to firmly bond in the normal direction of the opposing surface, the optical adhesive reservoir 12 generates the stress 13 in the direction perpendicular to the force. Sometimes, the relative positions of the optical fiber cores 8a, 8b, 8c and the optical waveguides 3a, 3b, 3c in the vertical direction (substrate thickness direction) are gradually and gradually shifted. As a result, the insertion loss of light transmitted from the optical fiber cores 8a, 8b, 8c to the optical waveguides 3a, 3b, 3c gradually increases.

図8に矢印で示した応力13の矢印の長さから推測されるように、この上下方向における軸ずれは光ファイバのコア8bと光導波路3bにおいて最も大きくなる。つまり、光ファイバのコア8aと光導波路3a、コア8bと光導波路3b、及びコア8cと光導波路3cの組み合わせの中では、コア8bと光導波路3bの上下方向の軸ずれが最も大きくなる。   As estimated from the length of the arrow of the stress 13 indicated by the arrow in FIG. 8, the axial misalignment in the vertical direction is greatest in the optical fiber core 8b and the optical waveguide 3b. That is, in the combination of the optical fiber core 8a and the optical waveguide 3a, the core 8b and the optical waveguide 3b, and the core 8c and the optical waveguide 3c, the axial misalignment between the core 8b and the optical waveguide 3b is the largest.

ヒートサイクル試験時における光ファイバのコア8bから光導波路3bへ透過する光の挿入損失の増加を図9に示す。図9からわかるように、ヒートサイクルの回数が多くなると、光の挿入損失が著しく増加し、信頼性上の深刻な問題が生じていた。   FIG. 9 shows an increase in insertion loss of light transmitted from the optical fiber core 8b to the optical waveguide 3b during the heat cycle test. As can be seen from FIG. 9, when the number of heat cycles is increased, the light insertion loss is remarkably increased, which causes a serious problem in reliability.

なお、ヒートサイクル試験時に光学接着剤溜まり部12の収縮と膨張が応力13を発生させ、その結果第1の基板2と第2の基板6が互いに接着された端面において上下に軸ずれし、光の挿入損失を増加させるということは公知の事実ではなく、筆者らが考察を進めた結果初めて得た知見である。   Note that the contraction and expansion of the optical adhesive reservoir 12 during the heat cycle test generates a stress 13, and as a result, the first substrate 2 and the second substrate 6 are axially displaced vertically at the end surfaces where the first substrate 2 and the second substrate 6 are bonded to each other. Increasing the insertion loss is not a known fact, but is a knowledge obtained for the first time as a result of investigations by the authors.

なお、図6、図7に示す構成とは異なるが、特許文献2には基板同士をそれら各基板の端部および各基板上部に設けたヤトイを用いて結合させる構成が開示されている。   Although different from the configurations shown in FIGS. 6 and 7, Patent Document 2 discloses a configuration in which the substrates are joined together using a Yatoi provided on the end portions of the substrates and the upper portions of the substrates.

特開2007−334124号公報JP 2007-334124 A 特開2009−175364号公報JP 2009-175364 A

以上のように、第1の基板と第2の基板の端部同士、及び各基板上に設けられた第1のヤトイと第2のヤトイの端面同士を光学接着剤で貼り付ける光結合装置において、従来技術では、特にヒートサイクルのような信頼性試験において、第1の基板の下面と第2の基板の下面との間に段差が形成された光学接着剤溜まり部が収縮や膨張するため、第1の基板と第2の基板が保有する光導波路や光ファイバのコアとが互いに上下方向(基板厚さ方向)に軸ずれを生じていた。その結果、試験時間の経過とともに、第1の基板と第2の基板が保有する光導波路や光ファイバのコアとの間における光の挿入損失が大きくなるという問題が生じていた。そのため、高い信頼性を有する光結合装置の開発が急務であった。   As described above, in the optical coupling device in which the end portions of the first substrate and the second substrate, and the end surfaces of the first and second yatoies provided on each substrate are attached with an optical adhesive. In the prior art, particularly in a reliability test such as a heat cycle, the optical adhesive reservoir in which a step is formed between the lower surface of the first substrate and the lower surface of the second substrate contracts or expands. The optical waveguides and optical fiber cores possessed by the first substrate and the second substrate are misaligned in the vertical direction (substrate thickness direction). As a result, there has been a problem that the insertion loss of light between the optical waveguide and the optical fiber core possessed by the first substrate and the second substrate increases with the lapse of the test time. Therefore, there has been an urgent need to develop an optical coupling device having high reliability.

本発明はこのような事情に鑑みてなされたものであり、ヒートサイクルなどの信頼性試験に対して耐力のある光結合装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide an optical coupling device that is resistant to reliability tests such as a heat cycle.

上記課題を解決するために、本発明の請求項1に記載の光結合装置は、第1の基板と第2の基板とが、対向する各基板の端で、並びに各基板の上面の端に設けられた第1のヤトイ及び第2のヤトイで接着剤によって接着され、各基板上に設けられた光導波路が光結合される光結合装置において、前記第1の基板の厚みが前記第2の基板よりも薄く形成され、前記第1のヤトイの厚みが前記第2のヤトイよりも薄く形成され、これによって、前記第1のヤトイと前記第1の基板の厚みの和が、前記第2のヤトイと前記第2の基板の厚みの和よりも小さく成っており、当該厚みの和の相違によって前記第1のヤトイの上面と前記第2のヤトイの端との間にできる段差部に、第1の接着剤溜まり部を当該接着剤が前記第1のヤトイの上面にまではみ出した状態で形成させるとともに、当該厚みの和の相違によって前記第1の基板の下面と前記第2の基板の端との間にできる段差部に、第2の接着剤溜まり部を当該接着剤が前記第1の基板の下面にまではみ出した状態で形成させることにより、前記第1の接着剤溜まり部で発生する基板厚み方向の応力と前記第2の接着剤溜まり部で発生する基板厚み方向の応力とが互いに打ち消し合うことを特徴としている。   In order to solve the above-described problem, the optical coupling device according to claim 1 of the present invention is configured such that the first substrate and the second substrate are opposed to each other at the end of each substrate and at the end of the upper surface of each substrate. In an optical coupling device in which an optical waveguide provided on each substrate is optically coupled with an adhesive provided by the first and second yatoi provided, and the thickness of the first substrate is the second The first Yatoi is formed thinner than the second Yatoi, and the sum of the thickness of the first Yatoi and the first substrate is thereby set to the second Yaito. A step portion formed between the top surface of the first yatoy and the end of the second yatoy due to the difference in the sum of the thicknesses. 1 adhesive reservoir portion is inserted into the upper surface of the first yatoy. And the second adhesive reservoir portion is formed on the step formed between the lower surface of the first substrate and the end of the second substrate by the difference in the sum of the thicknesses. By forming in a state of protruding to the lower surface of the first substrate, the stress in the substrate thickness direction generated in the first adhesive reservoir portion and the thickness direction of the substrate generated in the second adhesive reservoir portion. It is characterized by stress canceling each other out.

上記課題を解決するために、本発明の請求項2に記載の光結合装置は、請求項1に記載の光結合装置において、前記第1の接着剤溜まり部の接着剤の量と前記第2の接着剤溜まり部の接着剤の量とが、略等しいことを特徴としている。   In order to solve the above problem, an optical coupling device according to a second aspect of the present invention is the optical coupling device according to the first aspect, wherein the amount of the adhesive in the first adhesive reservoir and the second The amount of adhesive in the adhesive reservoir portion is substantially equal.

上記課題を解決するために、本発明の請求項3に記載の光結合装置は、請求項1または請求項2に記載の光結合装置において、前記第1及び第2の接着剤溜まり部が、光学接着剤からなることを特徴としている。   In order to solve the above-described problem, an optical coupling device according to a third aspect of the present invention is the optical coupling device according to the first or second aspect, wherein the first and second adhesive reservoirs are: It is characterized by comprising an optical adhesive.

上記課題を解決するために、本発明の請求項4に記載の光結合装置は、請求項1乃至請求項3のいずれか一項に記載の光結合装置において、前記第1の基板と前記第2の基板の少なくとも一方についての幅と厚みの比が1よりも大きいことを特徴としている。   In order to solve the above-described problem, an optical coupling device according to a fourth aspect of the present invention is the optical coupling device according to any one of the first to third aspects, wherein the first substrate and the first optical coupling device are the same. The width / thickness ratio of at least one of the two substrates is greater than 1.

本発明では、第1のヤトイと第2のヤトイの上面に段差を設け、そこに接着剤の溜まり部を形成することにより、例えば第1の基板の下面と第2の基板の下面との段差がある箇所に形成された光学接着剤溜まり部が熱収縮・熱膨張することにより生じる応力を打ち消す。これにより、ヒートサイクルなどの信頼性試験に対して耐力のある光結合装置を実現できるという優れた効果がある。   In the present invention, a step is provided on the upper surfaces of the first and second yatoys, and an adhesive reservoir is formed there, for example, a step between the lower surface of the first substrate and the lower surface of the second substrate. It cancels out the stress caused by thermal contraction and thermal expansion of the optical adhesive reservoir formed at a certain location. Thereby, there exists the outstanding effect that the optical coupling device with a yield strength can be implement | achieved with respect to reliability tests, such as a heat cycle.

本発明の光結合装置に係る第1の実施形態の概略構成を示す斜視図The perspective view which shows schematic structure of 1st Embodiment which concerns on the optical coupling device of this invention. 図1のA−A´における概略断面図FIG. 1 is a schematic cross-sectional view taken along line AA ′ 図2のB−B´における概略断面図FIG. 2 is a schematic cross-sectional view along BB ′ 第1の実施形態の効果を説明する図The figure explaining the effect of a 1st embodiment 本発明の光結合装置に係る第2の実施形態の概略断面図Schematic sectional view of a second embodiment according to the optical coupling device of the present invention 従来技術の光結合装置についての概略構成を示す斜視図The perspective view which shows schematic structure about the optical coupling device of a prior art 図6のA−A´における断面図Sectional drawing in AA 'of FIG. 図7のB−B´における断面図Sectional drawing in BB 'of FIG. 従来技術の問題点を説明する図Diagram explaining the problems of the prior art

以下、本発明の実施形態について説明するが、図6から図9に示した従来技術と同一の符号は同一機能部に対応しているため、ここでは同一の符号を持つ機能部の説明を省略する。   Hereinafter, embodiments of the present invention will be described. However, since the same reference numerals as those in the related art shown in FIGS. 6 to 9 correspond to the same functional units, description of functional units having the same reference numerals is omitted here. To do.

(第1の実施形態)
図1に本発明の概略斜視図を示す。また、A−A´における断面図を図2に示す。本実施形態では第1のヤトイ5の上面5´と第2のヤトイ10の上面10´との間に段差H´を設け、ここに接着剤溜まり部14を形成している。
(First embodiment)
FIG. 1 shows a schematic perspective view of the present invention. Further, FIG. 2 shows a cross-sectional view taken along line AA ′. In the present embodiment, a step H ′ is provided between the upper surface 5 ′ of the first yatoy 5 and the upper surface 10 ′ of the second yatoy 10, and the adhesive reservoir 14 is formed here.

ここでは、簡単のために14は光学接着剤11と同じUV接着剤としたが、通常の接着剤としても良い。通常の接着剤を適用する場合には、光学接着剤11と光学接着剤溜まり部12とで両基板および両ヤトイを接着した後、接着剤溜まり部14で第1のヤトイ5の上面5´と第2のヤトイ10の側面とを接着する。接着剤溜まり部14は光路に入らないので問題は発生しない。   Here, for the sake of simplicity, 14 is the same UV adhesive as the optical adhesive 11, but may be a normal adhesive. In the case where a normal adhesive is applied, after bonding both the substrates and the two yatoi with the optical adhesive 11 and the optical adhesive reservoir 12, the upper surface 5 'of the first yatoy 5 is bonded with the adhesive reservoir 14. The side surface of the second yatoy 10 is bonded. Since the adhesive reservoir 14 does not enter the optical path, no problem occurs.

図3には図2のB−B´における断面図を示す。ここで15は本実施形態をヒートサイクル試験にかけた際に発生する応力であり、第1のヤトイ5に対して第2のヤトイ10を下方向(基板方向)に引き下げる働きをする。13もまたヒートサイクル試験にかけた際に発生する応力であり、第1の基板2に対して第2の基板6を上方向に引っ張る力が働く(図8に示した従来技術における応力13と同じである)。   FIG. 3 is a cross-sectional view taken along the line BB ′ of FIG. Here, 15 is a stress generated when the present embodiment is subjected to a heat cycle test, and acts to lower the second yato 10 downward (substrate direction) with respect to the first yato 5. 13 is also a stress generated when the heat cycle test is performed, and a force for pulling the second substrate 6 upward with respect to the first substrate 2 works (the same as the stress 13 in the prior art shown in FIG. 8). Is).

図3からわかるように、本実施形態では接着剤溜まり部14により発生する応力15と光学接着剤溜まり部12により発生する応力13とは向きが反対であり、互いに打ち消し合うことになる。   As can be seen from FIG. 3, in this embodiment, the stress 15 generated by the adhesive reservoir 14 and the stress 13 generated by the optical adhesive reservoir 12 are opposite in direction and cancel each other.

図4にはこの第1の実施形態を−40〜80℃のヒートサイクル試験にかけた際に光ファイバのコア8bから光導波路3bへ透過する光の挿入損失の増加を示す。この図から、本実施形態を用いることにより、上下方向の軸ずれが事実上なくなり、極めて高い信頼性を有する光結合系を実現できることがわかる。   FIG. 4 shows an increase in insertion loss of light transmitted from the optical fiber core 8b to the optical waveguide 3b when the first embodiment is subjected to a heat cycle test at −40 to 80 ° C. From this figure, it can be seen that by using this embodiment, the vertical axis displacement is virtually eliminated and an optical coupling system having extremely high reliability can be realized.

なお、第1のヤトイ5と第2のヤトイ10、及び第1の基板2と第2の基板6とを固定している光学接着剤11の接着力はかなり強いので、図3の応力15と応力13は完全には打ち消し合わなくても、本発明としての効果を充分に発揮できることを確認している。従って、図2において2つの段差HとH´は互いに等しくなくても良いし、光学接着剤溜まり部12と接着剤溜まり部14の量も完全には等しくなくても良いことを実験的に確認している。   Since the adhesive force of the first adhesive 5 and the second adhesive 10 and the optical adhesive 11 that fixes the first substrate 2 and the second substrate 6 is quite strong, the stress 15 in FIG. It has been confirmed that even if the stress 13 does not completely cancel each other, the effects of the present invention can be sufficiently exerted. Accordingly, in FIG. 2, it is experimentally confirmed that the two steps H and H ′ need not be equal to each other, and the amounts of the optical adhesive reservoir 12 and the adhesive reservoir 14 need not be completely equal. doing.

(第2の実施形態)
図5は本発明における第2の実施形態の断面図を示す。本実施形態では、第1の基板2の下面に例えばLN基板などからなる第3のヤトイ16を接着しており、第2の基板6との接着面積を大きくしている。第3のヤトイの下面16´と第2の基板6の端面に渡って光学接着剤溜まり部12が形成されている。第1の実施形態と同様に、この光学接着剤溜まり部12により発生する上下方向(基板厚さ方向)の応力を接着剤溜まり部14が打ち消している。なお、前述のようにこの接着剤溜まり部14は通常の接着剤でも良いことはいうまでもない。
(Second Embodiment)
FIG. 5 shows a cross-sectional view of a second embodiment of the present invention. In the present embodiment, a third Yatoi 16 made of, for example, an LN substrate or the like is bonded to the lower surface of the first substrate 2 to increase the bonding area with the second substrate 6. An optical adhesive reservoir 12 is formed across the lower surface 16 ′ of the third Yatoi and the end surface of the second substrate 6. Similar to the first embodiment, the adhesive reservoir 14 cancels the stress in the vertical direction (substrate thickness direction) generated by the optical adhesive reservoir 12. Needless to say, the adhesive reservoir 14 may be a normal adhesive as described above.

(各実施形態)
本明細書において説明した実施形態では、アレー型の光導波路とアレー型の光ファイバの結合構造として説明したが、本発明はアレー型の光導波路同士の接続にも適している。また光導波路としてLN基板を用いる、いわゆるLN光導波路として説明したが、石英光導波路などその他の光導波路にも適用可能であることはいうまでもない。
(Each embodiment)
In the embodiment described in the present specification, the coupling structure of the array type optical waveguide and the array type optical fiber has been described. However, the present invention is also suitable for connection between the array type optical waveguides. Further, although an LN substrate using an LN substrate as the optical waveguide has been described as a so-called LN optical waveguide, it is needless to say that the present invention can also be applied to other optical waveguides such as a quartz optical waveguide.

本発明は接着断面が四角の基板やヤトイを用いる光結合装置に特に有効である。接着端面における基板の幅と厚みのアスペクト比(基板の幅/基板の厚み)が1よりも大きくなると、基板の下面における光学接着剤溜まり部の量が必然的に多くなるので、光学接着剤溜まり部による上下方向の応力が強くなってしまう。従って、本発明はこのアスペクト比が1よりも大きな光結合装置に極めて効果的である。   The present invention is particularly effective for an optical coupling device using a substrate or yatoi having a square bond cross section. When the aspect ratio (substrate width / substrate thickness) of the width and thickness of the substrate at the bonding end face is larger than 1, the amount of the optical adhesive reservoir on the lower surface of the substrate inevitably increases, so that the optical adhesive reservoir The stress in the vertical direction by the part becomes strong. Therefore, the present invention is extremely effective for an optical coupling device having an aspect ratio larger than 1.

1:台座
2:第1の基板(LN基板)
2´:第1の基板の下面
3a、3b、3c:光導波路
4:SiOバッファ層
5:第1のヤトイ
5´:第1のヤトイの上面
6:第2の基板(ガラスブロック)
6´:第2の基板の下面
7a、7b、7c:V溝
8a、8b、8c:光ファイバ8a´、8b´、8c´のコア
8a´、8b´、8c´:光ファイバ
9a、9b、9c:光ファイバ8a´、8b´、8c´のクラッド
10:第2のヤトイ
10´:第2のヤトイの上面
11:光学接着剤
12:光学接着剤溜まり部
14:接着剤溜まり部
13、15:応力
16:第3のヤトイ
16´:第3のヤトイの下面
1: Pedestal 2: First substrate (LN substrate)
2 ′: lower surface of first substrate 3a, 3b, 3c: optical waveguide 4: SiO 2 buffer layer 5: first yatoi 5 ′: upper surface of first yatoi 6: second substrate (glass block)
6 ': lower surface of the second substrate 7a, 7b, 7c: V-grooves 8a, 8b, 8c: cores of optical fibers 8a', 8b ', 8c' 8a ', 8b', 8c ': optical fibers 9a, 9b, 9c: Cladding of optical fibers 8a ', 8b', 8c '10: Second Yatoi 10': Upper surface of second Yatoi 11: Optical adhesive 12: Optical adhesive reservoir 14: Adhesive reservoir 13, 15 : Stress 16: Third yatoy 16 ': Lower surface of third yatoy

Claims (4)

第1の基板と第2の基板とが、対向する各基板の端で、並びに各基板の上面の端に設けられた第1のヤトイ及び第2のヤトイで接着剤によって接着され、各基板上に設けられた光導波路が光結合される光結合装置において、
前記第1の基板の厚みが前記第2の基板よりも薄く形成され、前記第1のヤトイの厚みが前記第2のヤトイよりも薄く形成され、これによって、前記第1のヤトイと前記第1の基板の厚みの和が、前記第2のヤトイと前記第2の基板の厚みの和よりも小さく成っており、
当該厚みの和の相違によって前記第1のヤトイの上面と前記第2のヤトイの端との間にできる段差部に、第1の接着剤溜まり部を当該接着剤が前記第1のヤトイの上面にまではみ出した状態で形成させるとともに、当該厚みの和の相違によって前記第1の基板の下面と前記第2の基板の端との間にできる段差部に、第2の接着剤溜まり部を当該接着剤が前記第1の基板の下面にまではみ出した状態で形成させることにより、
前記第1の接着剤溜まり部で発生する基板厚み方向の応力と前記第2の接着剤溜まり部で発生する基板厚み方向の応力とが互いに打ち消し合うことを特徴とする光結合装置。
The first substrate and the second substrate are bonded to each other by an adhesive at the end of each opposing substrate and the first and second yatoi provided at the upper end of each substrate. In the optical coupling device in which the optical waveguide provided in is optically coupled,
The thickness of the first substrate is made thinner than the second substrate, and the thickness of the first yatoy is made thinner than the second yatoy. The sum of the thickness of the substrate is smaller than the sum of the thickness of the second Yatoi and the second substrate,
The first adhesive reservoir portion is formed on the step portion formed between the upper surface of the first yatoy and the end of the second yatoy due to the difference in the sum of the thicknesses. The second adhesive reservoir portion is formed in a step portion formed between the lower surface of the first substrate and the end of the second substrate due to the difference in the sum of the thicknesses. By forming the adhesive so as to protrude to the lower surface of the first substrate,
The optical coupling device, wherein the stress in the substrate thickness direction generated in the first adhesive reservoir portion and the stress in the substrate thickness direction generated in the second adhesive reservoir portion cancel each other.
前記第1の接着剤溜まり部の接着剤の量と前記第2の接着剤溜まり部の接着剤の量とが、略等しいことを特徴とする請求項1に記載の光結合装置。   2. The optical coupling device according to claim 1, wherein the amount of the adhesive in the first adhesive reservoir and the amount of the adhesive in the second adhesive reservoir are substantially equal. 前記第1及び第2の接着剤溜まり部が、光学接着剤からなることを特徴とする請求項1または請求項2に記載の光結合装置。   The optical coupling device according to claim 1, wherein the first and second adhesive reservoir portions are made of an optical adhesive. 前記第1の基板と前記第2の基板の少なくとも一方についての幅と厚みの比が1よりも大きいことを特徴とする請求項1乃至請求項3のいずれか一項に記載の光結合装置。   4. The optical coupling device according to claim 1, wherein a ratio of a width to a thickness of at least one of the first substrate and the second substrate is larger than 1. 5.
JP2013154183A 2013-07-25 2013-07-25 Optical coupling device Withdrawn JP2013214115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013154183A JP2013214115A (en) 2013-07-25 2013-07-25 Optical coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013154183A JP2013214115A (en) 2013-07-25 2013-07-25 Optical coupling device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010001405A Division JP5498175B2 (en) 2010-01-06 2010-01-06 Optical coupling device

Publications (1)

Publication Number Publication Date
JP2013214115A true JP2013214115A (en) 2013-10-17

Family

ID=49587417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013154183A Withdrawn JP2013214115A (en) 2013-07-25 2013-07-25 Optical coupling device

Country Status (1)

Country Link
JP (1) JP2013214115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407208A (en) * 2018-12-13 2019-03-01 中国科学院半导体研究所 The preparation method of optical coupling structure, system and optical coupling structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407208A (en) * 2018-12-13 2019-03-01 中国科学院半导体研究所 The preparation method of optical coupling structure, system and optical coupling structure
CN109407208B (en) * 2018-12-13 2021-03-05 中国科学院半导体研究所 Optical coupling structure, system and preparation method of optical coupling structure

Similar Documents

Publication Publication Date Title
JP5922042B2 (en) Optical module
WO2012017644A1 (en) Optical component
JP2014048628A (en) Optical connection component
JP2017173710A (en) Optical fiber mounted optical integrated circuit device
JP5498175B2 (en) Optical coupling device
US20170176685A1 (en) Method for connecting optical waveguide and optical fiber, semiconductor optical device, and method for manufacturing semiconductor optical device having optical fiber connected thereto
JP2013214115A (en) Optical coupling device
JP2011141387A (en) Optical coupling device
JP5324371B2 (en) Optical connection component and optical connection method
JP2011141388A (en) Optical coupling device
CN110770618B (en) Optical fiber member
JP6904213B2 (en) Optical fiber holder
EP2546686B1 (en) Optical component
JP6405946B2 (en) Optical device
WO2018168354A1 (en) Optical fiber component
JP7244788B2 (en) Optical fiber connection structure
JP7348550B2 (en) optical circuit module
JP2014102386A (en) Optical component
WO2022138587A1 (en) Optical connection structure
JP5214042B2 (en) Method for manufacturing optical element package
JP5281058B2 (en) Optical parts
US20240134117A1 (en) Optical waveguide element, and optical transmission apparatus and optical modulation device using same
JP2018180046A (en) Optical fiber member
JP2012058410A (en) Optical component
JP5291033B2 (en) Optical parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140226