JP2013139872A - High tensile bolt and method for manufacturing the same - Google Patents
High tensile bolt and method for manufacturing the same Download PDFInfo
- Publication number
- JP2013139872A JP2013139872A JP2012269065A JP2012269065A JP2013139872A JP 2013139872 A JP2013139872 A JP 2013139872A JP 2012269065 A JP2012269065 A JP 2012269065A JP 2012269065 A JP2012269065 A JP 2012269065A JP 2013139872 A JP2013139872 A JP 2013139872A
- Authority
- JP
- Japan
- Prior art keywords
- bolt
- strength
- screw
- shape
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- 238000000034 method Methods 0.000 title claims description 9
- 238000005496 tempering Methods 0.000 claims abstract description 17
- 230000007704 transition Effects 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910000734 martensite Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 2
- 239000011295 pitch Substances 0.000 claims 1
- 239000002994 raw material Substances 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 abstract description 46
- 239000010959 steel Substances 0.000 abstract description 46
- 239000000463 material Substances 0.000 abstract description 22
- 230000003111 delayed effect Effects 0.000 abstract description 20
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 23
- 239000001257 hydrogen Substances 0.000 description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 22
- 229910001567 cementite Inorganic materials 0.000 description 9
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000009864 tensile test Methods 0.000 description 7
- 238000010791 quenching Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 102220042703 rs147727753 Human genes 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
【課題】1700MPa以上の引張強さを有し、引張変形性能、耐遅れ破壊特性に優れた高力ボルト及びその製造方法を提供する。
【解決手段】質量%で、C:0.35〜0.70%、Si:0.50〜2.50%、Mn:0.10〜1.00%、Cr:0.30〜3.00%、Mo:0.50〜1.50%、Al:0.001〜0.1%を含有し、残部はFe及び不可避不純物からなる鋼材を素材として、ねじ部に、フランク面の角度を60°とし、かつねじ部とがり山の高さをHとし、相対するねじ山のフランク面と谷底との移行点をとがり山底辺からH/2に設定してなるとともに、移行点においてフランク面に当接する曲率半径RがH/3.5以上、H/2.5以下の当接小円を描く弧状曲線を形成するねじ部形状を有するボルト形状に成形し、850℃〜1050℃の温度範囲内でオーステナイト化処理して焼入れした後、500℃〜650℃の温度範囲で焼戻処理を施す。
【選択図】図2A high-strength bolt having a tensile strength of 1700 MPa or more and excellent in tensile deformation performance and delayed fracture resistance and a method for producing the same are provided.
SOLUTION: In mass%, C: 0.35 to 0.70%, Si: 0.50 to 2.50%, Mn: 0.10 to 1.00%, Cr: 0.30 to 3.00 %, Mo: 0.50 to 1.50%, Al: 0.001 to 0.1%, and the balance is made of a steel material made of Fe and inevitable impurities, and the thread portion has a flank angle of 60. , And the height of the thread and ridge is H, and the transition point between the flank surface of the opposite thread and the valley bottom is set to H / 2 from the edge of the ridge, and the flank surface is hit at the transition point. Formed into a bolt shape having a thread shape that forms an arcuate curve that draws a contact circle with a curvature radius R of H / 3.5 or more and H / 2.5 or less, and within a temperature range of 850 ° C. to 1050 ° C. Tempering in the temperature range of 500 ° C to 650 ° C Subjected to a physical.
[Selection] Figure 2
Description
本発明は、土木、建築等の接合部に使用される高力ボルト及びその製造法に関する。 The present invention relates to a high-strength bolt used for a joint part of civil engineering, architecture, and the like and a method for manufacturing the same.
現在、土木建築分野ではF10T(JIS B 1186)及びS10T(JSSII09)の高力ボルト(引張強さが1000〜1100MPa)による摩擦接合が主流であるが、超高層建築物をはじめとする部材の厚肉化や高強度化に対して、より一層のボルトの高強度化が求められている。
最近ではF10Tの約1.5倍に相当する軸力の導入が可能なF14T超高力ボルト(引張強さ1400〜1600MPa)が製品化され、建築分野での利用実績が増えている(例えば、非特許文献1)。
Currently, in the field of civil engineering and construction, F10T (JIS B 1186) and S10T (JSSII09) high-strength bolts (tensile strength of 1000 to 1100 MPa) are the mainstream, but the thickness of members such as high-rise buildings There is a demand for further increasing the strength of bolts for increasing the thickness and strength.
Recently, F14T ultra high strength bolts (tensile strength of 1400-1600 MPa) capable of introducing axial force equivalent to about 1.5 times that of F10T have been commercialized, and the use record in the building field is increasing (for example, Non-patent document 1).
さらに、1700MPa超級の超高力ボルトが実用化されれば、接合部の更なるコンパクト化が可能となり、鋼構造物のデザインも変革できる。すなわち、ボルトの超高強度化によって、省資源化、省力化、省エネルギー化そしてCO2削減という大きな波及効果が期待できる。 Furthermore, if an ultra-high-strength bolt exceeding 1700 MPa is put into practical use, it will be possible to further reduce the size of the joint and change the design of the steel structure. In other words, by increasing the strength of the bolts, it is possible to expect significant ripple effects such as resource saving, labor saving, energy saving and CO 2 reduction.
ところが引張強さが1200MPaを超えた低合金鋼(炭素以外の合金元素の添加量が10%以下)では、遅れ破壊が深刻な問題であり、高力ボルトの高強度化の大きな妨げとなっている。
遅れ破壊とは、大気腐食によって水素が発生し、鋼材中に侵入して鋼材が脆化して起こる破壊で、時間遅れ破壊の略称である。室温において鋼中で応力集中部に拡散集積する水素、いわゆる拡散性水素が遅れ破壊の原因である。この遅れ破壊のため、F14T超高力ボルトが開発されるまでの約30年間、土木建築用高力ボルトの高強度化はF10T及びS10Tの高力ボルトで頭打ち状態であった。
However, in low alloy steels with a tensile strength exceeding 1200 MPa (addition amount of alloying elements other than carbon is 10% or less), delayed fracture is a serious problem, which greatly hinders the increase in strength of high strength bolts. Yes.
Delayed fracture is an abbreviation for time-delayed fracture, which is a breakdown that occurs when hydrogen is generated due to atmospheric corrosion and penetrates into the steel material and the steel material becomes brittle. Hydrogen that diffuses and accumulates in stress-concentrated portions in steel at room temperature, so-called diffusible hydrogen, is a cause of delayed fracture. Due to this delayed fracture, for about 30 years before the development of F14T super high-strength bolts, the increase in strength of civil engineering and construction high-strength bolts was flat with F10T and S10T high-strength bolts.
前述のF14Tボルトでは、拡散性水素の許容量が大きな鋼材の開発と遅れ破壊の起こりにくいボルト形状の開発により耐遅れ破壊性能の向上が図られている(特許文献1、非特許文献1)。具体的には、Mo、Vの炭窒化物等の鋼中水素をトラップする粒子を基地中に微細に分散させて許容水素量を大きくした鋼材を素材とすると共に、ボルトの(1)新ねじ形状の開発、(2)ボルト軸からねじ部への移行部形状の改良、(3)ボルト頭部首下曲率半径rの増大、(4)ナットの形状変更した、従来のF10T及びS10Tの高力ボルトとは異なる独自の形状が開示されている。
なお、許容水素量とは、ある荷重負荷条件下で、その水素量以下では素材が遅れ破壊しない拡散性水素量の許容値を示し、耐遅れ破壊性能を比較するためのひとつの指標である。
In the above-mentioned F14T bolt, the delayed fracture resistance is improved by developing a steel material having a large allowable amount of diffusible hydrogen and developing a bolt shape that hardly causes delayed fracture (
The allowable hydrogen amount indicates an allowable value for the amount of diffusible hydrogen that does not cause delayed fracture of the material under a certain load condition, and is an index for comparing delayed fracture resistance.
一方、特許文献2では、C、Si,Mn,Cr,Moの添加量の規定と共に、焼戻処理温度を500℃〜Ae1と規定することで耐遅れ破壊特性に優れた1800MPa級機械構造用鋼が製造できることが開示されている。
On the other hand, in
ところが、上記機械構造用鋼材から既存のF10Tボルトと同じねじ形状の高力ボルトを製造した場合には、ボルトの大気暴露試験でボルトのねじ部を起点とした遅れ破壊が頻繁に発生するという問題点もあった(非特許文献2)。しかも引張強度が1800MPaの超高強度鋼材では切欠靭性が低く、ボルトの引張変形能が低いという問題点もあった。 However, when a high-strength bolt having the same screw shape as that of an existing F10T bolt is manufactured from the steel for machine structural use, delayed fracture starting from the screw portion of the bolt frequently occurs in the bolt air exposure test. There was also a point (nonpatent literature 2). Moreover, the ultrahigh strength steel material having a tensile strength of 1800 MPa has a problem that the notch toughness is low and the tensile deformability of the bolt is low.
図1に示すように、高力ボルトは、頭部1、軸部2、ねじ部3の部位で構成され、ねじ部3で応力の集中がとくに大きく、しかも高軸力のボルト締め付けに際しては塑性ひずみも大きくなるため、ねじ部3を起点として遅れ破壊が起こることは良く知られている。
As shown in FIG. 1, the high-strength bolt is composed of a
特許文献3では、頭部1をねじ部よりも高い温度で温間成形して軸部2から頭部1にかけてボルトの強度が傾斜的に低くなるように制御することで引張強さが1800MPaレベルでありながら延性、遅れ破壊特性に優れ、しかも優れた耐衝撃性を有するボルトが開示されている。しかしながら、ボルト成形は温間域で行われるため、この手法による従来の冷間成形プロセスと比べてボルトの量産性に課題がある。
In
本発明は、前述のような従来技術の問題点を解決し、F10Tボルト及びS10Tボルトの1.7倍に相当する軸力の導入が可能で、耐遅れ破壊特性に優れた土木・建築用の高力ボルト製品を提供するものである。 The present invention solves the problems of the prior art as described above, can introduce an axial force equivalent to 1.7 times that of F10T bolts and S10T bolts, and is suitable for civil engineering and construction with excellent delayed fracture resistance. We provide high strength bolt products.
本発明者らは、上記の事情に鑑みて種々研究した結果、1700MPaの超高強度鋼材であってもボルトねじ部3での応力集中を小さくすれば、材料の水素許容量を大きくすることが可能であり、耐遅れ破壊特性を向上できること、さらにそのためにはボルトのねじ部3の形状の最適化を図れば良いことを見出した。
As a result of various studies in view of the above circumstances, the inventors of the present invention can increase the hydrogen allowable amount of the material by reducing the stress concentration in the
本発明は、このような知見に基づいてなされたものであり、その要旨とするところは、以下の通りである。 This invention is made | formed based on such knowledge, The place made into the summary is as follows.
本発明の高力ボルトは、質量%で
C:0.35〜0.70%、
Si:0.50〜2.50%、
Mn:0.10〜1.00%、
Cr:0.30〜3.00%、
Mo:0.50〜1.50%、
Al:0.001〜0.1%
を含有し、残部はFe及び不可避不純物からなり、かつボルト頭部1からねじ部3までの部位の90体積%以上が焼戻マルテンサイト組織から成る内部金属組織を有し、上記部位の引張強さが1700MPa以上の高力ボルトであって、当該ボルトのねじ部3において、図2に示すように、等間隔ピッチで設けられるねじ山の相対するフランク面の角度が60°で、かつねじ部の谷底の形状がとがり山の高さをHとし、相対するねじ山のフランク面と谷底との移行点を前記とがり山底辺からH/2に設定してなると共に、前記移行点においてフランク面に当接する曲率半径RがH/3.5以上、H/2.5以下の当接小円を描く弧状曲線を形成することを特徴とする。
The high-strength bolt of the present invention is, in mass%, C: 0.35 to 0.70%,
Si: 0.50 to 2.50%,
Mn: 0.10 to 1.00%,
Cr: 0.30 to 3.00%
Mo: 0.50 to 1.50%,
Al: 0.001 to 0.1%
The balance is made of Fe and inevitable impurities, and 90% by volume or more of the part from the
また、本発明の高力ボルトの製造方法は、上記高力ボルトの製造に際して、素材をボルトに成形した後、850℃〜1050℃の温度範囲内でオーステナイト化処理を施した後に焼入れして内部金属組織の90体積%以上をマルテンサイト組織とした後に、500〜650℃の温度範囲で焼戻処理を施すことを特徴とする。 Moreover, in the manufacturing method of the high-strength bolt of the present invention, when the high-strength bolt is manufactured, the material is formed into a bolt, and then subjected to an austenitizing treatment within a temperature range of 850 ° C. to 1050 ° C. A tempering treatment is performed in a temperature range of 500 to 650 ° C. after 90% by volume or more of the metal structure is made a martensite structure.
本発明によれば従来F10Tの1.7倍以上の軸力を導入可能で、素材をボルトへ成形後の焼入れおよび焼戻処理で遅れ破壊特性に優れた高力ボルトを提供することができ、産業上の貢献が期待できる。また、このような単純なねじ形状とすることで、1)金型製作が容易であり金型の製造コストが抑えられる、2)金型の耐久性を向上できる、かつ3)成形負荷の高い高強度のボルト素材であっても高い寸法精度のねじ形状を成形できる効果がある。 According to the present invention, it is possible to provide a high-strength bolt that can introduce an axial force 1.7 times or more that of conventional F10T and has excellent delayed fracture characteristics by quenching and tempering after forming the material into the bolt, Industrial contribution can be expected. Further, by adopting such a simple screw shape, 1) the mold can be easily manufactured and the manufacturing cost of the mold can be suppressed, 2) the durability of the mold can be improved, and 3) the molding load is high. Even if it is a high-strength bolt material, there is an effect that a screw shape with high dimensional accuracy can be formed.
本発明における引張強さが1700MPa以上の高力ボルトは、本発明のボルトのねじ形状を採用することで、ねじ部3の応力集中係数をF10T及びS10Tのボルトで規格されたねじ形状の場合よりも低減させることができ、このネジ形状を採用することで更にねじ部3の切欠引張強度を高めることが実現できる。
The high-strength bolt with a tensile strength of 1700 MPa or more in the present invention adopts the screw shape of the bolt of the present invention, so that the stress concentration factor of the
〔ボルトねじ部形状〕
高力ボルトにおいて、ねじ部3に等間隔ピッチで設けられるねじ山の相対するフランク面の角度が60°で、かつねじ部の谷底の形状がとがり山の高さをHとし、相対するねじ山のフランク面と谷底との移行点を前記とがり山底辺からH/2に設定してなると共に、前記それぞれの移行点においてフランク面に当接する曲率半径RがH/3.5以上、H/2.5以下の当接小円を描く弧状曲線を形成することが必要である。なお、ねじの基準山形においての許容差および公差は、JIS B 0209−1に従うものとする。
[Bolt thread shape]
In high-strength bolts, the angle of the opposed flank surfaces of the threads provided on the threaded
FEM解析の結果、当接する曲率半径RがH/3.5よりも小さい場合は、図3に示すようにねじ部位置9の応力係数が急激に大きくなるためこれ以上とすることが望ましい。 その一方で、当接する曲率半径RがH/2.5よりも大きくなる場合はねじぬけの問題があるためこれ以下とする必要がある。曲率半径Rは好ましくはH/2.8以下、より好ましくはH/3とする。なお、FEM解析の手順は次の通りである。
As a result of the FEM analysis, when the radius of curvature R that abuts is smaller than H / 3.5, the stress coefficient at the threaded
本解析では、ボルトとナットのかかりねじ部に着目し、図2に示すようなボルトとナットと締め付け板を含む部分を対象とした軸対象解析を行う。有限要素モデルは、ボルトとナット部で三節点線形三角形要素により、締め付け板部で四節点線形四角形要素により離散化している。雄ねじと雌ねじのねじ山と谷部の要素サイズは0.05mm、それ以外の部分では要素サイズを1mmを基本としている。また、ナットとねじ部のかみ合い部については、すべりが発生しないものとして節点を共有している。本解析における境界条件は図2に示す通りであり、締め付け板の下面を完全固定し、軸部下面に等分布面荷重を与える。
これにより、ねじ部3の加工精度をJISボルトと同様に保ちつつ、ねじ部3の応力集中係数をJISボルトよりも低減でき耐遅れ破壊性能を改善できる。
In this analysis, paying attention to the threaded portion of the bolt and nut, an axial object analysis is performed on the portion including the bolt, nut and fastening plate as shown in FIG. The finite element model is discretized by a three-node linear triangular element at the bolt and nut portion and a four-node linear quadrilateral element at the fastening plate portion. The element size of the thread and valley of male and female threads is 0.05 mm, and the element size of other parts is basically 1 mm. Moreover, about the meshing part of a nut and a thread part, a node is shared as what does not generate | occur | produce a slip. The boundary conditions in this analysis are as shown in FIG. 2, and the lower surface of the clamping plate is completely fixed, and an evenly distributed surface load is applied to the lower surface of the shaft portion.
Thereby, the stress concentration factor of the
その理由は、図3にねじ部3における各ねじ位置の最大主応力(a)及び最大主応力位置(ねじ位置9)での応力集中係数(b)のFEM解析結果を示すように、ボルトのねじ部3の形状パラメータの最適化を図ってねじ部の応力集中係数を既存のF10Tボルトや市販F14Tボルト(特許文献1)で規定されるねじ形状の応力集中係数よりも小さくし、とくに遅れ破壊の起点となる確率が最も高いナットかかり部(ねじ位置9)の最大主応力を低くするようなねじ形状を規定することでねじ部の切欠引張強度を高めたことによるものである。
The reason for this is that, as shown in FIG. 3, the FEM analysis results of the maximum principal stress (a) at each screw position in the
〔化学成分〕
本発明の高力ボルトの化学成分は、質量%で
C:0.35〜0.70%、
Si:0.50〜2.50%、
Mn:0.10〜1.00%、
Cr:0.30〜3.00%、
Mo:0.50〜1.50%、
Al:0.001〜0.1%
を含有し、残部はFe及び不可避不純物からなることを特徴とするものである。
以下に、本発明ボルトの化学成分の限定理由について述べる。
〔Chemical composition〕
The chemical component of the high-strength bolt of the present invention is, by mass%, C: 0.35 to 0.70%,
Si: 0.50 to 2.50%,
Mn: 0.10 to 1.00%,
Cr: 0.30 to 3.00%
Mo: 0.50 to 1.50%,
Al: 0.001 to 0.1%
The balance is composed of Fe and inevitable impurities.
The reason for limiting the chemical component of the bolt of the present invention will be described below.
C:
Cは炭化物粒子を形成し、強度増加に最も有効な成分であるが、0.70質量%を超えると靱性劣化を招くことから、含有量を0.70質量%とした。強度増加を充分に期待するためには、0.35質量%以上、好ましくは、0.40質量%以上、より好ましくは0.50質量%を含有させる。
C:
C forms carbide particles and is the most effective component for increasing the strength. However, if it exceeds 0.70% by mass, the toughness is deteriorated, so the content is set to 0.70% by mass. In order to sufficiently expect an increase in strength, 0.35% by mass or more, preferably 0.40% by mass or more, more preferably 0.50% by mass is contained.
Si:
Siは脱酸およびフェライト中に固溶して鋼の強度を高めるとともにセメンタイトを微細に分散させるのに有効な元素である。
従って、脱酸材として添加したもので鋼中に残るものも含め、含有量を0.50質量%以上とする。高強度化を図る上で上限は特に制限しないが、鋼材の冷間鍛造性および加工性を考慮すれば、2.5質量%以下、好ましくは2.0質量%以下、より好ましくは1.0質量%とすることが好ましい。
Si:
Si is an element effective for deoxidizing and dissolving in ferrite to increase the strength of steel and finely disperse cementite.
Accordingly, the content added to the steel as a deoxidizing material and remaining in the steel is set to 0.50% by mass or more. The upper limit is not particularly limited for increasing the strength, but considering the cold forgeability and workability of the steel, it is 2.5% by mass or less, preferably 2.0% by mass or less, more preferably 1.0%. It is preferable to set it as the mass%.
Mn:
Mnはオーステナイト化温度を低下させオーステナイトの微細化に有効であるとともに、焼入れ性ならびにセメンタイト中に固溶してセメンタイトの粗大化を抑制するのに有効な元素である。
0.10質量%未満では所望の効果が得られないため、0.10質量%以上と定めた。より好ましくは0.20質量%以上を含有させる。高強度化を図る上で上限は特に制限しないが、得られる鋼材の靭性を考慮すれば、1.00質量%以下とすることが好ましい。
Mn:
Mn is an element effective in reducing the austenitizing temperature and making the austenite finer, and also effective in suppressing the coarsening of the cementite by solid solution in the hardenability and cementite.
If the amount is less than 0.10% by mass, the desired effect cannot be obtained. More preferably, 0.20 mass% or more is contained. The upper limit is not particularly limited for increasing the strength, but considering the toughness of the steel material to be obtained, it is preferably 1.00% by mass or less.
Cr:
Crは焼入れ性向上に有効な元素であるとともにセメンタイト中に固溶してセメンタイトの成長を遅滞させる作用が強い元素である。また、比較的多く添加することでセメンタイトよりも熱的に安定な高Cr炭化物を形成したり、耐食性を向上させる、本発明では重要な元素のひとつでもある。
従って、少なくとも0.30質量%以上含有させる必要がある。好ましくは0.80質量%以上であって、より好ましくは1.00質量%以上を含有させる。ただし、Crを多く添加しすぎると焼入れ処理の際に多くの粗大な炭化物が未固溶で残存し、機械的性質を劣化させる。よってその上限を3.00質量%以下とした。
Cr:
Cr is an element effective for improving the hardenability, and is also an element having a strong effect of delaying the growth of cementite by dissolving in cementite. In addition, it is also one of the important elements in the present invention that, by adding a relatively large amount, forms a high Cr carbide that is more thermally stable than cementite and improves corrosion resistance.
Therefore, it is necessary to contain at least 0.30% by mass or more. Preferably it is 0.80 mass% or more, More preferably, 1.00 mass% or more is contained. However, if too much Cr is added, many coarse carbides remain undissolved during the quenching process, and the mechanical properties are deteriorated. Therefore, the upper limit was made 3.00 mass% or less.
Mo:
Moは本発明において鋼の高強度化に有効な元素であり、鋼の焼入れ性向上を向上させるだけでなく、セメンタイト中にも少量固溶してセメンタイトを熱的に安定にする。とくにセメンタイトとはまったく別個に基地相中に新しく転位上に合金炭化物を核生成することで2次硬化を起こして鋼を強化する。しかも形成された合金炭化物は微細粒化に有効であると共に水素トラップサイトとしても有効である。
したがって、好ましくは0.50質量%以上、より好ましくは1.00質量%以上を含有させるが、高価な元素であるとともに過剰な添加は粗大な未固溶炭化物または金属間化合物を形成して靱性を劣化させるため、添加量の上限を1.50質量%に定めた。
なお、W、VについてもMoと同様な効果を示すため、Moの一部をこれらの元素で置き換えることも可能である。
Mo:
Mo is an element effective for increasing the strength of steel in the present invention, and not only improves the hardenability of the steel but also solidifies a small amount in cementite to make the cementite thermally stable. In particular, secondary hardening occurs and steel is strengthened by nucleating alloy carbides newly on dislocations in the matrix phase completely separately from cementite. Moreover, the formed alloy carbide is effective for atomization and also as a hydrogen trap site.
Therefore, preferably 0.50% by mass or more, more preferably 1.00% by mass or more is contained. However, it is an expensive element and excessive addition forms coarse undissolved carbides or intermetallic compounds to produce toughness. Therefore, the upper limit of the addition amount was set to 1.50% by mass.
Since W and V also show the same effect as Mo, a part of Mo can be replaced with these elements.
Alは脱酸およびOやNなどの元素と酸化物や窒化物などを形成して基地組織を微細化するのに有効な元素である。ただし過剰な添加は靱性を低下させるため、0.1質量%以下とするのが好ましい。より好ましくは0.04質量%以下とすることが好ましい。 Al is an element that is effective for deoxidizing and forming elements such as O and N, oxides, nitrides and the like to refine the base structure. However, since excessive addition reduces toughness, it is preferably 0.1% by mass or less. More preferably it is 0.04 mass% or less.
PやSは粒界強度を低下させるため極力取り除きたい元素であり、それぞれ0.01質量%以下とすることが好ましい。 P and S are elements that should be removed as much as possible in order to reduce the grain boundary strength, and are each preferably 0.01% by mass or less.
なお、上記以外の元素についても、本発明の効果を下げない範囲で各種の元素が含有されることが許容される。 In addition, it is permissible for elements other than those described above to be contained in various elements as long as the effects of the present invention are not reduced.
〔ボルト製品の調質処理〕
1700MPa以上のボルト引張強さを得るためには、素材をボルトへ成形した後、焼入れ及び焼戻処理を施す必要がある。
以下に、本発明におけるボルト製品の調質処理条件の限定理由について述べる。なお、ここでボルト引張強さは、ボルト製品からJIS Z 2201で規定される形状及び寸法に切削加工された引張試験片の常温での引張強さとする。
[Refining treatment of bolt products]
In order to obtain a bolt tensile strength of 1700 MPa or more, it is necessary to perform quenching and tempering treatment after forming the material into bolts.
The reasons for limiting the tempering treatment conditions for bolt products in the present invention will be described below. Here, the bolt tensile strength is defined as the tensile strength at normal temperature of a tensile test piece machined from a bolt product into a shape and dimensions specified in JIS Z 2201.
上記化学成分より、ボルト製品のオーステナイト化温度としては850℃以上が必要である。ただしオーステナイト化温度が高すぎると基地結晶粒組織が粗大化し、ボルトの靭性が低下してしまう。したがってオーステナイト化温度の上限を1050℃以下に定めた。
オーステナイト化温度としては好ましくは1000℃以下、さらに好ましくは950℃以下とする。なお、オーステナイト化時間はボルト製品の形状や大きさによって異なるため条件は特に限定しないが、ボルト製品がオーステナイト化温度に達した後、10分から90分の範囲内であることが望ましい。
From the above chemical components, the austenitizing temperature of the bolt product needs to be 850 ° C. or higher. However, if the austenitizing temperature is too high, the base crystal grain structure becomes coarse and the toughness of the bolt decreases. Therefore, the upper limit of the austenitizing temperature is set to 1050 ° C. or lower.
The austenitizing temperature is preferably 1000 ° C. or lower, more preferably 950 ° C. or lower. The austenitizing time varies depending on the shape and size of the bolt product, and the conditions are not particularly limited. However, it is desirable that the austenitizing time is within a range of 10 to 90 minutes after the bolt product reaches the austenitizing temperature.
オーステナイト化後の焼入れ条件はボルト製品の形状や大きさによって異なるため条件は特に限定しないが、焼入れによって(1)ボルトねじ底部等に焼割れが生じないこと、(2)焼入れままのボルト製品を構成する基地金属組織の90体積%以上がマルテンサイト組織からなることが不可欠である。その理由は、基地金属組織の90%未満の場合は引き続く焼戻処理によって1700MPa以上の引張強さが得られないためである。 The quenching conditions after austenitization vary depending on the shape and size of the bolt product, so the conditions are not particularly limited. However, (1) no quench cracking occurs at the bottom of the bolt screw by quenching, and (2) the as-quenched bolt product It is indispensable that 90 volume% or more of the base metal structure to comprise comprises a martensite structure. The reason is that when it is less than 90% of the base metal structure, a tensile strength of 1700 MPa or more cannot be obtained by the subsequent tempering treatment.
前記の焼入れまま組織において、1700MPa以上の引張強さでボルトの靭性や耐遅れ破壊特性を担保するには500℃以上で焼戻処理を施す必要がある。高温で焼戻処理を施すほど靭性は向上するが、引張強さは低下する。よって、焼戻温度の上限を650℃と定めた。とくに上記Mo添加の効果を有効に利用するには、その焼戻温度としては好ましくは530℃以上、より好ましくは550℃以上とする。なお、焼戻時間はボルト製品の形状や大きさによって異なるため条件は特に限定しないが、ボルト製品が焼戻温度に達した後、30分から90分の範囲内であることが望ましい。 In the as-quenched structure, it is necessary to perform a tempering treatment at 500 ° C. or higher in order to ensure the toughness and delayed fracture resistance of the bolt with a tensile strength of 1700 MPa or more. As the tempering treatment is performed at a higher temperature, the toughness is improved, but the tensile strength is lowered. Therefore, the upper limit of the tempering temperature was set to 650 ° C. In particular, in order to effectively utilize the effect of the Mo addition, the tempering temperature is preferably 530 ° C. or higher, more preferably 550 ° C. or higher. The tempering time varies depending on the shape and size of the bolt product, and the conditions are not particularly limited. However, it is desirable that the tempering time is within a range of 30 to 90 minutes after the bolt product reaches the tempering temperature.
以下、本発明の実施例について説明する。
この実施例における供試鋼材の化学成分を表1、熱処理条件及び常温での引張変形特性を表2に示す。
表1において鋼材A,B,Cは本発明範囲内の化学成分の鋼材、D,Eは発明成分範囲外の鋼材である。なお、比較鋼のD鋼はF10T高力ボルト用鋼としても使用されるJIS−SCM440鋼に相当する。
Examples of the present invention will be described below.
Table 1 shows the chemical composition of the test steel in this example, and Table 2 shows the heat treatment conditions and the tensile deformation characteristics at room temperature.
In Table 1, steel materials A, B and C are steel materials having chemical components within the scope of the present invention, and D and E are steel materials outside the scope of the invention components. The comparative steel D steel corresponds to JIS-SCM440 steel which is also used as F10T high-strength bolt steel.
発明鋼A、Bは500℃以上の焼戻温度で1700MPa以上の引張強さを得ることができるが、比較鋼Dは、Si、Mo量が、比較鋼Eは、Mo量がそれぞれ本発明の下限より少なく焼戻軟化抵抗が小さいため500℃以上の焼戻処理では1700MPa以上の引張強さを得ることができなかった。ただし、発明鋼Aでも焼戻マルテンサイト体積率が90%未満になると1700MPa以上の引張強さを得ることができなくなった。
なお、用いた引張試験片はJIS Z 2201に規定のJIS4号又は14号A丸棒試験片であり、引張試験片方法はJIS Z 2241に準じた。
Inventive steels A and B can obtain a tensile strength of 1700 MPa or more at a tempering temperature of 500 ° C. or higher. Comparative steel D has Si and Mo contents, and comparative steel E has Mo contents. Since the temper softening resistance is smaller than the lower limit, a tensile strength of 1700 MPa or more could not be obtained by tempering treatment at 500 ° C. or higher. However, even in invention steel A, when the tempered martensite volume fraction was less than 90%, it was impossible to obtain a tensile strength of 1700 MPa or more.
The tensile test piece used was a JIS No. 4 or No. 14 A round bar test piece defined in JIS Z 2201, and the tensile test piece method conformed to JIS Z 2241.
図4は、ねじ底部の形状を模擬した切欠を入れた引張試験片の形状および寸法を示す。
表3には、切欠試験片の応力集中係数(kt)と切欠き底の曲率半径rとの関係を示す。
FIG. 4 shows the shape and dimensions of a tensile test piece with a notch that simulates the shape of the screw bottom.
Table 3 shows the relationship between the stress concentration factor (kt) of the notch specimen and the curvature radius r of the notch bottom.
例えば、図5は発明鋼A、B、並びに比較鋼Dの切欠試験片の応力集中係数と切欠引張強さとの関係を示す。なお、ここでは万能型引張試験を用いて、クロスヘッドスピードが0.5mm/minで試験片を破断するまで引張試験した。比較鋼Dと比べて、発明鋼A,Bの方で切欠引張強さの応力集中係数依存性が高く、応力集中係数を低くすることによってより高い切欠引張強さを得ることができる。 For example, FIG. 5 shows the relationship between the stress concentration factor and the notch tensile strength of notched specimens of invention steels A and B and comparative steel D. Here, a universal type tensile test was used, and a tensile test was performed until the test piece was broken at a crosshead speed of 0.5 mm / min. Compared with the comparative steel D, the invention steels A and B have higher stress concentration factor dependency of the notch tensile strength, and higher notch tensile strength can be obtained by lowering the stress concentration factor.
例えば、図6は、前記切欠試験について、発明鋼A、比較鋼D、Eの水素割感受性試験の結果である。なお、本試験の手順を図7に示す。鋼中の水素量は昇温脱離分析法により測定し、100℃/時間で試験片を加熱し300℃までに放出される水素量を拡散性水素量として定義した。なお、腐食促進試験の手順を図8に示す。
同じ負荷荷重で拡散性水素の許容量を比べた場合、例えば発明鋼Aの降伏強度の0.8倍に相当する負荷荷重1400MPaでは、図中に矢印で示すように比較鋼D、Eよりも発明鋼Aの方で水素許容量が高い。発明鋼Aでは切欠底の応力集中係数を小さくすること、すなわちねじ部への応力集中を小さくすることでさらに水素許容量を高くできる。
とくに応力集中係数が2以下では1質量ppm以上の拡散性水素量を許容できる。一方、この材料の大気暴露試験で侵入する水素の最大値は、図8に示した腐食促進試験より0.8質量ppm程度である。図3(b)のようにM22ボルトではねじ位置9の応力集中係数2以下とする発明ボルトでは、拡散性水素侵入量よりも拡散性水素許容量が上回り、遅れ破壊は起こりにくいことが裏付けられる。
For example, FIG. 6 shows the results of the hydrogen split sensitivity test of Invention Steel A, Comparative Steels D and E for the notch test. The test procedure is shown in FIG. The amount of hydrogen in the steel was measured by thermal desorption analysis, and the amount of hydrogen released up to 300 ° C. when the test piece was heated at 100 ° C./hour was defined as the amount of diffusible hydrogen. The procedure for the corrosion acceleration test is shown in FIG.
When the allowable amount of diffusible hydrogen is compared with the same load, for example, at a load of 1400 MPa corresponding to 0.8 times the yield strength of the invention steel A, as compared with the comparative steels D and E as indicated by arrows in the figure. Invented steel A has a higher hydrogen tolerance. In invention steel A, the allowable hydrogen amount can be further increased by reducing the stress concentration factor at the notch bottom, that is, by reducing the stress concentration on the threaded portion.
In particular, when the stress concentration factor is 2 or less, a diffusible hydrogen amount of 1 mass ppm or more can be allowed. On the other hand, the maximum value of hydrogen entering the air exposure test of this material is about 0.8 ppm by mass from the corrosion acceleration test shown in FIG. As shown in FIG. 3 (b), it can be proved that the M22 bolt has an invention bolt with a stress concentration factor of 2 or less at the
表4は、発明鋼Bを素材としたM22ボルトのねじ部3で主要なねじ位置における最大主応力をまとめたものである。JISねじ、市販F14Tねじと比べて、最重要なねじ位置9の最大主応力は低くなっている。なお、各ボルトのねじ形状は、図2に示したものである。
Table 4 summarizes the maximum principal stress at the main screw positions in the threaded
発明鋼Bの直径22mmの棒材について、鋼材に球状化焼鈍処理を施した後、種々の軸形状で従来ねじ形状のトルシア型ボルトを作製した。ボルト頭部は既存のボルトフォーマーにより冷間で作製した。ボルト成形体は940℃で1時間のオーステナイト化処理後、焼入れし、540℃で1時間の焼戻処理を施した。ボルト製品から切り出したJIS4号試験片の引張強さが1815MPaであった。 About the bar material of 22 mm in diameter of the invention steel B, the steel material was subjected to spheroidizing annealing treatment, and then a conventional thread-shaped torcia-type bolt was produced with various shaft shapes. The bolt head was cold produced by an existing bolt former. The bolt molded body was austenitized at 940 ° C. for 1 hour, quenched, and tempered at 540 ° C. for 1 hour. The tensile strength of the JIS No. 4 test piece cut out from the bolt product was 1815 MPa.
切削したJISねじ形状と発明ねじ形状を有する高力ボルトに対して引張試験を行った。JISねじ形状と発明ねじ形状のボルト破断荷重の最大,最小及び平均値を図9に示す。
発明ねじ形状を有するボルトはJISねじ形状を有するボルトよりも下限値で100MPa以上高い、1940MPaの破断荷重を示している。また、JISねじ形状と発明ねじ形状でもねじ抜けは生じなかった。
A tensile test was performed on a high-strength bolt having a cut JIS screw shape and an inventive screw shape. FIG. 9 shows the maximum, minimum and average values of the bolt breaking load of the JIS screw shape and the invention screw shape.
The bolt having the invention screw shape shows a breaking load of 1940 MPa, which is 100 MPa or more lower than the bolt having the JIS screw shape. Further, no screw unscrewing occurred in the JIS screw shape and the invention screw shape.
本発明の高力ボルトを使用すれば、従来の1000〜1100MPa級の高力ボルトに比べて、(1)接合部のコンパクト化かつ軽量化、(2)より高強度かつ薄肉鋼板のボルト接合が可能になり、設計の自由度が増す。その結果、省資源化、省力化、省エネルギー化、そしてCO2削減を念頭に置いた新しい土木建築構造物が開発できる。 If the high-strength bolt of the present invention is used, compared to the conventional high-strength bolt of 1000 to 1100 MPa class, (1) the joint is made compact and lightweight, and (2) the bolt joint of the high-strength and thin steel plate is achieved. It becomes possible, and the freedom degree of design increases. As a result, it is possible to develop a new civil engineering building structure with resource saving, labor saving, energy saving and CO 2 reduction in mind.
1 頭部
2 軸部
3 ねじ部
1
Claims (2)
C:0.35〜0.70%、
Si:0.50〜2.50%、
Mn:0.10〜1.00%、
Cr:0.30〜3.00%、
Mo:0.50〜1.50%、
Al:0.001〜0.1%
を含有し、残部はFe及び不可避不純物から成る高力ボルトであって、ボルト頭部からねじ部までの部位における内部金属組織の90体積%以上が焼戻マルテンサイト組織であり、当該部位の引張強さが1700MPa以上であって、ボルトのねじ形状がねじ部に等間隔ピッチで設けられるねじ山の相対するフランク面の角度が60°で、かつねじ部の谷底の形状がとがり山の高さをHとし、相対するねじ山のフランク面と谷底との移行点を上記とがり山底辺からH/2に設定してなると共に、上記移行点においてフランク面に当接する曲率半径RがH/3.5以上、H/2.5以下の当接小円を描く弧状曲線を形成することを特徴とする高力ボルト。 In mass% C: 0.35 to 0.70%,
Si: 0.50 to 2.50%,
Mn: 0.10 to 1.00%,
Cr: 0.30 to 3.00%
Mo: 0.50 to 1.50%,
Al: 0.001 to 0.1%
The balance is a high-strength bolt made of Fe and inevitable impurities, and 90% by volume or more of the internal metal structure in the part from the bolt head to the screw part is a tempered martensite structure, and the tensile of the part The strength is 1700 MPa or more, the screw shape of the bolt is provided at equal pitches on the screw portion, the angle of the opposed flank of the screw thread is 60 °, and the shape of the valley bottom of the screw portion is the height of the point Is set to H / 2, and the transition point between the flank face and the valley bottom of the opposing screw thread is set to H / 2 from the edge of the sharp ridge, and the radius of curvature R contacting the flank face at the transition point is H / 3. A high-strength bolt characterized by forming an arcuate curve that draws a contact small circle of 5 or more and H / 2.5 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012269065A JP6017944B2 (en) | 2011-12-09 | 2012-12-10 | High strength bolt and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011269993 | 2011-12-09 | ||
JP2011269993 | 2011-12-09 | ||
JP2012269065A JP6017944B2 (en) | 2011-12-09 | 2012-12-10 | High strength bolt and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013139872A true JP2013139872A (en) | 2013-07-18 |
JP6017944B2 JP6017944B2 (en) | 2016-11-02 |
Family
ID=49037494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012269065A Expired - Fee Related JP6017944B2 (en) | 2011-12-09 | 2012-12-10 | High strength bolt and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6017944B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105065410A (en) * | 2015-07-23 | 2015-11-18 | 南通汇能电力科技有限公司 | High-strength bolt for tension control structure |
JP2017066428A (en) * | 2015-09-28 | 2017-04-06 | 大同特殊鋼株式会社 | Steel for high strength bolt excellent in delayed fracture resistance and cold workability and method of manufacturing high strength bolt using the same |
EP3187610A4 (en) * | 2014-08-29 | 2018-01-17 | Nissan Motor Co., Ltd | Steel for high-strength bolt, and high-strength bolt |
CN116877555A (en) * | 2023-06-05 | 2023-10-13 | 中船海为高科技有限公司 | Double-end stud for connecting wind turbine generator blade root and processing method thereof |
JP7522348B2 (en) | 2020-11-26 | 2024-07-25 | 日本製鉄株式会社 | High Strength Bolts |
JP7578118B2 (en) | 2021-05-24 | 2024-11-06 | Jfeスチール株式会社 | Fe-based electroplated high strength steel sheet and manufacturing method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4861210A (en) * | 1987-12-18 | 1989-08-29 | Simmonds S.A. | Threaded element forming for example a screw, and assembly of pieces obtained with the aid of this element |
JPH08177831A (en) * | 1994-12-26 | 1996-07-12 | Nkk Corp | High strength bolt which excels in delayed fracture resistance characteristic |
JP2002276637A (en) * | 2001-03-22 | 2002-09-25 | Nippon Steel Corp | High strength bolts and their steel materials with excellent delayed fracture resistance |
JP2003004016A (en) * | 2001-06-22 | 2003-01-08 | Sumitomo Metals (Kokura) Ltd | High tensile bolt, nut, and washer |
US20060222475A1 (en) * | 2003-01-29 | 2006-10-05 | Breihan James W | Fast make-up fatigue resistant rotary shouldered connection |
JP2007031733A (en) * | 2005-07-22 | 2007-02-08 | Nippon Steel Corp | Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof |
JP2007270293A (en) * | 2006-03-31 | 2007-10-18 | Nippon Steel Corp | High strength bearing joint parts excellent in delayed fracture resistance, manufacturing method thereof, and steel for high strength bearing joint parts |
-
2012
- 2012-12-10 JP JP2012269065A patent/JP6017944B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4861210A (en) * | 1987-12-18 | 1989-08-29 | Simmonds S.A. | Threaded element forming for example a screw, and assembly of pieces obtained with the aid of this element |
JPH08177831A (en) * | 1994-12-26 | 1996-07-12 | Nkk Corp | High strength bolt which excels in delayed fracture resistance characteristic |
JP2002276637A (en) * | 2001-03-22 | 2002-09-25 | Nippon Steel Corp | High strength bolts and their steel materials with excellent delayed fracture resistance |
JP2003004016A (en) * | 2001-06-22 | 2003-01-08 | Sumitomo Metals (Kokura) Ltd | High tensile bolt, nut, and washer |
US20060222475A1 (en) * | 2003-01-29 | 2006-10-05 | Breihan James W | Fast make-up fatigue resistant rotary shouldered connection |
JP2007031733A (en) * | 2005-07-22 | 2007-02-08 | Nippon Steel Corp | Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof |
JP2007270293A (en) * | 2006-03-31 | 2007-10-18 | Nippon Steel Corp | High strength bearing joint parts excellent in delayed fracture resistance, manufacturing method thereof, and steel for high strength bearing joint parts |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3187610A4 (en) * | 2014-08-29 | 2018-01-17 | Nissan Motor Co., Ltd | Steel for high-strength bolt, and high-strength bolt |
US10913993B2 (en) | 2014-08-29 | 2021-02-09 | Nissan Motor Co., Ltd. | Steel for high-strength bolt, and high-strength bolt |
CN105065410A (en) * | 2015-07-23 | 2015-11-18 | 南通汇能电力科技有限公司 | High-strength bolt for tension control structure |
JP2017066428A (en) * | 2015-09-28 | 2017-04-06 | 大同特殊鋼株式会社 | Steel for high strength bolt excellent in delayed fracture resistance and cold workability and method of manufacturing high strength bolt using the same |
JP7522348B2 (en) | 2020-11-26 | 2024-07-25 | 日本製鉄株式会社 | High Strength Bolts |
JP7578118B2 (en) | 2021-05-24 | 2024-11-06 | Jfeスチール株式会社 | Fe-based electroplated high strength steel sheet and manufacturing method thereof |
CN116877555A (en) * | 2023-06-05 | 2023-10-13 | 中船海为高科技有限公司 | Double-end stud for connecting wind turbine generator blade root and processing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6017944B2 (en) | 2016-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100554477C (en) | The high strength bolt of excellent in delayed fracture resistance and manufacture method thereof | |
JP6017944B2 (en) | High strength bolt and manufacturing method thereof | |
TWI579382B (en) | Steel wire and bolts for bolts, and the manufacturing methods of these | |
KR102668982B1 (en) | Manufacturing method of delayed failure-resistant high-strength bolts | |
WO2011030853A1 (en) | High-strength bolt | |
JP6051031B2 (en) | High strength bolt and manufacturing method thereof | |
CN1900343A (en) | Steel with excellent delayed fracture resistance and tensile strength of 1600 mpa class or more, its shaped articles, and methods of production of the same | |
US20200063231A1 (en) | Martensitically hardenable steel and use thereof, in particular for producing a screw | |
WO2011122134A1 (en) | Steel for high frequency hardening, roughly molded material for high frequency hardening and process for production thereof, and high-frequency-hardened steel member | |
JP5505263B2 (en) | Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties | |
CN102345076B (en) | Steel for creeper tread with tensile strength of 1,500MPa and manufacturing method thereof | |
JP4142853B2 (en) | High strength bolt with excellent delayed fracture resistance | |
JP4321974B2 (en) | Steel for high strength screws and high strength screws | |
JP6159209B2 (en) | High strength steel for bolts with excellent delayed fracture resistance and bolt formability, and method for producing bolts | |
JP4925971B2 (en) | Manufacturing method of tapping screws for high-tensile steel plate | |
JP4728884B2 (en) | Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics | |
JP5762217B2 (en) | Non-tempered steel for hot forging with excellent machinability | |
JP6992535B2 (en) | High-strength bolts and their manufacturing methods | |
KR20090049642A (en) | High strength non-alloyed steel composition and connecting rod manufacturing method using the same | |
JP2007332440A (en) | Induction hardened steel and induction hardened parts with excellent low cycle fatigue properties | |
JP4422924B2 (en) | Steel for high-strength tapping bolt, high-strength tapping bolt and method for producing high-strength tapping bolt | |
JP5505264B2 (en) | Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics | |
JP2000328191A (en) | Steel for high strength bolts and method of manufacturing high strength bolts | |
JP7543687B2 (en) | Manufacturing method for high strength bolt steel | |
RU2828714C2 (en) | Steel for bolts and method of its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130322 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151211 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160915 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160929 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6017944 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |