Nothing Special   »   [go: up one dir, main page]

JP2013122936A - Nonaqueous electrolyte solution secondary battery - Google Patents

Nonaqueous electrolyte solution secondary battery Download PDF

Info

Publication number
JP2013122936A
JP2013122936A JP2013028084A JP2013028084A JP2013122936A JP 2013122936 A JP2013122936 A JP 2013122936A JP 2013028084 A JP2013028084 A JP 2013028084A JP 2013028084 A JP2013028084 A JP 2013028084A JP 2013122936 A JP2013122936 A JP 2013122936A
Authority
JP
Japan
Prior art keywords
battery
case
lid
secondary battery
electrolyte solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013028084A
Other languages
Japanese (ja)
Inventor
Tetsuzo Kojima
哲三 小島
雅和 ▲堤▼
Masakazu Tsutsumi
Shinsuke Yoshitake
伸介 吉竹
Jo Sasaki
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2013028084A priority Critical patent/JP2013122936A/en
Publication of JP2013122936A publication Critical patent/JP2013122936A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte solution secondary battery whose cost is reduced by realizing reduction of the number of components and simplification of a manufacturing process, which prevents deterioration of quality due to evaporation of an electrolyte solvent and leakage of an electrolyte solution by making it possible to pour the electrolyte solution after assembling of a fuel cell, and whose sealing of an electrolyte solution pouring hole is simplified.SOLUTION: A nonaqueous electrolyte solution secondary battery comprises a case and a cover. The case and the cover are made of a metal plate whose at least external faces are coated by an insulating resin film. In the nonaqueous electrolyte solution secondary battery with its case and cover sealed airtight in a tighten winding method, a terminal provided with an electrolyte pouring hole is formed on the cover through an insulating member.

Description

本発明は電気自動車等に用いる非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery used for an electric vehicle or the like.

電子機器の急激な小型軽量化に伴い、その電源である電池に対して小型で軽量かつ高エ
ネルギー密度、更に繰り返し充放電が可能な二次電池開発への要求が高まっている。また
、大気汚染や二酸化炭素の増加等の環境問題により、電気自動車の早期実用化が望まれて
おり、高効率、高出力、高エネルギー密度、軽量等の特徴を有する、優れた二次電池の開
発が要望されている。
With the rapid reduction in size and weight of electronic devices, there is an increasing demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged with respect to the battery that is the power source. In addition, due to environmental problems such as air pollution and an increase in carbon dioxide, early commercialization of electric vehicles is desired, and an excellent secondary battery having features such as high efficiency, high output, high energy density, and light weight. Development is desired.

これらの要求を満たす二次電池として、非水電解液を使用した二次電池が実用化されて
いる。この電池は、従来の水溶性電解液を使用した電池の数倍のエネルギー密度を有して
いる。その例として、非水電解液二次電池の正極にリチウム含有層状コバルト酸化物(以
下では「Co系化合物」とする)、リチウム含有層状ニッケル酸化物(以下では「Ni系
化合物」とする)又はスピネル型リチウムマンガン複合酸化物(以下では「Mn系化合物
」とする)を用い、負極にリチウムが吸蔵・放出可能な炭素材料などを用いた長寿命な非
水電解液二次電池が実用化されている。
As secondary batteries that satisfy these requirements, secondary batteries using non-aqueous electrolytes have been put into practical use. This battery has an energy density several times that of a battery using a conventional water-soluble electrolyte. For example, lithium-containing layered cobalt oxide (hereinafter referred to as “Co-based compound”), lithium-containing layered nickel oxide (hereinafter referred to as “Ni-based compound”) or the positive electrode of the non-aqueous electrolyte secondary battery A long-life nonaqueous electrolyte secondary battery using a spinel-type lithium-manganese composite oxide (hereinafter referred to as “Mn-based compound”) and using a carbon material that can store and release lithium in the negative electrode has been put into practical use. ing.

電気自動車等に用いる非水二次電解液電池の開発においては、性能の向上もさることな
がら、より一層の低コスト化が重要な開発課題となっている。鉛蓄電池やニッケル水素電
池と比較して非水電解液二次電池のコストは依然高く、普及の大きな障害となっている。
In the development of non-aqueous secondary electrolyte batteries for use in electric vehicles and the like, further cost reduction has become an important development issue as well as improved performance. Compared to lead-acid batteries and nickel-metal hydride batteries, the cost of non-aqueous electrolyte secondary batteries remains high, which is a major obstacle to popularization.

非水電解液二次電池の低コスト化をはかるためには、活物質や電解液、セパレーターな
ど電極群を構成する部材の改良も重要であるが、その他の電池部品や生産方式の改良も重
要である。
In order to reduce the cost of non-aqueous electrolyte secondary batteries, it is important to improve the materials that make up the electrode group, such as active materials, electrolytes, and separators, but it is also important to improve other battery components and production methods. It is.

現在までに報告されている改良例としては、特許文献1、特許文献2および特許文献3
では、電池のケースと蓋に金属板を用い、巻き締め方式で気密封口することで生産性を上
げる技術が開示されている。また、特許文献4では、フィルムラミネート金属材で外装ケ
ースを構成して部品点数を削減した技術が開示されている。
Examples of improvements reported to date include Patent Document 1, Patent Document 2, and Patent Document 3.
Discloses a technique for increasing productivity by using a metal plate for a battery case and a lid and sealing hermetically by a winding method. Patent Document 4 discloses a technique in which an exterior case is formed of a film laminated metal material to reduce the number of parts.

さらに、特許文献5では、二重巻締め方式によって気密封口された角形電池において、
電池ケースおよび蓋の少なくとも内面を樹脂皮膜でコーティングすることにより、気密性
能を向上させる技術が開示されている。
Furthermore, in patent document 5, in the square battery airtightly sealed by the double winding method,
A technique for improving hermetic performance by coating at least the inner surfaces of a battery case and a lid with a resin film is disclosed.

一方、電池に電解液注液孔を設け、電池ケースに電極群を収納し、電池ケースと蓋とを
溶接した後、電解液を注液し、電解液注液孔を封口する技術が、多数開示されている。例
えば、特許文献6では、電池蓋に形成した注液孔を、アルミニウム製封口栓で超音波溶接
することにより気密封止している。また、特許文献7では、電池端子に電解液注液孔を設
け、電解液注液孔にねじを螺入して封止しており、特許文献8では、電池ヘッダーの金属
板に絶縁性部材を介して形成した電池端子に電解液注液孔を設け、電解液注液孔に封口材
を抵抗溶接によって接合して封口している。
特許第3482604号公報 特開平09−073885号公報 特開平11−040115号公報 特開2002−324723号公報 特許第3427216号公報 特許第3614891号公報 特開平11−339769号公報 特開2005−158267号公報
On the other hand, there are a number of technologies for providing an electrolyte injection hole in a battery, housing an electrode group in the battery case, welding the battery case and the lid, and then injecting the electrolyte and sealing the electrolyte injection hole. It is disclosed. For example, in Patent Document 6, the liquid injection hole formed in the battery lid is hermetically sealed by ultrasonic welding with an aluminum sealing plug. Further, in Patent Document 7, an electrolyte solution injection hole is provided in a battery terminal, and a screw is screwed into the electrolyte solution injection hole and sealed. In Patent Document 8, an insulating member is provided on a metal plate of the battery header. An electrolyte solution injection hole is provided in a battery terminal formed via a plug, and a sealing material is joined and sealed to the electrolyte solution injection hole by resistance welding.
Japanese Patent No. 3482604 Japanese Patent Laid-Open No. 09-073885 Japanese Patent Laid-Open No. 11-040115 JP 2002-324723 A Japanese Patent No. 3427216 Japanese Patent No. 3614891 JP 11-339769 A JP 2005-158267 A

特許文献1、特許文献2および特許文献3で開示された技術は、電池のケースと蓋とを
巻き締め方式で気密封口するものであるが、ケースや蓋は金属を用いているため、多数の
電池を扱う場合にはショートの可能性が高く、それを避けるために、電池の外側を熱収縮
性樹脂等の絶縁材で覆う必要があり、部品と製造工程が増えるという欠点があった。
The techniques disclosed in Patent Document 1, Patent Document 2 and Patent Document 3 are to hermetically seal the battery case and lid by a winding method, but since the case and lid use metal, When handling a battery, there is a high possibility of a short circuit, and in order to avoid this, it is necessary to cover the outside of the battery with an insulating material such as a heat-shrinkable resin, resulting in an increase in the number of parts and manufacturing processes.

また、特許文献4および特許文献5で開示された技術では、ラミネート金属材の使用に
よる部品点数の削減と生産工程の簡略化によりコストダウンをはかることを主旨としてい
る。しかし、これらの技術では、ラミネート金属材を電池の外装体に用いた際に問題とな
る製造時の不具合、具体的には電解液注液後の巻き締め工程での電解液の揮発や飛散、お
よびそれにともなう品質の低下を考慮していない欠点があり、実際の製造現場ではこれら
の発明の効果を享受できない問題があった。
In addition, the techniques disclosed in Patent Document 4 and Patent Document 5 are intended to reduce costs by reducing the number of parts by using a laminated metal material and simplifying the production process. However, in these technologies, problems during manufacturing that cause problems when using laminated metal materials for battery outer bodies, specifically, volatilization and scattering of electrolyte in the tightening process after electrolyte injection, In addition, there is a defect that does not take into account the deterioration in quality associated therewith, and there is a problem that the effects of these inventions cannot be enjoyed in an actual manufacturing site.

なお、特許文献4においては、電池の上部封口板もフィルムラミネート金属体とする指
定がないため、封口板が金属である場合には封口板部分で短絡が起こりうる危険がある。
In Patent Document 4, since the upper sealing plate of the battery is not designated as a film laminate metal body, there is a risk that a short circuit may occur in the sealing plate portion when the sealing plate is metal.

我々の検討によると、絶縁性の樹脂フィルムでラミネートした金属板を電池のケースや
蓋に用いる場合には、通電部分である端子部を除いては、電池表面のすべてが絶縁物で覆
われない限り、生産性と品質を両立して低コスト化をはかることはできないことがわかっ
た。この点に関しては特許文献5と同様である。
According to our study, when a metal plate laminated with an insulating resin film is used for a battery case or lid, the entire surface of the battery is not covered with an insulator except for the terminal part which is a current-carrying part. As far as it can be seen, it is impossible to achieve low cost while achieving both productivity and quality. This is the same as Patent Document 5.

しかし、特許文献5においては、電池ケースの開口部を電解液の注液孔とすることに起
因して種々の問題が発生する。非水電解液に用いる代表的な有機溶媒であるジメチルカー
ボネートやジエチルカーボネート等は灯油と同様に第二石油類であるため、室温下でも揮
発しやすい性質を持つ。
However, in Patent Document 5, various problems occur due to the opening of the battery case being used as an electrolyte injection hole. Since dimethyl carbonate, diethyl carbonate, and the like, which are typical organic solvents used in the non-aqueous electrolyte, are second petroleums like kerosene, they have a property of volatilizing easily even at room temperature.

したがって、巻き締め加工が可能であるほどの広い開口部を有する電池に電解液を注液
すると、その後の巻き締め工程で気密が保たれるまでに、開口部を通じての溶媒の揮発や
水分の吸湿により電解液の組成が変わりやすく、品質の安定性を保てない問題が生じる。
Therefore, when an electrolyte is injected into a battery having an opening that is wide enough to be tightened, the solvent volatilization or moisture absorption through the opening is maintained until airtightness is maintained in the subsequent tightening process. As a result, the composition of the electrolytic solution is easily changed, and there is a problem that quality stability cannot be maintained.

揮発性の有機ガスが生産ライン中を漂うことは安全性の面でも問題である。また、製造
中に電解液が漏れやすいため、巻き締め部に電解液が付着した場合には電池の気密性に問
題が生じるし、ケースの外表面に電解液が付着した場合には、電解液が水分と反応して腐
食性のガスを発生する恐れもある。特に、巻き締め方式で気密封口する電池では、巻き締
め加工時に電池が振動しやすいため、漏液が起こりにくい構造とする必要がある。
The volatile organic gas drifting in the production line is also a safety issue. In addition, since the electrolyte easily leaks during manufacturing, if the electrolyte adheres to the tightening portion, there is a problem in the airtightness of the battery. If the electrolyte adheres to the outer surface of the case, the electrolyte May react with moisture to generate corrosive gas. In particular, in a battery that is hermetically sealed by a tightening method, the battery is likely to vibrate during the tightening process, so that it is necessary to have a structure in which liquid leakage hardly occurs.

また、特許文献6で開示された注液孔の封口方法を、注液孔を設ける電池ケースや蓋が
樹脂フィルムで覆われた電池に適用した場合には、抵抗溶接時に封口部材と金属製電池ケ
ースとの接触が樹脂フィルムによって妨げられるため、抵抗溶接ができなかったり、不十
分でピンホールが発生するなどの問題が発生する。そこで、本発明においては、特許文献
7や特許文献8で開示された、電池端子に注液孔を設ける構造を採用した。
Further, when the method for sealing a liquid injection hole disclosed in Patent Document 6 is applied to a battery case or a battery in which a liquid injection hole is provided and a battery whose lid is covered with a resin film, a sealing member and a metal battery are used during resistance welding. Since the contact with the case is hindered by the resin film, there arises a problem that resistance welding cannot be performed or pin holes are generated due to insufficient resistance. Therefore, in the present invention, the structure disclosed in Patent Document 7 and Patent Document 8 in which a liquid injection hole is provided in the battery terminal is adopted.

そこで本発明の目的は、部品点数の削減と製造工程の簡略化を実現して低コスト化を図
るとともに、電池組立工程後の電解液注液作業を可能とすることによって、電解液溶媒の
揮発や電解液の漏液による品質の低下を防ぎ、電解液注液孔の封口が簡単な、非水電解液
二次電池を提供することにある。
Accordingly, an object of the present invention is to reduce the number of parts and simplify the manufacturing process, thereby reducing the cost, and by allowing the electrolyte injection work after the battery assembly process to be performed, thereby volatilizing the electrolyte solvent. Another object of the present invention is to provide a non-aqueous electrolyte secondary battery in which deterioration of quality due to leakage of electrolyte or electrolyte is prevented and the electrolyte injection hole is easily sealed.

請求項1の発明は、ケースおよび蓋を備え、前記ケースおよび前記蓋は少なくとも外面
が絶縁性樹脂フィルムで被覆された金属板からなり、前記ケースと前記蓋とが巻き締め方
式で気密封口された非水電解液二次電池において、前記蓋に絶縁部材を介して電解液注液
孔を設けた端子を形成したことを特徴とする。
The invention according to claim 1 includes a case and a lid, wherein the case and the lid are made of a metal plate whose outer surface is coated with an insulating resin film, and the case and the lid are hermetically sealed by a tightening method. The non-aqueous electrolyte secondary battery is characterized in that a terminal having an electrolyte injection hole is formed on the lid via an insulating member.

本発明によれば、ケースと蓋の材質には、いずれも、少なくとも外面を絶縁性の樹脂フ
ィルムで被覆した金属板を用いているため、電池製造後の絶縁被覆工程が不要となり、製
造コストの削減が可能となる。また、ケースの開口部を電解液の注液孔とせず、端子部に
注液孔を設けることで、外装体を絶縁化する主旨を損なわずに品質の安定性も確保できる
According to the present invention, since the case and lid are both made of a metal plate having at least the outer surface covered with an insulating resin film, an insulation coating step after the battery is manufactured becomes unnecessary, which reduces the manufacturing cost. Reduction is possible. Moreover, the opening of the case is not used as the electrolyte injection hole, and the injection hole is provided in the terminal portion, so that quality stability can be ensured without impairing the purpose of insulating the exterior body.

また、封口工程がきわめて簡単で、気密封口の不良が非常に少ないため、電池の生産性
がさらに高まり、一層のコストの削減が可能となる。
In addition, since the sealing process is extremely simple and there are very few defects in the hermetic sealing, the productivity of the battery is further increased and the cost can be further reduced.

以下、本発明を詳細に説明するが、本発明が以下の実施の形態に限定されないことはい
うまでもない。
Hereinafter, the present invention will be described in detail, but it goes without saying that the present invention is not limited to the following embodiments.

本発明に係る非水電解液二次電池は、ケースおよび蓋を備え、前記ケースおよび前記蓋
は少なくとも外面が絶縁性樹脂フィルムで被覆された金属板からなり、前記ケースと前記
蓋とが巻き締め方式で気密封口された非水電解液二次電池において、前記蓋に絶縁部材を
介して電解液注液孔を設けたことを特徴とするものである。
A non-aqueous electrolyte secondary battery according to the present invention includes a case and a lid, and the case and the lid are each made of a metal plate whose outer surface is covered with an insulating resin film, and the case and the lid are tightened together. In the non-aqueous electrolyte secondary battery hermetically sealed by the method, an electrolyte solution injection hole is provided in the lid via an insulating member.

このような特徴を有する非水電解液二次電池は、低コストであり、かつ、品質安定性に
優れるため、電気自動車や携帯電話など大量普及を前提とした機器の電源として活用でき
る。
The non-aqueous electrolyte secondary battery having such characteristics is low in cost and excellent in quality stability, and can be used as a power source for devices such as electric vehicles and mobile phones that are premised on mass dissemination.

本発明になる非水電解液二次電池の外観の例を図1および図2に、また、断面を図3〜
図5に示す。図1は電池が2ピース缶で構成されている場合の外観、図2は3ピース缶で
構成されている場合の外観を示したものである。また、図3は電池が2ピース缶で構成さ
れている場合の図1のA−A'断面図、図4および図5は電池が3ピース缶で構成されて
いる場合の図2のA−A'断面図であり、図4は正極端子と負極端子が同じ蓋に設けられ
た場合、図5は正極端子と負極端子が異なる蓋に設けられた場合を示す。
Examples of the appearance of the non-aqueous electrolyte secondary battery according to the present invention are shown in FIGS.
As shown in FIG. FIG. 1 shows an external appearance when the battery is constituted by a two-piece can, and FIG. 2 shows an external appearance when the battery is constituted by a three-piece can. 3 is a cross-sectional view taken along the line AA ′ of FIG. 1 when the battery is formed of a two-piece can, and FIGS. 4 and 5 are A--sections of FIG. 2 when the battery is formed of a three-piece can. FIG. 4 is a cross-sectional view of A ′, FIG. 4 shows a case where the positive electrode terminal and the negative electrode terminal are provided on the same lid, and FIG. 5 shows a case where the positive electrode terminal and the negative electrode terminal are provided on different lids.

図1〜図5において、1は電池ケース、2、2'は蓋、3は正極端子、4は負極端子、
5は巻き締め部、6は絶縁部材である。これらの電池において、正極端子3および負極端
子4は、絶縁部材6を介して蓋2に設けられている。
1 to 5, 1 is a battery case, 2 is a lid, 2 'is a positive terminal, 4 is a negative terminal,
5 is a tightening portion, and 6 is an insulating member. In these batteries, the positive electrode terminal 3 and the negative electrode terminal 4 are provided on the lid 2 via an insulating member 6.

電池が2ピース缶で構成されている場合は、電池ケースは図1に示すように、側板と底
板とが一体になった、絞り加工等で作製されたものを用い、蓋2は1つであり、図3に示
すように、1つの蓋に正極端子部と負極端子部が設けられている。また、電池が3ピース
缶で構成されている場合は、図2に示すように、電池ケースは側板のみを指し、蓋は上面
(2)と下面(2')の2つであり、図4に示すように、正極端子と負極端子を同一の蓋
に設けてもよいし、図5に示すように、異なる蓋に設けても構わない。
When the battery is composed of a two-piece can, as shown in FIG. 1, the battery case is made by drawing or the like in which the side plate and the bottom plate are integrated, and the lid 2 is one. Yes, as shown in FIG. 3, one lid is provided with a positive terminal portion and a negative terminal portion. Further, when the battery is constituted by a three-piece can, as shown in FIG. 2, the battery case refers only to the side plate, and the lid includes two of the upper surface (2) and the lower surface (2 ′). As shown in FIG. 5, the positive electrode terminal and the negative electrode terminal may be provided on the same lid, or may be provided on different lids as shown in FIG.

図1では、電池ケース1と蓋2とが巻き締めによって気密封口され、図2では、電池ケ
ース1と上面の蓋2および電池ケース1と下面の蓋2'とが巻き締めによって気密封口さ
れている。
In FIG. 1, the battery case 1 and the lid 2 are hermetically sealed by tightening. In FIG. 2, the battery case 1 and the upper lid 2 and the battery case 1 and the lower lid 2 'are hermetically sealed by tightening. Yes.

巻き締めの捲回数は、電池内の電解液が漏液や揮発により減少しない限りは特に指定は
ない。また、金属板に被覆した樹脂が封止材の役割を担う限りは、特に封止材は必要とし
ないが、長期にわたる耐久性や高温下での信頼性をより確実なものとするためにエチレン
プロピレンやスチレンブタジエン等の耐電解液性に優れるゴム材を追加使用しても構わな
い。
The number of times of tightening is not particularly specified as long as the electrolyte in the battery does not decrease due to leakage or volatilization. In addition, as long as the resin coated on the metal plate plays the role of a sealing material, no sealing material is required, but ethylene is used to ensure long-term durability and reliability at high temperatures. A rubber material having excellent electrolytic solution resistance such as propylene and styrene butadiene may be additionally used.

なお、本発明に係る非水電解液二次電池を製造する場合、低コスト化をより推進するた
めには、巻き締め部が1箇所のみである2ピース缶が好ましいが、3ピース缶であっても
本発明による効果は発現できる。
In addition, when manufacturing the non-aqueous electrolyte secondary battery according to the present invention, in order to further promote cost reduction, a two-piece can having only one tightening portion is preferable, but a three-piece can is used. However, the effect by this invention can be expressed.

本発明に係る非水電解液二次電池では、電池ケースおよび蓋には、いずれも、少なくと
も外面が絶縁性樹脂フィルムで被覆された金属板を用いることを特徴とする。電池ケース
および蓋の外面を絶縁性樹脂フィルムで被覆した場合、電池同士を多数直列に接続した場
合の電池間の接触による漏電や作業中の工具による短絡を防止するとともに、絶縁性樹脂
フィルムに印刷や印字を行うことができる。
In the non-aqueous electrolyte secondary battery according to the present invention, the battery case and the lid are both characterized in that a metal plate whose outer surface is covered with an insulating resin film is used. When the outer surface of the battery case and lid is covered with an insulating resin film, it prevents leakage due to contact between the batteries when a large number of batteries are connected in series or short-circuiting by a working tool, and printing on the insulating resin film And printing.

絶縁性樹脂フィルムの材質に特に指定はないが、コストや加工性、および耐溶剤性等を
考慮すると、エポキシやポリブチレンテレフタラート、ポリエチレンテレフタラート、ポ
リプロピレン、ポリフェニレンサルファイド、ポリイミド、ポリアミドなどが好ましい。
中でも、特にポリエチレンテレフタレートとポリプロピレンが好ましい。
The material of the insulating resin film is not particularly specified, but in consideration of cost, workability, solvent resistance, etc., epoxy, polybutylene terephthalate, polyethylene terephthalate, polypropylene, polyphenylene sulfide, polyimide, polyamide and the like are preferable.
Among these, polyethylene terephthalate and polypropylene are particularly preferable.

なお、絶縁性樹脂フィルムによる被覆はケースおよび蓋の外面には必須であるが、内面
が被覆されていても構わない。特に、内面が被覆される場合は、電解液が有機溶媒を含む
ため、有機溶媒に溶解しないように、また、有機溶媒と反応しないように、耐溶剤性の高
い樹脂を選択する必要がある。
The covering with the insulating resin film is essential on the outer surfaces of the case and the lid, but the inner surface may be covered. In particular, when the inner surface is coated, since the electrolytic solution contains an organic solvent, it is necessary to select a resin having high solvent resistance so that it does not dissolve in the organic solvent and does not react with the organic solvent.

電池の外面を被覆する絶縁性樹脂フィルムとしては、外部からの物理的な衝撃に耐える
ために、一定の強度が必要であり、また、印刷などが容易な材質を選ぶ必要があり、例え
ばポリエチレンテレフタレート(PET)が最適である。また、電池内面を被覆する絶縁
性樹脂フィルムとしては、電解液溶媒に溶解しないこと、また、電解液と反応しないこと
が必要であり、例えばポリプロピレン(PP)が最適である。
The insulating resin film that covers the outer surface of the battery needs to have a certain strength to withstand physical impact from the outside, and it is necessary to select a material that is easy to print. For example, polyethylene terephthalate (PET) is optimal. Moreover, as an insulating resin film which coat | covers a battery inner surface, it is necessary not to melt | dissolve in electrolyte solution solvent, and not to react with electrolyte solution, for example, polypropylene (PP) is the optimal.

金属板の材質も本発明の主旨が損なわれない限り特に指定はないが、コストや加工性、
耐腐食性等を考慮すると、従来からの市販の電池ケース材と同様に、ニッケルメッキ鉄や
ステンレス、アルミ合金などが好ましい。特に、内面が樹脂で被覆されない場合は、金属
板は腐食や耐電解液性の高い材質を用いる必要がある。
The material of the metal plate is not particularly specified as long as the gist of the present invention is not impaired, but the cost, workability,
In consideration of corrosion resistance and the like, nickel-plated iron, stainless steel, aluminum alloy and the like are preferable as in the case of conventional battery case materials on the market. In particular, when the inner surface is not coated with a resin, the metal plate needs to be made of a material that is highly resistant to corrosion and electrolyte.

樹脂フィルムによる金属板の被覆方法は、フィルムの熱圧着、接着材を用いた接着、溶
液やディスパージョンの塗布乾燥、などが挙げられるが、ピンホールの生成や剥がれがな
い限り特に指定はない。なお、被覆後の樹脂層の厚みは、本発明による電池を直列に組み
合わせた場合にも十分な耐電圧を有するように、また、スパナやドライバーなどの組立工
具が誤ってぶつかった場合にも絶縁が破壊しないように、十分な厚みが必要である。しか
し、過剰な厚みは巻き締め時の加工性を損なうため、10〜100μm程度が好ましい。
The method for coating the metal plate with the resin film includes thermocompression bonding of the film, adhesion using an adhesive, application and drying of a solution or dispersion, etc., but is not particularly specified unless pinholes are generated or peeled off. In addition, the thickness of the resin layer after coating is insulated so that it has a sufficient withstand voltage even when the batteries according to the present invention are combined in series, and when an assembly tool such as a spanner or a driver is accidentally bumped. It is necessary to have a sufficient thickness so as not to break. However, since excessive thickness impairs the workability at the time of winding, about 10-100 micrometers is preferable.

本発明に係る非水電解液二次電池の端子部の断面構造を図6に示す。図6において、2
、3および6は図1と同じものを示し、7は電解液注液孔、8は集電体である。図6に示
したように、蓋2に絶縁部材6を介して正極端子3を形成し、この正極端子3には電解液
注液孔7が設けられている。また、正極端子3は、電池内部で集電体8と接続され、図6
では示していないが、集電体8は電極群の正極に接続されている。なお、図6では正極端
子を例に説明したが、電解液注液孔を負極端子に設けた場合の構造も図6と同じである。
FIG. 6 shows a cross-sectional structure of the terminal portion of the nonaqueous electrolyte secondary battery according to the present invention. In FIG.
3 and 6 show the same thing as FIG. 1, 7 is an electrolyte solution injection hole, 8 is a collector. As shown in FIG. 6, a positive electrode terminal 3 is formed on the lid 2 via an insulating member 6, and an electrolyte solution injection hole 7 is provided in the positive electrode terminal 3. The positive electrode terminal 3 is connected to the current collector 8 inside the battery, and FIG.
Although not shown, the current collector 8 is connected to the positive electrode of the electrode group. In addition, although FIG. 6 demonstrated the positive electrode terminal as an example, the structure at the time of providing an electrolyte solution injection hole in a negative electrode terminal is also the same as FIG.

電池ケースや蓋に注液孔を設けた場合、電池ケースや蓋は絶縁性樹脂フィルムにより被
覆されているため、封口材と金属製ケースや蓋との電気的接触が不十分で、密封封止が不
完全となる場合があったが、本願のように、金属製の端子に電解液注液孔を備えた場合に
は、密封封止が簡単で、確実に封止することができ、しかも封口後の絶縁は不要である。
When a liquid injection hole is provided in the battery case or lid, the battery case or lid is covered with an insulating resin film, so that the electrical contact between the sealing material and the metal case or lid is insufficient, and sealing is performed. However, if the metal terminal has an electrolyte injection hole as in the present application, hermetic sealing is simple and reliable. No insulation after sealing is necessary.

注液孔は、電解液の注液をスムーズにおこなうために十分な大きさの孔径を有する必要
があるが、大きすぎると真空注液が困難となり、また、電解液の揮発や漏液量が増え、さ
らに、後の封口が困難になるため、適切な範囲の孔径が望まれる。従来の小型電池や大型
電池での実績例を参考にすると、孔径は0.2mm〜3.9mm程度が好ましい。
The injection hole must have a sufficiently large hole diameter for smooth injection of the electrolyte, but if it is too large, vacuum injection will be difficult, and volatilization and leakage of the electrolyte will be difficult. In addition, since the subsequent sealing becomes difficult, an appropriate range of pore diameters is desired. When reference is made to examples of performance in conventional small batteries and large batteries, the hole diameter is preferably about 0.2 mm to 3.9 mm.

また、封口方法の指定はないが、こちらも従来までの実績を考慮すると、抵抗加熱によ
る溶接封口、レーザーによる溶接封口などが好ましい。封止剤等を併用して気密性を十分
に保てるのであればネジ止めでも構わない。
Moreover, although there is no designation | designated of the sealing method, when the past performance is also considered here, the welding sealing by resistance heating, the welding sealing by a laser, etc. are preferable. As long as the sealant or the like can be used together to maintain sufficient airtightness, screwing may be used.

本発明の非水電解液二次電池の、図1のB−B'断面を図7〜図9に示す。図7〜図9
において、記号1〜8は図1および図6と同じものを示し、9は電極群である。図7〜図
9に示したように、非水電解液二次電池は、正極と負極とがセパレータを介して積層され
た電極群を電池容器に収納し、電極群に非水電解液を含浸して構成されている。電極群の
構造は、図7に示したように帯状電極を巻回した巻回型、図8に示したように平板電極を
積層した積層型、図9に示したように帯状電極をつずら折した折曲型など、各種の構造の
ものを用いることができる。
The BB 'cross section of FIG. 1 of the nonaqueous electrolyte secondary battery of this invention is shown in FIGS. 7 to 9
1 to 8 are the same as those in FIGS. 1 and 6, and 9 is an electrode group. As shown in FIG. 7 to FIG. 9, the non-aqueous electrolyte secondary battery includes a battery container in which an electrode group in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween, and the electrode group is impregnated with the non-aqueous electrolyte. Configured. The structure of the electrode group is as follows: a winding type in which strip electrodes are wound as shown in FIG. 7, a stacked type in which flat electrodes are stacked as shown in FIG. 8, and a strip electrode is shifted as shown in FIG. Various types of structures such as a folded type can be used.

本発明の非水電解液二次電池においては、図10に断面構造を示したように、巻き締め
部の高さよりも端子の高さの方が高い方が好ましい。すなわち、図10のように端子が上
方向となるように電池を置いた場合、巻き締め部の上面Xから端子の上面Yが突出してい
ることが好ましい。このような構造とすることで、多数の電池を接続して組電池とする場
合、隣接する単電池同士の接続がきわめて容易となり、生産コスト低減の効果が大きくな
る。
In the non-aqueous electrolyte secondary battery of the present invention, as shown in the cross-sectional structure in FIG. 10, it is preferable that the height of the terminal is higher than the height of the tightening portion. That is, when the battery is placed so that the terminal is in the upward direction as shown in FIG. By adopting such a structure, when a large number of batteries are connected to form an assembled battery, it is very easy to connect adjacent unit cells, and the effect of reducing the production cost is increased.

この非水電解液二次電池に用いられる正極、負極、セパレータおよび電解液などは、特
に従来用いられてきたものと異なるところなく、通常用いられているものを使用できる。
As the positive electrode, the negative electrode, the separator, the electrolytic solution, and the like used for the non-aqueous electrolyte secondary battery, there are no particular differences from those conventionally used, and commonly used ones can be used.

すなわち、本発明の非水電解液二次電池に用いる正極材料としては、特に制限はなく、
種々の材料を適宜使用できる。例えば、二酸化マンガン、スピネル型マンガン酸リチウム
、五酸化バナジウムのような遷移金属化合物や、硫化鉄、硫化チタンのような遷移金属カ
ルコゲン化合物、さらにはこれらの遷移金属とリチウムの複合酸化物LixMO2-δ(
ただし、Mは、Co、NiまたはMnを表し、0.4≦x≦1.2、0≦δ≦0.5であ
る複合酸化物)、またはこれらの複合酸化物にAl、Mn、Fe、Ni、Co、Cr、T
i、Zn、Zrから選ばれる少なくとも一種の元素、または、P、Bなどの非金属元素を
含有した化合物を使用することができる。
That is, the positive electrode material used for the nonaqueous electrolyte secondary battery of the present invention is not particularly limited,
Various materials can be used as appropriate. For example, transition metal compounds such as manganese dioxide, spinel type lithium manganate, vanadium pentoxide, transition metal chalcogen compounds such as iron sulfide and titanium sulfide, and composite oxides of these transition metals and lithium Li x MO 2- δ (
M represents Co, Ni, or Mn, and is a composite oxide in which 0.4 ≦ x ≦ 1.2 and 0 ≦ δ ≦ 0.5), or Al, Mn, Fe, Ni, Co, Cr, T
A compound containing at least one element selected from i, Zn, and Zr, or a non-metallic element such as P or B can be used.

さらに、好ましくはリチウムとニッケルの複合酸化物、すなわちLixNipM1q
r2-δで表される正極活物質(ただし、M1、M2はAl、Mn、Fe、Co、C
r、Ti、Zn、Zrから選ばれる少なくとも一種の元素、または、P、Bなどの非金属
元素でもよい。さらに0.4≦x≦1.2、0.8≦p+q+r≦1.2、0≦δ≦0.
5である)などを用いることができる。また、有機化合物としては、例えばポリアニリン
等の導電性ポリマー等が挙げられる。さらに、無機化合物、有機化合物を問わず、上記各
種活物質を混合して用いてもよい。
Further, preferably a complex oxide of lithium and nickel, that is, Li x Ni p M1 q M
Positive electrode active material represented by 2 r O 2− δ (where M1 and M2 are Al, Mn, Fe, Co, C
It may be at least one element selected from r, Ti, Zn, and Zr, or a nonmetallic element such as P or B. Furthermore, 0.4 ≦ x ≦ 1.2, 0.8 ≦ p + q + r ≦ 1.2, 0 ≦ δ ≦ 0.
5). Examples of the organic compound include conductive polymers such as polyaniline. Furthermore, the above various active materials may be mixed and used regardless of whether they are inorganic compounds or organic compounds.

負極材料たる化合物としては、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの
合金、LiFe23、WO2、MoO2、SiO、CuO等の金属酸化物、難黒鉛化性
炭素や易黒鉛化性炭素等の非晶質炭素質材料、黒鉛などの結晶性炭素材料、Li3N等の
窒化リチウム、チタン酸リチウム、もしくは金属リチウム、又はこれらの混合物を用いて
もよく、複合体を用いてもよい。特に好ましくは、非晶質炭素材料を用いることが望まし
い。
Examples of the negative electrode material include Al, Si, Pb, Sn, Zn, Cd, and lithium alloys, metal oxides such as LiFe 2 O 3 , WO 2 , MoO 2 , SiO, CuO, and non-graphitizable carbon. Or amorphous carbonaceous materials such as graphitizable carbon, crystalline carbon materials such as graphite, lithium nitride such as Li 3 N, lithium titanate, metallic lithium, or a mixture thereof may be used. The body may be used. It is particularly preferable to use an amorphous carbon material.

非水電解液に用いる非水溶媒には、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート、トリフルオロプロピレンカーボネート、γ−ブチロラクトン、γ
−バレロラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、
テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラ
ンやジオキソラン、フルオロエチルメチルエーテル、エチレングリコールジアセテート、
プロピレングリコールジアセテート、エチレングリコールジプロピオネート、プロピレン
グリコールジプロピオネート、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プ
ロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、ジメチルカーボネート
、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、エ
チルプロピルカーボネート、ジプロピルカーボネート、メチルイソプロピルカーボネート
、エチルイソプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネー
ト、アセトニトリル、フルオロアセトニトリル、エトキシペンタフルオロシクロトリホス
ファゼン、ジエトキシテトラフルオロシクロトリホスファゼン、フェノキシペンタフルオ
ロシクロトリホスファゼンなどのアルコキシおよびハロゲン置換環状ホスファゼン類およ
び、鎖状ホスファゼン類、リン酸トリエチル、リン酸トリメチル、リン酸トリオクチルな
どのリン酸エステル類、ホウ酸トリエチル、ホウ酸トリブチルなどのホウ酸エステル類、
N−メチルオキサゾリジノン、N−エチルオキサゾリジノン等の非水溶媒を、単独でまた
はこれらの混合溶媒を使用することができる。
Nonaqueous solvents used for the nonaqueous electrolyte include ethylene carbonate, propylene carbonate,
Butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, γ
-Valerolactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane,
Tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane and dioxolane, fluoroethyl methyl ether, ethylene glycol diacetate,
Propylene glycol diacetate, ethylene glycol dipropionate, propylene glycol dipropionate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate , Methylpropyl carbonate, ethylpropyl carbonate, dipropyl carbonate, methyl isopropyl carbonate, ethyl isopropyl carbonate, diisopropyl carbonate, dibutyl carbonate, acetonitrile, fluoroacetonitrile, ethoxypentafluorocyclotriphosphazene, diethoxytetrafluorocyclotriphosphazene, phenoxypentafluoro Cyclotriphosphazene Alkoxy and halogen substituted cyclic phosphazenes and of a chain phosphazenes, triethyl phosphate, phosphoric acid esters such as trimethyl phosphate, trioctyl phosphate, triethyl borate, boric acid esters such as tributyl borate,
Nonaqueous solvents such as N-methyloxazolidinone and N-ethyloxazolidinone can be used alone or a mixed solvent thereof.

非水電解液は、上記の非水溶媒にリチウム電解質を溶解して使用する。電解質としては
、LiClO4、LiPF6、LiBF4、LiAsF6、LiCF3CO2、LiCF
3SO3、LiCF3CF2SO3、LiCF3CF2CF2SO3、LiN(SO2
32、LiN(SO2CF2CF32、LiN(COCF32、LiN(COC
2CF32、LiBF224、LiBC48、LiPF2(C242およ
びLiPF3(CF2CF33などの塩もしくはこれらの混合物を使用することができ
る。
The nonaqueous electrolytic solution is used by dissolving a lithium electrolyte in the above nonaqueous solvent. As the electrolyte, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF
3 SO 3 , LiCF 3 CF 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN (SO 2 C
F 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COC
It is possible to use salts such as F 2 CF 3 ) 2 , LiBF 2 C 2 O 4 , LiBC 4 O 8 , LiPF 2 (C 2 O 4 ) 2 and LiPF 3 (CF 2 CF 3 ) 3 or mixtures thereof. it can.

なお、電池特性向上のために、少量の化合物を非水電解液中に混合してもよく、ビニレ
ンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、プロピル
ビニレンカーボネート、フェニルビニレンカーボネート、ビニルエチレンカーボネート、
ジビニルエチレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカー
ボネート、フルオロエチレンカーボネートなどのカーボネート類、酢酸ビニル、プロピオ
ン酸ビニルなどのビニルエステル類、ジアリルスルフィド、アリルフェニルスルフィド、
アリルビニルスルフィド、アリルエチルスルフィド、プロピルスルフィド、ジアリルジス
ルフィド、アリルエチルジスルフィド、アリルプロピルジスルフィド、アリルフェニルジ
スルフィドなどのスルフィド類、1,3−プロパンスルトン、1,4−ブタンスルトン、
1,3−プロぺンスルトン、1,4−ブテンスルトンなどの環状スルホン酸エステル類、
メタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸プロピル、エタン
スルホン酸メチル、エタンスルホン酸エチル、エタンスルホン酸プロピル、ベンゼンスル
ホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸プロピル、メタンスルホ
ン酸フェニル、エタンスルホン酸フェニル、プロパンスルホン酸フェニル、ベンジルスル
ホン酸メチル、ベンジルスルホン酸エチル、ベンジルスルホン酸プロピル、メタンスルホ
ン酸ベンジル、エタンスルホン酸ベンジル、プロパンスルホン酸ベンジルなどの鎖状スル
ホン酸エステル類、ジメチルサルファイト、ジエチルサルファイト、エチルメチルサルフ
ァイト、メチルプロピルサルファイト、エチルプロピルサルファイト、ジフェニルサルフ
ァイト、メチルフェニルサルファイト、エチレンサルファイト、ビニルエチレンサルファ
イト,ジビニルエチレンサルファイト,プロピレンサルファイト、ビニルプロピレンサル
ファイト,ブチレンサルファイト、ビニルブチレンサルファイト,ビニレンサルファイト
、フェニルエチレンサルファイト等の亜硫酸エステル類、硫酸ジメチル、硫酸ジエチル、
エチレングリコール硫酸エステル、プロピレングリコール硫酸エステル、ブチレングリコ
ール硫酸エステル、ペンテングリコール硫酸エステルなどの硫酸エステル類、ベンゼン、
トルエン、キシレン、フルオロベンゼン、ビフェニル、シクロヘキシルベンゼン、2−フ
ルオロビフェニル、4−フルオロビフェニル、ジフェニルエーテル、tert−ブチルベ
ンゼン、オルトターフェニル、メタターフェニル、ナフタレン、フルオロナフタレン、ク
メン、フルオロベンゼン、2,4−ジフルオロアニソールなどの芳香族化合物、パーフル
オロオクタンなどのハロゲン置換アルカン、ホウ酸トリストリメチルシリル、硫酸ビスト
リメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル
などのシリルエステル類などを目的に応じて適宜添加してもよい。
In order to improve battery characteristics, a small amount of a compound may be mixed in the non-aqueous electrolyte. Vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene carbonate, phenyl vinylene carbonate, vinyl ethylene carbonate,
Carbonates such as divinylethylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, fluoroethylene carbonate, vinyl esters such as vinyl acetate and vinyl propionate, diallyl sulfide, allyl phenyl sulfide,
Sulfides such as allyl vinyl sulfide, allyl ethyl sulfide, propyl sulfide, diallyl disulfide, allyl ethyl disulfide, allyl propyl disulfide, allyl phenyl disulfide, 1,3-propane sultone, 1,4-butane sultone,
Cyclic sulfonates such as 1,3-propensultone and 1,4-butene sultone,
Methyl methanesulfonate, ethyl methanesulfonate, propyl methanesulfonate, methyl ethanesulfonate, ethyl ethanesulfonate, propyl ethanesulfonate, methyl benzenesulfonate, ethyl benzenesulfonate, propyl benzenesulfonate, phenyl methanesulfonate, Chain sulfonate esters such as phenyl ethane sulfonate, phenyl propane sulfonate, methyl benzyl sulfonate, ethyl benzyl sulfonate, propyl benzyl sulfonate, benzyl methane sulfonate, benzyl ethane sulfonate, and benzyl propane sulfonate, dimethyl mons Phyto, diethyl sulfite, ethyl methyl sulfite, methyl propyl sulfite, ethyl propyl sulfite, diphenyl sulfite, methyl phenyl sulfite Sulphites such as zinc, ethylene sulfite, vinyl ethylene sulfite, divinyl ethylene sulfite, propylene sulfite, vinyl propylene sulfite, butylene sulfite, vinyl butylene sulfite, vinylene sulfite, phenylethylene sulfite, dimethyl sulfate , Diethyl sulfate,
Sulfates such as ethylene glycol sulfate, propylene glycol sulfate, butylene glycol sulfate, pentene glycol sulfate, benzene,
Toluene, xylene, fluorobenzene, biphenyl, cyclohexylbenzene, 2-fluorobiphenyl, 4-fluorobiphenyl, diphenyl ether, tert-butylbenzene, orthoterphenyl, metaterphenyl, naphthalene, fluoronaphthalene, cumene, fluorobenzene, 2,4 -Add aromatic compounds such as difluoroanisole, halogen-substituted alkanes such as perfluorooctane, silyl esters such as tristrimethylsilyl borate, bistrimethylsilyl sulfate, tristrimethylsilyl phosphate, tetrakistrimethylsilyl titanate, etc. May be.

セパレータとしては、織布、不織布、合成樹脂微多孔膜等を用いることができ、特に、
合成樹脂微多孔膜を好適に用いることができる。中でもポリエチレン及びポリプロピレン
製微多孔膜、アラミドやポリイミドと複合化させたポリエチレンおよびポリプロピレン製
微多孔膜、または、これらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、
膜強度、膜抵抗等の面で好適に用いられる。
As the separator, woven fabric, non-woven fabric, synthetic resin microporous membrane, etc. can be used.
A synthetic resin microporous membrane can be suitably used. Among them, a microporous membrane made of polyethylene and polypropylene, a microporous membrane made of polyethylene and polypropylene combined with aramid or polyimide, or a polyolefin-based microporous membrane such as a microporous membrane composited with these,
It is preferably used in terms of film strength, film resistance and the like.

その他の電池の構成要素として、巻き芯や集電体、絶縁板等があるが、これらの部品に
ついても従来用いられてきたものをそのまま用いて差し支えない。
As other battery components, there are a winding core, a current collector, an insulating plate, and the like. However, these components may be used as they are.

また、電池の形状は特に限定されるものではなく、巻き締め封口が可能である角形、長
円筒形、円筒型等の様々な形状の非水電解液二次電池に適用可能である。
The shape of the battery is not particularly limited, and can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a rectangular shape, a long cylindrical shape, and a cylindrical shape that can be wound and sealed.

以下に、本発明の実施例を、比較例とあわせて説明する。   Examples of the present invention will be described below together with comparative examples.

[実施例1〜11および比較例1〜4]
[実施例1]
厚さ0.8mmのアルミニウム合金(JIS3003)板の両面にポリプロピレン(P
P)フィルムを熱圧着して約100μmの絶縁層で被覆した金属板を作製した。次に、こ
の金属板を打ち抜き、絞り加工をすることで幅100mm×厚み20mm×深さ80mm
の有底の電池ケースを作製した。
[Examples 1 to 11 and Comparative Examples 1 to 4]
[Example 1]
Polypropylene (P) on both sides of an aluminum alloy (JIS3003) plate with a thickness of 0.8 mm
P) A metal plate coated with an insulating layer of about 100 μm was prepared by thermocompression bonding of the film. Next, this metal plate is punched and drawn to obtain a width of 100 mm, a thickness of 20 mm, and a depth of 80 mm.
A battery case with a bottom was prepared.

電池ケースの開口部には巻き締め加工用のフランジを設けた。また、電池ケース開口部
の寸法に合わせて上記の金属板を切り出し、正極端子および負極端子を取り付けるための
開口部を設けた蓋を作製した。
A winding flange was provided at the opening of the battery case. Moreover, said metal plate was cut out according to the dimension of the battery case opening part, and the cover provided with the opening part for attaching a positive electrode terminal and a negative electrode terminal was produced.

蓋にはステンレス製の正極端子と負極端子を、それぞれ気密用の樹脂パッキンを介して
取り付けた。正極端子には直径1mmの貫通孔を設け、これを電解液注液孔とした。
A stainless steel positive electrode terminal and a negative electrode terminal were respectively attached to the lid via an airtight resin packing. A through hole having a diameter of 1 mm was provided in the positive electrode terminal, and this was used as an electrolyte injection hole.

次に、正極は、LiCoO2の粉体を87重量%、導電助剤であるアセチレンブラック
を5重量%、結着剤であるポリフッ化ビニリデンを8重量%混合し、これに含水量50p
pm以下のN−メチル−2−ピロリドン(NMP)を加えてペースト状としたスラリーを
アルミニウム箔上に塗布、乾燥して作製した。
Next, the positive electrode was mixed with 87% by weight of LiCoO 2 powder, 5% by weight of acetylene black as a conductive additive, and 8% by weight of polyvinylidene fluoride as a binder, and the water content was 50p.
N-methyl-2-pyrrolidone (NMP) of pm or less was added to form a paste slurry on an aluminum foil and dried.

負極は、人造グラファイトの粉体を90重量%、結着剤であるポリフッ化ビニリデンを
10重量%と混合し、これにNMPを加えてペースト状としたスラリーを銅箔上に塗布、
乾燥して作製した。
For the negative electrode, 90% by weight of artificial graphite powder and 10% by weight of polyvinylidene fluoride as a binder were mixed, and NMP was added to this to form a paste slurry on the copper foil.
Made by drying.

正極および負極の乾燥は、0.01torr以下の真空下、150℃で12時間以上お
こない、その後室温まで冷却した後にロールプレスをおこなった。次に、正極と負極とを
ポリエチレン製セパレータを介して捲回して電極群を構成した。
The positive electrode and the negative electrode were dried at 150 ° C. for 12 hours or more under a vacuum of 0.01 torr or less, and then cooled to room temperature and then roll-pressed. Next, the positive electrode and the negative electrode were wound through a polyethylene separator to form an electrode group.

この電極群中の正極と蓋に取り付けた正極端子とを正極集電体を介して接合し、また、
電極群中の負極と蓋に取り付けた負極端子とを負極集電体を介して接合することで、蓋と
正負極端子と電極群を一体化した。次に、電極群をケース内に収納し、蓋とケースのフラ
ンジを重ね合わせた後に、二重巻き締めにより蓋とケースを一体化した。得られた電池の
外観は図1に示した、2ピース缶で構成されているものと同様である。
The positive electrode in this electrode group and the positive electrode terminal attached to the lid are joined via a positive electrode current collector,
The lid, the positive and negative electrode terminals, and the electrode group were integrated by joining the negative electrode in the electrode group and the negative electrode terminal attached to the lid via a negative electrode current collector. Next, the electrode group was housed in the case, the lid and the case flange were overlapped, and then the lid and the case were integrated by double winding. The appearance of the obtained battery is the same as that of the two-piece can shown in FIG.

正極端子に設けた貫通孔(電解液注液孔)を通じて電解液を注液した。電解液には、エ
チレンカーボネート(EC):ジメチルカーボネート(DMC):エチルメチルカーボネ
ート(EMC)=3:2:5(体積比)の混合溶媒に、LiPF6を1mol/Lとなる
ように溶解したものを用いた。
The electrolyte solution was injected through a through hole (electrolyte solution injection hole) provided in the positive electrode terminal. In the electrolytic solution, LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC): dimethyl carbonate (DMC): ethyl methyl carbonate (EMC) = 3: 2: 5 (volume ratio) so as to be 1 mol / L. A thing was used.

注液後、正極端子に設けた貫通孔をアルミ合金の小片で栓をしてレーザー溶接で密閉化
して電池を完成させた。
After pouring, the through hole provided in the positive terminal was plugged with a small piece of aluminum alloy and sealed by laser welding to complete the battery.

[実施例2]
ケースと蓋の構成を、図2で示したのと同じ3ピース缶としたこと以外は、実施例1と
同様にして、実施例2の電池を作製した。
[Example 2]
A battery of Example 2 was fabricated in the same manner as Example 1 except that the case and lid were configured as the same three-piece can as shown in FIG.

[実施例3]
アルミニウム合金(JIS3003)板の両面に、ポリプロピレン(PP)に代えてポ
リエチレンテレフタレート(PET)を熱圧着したこと以外は実施例1と同様にして、実
施例3の電池を作製した。
[Example 3]
A battery of Example 3 was produced in the same manner as Example 1 except that polyethylene terephthalate (PET) was thermocompression bonded to both surfaces of an aluminum alloy (JIS3003) plate instead of polypropylene (PP).

[実施例4]
アルミニウム合金板とポリプロピレン(PP)フィルムの間に無水マレイン酸変性ポリ
プロピレンをはさみ熱圧着したこと以外は実施例1と同様にして、実施例4の電池を作製
した。
[Example 4]
A battery of Example 4 was produced in the same manner as in Example 1 except that maleic anhydride-modified polypropylene was sandwiched between the aluminum alloy plate and the polypropylene (PP) film and thermocompression bonded.

[実施例5]
アルミ合金板の代わりにニッケルメッキ鉄板を用いたこと以外は実施例1と同様にして
、実施例5の電池を作製した。
[Example 5]
A battery of Example 5 was made in the same manner as Example 1 except that a nickel-plated iron plate was used instead of the aluminum alloy plate.

[実施例6]
ポリプロピレン(PP)フィルムの被覆厚みを10μmとしたこと以外は実施例1と同
様にして、実施例6の電池を作製した。
[Example 6]
A battery of Example 6 was made in the same manner as Example 1 except that the coating thickness of the polypropylene (PP) film was 10 μm.

[実施例7]
ケースと蓋を巻き締めする際に、巻き締めの接合部に厚み50μmのエチレンブタジエ
ンゴム板を挿入したこと以外は実施例1と同様にして、実施例7の電池を作製した。
[Example 7]
A battery of Example 7 was made in the same manner as Example 1 except that an ethylene butadiene rubber plate having a thickness of 50 μm was inserted into the joint for winding when the case and the lid were wound.

[実施例8]
アルミ合金板の片側にのみポリプロピレン(PP)フィルムで被覆し、被覆した面を電
池外面としたこと以外は実施1と同様にして、実施例8の電池を作製した。
[Example 8]
A battery of Example 8 was made in the same manner as in Example 1 except that only one side of the aluminum alloy plate was coated with a polypropylene (PP) film and the coated surface was used as the battery outer surface.

[実施例9]
アルミ合金板の片側をポリプロピレン(PP)フィルムで被覆し、他面をポリエチレン
テレフタラート(PET)で被覆し、PETで被覆した面を電池外面としたこと以外は実
施1と同様にして、実施例9の電池を作製した。
[Example 9]
Example 1 except that one side of the aluminum alloy plate was coated with a polypropylene (PP) film, the other side was coated with polyethylene terephthalate (PET), and the surface coated with PET was used as the battery outer surface. 9 batteries were produced.

[実施例10]
ケースと蓋の構成を図2で示したのと同じ3ピース缶とし、断面構造を図5で示したの
と同じ、上面の蓋に正極端子を設け、下面の蓋に負極端子を設け、端子を設ける蓋が異な
る構成としたこと以外は実施例1と同様にして、実施例10の電池を作製した。
[Example 10]
The configuration of the case and lid is the same three-piece can as shown in FIG. 2, the cross-sectional structure is the same as that shown in FIG. 5, the positive electrode terminal is provided on the upper lid, the negative electrode terminal is provided on the lower lid, and the terminal A battery of Example 10 was made in the same manner as Example 1 except that the lid provided with was different.

[実施例11]
ケースと蓋の構成を図1で示したのと同じ2ピース缶とし、断面構造を図10で示した
のと同じ、巻き締め部の上面から端子の上面が突出している構造としたこと以外は実施例
1と同様にして、実施例11の電池を作製した。
[Example 11]
The configuration of the case and lid is the same two-piece can as shown in FIG. 1, and the cross-sectional structure is the same as shown in FIG. 10, except that the upper surface of the terminal protrudes from the upper surface of the winding portion. A battery of Example 11 was made in the same manner as Example 1.

[比較例1]
アルミニウム合金板を絶縁性樹脂フィルムで被覆せず、電池完成後にケースを熱収縮性
樹脂チューブで被覆したこと以外は実施例1と同様にして、比較例1の電池を作製した。
[Comparative Example 1]
A battery of Comparative Example 1 was fabricated in the same manner as in Example 1 except that the aluminum alloy plate was not covered with the insulating resin film and the case was covered with a heat-shrinkable resin tube after the battery was completed.

[比較例2]
電池ケースはPPで被覆したが、蓋は絶縁性樹脂フィルムで被覆しなかったこと以外は
実施例1と同様にして、比較例2の電池を作製した。作製した。
[Comparative Example 2]
A battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the battery case was covered with PP but the lid was not covered with an insulating resin film. Produced.

[比較例3]
正極端子に電解液注液孔となる貫通孔を設けず、電解液を満たしたケースに蓋と端子部
と電極群からなる一体物を含浸してから巻き締め加工で密閉化したこと以外は実施例1と
同様にして、比較例3の電池を作製した。
[Comparative Example 3]
Implemented except that the positive electrode terminal was not provided with a through-hole serving as an electrolyte injection hole, and the case filled with the electrolyte was impregnated with an integrated body consisting of a lid, a terminal part, and an electrode group, and then sealed by winding. A battery of Comparative Example 3 was produced in the same manner as Example 1.

[比較例4]
正極端子に電解液注液孔となる貫通孔を設けず、蓋と端子部と電極群からなる一体物の
うち電極群の部分のみを電解液に含浸したのちにケースに収納し、その後巻き締め加工で
密閉化したこと以外は実施例1と同様にして、比較例4の電池を作製した。
[Comparative Example 4]
The positive electrode terminal is not provided with a through-hole serving as an electrolyte injection hole, and only the electrode group portion of the integrated body consisting of the lid, terminal portion, and electrode group is impregnated with the electrolyte, and then stored in the case, and then tightened. A battery of Comparative Example 4 was produced in the same manner as Example 1 except that it was sealed by processing.

実施例1〜11および比較例1〜4で作製した電池の内容を表1にまとめた。   The contents of the batteries prepared in Examples 1 to 11 and Comparative Examples 1 to 4 are summarized in Table 1.

[特性測定]
以上の実施例1〜11および比較例1〜4の電池について、単電池の生産性および気密
不良発生の有無、組電池の生産性および不良発生の有無、および組電池の寿命性能を比較
した。
[Characteristic measurement]
The batteries of Examples 1 to 11 and Comparative Examples 1 to 4 were compared in terms of unit cell productivity and occurrence of airtight defects, assembled battery productivity and occurrence of defects, and assembled battery life performance.

[単電池の生産性の比較]
各単電池を100セルずつ製造した際の生産性の比較を行った。ここで「単電池の生産
性」とは、100セルずつ生産する際に要した時間の相対値で示してあり、値が小さいほ
ど所要時間が短く、生産性が高いことを意味する。ここでは実施例1の電池の生産に要し
た時間を100とした。
[Comparison of productivity of single cells]
A comparison of productivity when 100 cells of each unit cell were manufactured was performed. Here, “cell productivity” is shown as a relative value of the time required to produce 100 cells each, and the smaller the value, the shorter the required time and the higher the productivity. Here, the time required for the production of the battery of Example 1 was set to 100.

[単電池の気密不良発生の有無]
各単電池を100セルずつ製造し、電池を1kPsの減圧下で1分間保持した際の重量
減少の有無から、気密不良発生の有無を調べた。
[Is there any airtight defect in the cell?]
100 cells of each unit cell were manufactured, and the presence or absence of airtight failure was examined from the presence or absence of weight loss when the batteries were held for 1 minute under a reduced pressure of 1 kPs.

[組電池の生産性および組電池製造時の不良発生の有無]
以上の各電池を用いて8直列の組電池を5セット作製した際の生産性を比較した。ここ
で「組電池の生産性」は10セット作製する際に要した時間の相対値で示してあり、値が
小さいほど所要時間が短く、生産性が高いことを意味する。ここでは実施例1の電池を用
いて組電池を作製した時間を100とした。また、組電池作製時の不良発生の有無も調べ
た。ここでの「不良発生」とは、単電池からの液漏れ、単電池間の短絡などを意味する。
[Battery productivity and presence / absence of defects during battery manufacturing]
The productivity when 5 sets of 8 series assembled batteries were produced using each of the above batteries was compared. Here, “productivity of assembled battery” is indicated by a relative value of the time required for producing 10 sets, and the smaller the value, the shorter the required time and the higher the productivity. Here, the time when the assembled battery was manufactured using the battery of Example 1 was set to 100. In addition, the presence or absence of defects during the production of the assembled battery was also examined. Here, “defect occurrence” means liquid leakage from the single cells, short circuit between the single cells, and the like.

[組電池の寿命性能]
25℃環境下で、1時間率の定電流で4.1Vまで充電し、さらに4.1Vの定電圧で
充電時間の合計が3時間となるまで充電した後に、1時間率の電流で3.0Vまで放電す
る充放電を3回繰り返し、3回目の放電容量を初期放電容量と定めた。5セットの放電容
量の平均値を初期平均放電容量とした。
[Battery life performance]
In an environment of 25 ° C., the battery is charged to 4.1 V with a constant current of 1 hour, and further charged with a constant voltage of 4.1 V until the total charging time becomes 3 hours, and then charged with a current of 1 hour. Charging / discharging to 0V was repeated 3 times, and the third discharge capacity was determined as the initial discharge capacity. The average value of the five sets of discharge capacities was defined as the initial average discharge capacity.

次に、初期放電容量測定と同じ充放電条件で100回充放電した後の放電容量を求め、
5セットの放電容量の平均値を充放電後平均放電容量とし、これを初期平均放電容量で除
した値を容量保持率とした。
Next, the discharge capacity after being charged / discharged 100 times under the same charge / discharge conditions as the initial discharge capacity measurement,
The average value of the five sets of discharge capacities was defined as the average discharge capacity after charging and discharging, and the value obtained by dividing this by the initial average discharge capacity was defined as the capacity retention rate.

単電池の生産性、単電池の気密不良発生の有無、組電池の生産性、組電池製造時の不良
発生の有無および組電池の容量保持率の結果を表2にまとめた。
Table 2 summarizes the results of unit cell productivity, unit cell hermeticity failure occurrence, battery assembly productivity, unit battery failure occurrence, and unit battery capacity retention rate.


表1および表2の結果より、ケースと蓋が絶縁性樹脂フィルムで被覆された金属板で構
成され、かつ、端子に電解液注液孔が設けてあり、かつ、ケースと蓋が巻き締め方式で気
密封口されたことを特徴とする非水電解液二次電池は、生産性に優れており、気密不良も
少なく、低コスト化に効果をもたらすことが明らかとなった。
From the results shown in Tables 1 and 2, the case and the lid are made of a metal plate covered with an insulating resin film, the terminal is provided with an electrolyte injection hole, and the case and the lid are tightened. It has been clarified that the non-aqueous electrolyte secondary battery characterized by being hermetically sealed is excellent in productivity, has few airtight defects, and has an effect on cost reduction.

また、単電池を、巻き締め部の上面から端子の上面が突出している構造とした場合には
、単電池同士の接続が容易となるため、組電池化する際の生産性が特に優れていることが
わかった。
In addition, when the unit cell has a structure in which the upper surface of the terminal protrudes from the upper surface of the tightening portion, it is easy to connect the cells, and thus the productivity when forming the assembled battery is particularly excellent. I understood it.

電池が2ピース缶で構成されている場合の外観を示す図。The figure which shows the external appearance in case the battery is comprised by 2 piece cans. 電池が3ピース缶で構成されている場合の外観を示す図。The figure which shows the external appearance in case a battery is comprised by 3 piece cans. 電池が2ピース缶で構成されている場合の断面を示す図。The figure which shows the cross section in case the battery is comprised by 2 piece cans. 電池が3ピース缶で構成され、正極端子と負極端子が同じ蓋に設けられた場 合の断面を示す図。The figure which shows a cross section when a battery is comprised by 3 piece cans and the positive electrode terminal and the negative electrode terminal were provided in the same lid | cover. 電池が3ピース缶で構成され、正極端子と負極端子が異なる蓋に設けられた 場合の断面を示す図。The figure which shows a cross section when a battery is comprised by 3 piece cans and the positive electrode terminal and the negative electrode terminal were provided in the different lid | cover. 本発明に係る非水電解液二次電池の端子部の断面構造を示す図。The figure which shows the cross-section of the terminal part of the nonaqueous electrolyte secondary battery which concerns on this invention. 帯状電極を巻回した巻回型電極群を用いた非水電解液二次電池の断面を示す 図。The figure which shows the cross section of the nonaqueous electrolyte secondary battery using the winding type electrode group which wound the strip | belt-shaped electrode. 平板電極を積層した積層型電極群を用いた非水電解液二次電池の断面を示す 図。The figure which shows the cross section of the nonaqueous electrolyte secondary battery using the laminated electrode group which laminated | stacked the flat electrode. 帯状電極をつずら折した折曲型電極群を用いた非水電解液二次電池の断面を 示す図。The figure which shows the cross section of the non-aqueous-electrolyte secondary battery using the bending type electrode group which folds the strip | belt-shaped electrode. 巻き締め部の上面から端子の上面が突出している構造の非水電解液二次電 池の断面を示す図。The figure which shows the cross section of the nonaqueous electrolyte secondary battery of the structure where the upper surface of a terminal protrudes from the upper surface of a winding part.

1 電池ケース
2、2' 蓋
3 正極端子
4 負極端子
5 巻き締め部
6 絶縁部材
7 電解液注液孔
8 集電体
9 電極群
DESCRIPTION OF SYMBOLS 1 Battery case 2, 2 'cover 3 Positive electrode terminal 4 Negative electrode terminal 5 Tightening part 6 Insulation member 7 Electrolyte injection hole 8 Current collector 9 Electrode group

請求項1の発明は、ケースおよび蓋を備え、前記ケースおよび前記蓋は少なくとも外面が絶縁性樹脂フィルムで被覆された金属板からなり、前記ケースと前記蓋とが巻き締め方式で気密封口された非水電解液二次電池において、前記蓋に絶縁部材を介して電解液注液孔を設けたトラック形状の端子を形成し、前記ケースと前記蓋との巻き締め部の上面より前記端子の上面が突出していることを特徴とする。 The invention according to claim 1 includes a case and a lid, wherein the case and the lid are made of a metal plate whose outer surface is coated with an insulating resin film, and the case and the lid are hermetically sealed by a tightening method. In the non-aqueous electrolyte secondary battery, a track-shaped terminal provided with an electrolyte injection hole is formed in the lid via an insulating member, and the upper surface of the terminal is formed from the upper surface of the tightening portion between the case and the lid. Is characterized by protruding .

本発明によれば、ケースと蓋の材質には、いずれも、少なくとも外面を絶縁性の樹脂フィルムで被覆した金属板を用いているため、電池製造後の絶縁被覆工程が不要となり、製造コストの削減が可能となる。また、ケースの開口部を電解液の注液孔とせず、端子部に注液孔を設けることで、外装体を絶縁化する主旨を損なわずに品質の安定性も確保できる。さらに、前記ケースと前記蓋との巻き締め部の上面より前記端子の上面が突出しているため、多数の電池を接続して組電池とする場合、隣接する単電池同士の接続がきわめて容易となり、生産コスト低減の効果が大きくなる。 According to the present invention, since the case and lid are both made of a metal plate having at least the outer surface covered with an insulating resin film, an insulation coating step after the battery is manufactured becomes unnecessary, which reduces the manufacturing cost. Reduction is possible. Moreover, the opening of the case is not used as the electrolyte injection hole, and the injection hole is provided in the terminal portion, so that quality stability can be ensured without impairing the purpose of insulating the exterior body. Furthermore, since the upper surface of the terminal protrudes from the upper surface of the tightening portion of the case and the lid, when connecting a large number of batteries to make an assembled battery, it is very easy to connect adjacent single cells, The effect of reducing production costs is increased.

Claims (1)

ケースおよび蓋を備え、前記ケースおよび前記蓋は少なくとも外面が絶縁性樹脂フィルム
で被覆された金属板からなり、前記ケースと前記蓋とが巻き締め方式で気密封口された非
水電解液二次電池において、前記蓋に絶縁部材を介して電解液注液孔を設けた端子を形成
したことを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a case and a lid, wherein the case and the lid are made of a metal plate having at least an outer surface coated with an insulating resin film, and the case and the lid are hermetically sealed by a tightening method A nonaqueous electrolyte secondary battery, wherein a terminal provided with an electrolyte injection hole is formed on the lid via an insulating member.
JP2013028084A 2013-02-15 2013-02-15 Nonaqueous electrolyte solution secondary battery Pending JP2013122936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013028084A JP2013122936A (en) 2013-02-15 2013-02-15 Nonaqueous electrolyte solution secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013028084A JP2013122936A (en) 2013-02-15 2013-02-15 Nonaqueous electrolyte solution secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006074213A Division JP2007250413A (en) 2006-03-17 2006-03-17 Nonaqueous electrolyte solution secondary battery

Publications (1)

Publication Number Publication Date
JP2013122936A true JP2013122936A (en) 2013-06-20

Family

ID=48774760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013028084A Pending JP2013122936A (en) 2013-02-15 2013-02-15 Nonaqueous electrolyte solution secondary battery

Country Status (1)

Country Link
JP (1) JP2013122936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4266481A4 (en) * 2021-08-23 2024-09-04 Contemporary Amperex Technology Co Ltd Battery cell, battery, and electric device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215558A (en) * 1989-05-12 1990-01-19 Toshiba Corp Manufacture of nonaqueous solvent battery
JPH06236750A (en) * 1993-02-09 1994-08-23 Japan Storage Battery Co Ltd Square battery
JPH0973885A (en) * 1995-09-05 1997-03-18 Sony Corp Nonaqueous electrolyte secondary battery
JPH10312783A (en) * 1997-05-09 1998-11-24 Sony Corp Secondary battery and its manufacture
JPH1140115A (en) * 1997-07-18 1999-02-12 Japan Storage Battery Co Ltd Cell and battery using the cell
JP2002343310A (en) * 2001-05-10 2002-11-29 Showa Aluminum Kan Kk Case for electric appliance
JP2004095321A (en) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd Square battery
JP2005158267A (en) * 2003-11-20 2005-06-16 Nec Tokin Tochigi Ltd Sealed type secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215558A (en) * 1989-05-12 1990-01-19 Toshiba Corp Manufacture of nonaqueous solvent battery
JPH06236750A (en) * 1993-02-09 1994-08-23 Japan Storage Battery Co Ltd Square battery
JPH0973885A (en) * 1995-09-05 1997-03-18 Sony Corp Nonaqueous electrolyte secondary battery
JPH10312783A (en) * 1997-05-09 1998-11-24 Sony Corp Secondary battery and its manufacture
JPH1140115A (en) * 1997-07-18 1999-02-12 Japan Storage Battery Co Ltd Cell and battery using the cell
JP2002343310A (en) * 2001-05-10 2002-11-29 Showa Aluminum Kan Kk Case for electric appliance
JP2004095321A (en) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd Square battery
JP2005158267A (en) * 2003-11-20 2005-06-16 Nec Tokin Tochigi Ltd Sealed type secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4266481A4 (en) * 2021-08-23 2024-09-04 Contemporary Amperex Technology Co Ltd Battery cell, battery, and electric device

Similar Documents

Publication Publication Date Title
KR101776885B1 (en) Prismatic Battery Cell Having Two or More Case Members
KR101304108B1 (en) Square Type Battery
US8597829B2 (en) Nonaqueous electrolyte secondary battery with rolled electrode assembly
US10263237B2 (en) Cylindrical battery, and collector member used therefor, and manufacturing method thereof
JP6250921B2 (en) battery
WO2009157507A1 (en) Lithium ion secondary cell
WO2018180828A1 (en) Cylindrical battery
US20170346064A1 (en) Cylindrical battery
JP2010055906A (en) Nonaqueous electrolyte secondary battery
JP5124963B2 (en) Battery pack using batteries
JP6165425B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6138436B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6173729B2 (en) Battery manufacturing method
JP2014035929A (en) Nonaqueous electrolyte secondary battery
JP2007250413A (en) Nonaqueous electrolyte solution secondary battery
JP2014035923A (en) Non-aqueous electrolyte secondary battery
JP2014035922A (en) Nonaqueous electrolyte secondary battery
WO2012147425A1 (en) Cylindrical lithium ion secondary battery and manufacturing method therefor
US20170084910A1 (en) Negative electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US20220077499A1 (en) Non-aqueous electrolyte secondary battery
JP2014035924A (en) Nonaqueous electrolyte secondary battery
CN113228339B (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2013122936A (en) Nonaqueous electrolyte solution secondary battery
JP2016085884A (en) battery
JP4781070B2 (en) Sealed battery and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140812