Nothing Special   »   [go: up one dir, main page]

JP2013122364A - Refrigeration and air conditioning device and refrigeration and air conditioning system - Google Patents

Refrigeration and air conditioning device and refrigeration and air conditioning system Download PDF

Info

Publication number
JP2013122364A
JP2013122364A JP2012094704A JP2012094704A JP2013122364A JP 2013122364 A JP2013122364 A JP 2013122364A JP 2012094704 A JP2012094704 A JP 2012094704A JP 2012094704 A JP2012094704 A JP 2012094704A JP 2013122364 A JP2013122364 A JP 2013122364A
Authority
JP
Japan
Prior art keywords
heat source
refrigerant
pressure
valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012094704A
Other languages
Japanese (ja)
Other versions
JP5975714B2 (en
Inventor
Keisuke Sotozono
圭介 外囿
Yuya Morishita
侑哉 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012094704A priority Critical patent/JP5975714B2/en
Publication of JP2013122364A publication Critical patent/JP2013122364A/en
Application granted granted Critical
Publication of JP5975714B2 publication Critical patent/JP5975714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a refrigeration and air conditioning device that can reduce the amount of leakage of refrigerant by shortening a time to recover the refrigerant to a heat source side when the refrigerant leaks.SOLUTION: When a high pressure detected by a high pressure detection device 11 is at a set pressure or more when a pump down operation starts, an equalized pressure recovery operation is carried out, prior to the pump down operation, for communicating a high-pressure liquid line with a low pressure gas line by stopping the compressor 1 and opening an equalized pressure side opening/closing valve 6 while a use side expansion valve 102 is kept fully opened and a liquid line side opening/closing valve 7 is kept opened.

Description

本発明は、冷凍空調装置及び冷凍空調システムに関するものである。   The present invention relates to a refrigeration air conditioner and a refrigeration air conditioning system.

従来より、圧縮機、四方弁、熱源側熱交換器、利用側絞り装置及び利用側熱交換器を順次配管で接続した冷媒回路を有し、圧縮機及び熱源側熱交換器を備えた熱源機と、絞り装置及び利用側熱交換器を備えた室内機とを、ガスライン及び液ラインで接続して構成した冷凍空調装置がある。この種の冷凍空調装置では、室内機で冷媒漏れが発生した場合、室内が酸欠状態になるのを防ぐため、室内機側の冷媒を熱源機に回収するポンプダウン運転を行うようにしている(例えば、特許文献1参照)。   Conventionally, a heat source apparatus having a refrigerant circuit in which a compressor, a four-way valve, a heat source side heat exchanger, a use side expansion device, and a use side heat exchanger are sequentially connected by piping, and including the compressor and the heat source side heat exchanger. And a refrigerating and air-conditioning apparatus configured by connecting an expansion unit and an indoor unit including a use-side heat exchanger by a gas line and a liquid line. In this type of refrigerating and air-conditioning apparatus, when a refrigerant leak occurs in the indoor unit, a pump-down operation is performed to collect the indoor unit side refrigerant in the heat source unit in order to prevent the room from becoming deficient. (For example, refer to Patent Document 1).

特許文献1では、熱源側熱交換器と利用側絞り装置との間の高圧液ラインに開閉弁を設け、冷媒漏れを検知すると、四方弁を冷房運転側にして利用側絞り装置を全開し、開閉弁を閉じた状態で圧縮機を起動することによりポンプダウン運転を行っている。そして、この運転の後、冷媒回路を構成する配管を取り外し、故障修理などの作業が行われることになる。   In Patent Document 1, an open / close valve is provided in the high-pressure liquid line between the heat source side heat exchanger and the utilization side expansion device, and when refrigerant leakage is detected, the utilization side expansion device is fully opened with the four-way valve on the cooling operation side, Pump down operation is performed by starting the compressor with the on-off valve closed. And after this driving | operation, piping which comprises a refrigerant circuit is removed and work, such as failure repair, will be performed.

特開2002−228281号公報(第6頁、第2図)Japanese Patent Laid-Open No. 2002-228281 (page 6, FIG. 2)

上記従来の冷凍空調装置のポンプダウン運転では、開閉弁を閉にして熱源機と室内機とを高圧液ライン側で切り離した上で、圧縮機を運転させ、室内機側の冷媒を、利用側絞り装置及び利用側熱交換器を通して冷媒回路のガスラインから熱源機側に回収している。すなわち、高圧液ライン側の液冷媒を、室内機内部を通過させてガスライン側に導いて熱源機側に回収するようにしているため、回収経路が長くなり、回収に時間がかかるという問題があった。   In the pump down operation of the conventional refrigeration air conditioner, the on / off valve is closed and the heat source unit and the indoor unit are separated on the high pressure liquid line side, the compressor is operated, and the refrigerant on the indoor unit side is used on the usage side. The refrigerant is recovered from the gas line of the refrigerant circuit to the heat source side through the expansion device and the use side heat exchanger. That is, the liquid refrigerant on the high pressure liquid line side passes through the interior of the indoor unit, is guided to the gas line side, and is collected on the heat source unit side. Therefore, there is a problem that the collection path becomes long and the collection takes time. there were.

また、ポンプダウン運転中も冷媒漏れは続いているため、回収に時間がかかると、その分、冷媒漏れ量も多くなってしまうという問題もあった。また、液ライン内の高圧の液冷媒は、大気圧との差圧が過大な状態であるため、その高圧の液冷媒を、ポンプダウン運転時に利用側絞り装置を全開にして冷媒回路内に流通させてしまうと、漏れ発生箇所から室内に冷媒が大量に漏れる可能性もあった。   In addition, since the refrigerant leakage continues even during the pump down operation, there is a problem that the amount of refrigerant leakage increases correspondingly if it takes a long time for recovery. In addition, since the high-pressure liquid refrigerant in the liquid line is in a state where the differential pressure from the atmospheric pressure is excessive, the high-pressure liquid refrigerant is circulated in the refrigerant circuit with the use-side throttle device fully opened during the pump-down operation. If this is done, there is a possibility that a large amount of refrigerant leaks into the room from the location where the leak occurred.

本発明は、上記のような課題を解決するためになされたもので、冷媒漏洩時に、熱源機側への冷媒回収時間を短くして冷媒漏れ量を低減することが可能な冷凍空調装置及び冷凍空調システムを得ることを目的とする。   The present invention has been made to solve the above-described problems, and at the time of refrigerant leakage, a refrigeration air conditioner and a refrigeration capable of reducing the amount of refrigerant leakage by shortening the refrigerant recovery time to the heat source unit side. The purpose is to obtain an air conditioning system.

本発明に係る冷凍空調装置は、圧縮機と熱源側熱交換器とアキュムレータとを備えた熱源機と、利用側絞り装置と利用側熱交換器とを備えた1又は複数の室内機と、熱源機と1又は複数の室内機とを接続するための高圧液ライン及び低圧ガスラインと、高圧液ラインに設けられた第一開閉弁と、圧縮機、熱源側熱交換器、第一開閉弁、利用側絞り装置、利用側熱交換器及びアキュムレータとが順次、高圧液ライン及び低圧ガスラインを含む冷媒配管で接続されて冷媒が循環する冷媒回路と、高圧液ラインから分岐し、第二開閉弁を介してアキュムレータの吸入側の低圧ガスラインに接続される均圧回路と、室内機に配置され、冷媒回路からの冷媒漏れを検知する冷媒漏洩検知装置と、圧縮機から吐出する冷媒の高圧圧力を検知する高圧圧力検知装置と、冷媒漏洩検知装置により冷媒漏れが検知されると、利用側絞り装置を全開状態、第二開閉弁を開状態、第一開閉弁を閉状態としたまま圧縮機を起動させるポンプダウン運転を開始する制御装置とを備え、制御装置は、ポンプダウン運転開始時、高圧圧力検知装置により検知された高圧圧力が予め設定した設定圧力以上の場合には、ポンプダウン運転の前に、圧縮機を停止させると共に利用側絞り装置を全開状態、第一開閉弁を開状態としたまま、第二開閉弁を開いて高圧液ラインを低圧ガスラインに連通させる均圧回収運転を行う。   The refrigerating and air-conditioning apparatus according to the present invention includes a heat source device including a compressor, a heat source side heat exchanger, and an accumulator, one or a plurality of indoor units including a use side expansion device and a use side heat exchanger, and a heat source. A high-pressure liquid line and a low-pressure gas line for connecting the machine to one or a plurality of indoor units, a first on-off valve provided in the high-pressure liquid line, a compressor, a heat source side heat exchanger, a first on-off valve, A use side expansion device, a use side heat exchanger, and an accumulator are sequentially connected by a refrigerant pipe including a high-pressure liquid line and a low-pressure gas line, and a refrigerant circuit circulates through the refrigerant circuit. A pressure equalizing circuit connected to the low-pressure gas line on the suction side of the accumulator, a refrigerant leakage detection device that is disposed in the indoor unit and detects refrigerant leakage from the refrigerant circuit, and a high-pressure pressure of the refrigerant discharged from the compressor High pressure detection to detect When the refrigerant leakage is detected by the device and the refrigerant leakage detection device, the pump-down operation starts the compressor with the use side throttle device fully opened, the second on-off valve opened, and the first on-off valve closed. And a control device that starts the pump down operation when the high pressure detected by the high pressure detection device is equal to or higher than a preset pressure. The pressure equalizing recovery operation is performed in which the high-pressure liquid line is connected to the low-pressure gas line by opening the second on-off valve with the use-side throttle device fully open and the first on-off valve open.

本発明によれば、冷媒漏洩時に、冷媒密度の高い高圧液ラインの圧力を速やかに低下させ、大気圧との差圧を迅速に小さくすることで、熱源機側への冷媒回収時間の短縮及び冷媒漏れ量の低減を達成できる。   According to the present invention, when the refrigerant leaks, the pressure of the high-pressure liquid line having a high refrigerant density is quickly reduced, and the pressure difference from the atmospheric pressure is quickly reduced, thereby shortening the refrigerant recovery time to the heat source machine side and Reduction of refrigerant leakage can be achieved.

本発明の実施の形態1の冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. 室内機が熱源機よりも高位置にある場合の説明図である。It is explanatory drawing when an indoor unit is in a higher position than a heat source unit. 図1の冷凍空調装置の漏洩検知時の動作を示す制御フローチャートである。It is a control flowchart which shows the operation | movement at the time of the leak detection of the refrigeration air conditioner of FIG. 均圧回収運転を行ってからポンプダウン運転を行った場合と直ちにポンプダウン運転を行った場合との冷媒漏れ量を比較した結果を示す図である。It is a figure which shows the result of having compared the refrigerant | coolant leakage amount with the case where a pump down operation is performed after performing a pressure equalization collection | recovery operation, and the case where a pump down operation is performed immediately. 本発明の実施の形態2の冷凍空調装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating air-conditioning apparatus of Embodiment 2 of this invention. 図5の冷凍空調装置の漏洩検知時の動作を示す制御フローチャートである。It is a control flowchart which shows the operation | movement at the time of the leak detection of the refrigeration air conditioner of FIG. 本発明の実施の形態3の冷凍空調装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating and air-conditioning apparatus of Embodiment 3 of this invention. 図7の冷凍空調装置の漏洩検知時の動作を示す制御フローチャートである。It is a control flowchart which shows the operation | movement at the time of the leak detection of the refrigeration air conditioner of FIG. 本発明の実施の形態4の冷凍空調装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating air-conditioning apparatus of Embodiment 4 of this invention. 図9の冷凍空調装置の冷房運転時のp−h線図である。FIG. 10 is a ph diagram during cooling operation of the refrigerating and air-conditioning apparatus of FIG. 9. 本発明の実施の形態5の冷凍空調システムの構成を示す図である。It is a figure which shows the structure of the refrigerating air conditioning system of Embodiment 5 of this invention. 図11の冷凍空調システムが配置された空調エリアを上から見た配置図である。It is the layout which looked at the air-conditioning area where the refrigeration air-conditioning system of FIG. 11 was arrange | positioned from the top. エリア登録情報を示す図である。It is a figure which shows area registration information. 図11の冷凍空調システムの漏洩検知時の動作を示す制御フローチャートである。It is a control flowchart which shows the operation | movement at the time of the leak detection of the refrigeration air conditioning system of FIG. 図11の冷凍空調システムの漏洩検知時の別の動作例を示す制御フローチャートである。It is a control flowchart which shows another example of operation at the time of the leak detection of the refrigeration air conditioning system of FIG. 本発明の実施の形態6に係る冷凍空調装置の室内機の概略断面図である。It is a schematic sectional drawing of the indoor unit of the refrigeration air conditioning apparatus which concerns on Embodiment 6 of this invention. (a)は、本発明の実施の形態6に係る冷凍空調装置の室内機における、風向・風量制御の説明図、(b)は、比較例として従来の風向制御を示した図である。(A) is explanatory drawing of the wind direction and air volume control in the indoor unit of the refrigerating and air-conditioning apparatus concerning Embodiment 6 of this invention, (b) is the figure which showed the conventional wind direction control as a comparative example. 本発明の実施の形態7の冷凍空調装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating air-conditioning apparatus of Embodiment 7 of this invention. 図18の冷凍空調装置のポンプダウン運転時の動作を示す制御フローチャートである。It is a control flowchart which shows the operation | movement at the time of the pump down driving | operation of the refrigeration air conditioner of FIG. 本発明の実施の形態8の冷凍空調装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating air-conditioning apparatus of Embodiment 8 of this invention. 図20の冷凍空調装置のポンプダウン運転時の動作を示す制御フローチャートである。It is a control flowchart which shows the operation | movement at the time of the pump down driving | operation of the refrigeration air conditioner of FIG.

実施の形態1.
図1は、本発明の実施の形態1の冷凍空調装置の冷媒回路図である。図1及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. In FIG. 1 and the drawings to be described later, the same reference numerals denote the same or corresponding parts, which are common throughout the entire specification.

冷凍空調装置は、熱源機Aと室内機Bとを備え、熱源機Aと室内機Bとが液ライン10a及びガスライン10bで接続されている。なお、図1には、室内機Bが2台接続された構成を示しているが、接続台数は1台でもよいし、更に複数台としてもよい。   The refrigeration air conditioner includes a heat source unit A and an indoor unit B, and the heat source unit A and the indoor unit B are connected by a liquid line 10a and a gas line 10b. Although FIG. 1 shows a configuration in which two indoor units B are connected, the number of connected units may be one or more.

冷凍空調装置は、圧縮機1、四方弁2、熱源側熱交換器3、液ライン側開閉弁7、開度可変の絞り装置としての利用側膨張弁102、利用側熱交換器101及び圧縮機1の吸入側に位置して余剰冷媒を溜めるアキュムレータ4が順次配管で接続されて冷媒が循環する1系統の冷媒回路を備えている。冷媒回路は更に、熱源側熱交換器3と利用側膨張弁102との間の液ライン10aから分岐し、均圧側開閉弁6を介してアキュムレータ4の吸入側に接続される均圧回路5を備えている。なお、冷媒回路を循環する冷媒の圧力は、アキュムレータ4の吸入側が最も低く、圧縮機1の吐出側が最も高い。よって、以下の説明では、アキュムレータ4の吸入側の圧力を低圧、圧縮機1の吐出側の圧力を高圧、低圧と高圧の間の圧力を中圧と言う。   The refrigerating and air-conditioning apparatus includes a compressor 1, a four-way valve 2, a heat source side heat exchanger 3, a liquid line side opening / closing valve 7, a use side expansion valve 102 as a variable opening device, a use side heat exchanger 101, and a compressor. An accumulator 4 that is located on the suction side of 1 and stores excess refrigerant is sequentially connected by a pipe, and is provided with a single refrigerant circuit in which the refrigerant circulates. The refrigerant circuit further includes a pressure equalization circuit 5 that branches from a liquid line 10 a between the heat source side heat exchanger 3 and the use side expansion valve 102 and is connected to the suction side of the accumulator 4 via the pressure equalization side opening / closing valve 6. I have. Note that the pressure of the refrigerant circulating in the refrigerant circuit is lowest on the suction side of the accumulator 4 and highest on the discharge side of the compressor 1. Therefore, in the following description, the pressure on the suction side of the accumulator 4 is referred to as low pressure, the pressure on the discharge side of the compressor 1 is referred to as high pressure, and the pressure between the low pressure and high pressure is referred to as medium pressure.

そして、圧縮機1、四方弁2、熱源側熱交換器3、液ライン側開閉弁7、均圧側開閉弁6を備えた均圧回路5及びアキュムレータ4が熱源機Aに設置され、利用側熱交換器101及び利用側膨張弁102が室内機Bに設置されている。室内機Bには更に、利用側熱交換器101に空気を送風する利用側送風機(図示せず)と、冷媒漏洩検知装置103と、室内機Bを構成する各部の動作を制御する室内機側制御装置500Bとを備えている。   Then, the compressor 1, the four-way valve 2, the heat source side heat exchanger 3, the liquid line side on / off valve 7, the pressure equalizing side on / off valve 6 and the accumulator 4 are installed in the heat source unit A, and the use side heat The exchanger 101 and the use side expansion valve 102 are installed in the indoor unit B. The indoor unit B further includes a usage-side blower (not shown) that blows air to the usage-side heat exchanger 101, a refrigerant leakage detection device 103, and an indoor unit side that controls the operation of each part constituting the indoor unit B. And a control device 500B.

熱源機Aには更に、熱源側熱交換器3に空気を送風する熱源側送風機(図示せず)と、圧縮機1から吐出する冷媒の高圧圧力を検知する高圧圧力検知装置11と、熱源機Aを構成する各部の動作を制御する熱源機側制御装置500Aとを備えている。高圧圧力検知装置11は、圧力センサーを用いてもよいし、その他の手段として冷媒温度を飽和圧力に換算して圧力を求めるようにしてもよい。また、液ライン側開閉弁7はここでは熱源機A内に設けているが、液ライン10a上に設けられていればよい。   The heat source machine A further includes a heat source side blower (not shown) for blowing air to the heat source side heat exchanger 3, a high pressure detection device 11 for detecting the high pressure of the refrigerant discharged from the compressor 1, and a heat source machine. A heat source apparatus side control device 500A for controlling the operation of each part constituting A. The high pressure detection device 11 may use a pressure sensor, or may calculate the pressure by converting the refrigerant temperature to a saturation pressure as other means. Moreover, although the liquid line side on-off valve 7 is provided in the heat source machine A here, it should just be provided on the liquid line 10a.

熱源機側制御装置500Aは、室内機側制御装置500Bとの間で通信線501を介して制御信号のやりとりを行うことができるようになっており、熱源機側制御装置500Aと室内機側制御装置500Bとによって、冷凍空調装置全体の制御を行う制御装置500が構成されている。   The heat-source-unit-side control device 500A can exchange control signals with the indoor-unit-side control device 500B via the communication line 501. The heat-source-unit-side control device 500A and the indoor-unit-side control The apparatus 500B constitutes a control apparatus 500 that controls the entire refrigeration air conditioner.

制御装置500は、冷媒漏洩検知装置103で検知した冷媒漏れや、高圧圧力検知装置11で検知した高圧圧力に基づいて、圧縮機1、利用側膨張弁102、液ライン側開閉弁7及び均圧側開閉弁6を制御し、室内機B内の冷媒を熱源機Aに回収するポンプダウン運転を行う。本実施の形態1は、冷媒回収を行うにあたり、ポンプダウン運転を行う前に、液ライン10a内の冷媒密度の高い高圧の液冷媒又は気液二相冷媒を、圧縮機1の吐出側の高圧圧力を利用して熱源機Aに速やかに回収する均圧回収運転を行う点に特徴があるが、この点については後に詳述する。   Based on the refrigerant leak detected by the refrigerant leak detecting device 103 and the high pressure detected by the high pressure detecting device 11, the control device 500 is based on the compressor 1, the use side expansion valve 102, the liquid line side opening / closing valve 7 and the pressure equalizing side. The on-off valve 6 is controlled to perform a pump-down operation for collecting the refrigerant in the indoor unit B to the heat source unit A. In the first embodiment, in performing the refrigerant recovery, the high-pressure liquid refrigerant or the gas-liquid two-phase refrigerant having a high refrigerant density in the liquid line 10a is used as the high-pressure on the discharge side of the compressor 1 before performing the pump-down operation. There is a feature in that a pressure equalizing recovery operation is performed in which the pressure is quickly recovered in the heat source machine A, which will be described in detail later.

このように構成された冷凍空調装置は、四方弁2の切り換えにより冷房運転又は暖房運転が可能となっている。なお、冷凍空調装置は少なくとも冷房運転が可能であればよく、よって、四方弁2は必ずしも必須の構成ではなく、省略可能である。   The refrigerating and air-conditioning apparatus configured as described above can be cooled or heated by switching the four-way valve 2. The refrigerating and air-conditioning apparatus is only required to be capable of at least cooling operation, and therefore the four-way valve 2 is not necessarily an essential configuration and can be omitted.

次に、冷凍空調装置の冷凍サイクルの通常運転について図1を参照して説明する。図1において、実線が冷房時の流れを示し、点線が暖房時の流れを示している。   Next, normal operation of the refrigeration cycle of the refrigeration air conditioner will be described with reference to FIG. In FIG. 1, the solid line indicates the flow during cooling, and the dotted line indicates the flow during heating.

(冷房運転)
まず、通常運転における冷房運転について説明する。冷房運転時、四方弁2は実線で示す側に切り換えられ、液ライン側開閉弁7は開状態、均圧側開閉弁6は閉状態とされる。この状態で圧縮機1から高圧高温のガス冷媒が吐出されると、その高圧高温のガス冷媒は、四方弁2を介して熱源側熱交換器3に流入し、室外空気との熱交換により放熱することで高圧液冷媒となり流出する。熱源側熱交換器3から流出した高圧液冷媒は、液ライン10a及び液ライン側開閉弁7を通過し、室内機B側の利用側膨張弁102に流入し、低圧の二相冷媒となる。
(Cooling operation)
First, the cooling operation in the normal operation will be described. During the cooling operation, the four-way valve 2 is switched to the side indicated by the solid line, the liquid line side opening / closing valve 7 is opened, and the pressure equalizing side opening / closing valve 6 is closed. When high-pressure and high-temperature gas refrigerant is discharged from the compressor 1 in this state, the high-pressure and high-temperature gas refrigerant flows into the heat source side heat exchanger 3 through the four-way valve 2 and dissipates heat by heat exchange with outdoor air. As a result, it becomes high-pressure liquid refrigerant and flows out. The high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 3 passes through the liquid line 10a and the liquid line-side on / off valve 7, flows into the use-side expansion valve 102 on the indoor unit B side, and becomes a low-pressure two-phase refrigerant.

利用側膨張弁102を流出した低圧二相冷媒は、利用側熱交換器101に流入し、利用側熱交換器101で室内空気と熱交換して蒸発し、低圧ガス冷媒となって流出する。利用側熱交換器101を流出した低圧ガス冷媒は、ガスライン10bを通過して熱源機Aへ流入し、四方弁2及びアキュムレータ4を介して、最終的に圧縮機1へ戻る。なお、冷房運転時、均圧側開閉弁6は閉状態のため、均圧回路5に冷媒が流入することはない。   The low-pressure two-phase refrigerant that has flowed out of the use-side expansion valve 102 flows into the use-side heat exchanger 101, evaporates by exchanging heat with indoor air in the use-side heat exchanger 101, and flows out as low-pressure gas refrigerant. The low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 101 passes through the gas line 10 b and flows into the heat source apparatus A, and finally returns to the compressor 1 through the four-way valve 2 and the accumulator 4. During the cooling operation, the pressure equalization side opening / closing valve 6 is in a closed state, so that no refrigerant flows into the pressure equalization circuit 5.

(暖房運転)
次に、通常運転における暖房運転について説明する。暖房運転時、四方弁2は実線で示す側に切り換えられ、液ライン側開閉弁7は開状態、均圧側開閉弁6は閉状態とされる。この状態で圧縮機1から高圧高温のガス冷媒が吐出されると、その高圧高温のガス冷媒は、四方弁2及びガスライン10bを介して室内機Bの利用側熱交換器101に流入し、室内空気との熱交換により放熱することで高圧液冷媒となり流出する。利用側熱交換器101から流出した高圧液冷媒は、利用側膨張弁102に流入し、中圧二相冷媒となる。
(Heating operation)
Next, the heating operation in the normal operation will be described. During the heating operation, the four-way valve 2 is switched to the side indicated by the solid line, the liquid line side opening / closing valve 7 is opened, and the pressure equalizing side opening / closing valve 6 is closed. When the high-pressure and high-temperature gas refrigerant is discharged from the compressor 1 in this state, the high-pressure and high-temperature gas refrigerant flows into the utilization side heat exchanger 101 of the indoor unit B through the four-way valve 2 and the gas line 10b. Dissipates heat by exchanging heat with room air and flows out as high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the use-side heat exchanger 101 flows into the use-side expansion valve 102 and becomes an intermediate-pressure two-phase refrigerant.

利用側膨張弁102を流出した中圧二相冷媒は、液ライン側開閉弁7及び液ライン10aを通過することで熱源側熱交換器3の入口付近では低圧二相冷媒となる。そして、低圧二相冷媒は、熱源側熱交換器3に流入し、室外空気との熱交換により蒸発することで低圧ガス冷媒となって流出する。熱源側熱交換器3を流出した低圧ガス冷媒は、四方弁2とアキュムレータ4を介して、最終的に圧縮機1へ戻る。なお、この暖房運転時も冷房運転時と同様、均圧側開閉弁6は閉状態のため、均圧回路5に冷媒が流入することはない。   The medium-pressure two-phase refrigerant that has flowed out of the use-side expansion valve 102 passes through the liquid line-side on-off valve 7 and the liquid line 10a, and becomes a low-pressure two-phase refrigerant in the vicinity of the inlet of the heat source side heat exchanger 3. The low-pressure two-phase refrigerant flows into the heat source side heat exchanger 3 and evaporates by heat exchange with the outdoor air to flow out as a low-pressure gas refrigerant. The low-pressure gas refrigerant that has flowed out of the heat source side heat exchanger 3 finally returns to the compressor 1 via the four-way valve 2 and the accumulator 4. Note that, during the heating operation, as in the cooling operation, the pressure equalization side opening / closing valve 6 is closed, so that the refrigerant does not flow into the pressure equalization circuit 5.

(ポンプダウン運転)
次に、ポンプダウン運転について説明する。
従来は、上述したように冷媒漏洩検知と同時に即座にポンプダウン運転を開始している。これに対し、本実施の形態1では、液ライン10a内の密度の高い冷媒を熱源機Aに回収するための均圧回収運転を行ってからポンプダウン運転を開始する点に特徴がある。なお、ポンプダウン運転そのものは、従来と同様であり、四方弁2を冷房運転側とし、利用側膨張弁102を全開にし、更に液ライン側開閉弁7を閉じて液ライン側開閉弁7以降にて冷媒の流れを遮断した状態で圧縮機1を起動する動作となる。
(Pump down operation)
Next, the pump down operation will be described.
Conventionally, as described above, the pump-down operation is started immediately upon detection of refrigerant leakage. On the other hand, the first embodiment is characterized in that the pump-down operation is started after the pressure equalizing recovery operation for recovering the high-density refrigerant in the liquid line 10a to the heat source unit A. The pump-down operation itself is the same as the conventional one, and the four-way valve 2 is set to the cooling operation side, the use-side expansion valve 102 is fully opened, the liquid line side on / off valve 7 is closed, and the liquid line side on / off valve 7 and thereafter Thus, the compressor 1 is started in a state where the refrigerant flow is blocked.

ここで、冷房運転を行っている場合、熱源側熱交換器3と利用側膨張弁102との間の液ライン10aには、冷媒密度の高い高圧の液冷媒が存在している。このように冷房運転を行っているときに冷媒漏洩が検知されて直ちにポンプダウン運転を開始した場合、液ライン10a内の高圧液冷媒は、上述したように、液ライン側開閉弁7及び利用側熱交換器101を通過してガスライン10b側に導かれ、ガスライン10bを通って熱源機Aへと回収されることになる。   Here, when the cooling operation is performed, high-pressure liquid refrigerant having a high refrigerant density exists in the liquid line 10 a between the heat source side heat exchanger 3 and the use side expansion valve 102. In this way, when the refrigerant leakage is detected during the cooling operation and the pump down operation is started immediately, the high-pressure liquid refrigerant in the liquid line 10a is, as described above, the liquid line side opening / closing valve 7 and the use side. It passes through the heat exchanger 101 and is led to the gas line 10b side, and is recovered to the heat source unit A through the gas line 10b.

ポンプダウン運転の目的は、室内機B内の冷媒を熱源機A側に回収することにあり、液ライン10a内の高密度・高圧液冷媒を熱源機A側に回収するにあたり、単純に考えれば、ガスライン10bまで導いて熱源機Aに回収するよりも、液ライン10aからそのまま直接、熱源機A側に直接回収する方が回収経路が短く、短時間に回収することができる。   The purpose of the pump-down operation is to collect the refrigerant in the indoor unit B on the heat source unit A side. If the high-density and high-pressure liquid refrigerant in the liquid line 10a is collected on the heat source unit A side, Rather than directing to the gas source 10b and recovering to the heat source unit A, recovering directly from the liquid line 10a directly to the heat source unit A has a shorter recovery path and can be recovered in a short time.

また、図2に示すように室内機Bが熱源機Aよりも高位置にあるような場合には、液ヘッド差により、液ライン10a内の高密度・高圧液冷媒をガスライン10bに導くのは困難であった。   In addition, when the indoor unit B is located higher than the heat source unit A as shown in FIG. 2, the high-density and high-pressure liquid refrigerant in the liquid line 10a is guided to the gas line 10b due to the liquid head difference. Was difficult.

また、冷媒密度の高い液冷媒を直接、液ライン10aから回収すれば、効率的な回収が可能であり、この面からも、回収時間を短時間とすることが可能である。   Further, if a liquid refrigerant having a high refrigerant density is directly recovered from the liquid line 10a, efficient recovery is possible, and also from this aspect, the recovery time can be shortened.

以上の点を踏まえ、本実施の形態1では、冷媒漏洩が検知された場合、直ちにポンプダウン運転を行うのではなく、液ライン10a内の高密度・高圧液冷媒を、液ライン10aから直接、熱源機A側に回収する均圧回収運転を行うのである。液ライン10aから直接、高密度・高圧液冷媒を熱源機A側に回収するにあたっては、均圧回路5を使用する。すなわち、均圧回路5の均圧側開閉弁6を開き、高圧の液ライン10aを低圧のガスライン10bに連通させることで、その差圧により、液ライン10aの高密度・高圧液冷媒を、均圧回路5を介してアキュムレータ4に速やかに回収するのである。この均圧回収運転の際は、圧縮機1を停止し、利用側膨張弁102を全開、均圧側開閉弁6を開とする。   Based on the above points, in the first embodiment, when refrigerant leakage is detected, the high-density / high-pressure liquid refrigerant in the liquid line 10a is not directly performed from the pump-down operation, but directly from the liquid line 10a. A pressure equalization recovery operation for recovery to the heat source machine A side is performed. The pressure equalization circuit 5 is used to recover the high-density, high-pressure liquid refrigerant directly from the liquid line 10a to the heat source unit A side. That is, the pressure equalization side open / close valve 6 of the pressure equalization circuit 5 is opened, and the high pressure liquid line 10a is communicated with the low pressure gas line 10b. It is quickly collected in the accumulator 4 via the pressure circuit 5. During this pressure equalization recovery operation, the compressor 1 is stopped, the use side expansion valve 102 is fully opened, and the pressure equalization side opening / closing valve 6 is opened.

そして、液ライン10aの液ライン高圧液冷媒が均圧回路5を介してアキュムレータ4に回収されると、液ライン10aの高圧圧力が速やかに低下していく。冷凍空調装置では、冷媒漏洩が検知されて以降、冷媒が漏れ続けており、その漏れ量は、室内機B内の冷媒配管内の冷媒圧力が高いほど、大気圧との差圧が大きいために多くなる。よって、液ライン10aの高圧圧力が速やかに低下することで、漏れ量低減に効果がある。   Then, when the liquid line high-pressure liquid refrigerant in the liquid line 10a is recovered by the accumulator 4 via the pressure equalization circuit 5, the high-pressure pressure in the liquid line 10a quickly decreases. In the refrigerating and air-conditioning apparatus, since the refrigerant leakage has been detected, the refrigerant has continued to leak, and the amount of the leakage increases because the pressure difference between the refrigerant pressure in the refrigerant pipe in the indoor unit B increases and the atmospheric pressure increases. Become more. Therefore, the high pressure in the liquid line 10a is quickly reduced, which is effective in reducing the amount of leakage.

ところで、以上の説明では、冷房運転を行っていた場合の均圧回収について説明したが、暖房運転を行っていた場合には、液ライン10aは中圧となり、液ライン10a内部には中圧の二相冷媒が存在している。この場合、冷房運転を行っていた場合と比べて、液ライン10aとガスライン10bとの間には十分な差圧が得られない。しかし、均圧回収運転では上述したように利用側膨張弁102を全開にするため、ガスライン10b内の高圧ガス冷媒により液ライン10aは一時的に高圧と中圧の均圧状態となる。よって、冷房運転を行っていた場合と同様に、液ライン10a内の気液二相冷媒を、均圧回路5によりアキュムレータ4に速やかに回収することができる。よって、冷媒漏洩検知時に冷房運転を行っていた場合も暖房運転を行っていた場合も、結局のところ、圧縮機1の高圧圧力とアキュムレータ4の吸入側の低圧圧力との差圧が十分にあれば、均圧回収運転により速やかに熱源機Aに冷媒を回収できるのである。   By the way, in the above explanation, although the pressure equalization collection | recovery at the time of air_conditionaing | cooling operation was demonstrated, when heating operation was performed, the liquid line 10a becomes medium pressure, and the inside of the liquid line 10a has medium pressure. Two-phase refrigerant is present. In this case, a sufficient differential pressure cannot be obtained between the liquid line 10a and the gas line 10b as compared with the case where the cooling operation is performed. However, in the pressure equalization recovery operation, as described above, since the use side expansion valve 102 is fully opened, the high pressure gas refrigerant in the gas line 10b temporarily brings the liquid line 10a into a pressure equalized state between high pressure and medium pressure. Therefore, the gas-liquid two-phase refrigerant in the liquid line 10 a can be quickly collected in the accumulator 4 by the pressure equalizing circuit 5 as in the case of performing the cooling operation. Therefore, even when the cooling operation is performed at the time of detecting the refrigerant leak and the heating operation is performed, the difference between the high pressure of the compressor 1 and the low pressure on the suction side of the accumulator 4 is sufficient after all. For example, the refrigerant can be quickly recovered in the heat source unit A by the pressure equalization recovery operation.

なお、圧縮機1の吐出側の高圧圧力とアキュムレータ4の吸入側の低圧圧力との差圧が小さい場合には、ポンプダウン運転を行う前に均圧回収運転を行うよりも、従来と同様に直ちにポンプダウン運転を行った方が短時間に冷媒回収を行える。よって、本実施の形態1では、高圧圧力検知装置11により検知された高圧圧力が予め設定した設定圧力Px以上か否かによって運転を切り分けるようにしている。以下、フローチャートを参照して具体的な制御の流れについて説明する。   In the case where the differential pressure between the high pressure on the discharge side of the compressor 1 and the low pressure on the suction side of the accumulator 4 is small, it is the same as in the prior art rather than performing the pressure equalization recovery operation before the pump down operation. If the pump down operation is performed immediately, the refrigerant can be recovered in a short time. Therefore, in the first embodiment, the operation is divided depending on whether or not the high pressure detected by the high pressure detector 11 is equal to or higher than a preset pressure Px. Hereinafter, a specific control flow will be described with reference to a flowchart.

(冷凍空調装置の漏洩検知時の動作)
図3は、図1の冷凍空調装置の漏洩検知時の動作を示す制御フローチャートである。図3により、通常運転中に冷媒漏洩検知してポンプダウン運転へ切り換えるまでの制御動作を説明する。なお、ポンプダウン運転は四方弁2を冷房運転側に切り換えて行う点は上述の通りであるが、その切り換えタイミングは以下の説明では省略するが、ポンプダウン運転開始前の適宜タイミングで切り換えればよい(元々冷房運転側に切り換えられていた場合には、そのままとすればよい)。
冷凍空調装置が通常運転(冷房運転又は暖房運転)中、室内機Bにて冷媒漏洩が発生すると、冷媒漏洩検知装置103は、それを検知し(S1)、冷媒漏洩検知信号を室内機Bの室内機側制御装置500Bに送信する(S2)。室内機側制御装置500Bは、冷媒漏洩検知装置103から検知信号を受信すると、室内機Bで冷媒漏れが発生した旨の冷媒漏洩検知信号を熱源機Aの熱源機側制御装置500Aに送信する(S3)。
(Operation when refrigeration air conditioner leak detection)
FIG. 3 is a control flowchart showing an operation at the time of leakage detection of the refrigeration air conditioner of FIG. With reference to FIG. 3, the control operation until the refrigerant leakage is detected during the normal operation and the operation is switched to the pump down operation will be described. Although the pump down operation is performed by switching the four-way valve 2 to the cooling operation side as described above, the switching timing is omitted in the following description, but if it is switched at an appropriate timing before the pump down operation is started. Good (if it was originally switched to the cooling operation side, it can be left as it is).
When the refrigerant leakage occurs in the indoor unit B during the normal operation (cooling operation or heating operation) of the refrigeration air conditioner, the refrigerant leakage detection device 103 detects it (S1) and sends a refrigerant leakage detection signal to the indoor unit B. It transmits to the indoor unit side control apparatus 500B (S2). When the indoor unit side control device 500B receives the detection signal from the refrigerant leak detection device 103, the indoor unit side control device 500B transmits a refrigerant leak detection signal indicating that the refrigerant leak has occurred in the indoor unit B to the heat source unit side control device 500A of the heat source unit A ( S3).

熱源機側制御装置500Aは、室内機側制御装置500Bからの冷媒漏洩検知信号を受信すると、液ライン10aの高圧圧力Pdが予め設定した設定圧力Px以上か否かをチェックする。高圧圧力検知装置11により検知された高圧圧力Pdが予め設定した設定圧力Px以上か否かをチェックし(S4)、高圧圧力Pdが設定圧力Px以上の場合、上述した均圧回収運転を行う(S5)。すなわち、圧縮機1を停止し、利用側膨張弁102を全開状態、液ライン側開閉弁7を開状態のまま、均圧側開閉弁6を開状態とする。これにより、上述したように液ライン10a内の高密度・高圧液冷媒(冷媒漏洩検知時に冷房運転を行っていた場合)又は高密度・中圧二相冷媒(冷媒漏洩検知時に暖房運転を行っていた場合)が液ライン10aから速やかに熱源機Aへと回収される。   When receiving the refrigerant leakage detection signal from the indoor unit side control device 500B, the heat source device side control device 500A checks whether or not the high pressure Pd of the liquid line 10a is equal to or higher than a preset set pressure Px. It is checked whether or not the high pressure Pd detected by the high pressure detector 11 is equal to or higher than a preset pressure Px (S4). If the high pressure Pd is equal to or higher than the preset pressure Px, the above-described equalization recovery operation is performed ( S5). That is, the compressor 1 is stopped, the use side expansion valve 102 is fully opened, the liquid line side opening / closing valve 7 is opened, and the pressure equalizing side opening / closing valve 6 is opened. Thus, as described above, the high-density / high-pressure liquid refrigerant in the liquid line 10a (when cooling operation is performed when refrigerant leakage is detected) or the high-density / medium-pressure two-phase refrigerant (heating operation is performed when refrigerant leakage is detected). Is quickly recovered from the liquid line 10a to the heat source unit A.

このステップS5の均圧回収運転を高圧圧力Pdが設定圧力Pxよりも低くなるまで継続し(S6)、高圧圧力Pdが設定圧力Pxよりも低くなると、ポンプダウン運転に移行する(S7)。すなわち、液ライン側開閉弁7を閉状態、利用側膨張弁102を全開状態、均圧側開閉弁6を開状態のまま圧縮機1を起動する。液ライン側開閉弁7を閉状態とすることにより、液ライン10aが熱源機Aと室内機Bとの間で遮断されるため、室内機B内の冷媒は、専らガスライン10bから熱源機Aへと回収される。なお、ステップS4において高圧圧力Pdが設定圧力Px未満と判断された場合には、均圧回収運転を行わずに直ちにポンプダウン運転を行う。   The pressure equalization recovery operation in step S5 is continued until the high pressure Pd becomes lower than the set pressure Px (S6). When the high pressure Pd becomes lower than the set pressure Px, the operation proceeds to the pump down operation (S7). That is, the compressor 1 is started with the liquid line side opening / closing valve 7 closed, the use side expansion valve 102 fully opened, and the pressure equalization side opening / closing valve 6 open. Since the liquid line 10a is shut off between the heat source unit A and the indoor unit B by closing the liquid line side opening / closing valve 7, the refrigerant in the indoor unit B is exclusively supplied from the gas line 10b to the heat source unit A. It is recovered. When it is determined in step S4 that the high pressure Pd is less than the set pressure Px, the pump-down operation is immediately performed without performing the pressure equalization recovery operation.

ここで、冷媒漏洩検知時に高圧圧力Pdが設定圧力Px以上の場合に、均圧回収運転を行ってからポンプダウン運転を行った場合と直ちにポンプダウン運転を行った場合との冷媒漏れ量を比較した結果を図4に示す。図4において横軸は時間、縦軸は漏れ量を示している。そして、図4において実線aは均圧回収運転を行ってからポンプダウン運転を行った場合、点線bは直ちにポンプダウン運転を行った場合を示している。   Here, when the high pressure Pd is equal to or higher than the set pressure Px when refrigerant leakage is detected, the refrigerant leakage amount is compared between the case where the pump-down operation is performed after performing the pressure equalization recovery operation and the case where the pump-down operation is performed immediately. The results are shown in FIG. In FIG. 4, the horizontal axis indicates time, and the vertical axis indicates the amount of leakage. In FIG. 4, a solid line a indicates a case where the pump-down operation is performed after the pressure equalization recovery operation, and a dotted line b indicates a case where the pump-down operation is performed immediately.

図4から明らかなように、均圧回収運転を行った場合、直ちにポンプダウン運転を行う場合に比べて漏れ量を速やかに低減することができている。そして、その後、ポンプダウン運転を行って回収が完了する時間T0は、直ちにポンプダウン運転を開始した場合の回収完了時間T1に比べて短くなっている。漏れ量は、横軸及び縦軸と実線a又は点線bで囲まれる面積で表され、図4から明らかなように、均圧回収運転を行ってからポンプダウン運転を行った場合の冷媒漏れ量の方が少なくなっている。   As is apparent from FIG. 4, when the pressure equalization recovery operation is performed, the amount of leakage can be reduced more quickly than when the pump down operation is performed immediately. After that, the time T0 for completing the recovery by performing the pump-down operation is shorter than the time T1 for completing the recovery immediately when the pump-down operation is started. The amount of leakage is represented by the area surrounded by the horizontal and vertical axes and the solid line a or dotted line b. As is apparent from FIG. 4, the amount of refrigerant leakage when the pump-down operation is performed after the pressure equalization recovery operation is performed. Is less.

以上説明したように本実施の形態1によれば、冷媒漏洩検知時において高圧圧力Pdが設定圧力Px以上の場合、まずは均圧回収運転を行い、高圧又は中圧の液ライン10aを低圧圧力であるガスライン10bに連通させるようにしたので、液ライン10a内の冷媒密度の高い冷媒を液ライン10aから直接、熱源機A側に速やかに回収することができる。その結果、高圧液ライン10a(冷房運転時)又は高圧ガスライン10b(暖房運転時)の圧力を速やかに低下させることができ、室内機B内の高圧圧力と大気圧との圧力差を低下させることができるため、冷媒漏れを最大限に抑制できる効果がある。また、冷媒密度が高い液冷媒を速やかに回収できることで、効率の良い回収を行うことができる。   As described above, according to the first embodiment, when the high pressure Pd is equal to or higher than the set pressure Px at the time of refrigerant leakage detection, first, the pressure equalization recovery operation is performed, and the high or medium pressure liquid line 10a is set to the low pressure. Since it is made to communicate with a certain gas line 10b, the refrigerant with high refrigerant density in the liquid line 10a can be quickly recovered directly from the liquid line 10a to the heat source unit A side. As a result, the pressure in the high-pressure liquid line 10a (during cooling operation) or the high-pressure gas line 10b (during heating operation) can be quickly reduced, and the pressure difference between the high-pressure pressure in the indoor unit B and atmospheric pressure is reduced. Therefore, the refrigerant leakage can be suppressed to the maximum. In addition, since liquid refrigerant having a high refrigerant density can be quickly recovered, efficient recovery can be performed.

実施の形態2.
実施の形態1では、一般的な冷凍空調装置について述べたが、実施の形態2では、複数の熱源機を組み合わせて、大容量の冷凍空調装置を構成する場合における冷媒漏洩検知時の冷媒回収について説明する。
Embodiment 2. FIG.
In the first embodiment, a general refrigeration air conditioner has been described. In the second embodiment, refrigerant recovery at the time of refrigerant leakage detection in a case where a large-capacity refrigeration air conditioner is configured by combining a plurality of heat source devices. explain.

熱源機を複数組み合わせる場合、冷媒回路内の冷媒量も大量となり、単一熱源機だけでポンプダウン回収できる量ではなく、全ての熱源機で分散して回収する必要がある。しかし、従来の一般的なポンプダウン運転では、それぞれの熱源機を順次起動としているため、先発起動の熱源機に冷媒が集中し、アキュムレータがオーバーフローして液バックしたり、熱源機の熱源側熱交換器での過冷却度が大きくなり過ぎて高圧が過昇したりして、冷媒回収が完了する前にポンプダウン運転を中断してしまい、漏洩量を十分に抑制できなくなる問題があった。   When a plurality of heat source devices are combined, the amount of refrigerant in the refrigerant circuit becomes large, and it is necessary to disperse and collect all the heat source devices, not the amount that can be recovered by pumping down with only a single heat source device. However, in the conventional general pump-down operation, since each heat source unit is started sequentially, the refrigerant concentrates on the heat source unit that was started first, and the accumulator overflows to liquid back, or the heat source side heat of the heat source unit There is a problem that the degree of supercooling in the exchanger becomes excessively high and the high pressure increases excessively, and the pump-down operation is interrupted before the refrigerant recovery is completed, so that the amount of leakage cannot be sufficiently suppressed.

そこで、実施の形態2の冷凍空調装置では、複数の熱源機を組み合わせて大容量の熱源機を構成する冷凍空調装置において、ポンプダウン運転中に異常で中断することのない、信頼性の高い冷凍空調装置を得るものである。   Therefore, in the refrigeration air conditioner of the second embodiment, in the refrigeration air conditioner that constitutes a large capacity heat source unit by combining a plurality of heat source units, a highly reliable refrigeration that is not interrupted abnormally during the pump down operation. An air conditioner is obtained.

図5は、本発明の実施の形態2の冷凍空調装置の冷媒回路図である。
実施の形態2の冷凍空調装置は、実施の形態1の冷凍空調装置において熱源機Aを複数台(ここでは2台)組み合わせた構成であり、更に詳しくは、同一容量の熱源機Aを並列に接続した構成を有している。また、複数の熱源機Aのそれぞれから液ライン10a及びガスライン10bが延びており、各液ライン10aを合流するメイン液ライン11aと、各ガスライン10bを合流するメインガスライン11bとの間に、複数の室内機Bが並列に接続されている。熱源機A及び室内機Bの構成自体は実施の形態1と同様である。冷媒回路内の冷房運転、暖房運転、均圧回収運転及びポンプダウン運転のそれぞれの運転中の冷媒の流れについても、基本的に実施の形態1と同様である。
FIG. 5 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
The refrigerating and air-conditioning apparatus according to the second embodiment has a configuration in which a plurality of heat source devices A (two in this case) are combined in the refrigerating and air-conditioning apparatus according to the first embodiment. It has a connected configuration. In addition, a liquid line 10a and a gas line 10b extend from each of the plurality of heat source devices A, and between the main liquid line 11a that joins the liquid lines 10a and the main gas line 11b that joins the gas lines 10b. A plurality of indoor units B are connected in parallel. The configuration itself of the heat source unit A and the indoor unit B is the same as that of the first embodiment. The refrigerant flow during each of the cooling operation, heating operation, pressure equalization recovery operation, and pump-down operation in the refrigerant circuit is basically the same as in the first embodiment.

図6は、図5の冷凍空調装置の漏洩検知時の動作を示す制御フローチャートである。図6により、通常運転中に冷媒漏洩検知してポンプダウン運転へ切り換えるまでの制御動作を説明する。
冷凍空調装置が通常運転(冷房運転又は暖房運転)中、室内機Bにて冷媒漏洩が発生すると、冷媒漏洩検知装置103は、それを検知し(S11)、自己が設置された室内機Bの室内機側制御装置500Bに冷媒漏洩検知信号を送信する(S12)。室内機側制御装置500Bは、冷媒漏洩検知装置103から検知信号を受信すると、室内機Bで冷媒漏れが発生した旨の冷媒漏洩検知信号を熱源機Aの熱源機側制御装置500Aに送信する(S13)。
FIG. 6 is a control flowchart showing an operation at the time of leakage detection of the refrigeration air conditioner of FIG. With reference to FIG. 6, the control operation from when refrigerant leakage is detected during normal operation until switching to pump-down operation will be described.
When the refrigerant leakage occurs in the indoor unit B during the normal operation (cooling operation or heating operation) of the refrigeration air conditioner, the refrigerant leakage detection device 103 detects this (S11), and the self-installed indoor unit B A refrigerant leak detection signal is transmitted to the indoor unit side controller 500B (S12). When the indoor unit side control device 500B receives the detection signal from the refrigerant leak detection device 103, the indoor unit side control device 500B transmits a refrigerant leak detection signal indicating that the refrigerant leak has occurred in the indoor unit B to the heat source unit side control device 500A of the heat source unit A ( S13).

熱源機側制御装置500Aを含む制御装置500は、室内機側制御装置500Bからの冷媒漏洩検知信号を受信すると、各高圧圧力検知装置11によりそれぞれ検知された高圧圧力Pdが予め設定した設定圧力Px以上か否かをチェックし(S14)、少なくとも一つの高圧圧力Pdが設定圧力Px以上の場合、上述した均圧回収運転を行う(S15)。すなわち、複数の熱源機Aの全ての圧縮機1を停止し、全利用側膨張弁102を全開にすると同時に、複数の熱源機Aの全ての液ライン側開閉弁7を開状態としたまま、複数の熱源機Aの全ての均圧側開閉弁6を同時に開とする。これにより、メイン液ライン11a及び各液ライン10a内の高密度・高圧液冷媒(冷媒漏洩検知時に冷房運転を行っていた場合)又は高密度・中圧二相冷媒(冷媒漏洩検知時に暖房運転を行っていた場合)が各液ライン10aから直接速やかに各熱源機Aへと分散して回収される。   When the control device 500 including the heat source device side control device 500A receives the refrigerant leakage detection signal from the indoor unit side control device 500B, the high pressure Pd detected by each high pressure detection device 11 is set to the preset pressure Px. It is checked whether or not it is above (S14), and if at least one high pressure Pd is equal to or higher than the set pressure Px, the above-described equalization recovery operation is performed (S15). That is, all the compressors 1 of the plurality of heat source devices A are stopped, all the use side expansion valves 102 are fully opened, and at the same time, all the liquid line side on-off valves 7 of the plurality of heat source devices A are left open. All the pressure equalization side opening / closing valves 6 of the plurality of heat source units A are opened simultaneously. As a result, high-density and high-pressure liquid refrigerant in the main liquid line 11a and each liquid line 10a (when cooling operation is performed when refrigerant leakage is detected) or high-density and medium-pressure two-phase refrigerant (when heating is detected when refrigerant leakage is detected) (If it has been done) is quickly dispersed from each liquid line 10a directly to each heat source machine A and collected.

このステップS15の均圧回収運転を高圧圧力Pdが設定圧力Pxよりも低くなるまで継続し(S16)、高圧圧力Pdが設定圧力Pxよりも低くなると、ポンプダウン運転に移行する(S17)。すなわち、各液ライン側開閉弁7を同時に閉状態、全利用側膨張弁102を全開状態、各均圧側開閉弁6を開状態としたまま(各均圧側開閉弁6は通常運転中は閉じているため、均圧回収運転を経ずに直接ポンプダウン運転を開始する場合は、均圧側開閉弁6を同時に開状態にする)、全ての熱源機Aの圧縮機1を同時に起動させる。これにより、各室内機B内の冷媒が各熱源機Aに分散して回収される。なお、ステップS14において高圧圧力Pdが設定圧力Px未満と判断された場合には、均圧回収運転を行わずに直ちにポンプダウン運転を行う。   The pressure equalization recovery operation in step S15 is continued until the high pressure Pd becomes lower than the set pressure Px (S16), and when the high pressure Pd becomes lower than the set pressure Px, the operation proceeds to the pump down operation (S17). That is, the liquid line side opening / closing valves 7 are closed at the same time, the full use side expansion valve 102 is fully opened, and the pressure equalization side opening / closing valves 6 are opened (the pressure equalization side opening / closing valves 6 are closed during normal operation). Therefore, when starting the pump down operation directly without going through the pressure equalization recovery operation, the pressure equalization side opening / closing valves 6 are simultaneously opened), and the compressors 1 of all the heat source devices A are started simultaneously. Thereby, the refrigerant in each indoor unit B is dispersed and collected in each heat source unit A. When it is determined in step S14 that the high pressure Pd is less than the set pressure Px, the pump-down operation is immediately performed without performing the pressure equalization recovery operation.

以上説明したように、本実施の形態2によれば、実施の形態1と同様の効果が得られると共に、均圧回収運転において各熱源機Aの均圧側開閉弁6を同時に開とすることで、各熱源機Aへの回収量のアンバランスを抑制できる。よって、片側のみへ冷媒が集中して、ポンプダウン運転時に圧縮機1へ液バックし、圧縮機1が損傷する不都合を回避することができる。   As described above, according to the second embodiment, the same effects as those of the first embodiment can be obtained, and the pressure equalization side opening / closing valves 6 of the heat source devices A can be simultaneously opened in the pressure equalization recovery operation. And the unbalance of the collection amount to each heat source machine A can be suppressed. Therefore, it is possible to avoid the inconvenience that the refrigerant concentrates only on one side and liquids back to the compressor 1 during the pump-down operation, and the compressor 1 is damaged.

更に、ポンプダウン運転時に各熱源機Aの圧縮機1を同時に起動させることで、順次起動させる場合に比べてより速やかに冷媒回収することが可能となり、また熱源機Aへの回収量のアンバランスを抑制でき、片側のみへ冷媒が集中することによる圧縮機1へ液バックを回避することができる。   Furthermore, by simultaneously starting the compressors 1 of the heat source devices A during the pump down operation, it becomes possible to recover the refrigerant more quickly than when sequentially starting them, and the amount of recovery to the heat source device A is unbalanced. The liquid back to the compressor 1 due to the concentration of the refrigerant on only one side can be avoided.

このように、圧縮機1への液バックを回避できるため、ポンプダウン運転中に異常で中断することがなく、迅速に冷媒回収を完了して機外への冷媒漏洩を抑制することのできる冷凍空調装置を得ることができる。   Thus, since the liquid back to the compressor 1 can be avoided, the refrigeration that can quickly complete the refrigerant recovery and suppress the leakage of the refrigerant outside the apparatus without being interrupted by an abnormality during the pump-down operation. An air conditioner can be obtained.

実施の形態3.
実施の形態2では、同一容量の複数の熱源機を組み合わせて大容量の冷凍空調装置を構成する場合について述べたが、実施の形態3では互いに異容量の熱源機Aを複数組み合わせて、大容量の冷凍空調装置を構成する場合における冷媒漏洩検知時の冷媒回収について説明する。
Embodiment 3 FIG.
In the second embodiment, the case where a large-capacity refrigeration and air-conditioning apparatus is configured by combining a plurality of heat source apparatuses having the same capacity has been described. In the third embodiment, a plurality of heat source apparatuses A having different capacities are combined to generate a large capacity. Refrigerant recovery at the time of refrigerant leakage detection in the case of configuring the refrigerating and air-conditioning apparatus will be described.

図7は、本発明の実施の形態3の冷凍空調装置の冷媒回路図である。
実施の形態3の冷凍空調装置は、基本的な冷媒回路構成は実施の形態2と同様であり、実施の形態2との相違点は、上述したように各熱源機Aの容量が互いに異容量である点である。なお、異容量の熱源機とは、熱源側熱交換器3又はアキュムレータ4の少なくとも一方の容量が異なっている熱源機であり、ここでは、熱源側熱交換器3とアキュムレータ4の両方の容量が大きい方を熱源機A1、小さい方を熱源機A2としている。なお、当然のことながら、容量が大きい熱源機A1の方が、熱源機A2に比べて冷媒回収時に多くの冷媒を貯留することができる。冷媒回路内の冷房運転、暖房運転、均圧回収運転及びポンプダウン運転のそれぞれの運転中の冷媒の流れについては、基本的に実施の形態1と同様である。
FIG. 7 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
The refrigerating and air-conditioning apparatus of the third embodiment has the same basic refrigerant circuit configuration as that of the second embodiment. The difference from the second embodiment is that the capacities of the heat source devices A are different from each other as described above. It is a point. The heat sources having different capacities are heat source machines in which at least one of the capacities of the heat source side heat exchanger 3 or the accumulator 4 is different. Here, the capacities of both the heat source side heat exchanger 3 and the accumulator 4 are The larger one is the heat source machine A1, and the smaller one is the heat source machine A2. As a matter of course, the heat source machine A1 having a larger capacity can store more refrigerant at the time of refrigerant recovery than the heat source machine A2. The refrigerant flow during each of the cooling operation, heating operation, pressure equalization recovery operation, and pump-down operation in the refrigerant circuit is basically the same as in the first embodiment.

ところで、熱源機Aを複数備えた構成の場合の均圧回収運転として、実施の形態2では、各熱源機Aの容量が同じであるため、全ての熱源機Aで同時に均圧回収運転を行うようにしていた。しかし、実施の形態3では、各熱源機Aの容量が互いに異なるため、複数の熱源機Aのうち、予め設定した熱源機Aから強制的に行うようにする。以下、予め設定した熱源機Aを先行熱源機Aと言う。   By the way, as a pressure equalization recovery operation in the case of a configuration including a plurality of heat source devices A, in Embodiment 2, since the capacities of the heat source devices A are the same, the pressure equalization recovery operation is simultaneously performed in all the heat source devices A. It was like that. However, in Embodiment 3, since the capacity | capacitance of each heat source machine A mutually differs, it is made to forcibly carry out from the heat source machine A preset among several heat source machines A. FIG. Hereinafter, the preset heat source machine A is referred to as a preceding heat source machine A.

複数の熱源機Aで同時に均圧回収運転を行った場合、室内機B内の冷媒が各熱源機Aで均等に分配されるかというと、必ずしもそういうわけではなく、配管の設置等の物理的な要件の影響を受ける。よって、均圧回収運転時に容量の小さい熱源機A2側へ冷媒が集中してしまう可能性が否定できない。容量の小さい熱源機A2側へ冷媒が集中してしまうと、ポンプダウン運転に移行した際に、圧縮機1への液バックが生じてしまう。よって、自然任せにせず、予め設定した熱源機Aから均圧回収運転を行うようにしている。   When the pressure equalization recovery operation is performed simultaneously with a plurality of heat source units A, whether or not the refrigerant in the indoor unit B is evenly distributed among the heat source units A is not necessarily so. Affected by various requirements. Therefore, it cannot be denied that the refrigerant may concentrate on the heat source unit A2 having a small capacity during the pressure equalization recovery operation. If the refrigerant concentrates on the heat source device A2 having a small capacity, liquid back to the compressor 1 occurs when the pump down operation is performed. Therefore, the pressure equalization recovery operation is performed from the preset heat source machine A without leaving it to nature.

複数の熱源機Aのうち、どの熱源機Aを先行熱源機Aとするかは、必ずしも限定するものではないが、以下では容量が大きい熱源機A1を先行熱源機とする。また、ポンプダウン運転についても先行熱源機(ここでは容量の大きい熱源機A1)から行うものとする。先行熱源機Aは制御装置500に予め設定されている。   Of the plurality of heat source machines A, which heat source machine A is used as the preceding heat source machine A is not necessarily limited, but in the following, the heat source machine A1 having a large capacity is referred to as the preceding heat source machine. The pump down operation is also performed from the preceding heat source machine (here, the heat source machine A1 having a large capacity). The preceding heat source machine A is preset in the control device 500.

なお、実施の形態3の目的とするところは、容量の小さい熱源機に冷媒が集中してポンプダウン運転時に圧縮機1に液バックすることを回避することにあり、その目的が達成されれば、どの熱源機Aから冷媒回収を実施するかは任意である。   The purpose of the third embodiment is to avoid the refrigerant from concentrating on the heat source machine having a small capacity and liquid back to the compressor 1 during the pump down operation. From which heat source device A the refrigerant recovery is performed is arbitrary.

図8は、図7の冷凍空調装置の漏洩検知時の動作を示す制御フローチャートである。図8により、通常運転中に冷媒漏洩検知してポンプダウン運転へ切り換えるまでの制御動作を説明する。
冷凍空調装置が通常運転(冷房運転又は暖房運転)中、室内機Bにて冷媒漏洩が発生すると、冷媒漏洩検知装置103は、それを検知し(S21)、自己が設置された室内機Bの室内機側制御装置500Bに冷媒漏洩検知信号を送信する(S22)。室内機側制御装置500Bは、冷媒漏洩検知装置103から検知信号を受信すると、室内機Bで冷媒漏れが発生した旨の冷媒漏洩検知信号を熱源機Aの熱源機側制御装置500Aに送信する(S23)。
FIG. 8 is a control flowchart showing an operation at the time of leakage detection of the refrigeration air conditioner of FIG. With reference to FIG. 8, the control operation until the refrigerant leakage is detected during the normal operation and the operation is switched to the pump down operation will be described.
When the refrigerant leakage occurs in the indoor unit B during the normal operation (cooling operation or heating operation) of the refrigeration air conditioner, the refrigerant leakage detection device 103 detects it (S21), and the self-installed indoor unit B A refrigerant leakage detection signal is transmitted to the indoor unit side control device 500B (S22). When the indoor unit side control device 500B receives the detection signal from the refrigerant leak detection device 103, the indoor unit side control device 500B transmits a refrigerant leak detection signal indicating that the refrigerant leak has occurred in the indoor unit B to the heat source unit side control device 500A of the heat source unit A ( S23).

熱源機側制御装置500Aを含む制御装置500は、室内機側制御装置500Bからの冷媒漏洩検知信号を受信すると、各高圧圧力検知装置11によりそれぞれ検知された高圧圧力Pdが予め設定した設定圧力Px以上か否かをチェックし(S24)、少なくとも一つの高圧圧力Pdが設定圧力Px以上の場合、片側均圧回収運転を行う(S25)。すなわち、まず、全ての熱源機Aの圧縮機1を停止させ、全利用側膨張弁102を全開にすると共に、先行熱源機A1の液ライン側開閉弁7を開状態、容量の小さい熱源機A2の液ライン側開閉弁7を閉状態、容量の小さい熱源機A2の均圧側開閉弁6を閉状態としたまま、先行熱源機A1の均圧側開閉弁6を開とすることで先行熱源機A1側のみへ冷媒を回収させる。   When the control device 500 including the heat source device side control device 500A receives the refrigerant leakage detection signal from the indoor unit side control device 500B, the high pressure Pd detected by each high pressure detection device 11 is set to the preset pressure Px. It is checked whether or not this is the case (S24). If at least one high pressure Pd is equal to or higher than the set pressure Px, a one-side pressure equalization recovery operation is performed (S25). That is, first, the compressors 1 of all the heat source machines A are stopped, the full use side expansion valve 102 is fully opened, and the liquid line side opening / closing valve 7 of the preceding heat source machine A1 is opened, and the heat source machine A2 having a small capacity. With the liquid line side opening / closing valve 7 closed and the pressure equalizing side opening / closing valve 6 of the heat source machine A2 having a small capacity closed, the pressure equalizing side opening / closing valve 6 of the preceding heat source machine A1 is opened, thereby leading the preceding heat source machine A1. Recover the refrigerant only to the side.

そして、先行熱源機A1での片側均圧回収運転を開始後、予め設定された時間Taが経過すると(S26)、両側均圧回収運転に切り換える(S27)。すなわち、先行熱源機A1はそのままとする一方、熱源機A2の液ライン側開閉弁7を開くと共に熱源機A2の均圧側開閉弁6を開く。これにより、熱源機A1とA2の双方で均圧回収が実施される。なお、時間Taは、熱源機A1側で先に行われた均圧回収により、熱源機A1側に許容範囲以上に冷媒が回収されて、その後のポンプダウン運転時に熱源機A1側で液バックが生じることのない時間に設定される。   Then, when a preset time Ta has elapsed after starting the one-side pressure equalization recovery operation in the preceding heat source unit A1 (S26), the operation is switched to the both-side pressure equalization recovery operation (S27). That is, while the preceding heat source machine A1 is left as it is, the liquid line side opening / closing valve 7 of the heat source machine A2 is opened and the pressure equalization side opening / closing valve 6 of the heat source machine A2 is opened. Thereby, pressure equalization recovery is performed in both the heat source devices A1 and A2. During the time Ta, the refrigerant is recovered beyond the allowable range on the heat source device A1 side by the pressure equalization recovery performed on the heat source device A1 side first, and the liquid back on the heat source device A1 side during the subsequent pump down operation. It is set to a time that does not occur.

このステップS27の両側均圧回収運転を、熱源機A1又は熱源機A2の高圧圧力検知装置11により検知された高圧圧力Pdが設定圧力Pxよりも低くなるまで継続し(S28)、高圧圧力Pdが設定圧力Pxよりも低くなると、先行熱源機A1側から片側ポンプダウン運転に移行する(S29)。すなわち、全ての熱源機A1、A2の液ライン側開閉弁7を閉状態、全利用側膨張弁102を全開状態、全ての熱源機A1、A2の均圧側開閉弁6を開状態として、先行熱源機A1の圧縮機1を先行して起動する。   The both-side pressure equalization recovery operation in step S27 is continued until the high pressure Pd detected by the high pressure detector 11 of the heat source device A1 or the heat source device A2 becomes lower than the set pressure Px (S28). When it becomes lower than the set pressure Px, the process proceeds to the one-side pump down operation from the preceding heat source machine A1 side (S29). That is, the liquid line side opening / closing valves 7 of all the heat source devices A1, A2 are closed, the all use side expansion valves 102 are fully opened, and the pressure equalization side opening / closing valves 6 of all the heat source devices A1, A2 are opened. The compressor 1 of the machine A1 is started in advance.

そして、予め設定された時間Tbが経過すると(S30)、両側ポンプダウン運転に切り換える(S31)。すなわち、熱源機A1側はそのままで、熱源機A2の圧縮機1を起動する。   When a preset time Tb elapses (S30), the pump is switched to the double-sided pump down operation (S31). That is, the compressor 1 of the heat source machine A2 is started up with the heat source machine A1 side as it is.

以上説明したように、本実施の形態3によれば、実施の形態1と同様の効果が得られると共に、冷媒漏洩検知時の冷媒回収の際に、容量の小さい熱源機に冷媒が集中してポンプダウン運転時に圧縮機1に液バックし、圧縮機1が損傷することを回避することができる。   As described above, according to the third embodiment, the same effect as in the first embodiment can be obtained, and at the time of refrigerant recovery at the time of refrigerant leakage detection, the refrigerant is concentrated on the heat source device having a small capacity. It is possible to prevent the compressor 1 from being damaged by returning to the compressor 1 during the pump-down operation.

このように、圧縮機1への液バックを回避できるため、ポンプダウン運転中に異常で中断することがなく、迅速に冷媒回収を完了して機外への冷媒漏洩を抑制することのできる冷凍空調装置を得ることができる。   Thus, since the liquid back to the compressor 1 can be avoided, the refrigeration that can quickly complete the refrigerant recovery and suppress the leakage of the refrigerant outside the apparatus without being interrupted by an abnormality during the pump-down operation. An air conditioner can be obtained.

なお、本実施の形態3は、容量の小さい熱源機に冷媒が集中してポンプダウン運転時に圧縮機1に液バックすることを回避する目的を達成できる範囲で例えば以下のように種々変形実施可能である。
1.上記では、両方の熱源機で均圧回収運転を行う例を示したが、容量の大きい熱源機A1のみで行うようにしてもよい。
2.上記では、予め設定された熱源機の片側均圧回収運転から両側均圧回収運転への切り換えを、予め設定された時間Taに基づいて行うようにしたが、予め設定した時間Taに代えて、予め設定された圧力又は温度を用いてもよい。
3.ポンプダウン運転時に、予め設定された熱源機の片側ポンプダウン運転から両側ポンプダウン運転への切り換えを、予め設定された時間Taに基づいて行うようにしたが、予め設定した時間Taに代えて、予め設定された圧力、温度、アキュムレータ4液面高さなどを用いてもよい。
4.容量の大きい熱源機A1側から均圧回収運転を行う例を示したが、容量の小さい熱源機A2側から均圧回収運転してもよい。この場合、熱源機A2のアキュムレータ4の液面高さを検知するセンサーを設け、液面高さが所定高さ以上になった場合には、容量の大きい熱源機A1側に切り換えて均圧回収運転を行うようにすればよい。
The third embodiment can be variously modified as follows, for example, within a range in which the purpose of avoiding the concentration of the refrigerant in the heat source device having a small capacity and the liquid back to the compressor 1 during the pump down operation can be achieved. It is.
1. In the above, an example in which the pressure equalization recovery operation is performed by both heat source apparatuses has been described, but it may be performed only by the heat source apparatus A1 having a large capacity.
2. In the above, the switching from the one-side pressure equalization recovery operation of the preset heat source unit to the both-side pressure equalization recovery operation is performed based on the preset time Ta, but instead of the preset time Ta, A preset pressure or temperature may be used.
3. During the pump down operation, switching from the one side pump down operation of the preset heat source unit to the both side pump down operation is performed based on the preset time Ta, but instead of the preset time Ta, A preset pressure, temperature, accumulator 4 liquid level, or the like may be used.
4). Although an example in which the pressure equalization recovery operation is performed from the heat source device A1 side having a large capacity is shown, the pressure equalization recovery operation may be performed from the heat source device A2 side having a small capacity. In this case, a sensor for detecting the liquid level height of the accumulator 4 of the heat source machine A2 is provided, and when the liquid level height exceeds a predetermined height, the pressure is recovered by switching to the heat source machine A1 side having a larger capacity. What is necessary is just to drive.

なお、上記では、熱源機Aが2台の場合で説明したが、3台以上の場合も同様の主旨で均圧回収運転及びポンプダウン運転を行えばよい。すなわち、均圧回収運転は、予め設定された先行熱源機で行い、その後、ポンプダウン運転に入ってもよいし、予め設定された先行熱源機で均圧回収運転を行った後、順次、他の熱源機で均圧回収運転を開始してもよい。また、ポンプダウン運転については、予め設定された先行熱源機でポンプダウン運転を行った後、順次、他の熱源機でポンプダウン運転を行えばよい。   In the above description, the case of two heat source devices A has been described. However, the pressure equalization recovery operation and the pump down operation may be performed for the same purpose also in the case of three or more heat source devices. That is, the pressure equalization recovery operation may be performed with a preset preceding heat source unit, and then may enter a pump-down operation, or after performing the pressure equalization recovery operation with a preset preceding heat source unit, The pressure equalization recovery operation may be started with this heat source machine. As for the pump-down operation, after performing the pump-down operation with a preset preceding heat source device, the pump-down operation may be sequentially performed with another heat source device.

実施の形態4.
実施の形態4は、実施の形態1〜3の熱源機Aに、冷房時の能力向上を行うための過冷却回路50を設けたものである。
Embodiment 4 FIG.
In the fourth embodiment, the heat source apparatus A of the first to third embodiments is provided with a supercooling circuit 50 for improving the capacity during cooling.

図9は、本発明の実施の形態4の冷凍空調装置の冷媒回路図である。図9には、図1に示した実施の形態1の冷凍空調装置に過冷却回路50を設けた例を示しているが、実施の形態2〜3の冷凍空調装置に過冷却回路50を設けてもよい。以下、図1に示した実施の形態1の冷媒回路と異なる点を説明する。   FIG. 9 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 4 of the present invention. FIG. 9 shows an example in which the supercooling circuit 50 is provided in the refrigeration air-conditioning apparatus according to the first embodiment shown in FIG. 1, but the supercooling circuit 50 is provided in the refrigeration air-conditioning apparatus according to the second to third embodiments. May be. Hereinafter, a different point from the refrigerant circuit of Embodiment 1 shown in FIG. 1 is demonstrated.

実施の形態4の冷凍空調装置は、実施の形態1の均圧回路5に更に過冷却熱交換器51が設けられ、過冷却回路50が構成されている。また、実施の形態1〜3では、均圧側開閉弁6は開閉弁であったが、過冷却回路50においては、開度調整可能な過冷却膨張弁52となっている。過冷却回路50は、冷房運転時、熱源側熱交換器3から利用側膨張弁102に向かう冷媒の一部を分岐して過冷却膨張弁52で減圧した後、過冷却熱交換器51の蒸発側に流入させ、熱源側熱交換器3を出て直接過冷却熱交換器51の凝縮側に流入した高圧冷媒と熱交換させた後、四方弁2からアキュムレータ4に向かう冷媒と合流してアキュムレータ4に吸入させる。   In the refrigerating and air-conditioning apparatus of the fourth embodiment, a supercooling heat exchanger 51 is further provided in the pressure equalizing circuit 5 of the first embodiment, and a supercooling circuit 50 is configured. In the first to third embodiments, the pressure equalization side opening / closing valve 6 is an opening / closing valve. However, in the supercooling circuit 50, the supercooling expansion valve 52 is adjustable in opening. During the cooling operation, the supercooling circuit 50 branches a part of the refrigerant from the heat source side heat exchanger 3 toward the use side expansion valve 102 and decompresses the refrigerant by the supercooling expansion valve 52, and then evaporates the supercooling heat exchanger 51. After the heat is exchanged with the high-pressure refrigerant flowing out of the heat source side heat exchanger 3 and directly flowing into the condensing side of the supercooling heat exchanger 51, the refrigerant flows from the four-way valve 2 toward the accumulator 4 and then accumulates. 4 inhale.

図10は、図9の冷凍空調装置の冷房運転時のp−h線図(冷媒の圧力とエンタルピーとの関係を示す線図)である。図10において(a)〜(f)は、図9の線図上の(a)〜(f)に対応する配管部分を示す。   FIG. 10 is a ph diagram (a diagram showing a relationship between refrigerant pressure and enthalpy) during the cooling operation of the refrigeration air-conditioning apparatus of FIG. 9. In FIG. 10, (a)-(f) shows the piping part corresponding to (a)-(f) on the diagram of FIG.

冷房運転時、圧縮機1から吐出された高圧高温のガス冷媒(状態(a))は、四方弁2を介して熱源側熱交換器3に流入し、室外空気との熱交換により放熱することで高圧液冷媒となり流出する(状態(b))。熱源側熱交換器3から流出した高圧液冷媒は、過冷却熱交換器51の凝縮側に流入し、高圧液冷媒の一部を過冷却膨張弁52で減圧して過冷却熱交換器51の蒸発側に流入した低圧二相冷媒と熱交換し、過冷却度が増して状態(c)の液冷媒となる。そして、状態(c)の液冷媒は、利用側膨張弁102で減圧されて低圧二相冷媒となる(状態(d))。   During the cooling operation, the high-pressure and high-temperature gas refrigerant (state (a)) discharged from the compressor 1 flows into the heat source side heat exchanger 3 through the four-way valve 2 and dissipates heat by heat exchange with outdoor air. And flows out as a high-pressure liquid refrigerant (state (b)). The high-pressure liquid refrigerant flowing out from the heat source side heat exchanger 3 flows into the condensing side of the supercooling heat exchanger 51, and a part of the high-pressure liquid refrigerant is decompressed by the supercooling expansion valve 52, so that the supercooling heat exchanger 51 Heat exchange is performed with the low-pressure two-phase refrigerant that has flowed into the evaporation side, and the degree of supercooling increases to become a liquid refrigerant in the state (c). Then, the liquid refrigerant in the state (c) is decompressed by the use side expansion valve 102 to become a low-pressure two-phase refrigerant (state (d)).

利用側膨張弁102を流出した低圧二相冷媒は、利用側熱交換器101に流入し、利用側熱交換器101で室内空気と熱交換して蒸発し、低圧ガス冷媒(状態(e))となって流出する。利用側熱交換器101を流出した低圧ガス冷媒は、ガスライン10bを通過して熱源機Aへ流入し、四方弁2を通過した後、過冷却回路50からの冷媒と合流して状態(f)の冷媒となった後、アキュムレータ4を介して最終的に圧縮機1へ戻る。   The low-pressure two-phase refrigerant that has flowed out of the use-side expansion valve 102 flows into the use-side heat exchanger 101, evaporates by exchanging heat with indoor air in the use-side heat exchanger 101, and the low-pressure gas refrigerant (state (e)) And leaked. The low-pressure gas refrigerant that has flowed out of the use-side heat exchanger 101 passes through the gas line 10b, flows into the heat source unit A, passes through the four-way valve 2, and then merges with the refrigerant from the supercooling circuit 50 (f ) And finally return to the compressor 1 via the accumulator 4.

このように過冷却回路50を設けた冷媒回路では、図10に示したように過冷却度が増加するため、エンタルピーがΔIからΔI’に増加する。すなわちエンタルピー差を稼ぐことができ、冷房時の能力向上を得ることができる。なお、近年では、既に過冷却回路50が設けられているタイプの冷凍空調装置も多く、そのタイプの冷凍空調装置側からみれば、冷媒回路の構成を変更することなく、単に均圧回収運転における過冷却膨張弁52の制御を組み込むだけで、冷媒漏洩時に速やかに冷媒を回収して冷媒漏れ量を低減する機能を付加することができるとも言える。   In the refrigerant circuit provided with the supercooling circuit 50 as described above, the degree of supercooling increases as shown in FIG. 10, so that the enthalpy increases from ΔI to ΔI ′. That is, an enthalpy difference can be earned and an improvement in capacity during cooling can be obtained. In recent years, there are also many types of refrigeration air conditioners that are already provided with a supercooling circuit 50. From the refrigeration air conditioner side of that type, there is no need to change the configuration of the refrigerant circuit, and simply in the pressure equalization recovery operation. It can be said that the function of quickly collecting the refrigerant at the time of refrigerant leakage and reducing the refrigerant leakage amount can be added only by incorporating the control of the supercooling expansion valve 52.

以上説明したように、実施の形態4によれば、実施の形態1と同様の効果が得られると共に、冷房能力を向上することができる。実施の形態2、3に過冷却回路50を設けた場合も同様に、冷房能力を向上することができる。   As described above, according to the fourth embodiment, the same effect as in the first embodiment can be obtained and the cooling capacity can be improved. Similarly, when the supercooling circuit 50 is provided in the second and third embodiments, the cooling capacity can be improved.

実施の形態5.
実施の形態1〜4では、冷媒系統が1系統である冷凍空調装置を説明したが、実施の形態5では、実施の形態1〜4の冷凍空調装置を複数備えた冷凍空調システムにおける室内への冷媒漏洩量低減について説明する。
Embodiment 5 FIG.
In the first to fourth embodiments, the refrigeration air conditioning apparatus having one refrigerant system has been described. However, in the fifth embodiment, the refrigeration air conditioning system including a plurality of the refrigeration air conditioning apparatuses of the first to fourth embodiments is provided indoors. The refrigerant leakage amount reduction will be described.

図11は、本発明の実施の形態5の冷凍空調システムの構成を示す図で、冷凍空調システムが配置された空調エリアを横から見た構成図である。
冷凍空調システムは、熱源機A1、室内機B1−1及びB1−2を備えた冷凍空調装置C1と、熱源機A2及び室内機B2を備えた冷凍空調装置C2と、冷凍空調装置C1、C2に通信線501を介して接続され、冷凍空調装置C1、C2を制御する上位コントローラ200とを有している。冷凍空調装置C1において熱源機A1と室内機B1−1及びB1−2とは冷媒配管110で接続されている。また、冷凍空調装置C2において熱源機A2と室内機B2とは冷媒配管120で接続されている。
FIG. 11 is a diagram showing a configuration of a refrigeration air conditioning system according to Embodiment 5 of the present invention, and is a configuration diagram of an air conditioning area in which the refrigeration air conditioning system is arranged as viewed from the side.
The refrigeration air conditioning system includes a refrigeration air conditioner C1 provided with a heat source unit A1, indoor units B1-1 and B1-2, a refrigeration air conditioner C2 provided with a heat source unit A2 and an indoor unit B2, and refrigeration air conditioners C1 and C2. It has a host controller 200 that is connected via a communication line 501 and controls the refrigeration air conditioners C1 and C2. In the refrigerating and air-conditioning apparatus C1, the heat source unit A1 and the indoor units B1-1 and B1-2 are connected by a refrigerant pipe 110. In the refrigerating and air-conditioning apparatus C2, the heat source unit A2 and the indoor unit B2 are connected by a refrigerant pipe 120.

冷凍空調装置C1、C2は図11に示したように熱源機1台で室内機が1台又は2台の構成に限られず、実施の形態1〜4の冷凍空調装置を採用できる。すなわち、熱源機Aは2台以上でもよいし、室内機Bの台数も特に限定するものではない。なお、以下の説明において熱源機A1、A2を区別しない場合には熱源機Aと総称し、また、室内機についても、室内機B1−1、B2、B1−2を区別しない場合には室内機Bと総称する。   As shown in FIG. 11, the refrigeration air conditioners C1 and C2 are not limited to the configuration of one heat source unit and one or two indoor units, and the refrigeration air conditioners of Embodiments 1 to 4 can be employed. That is, the number of heat source units A may be two or more, and the number of indoor units B is not particularly limited. In the following description, when the heat source devices A1 and A2 are not distinguished from each other, they are collectively referred to as the heat source device A, and the indoor units are also referred to as indoor units B1-1, B2, and B1-2 when not distinguished from each other. Collectively referred to as B.

上位コントローラ200は、各室内機Bを個別に制御する手元コントローラ(一般的なリモコン)とは異なり、各冷凍空調装置C1、C2を集中して制御するコントローラである。上位コントローラ200は、各冷凍空調装置の室内機Bに設置された冷媒漏洩検知装置103から冷媒漏洩検知信号を受信すると、予め登録された後述のエリア登録情報201に基づいて該当の冷凍空調装置に冷媒漏洩検知信号を送信し、ポンプダウン運転を行わせる。   The host controller 200 is a controller that centrally controls the refrigerating and air-conditioning apparatuses C1 and C2, unlike a local controller (general remote controller) that individually controls each indoor unit B. When the host controller 200 receives the refrigerant leakage detection signal from the refrigerant leakage detection device 103 installed in the indoor unit B of each refrigeration air-conditioning apparatus, the upper-level controller 200 sets the corresponding refrigeration air-conditioning apparatus based on area registration information 201 described later. A refrigerant leak detection signal is transmitted to cause pump down operation.

図12は、図11の冷凍空調システムが配置された空調エリアを上から見た配置図である。
図12に示すように、空調エリアに、室内機B1−1、B2、B1−2がそれぞれ分散して配置されており、それぞれのエリアを、エリアB1−1、B2、B1−2とする。この各エリアは、室内機B1−1、B2、B1−2のそれぞれに設置された冷媒漏洩検知装置103による漏洩検知の検知対象エリアに相当する。各冷媒漏洩検知装置103にはそれぞれ予め識別番号が付与されており、上位コントローラ200は、冷媒漏洩検知装置103から自己の識別番号を含む冷媒漏洩検知信号を受信すると、どの冷媒漏洩検知装置103からの冷媒漏洩検知信号であるのかを識別できるようになっている。ここでは、室内機B1−1、B1−2、B2の順に、1、2、3と識別番号が付与されているものとする。図11及び図12の()内にその識別番号を示している。
FIG. 12 is a layout view of the air conditioning area where the refrigeration air conditioning system of FIG.
As shown in FIG. 12, indoor units B1-1, B2, and B1-2 are distributed and arranged in the air-conditioning area, and the areas are referred to as areas B1-1, B2, and B1-2. Each of these areas corresponds to a detection target area for leak detection by the refrigerant leak detection device 103 installed in each of the indoor units B1-1, B2, and B1-2. Each refrigerant leak detection device 103 is assigned an identification number in advance, and when the host controller 200 receives a refrigerant leak detection signal including its own identification number from the refrigerant leak detection device 103, from which refrigerant leak detection device 103 The refrigerant leakage detection signal can be identified. Here, it is assumed that identification numbers 1, 2, and 3 are assigned in the order of indoor units B1-1, B1-2, and B2. The identification numbers are shown in parentheses in FIGS.

図11及び図12に示されているように、エリアB1−1とB2にはそれぞれ、冷凍空調装置C1の冷媒配管110と、冷凍空調装置C2の冷媒配管120との2つの系統の冷媒配管が通過しており、エリアB1−2には、冷凍空調装置C1の冷媒配管110のみが通過している。このような配管設置がなされている場合において、例えばエリアB2の冷媒漏洩検知装置103で冷媒漏洩が検知された場合、冷媒配管110からの冷媒漏れであるのか、冷媒配管120からの冷媒漏れであるのか区別することができない。よって、本実施の形態5では、何れかの冷媒漏洩検知装置103で冷媒漏洩が検知された場合、その冷媒漏洩検知装置103が設置されたエリアを通過する冷媒配管の冷媒系統全てにおいてポンプダウン運転を行う。なお、ポンプダウン運転を行うにあたり、高圧圧力検知装置11により検知された高圧圧力Pdが予め設定した設定圧力Px以上の場合に、均圧回収運転を行う点は上記と同様である。   As shown in FIGS. 11 and 12, in areas B1-1 and B2, there are two systems of refrigerant pipes, a refrigerant pipe 110 of the refrigeration air conditioner C1 and a refrigerant pipe 120 of the refrigeration air conditioner C2, respectively. Only the refrigerant pipe 110 of the refrigeration air conditioner C1 passes through the area B1-2. In such a pipe installation, for example, when a refrigerant leak is detected by the refrigerant leak detection device 103 in area B2, it is a refrigerant leak from the refrigerant pipe 110 or a refrigerant leak from the refrigerant pipe 120. I cannot distinguish. Therefore, in the fifth embodiment, when any one of the refrigerant leak detection devices 103 detects the refrigerant leak, the pump down operation is performed in all the refrigerant systems of the refrigerant pipes that pass through the area where the refrigerant leak detection device 103 is installed. I do. In performing the pump-down operation, when the high pressure Pd detected by the high pressure detector 11 is equal to or higher than the preset pressure Px, the pressure equalization operation is performed in the same manner as described above.

以上の制御を可能とするためのエリア登録情報201が上位コントローラ200に予め登録されている。   Area registration information 201 for enabling the above control is registered in the host controller 200 in advance.

図13は、エリア登録情報を示す図である。
エリア登録情報201は、冷媒漏洩検知装置103の識別番号と、その冷媒漏洩検知装置103が設置されているエリアと、そのエリアを通過する冷媒配管を有する各冷媒系統(冷凍空調装置)とが対応づけて記憶されている。エリア登録情報201の登録は、上位コントローラ200に設けられたユーザー操作可能な入力装置から行ってもよいし、各熱源機A又は室内機Bにおける手元リモコンから行ってもよい。
FIG. 13 is a diagram showing area registration information.
The area registration information 201 corresponds to the identification number of the refrigerant leak detection device 103, the area where the refrigerant leak detection device 103 is installed, and each refrigerant system (refrigeration air conditioner) having refrigerant piping passing through the area. It is remembered. Registration of the area registration information 201 may be performed from a user-operable input device provided in the host controller 200, or may be performed from a local remote controller in each heat source unit A or indoor unit B.

図14は、図11の冷凍空調システムの漏洩検知時の動作を示す制御フローチャートである。図14により、通常運転中に冷媒漏洩検知してポンプダウン運転へ切り換えるまでの制御動作を説明する。
冷凍空調装置が通常運転(冷房運転又は暖房運転)中、室内機Bにて冷媒漏洩が発生すると、冷媒漏洩検知装置103は、それを検知し(S41)、自己の識別番号を含む冷媒漏洩検知信号を室内機Bの室内機側制御装置500Bに送信する(S42)。室内機側制御装置500Bは、冷媒漏洩検知装置103から冷媒漏洩検知信号を受信すると、識別番号を含む冷媒漏洩検知信号を上位コントローラ200に送信する(S43)。
FIG. 14 is a control flowchart showing an operation at the time of leakage detection of the refrigeration air conditioning system of FIG. With reference to FIG. 14, the control operation from the detection of refrigerant leakage during normal operation until switching to pump-down operation will be described.
When the refrigerant leakage occurs in the indoor unit B during the normal operation (cooling operation or heating operation) of the refrigeration air conditioner, the refrigerant leakage detection device 103 detects this (S41) and detects the refrigerant leakage including its own identification number. The signal is transmitted to the indoor unit side control device 500B of the indoor unit B (S42). When the indoor unit side control device 500B receives the refrigerant leak detection signal from the refrigerant leak detection device 103, it transmits a refrigerant leak detection signal including an identification number to the host controller 200 (S43).

上位コントローラ200は、受信した冷媒漏洩検知信号に含まれる識別番号に基づいてエリア登録情報201を参照し、ポンプダウンする冷媒系統を決定する(S44)。すなわち、冷媒漏れを検知した冷媒漏洩検知装置が設置されたエリアを通過する冷媒配管を有する全ての冷媒系統を、ポンプダウンする冷媒系統と決定する。   The host controller 200 refers to the area registration information 201 based on the identification number included in the received refrigerant leakage detection signal, and determines the refrigerant system to be pumped down (S44). That is, all the refrigerant systems having the refrigerant piping that passes through the area where the refrigerant leakage detection device that has detected the refrigerant leakage is installed are determined as the refrigerant system to be pumped down.

そして、決定した冷媒系統の冷凍空調装置の熱源機Aに、冷媒漏洩検知信号を送信する(S45)。すなわち、冷媒漏洩検知信号に含まれる識別番号が「1」又は「3」の場合には、冷媒系統C1、C2の熱源機A1、A2に冷媒漏洩検知信号を送信し、冷媒漏洩検知信号に含まれる識別番号が「2」の場合には、冷媒系統C1の熱源機A1に冷媒漏洩検知信号を送信することになる。   And a refrigerant | coolant leak detection signal is transmitted to the heat source machine A of the refrigeration air conditioner of the determined refrigerant | coolant system | strain (S45). That is, when the identification number included in the refrigerant leakage detection signal is “1” or “3”, the refrigerant leakage detection signal is transmitted to the heat source units A1 and A2 of the refrigerant systems C1 and C2, and is included in the refrigerant leakage detection signal. When the identification number is “2”, the refrigerant leakage detection signal is transmitted to the heat source machine A1 of the refrigerant system C1.

冷媒漏洩検知信号を受信した各冷媒系統(冷凍空調装置)側は、それぞれ上記実施の形態1と同様の均圧回収運転を含むポンプダウン運転(S4〜S7)を行う。   Each refrigerant system (refrigeration air conditioner) side that has received the refrigerant leakage detection signal performs the pump-down operation (S4 to S7) including the pressure equalization recovery operation as in the first embodiment.

以上説明したように本実施の形態5によれば、実施の形態1〜4と同様の効果が得られると共に、万一あるエリアにて冷媒漏洩を検知した場合、そのエリアを通過する冷媒配管を有する冷媒系統の全てに同時にポンプダウン運転を開始させるようにしたので、以下の効果が得られる。すなわち、冷媒漏洩を検知した系統とは別の異冷媒系統からの冷媒漏れであっても、速やかにポンプダウンを開始し、迅速に冷媒回収して機外への冷媒漏洩を抑制でき、安全性且つ信頼性の高い冷凍空調システムを得ることができる。   As described above, according to the fifth embodiment, the same effects as those of the first to fourth embodiments can be obtained, and in the unlikely event that refrigerant leakage is detected in an area, the refrigerant pipe that passes through the area is arranged. Since the pump-down operation is started at the same time for all of the refrigerant systems, the following effects can be obtained. In other words, even if the refrigerant leaks from a different refrigerant system other than the system that detected the refrigerant leakage, the pump down can be started immediately, the refrigerant can be recovered quickly, and the refrigerant leakage outside the machine can be suppressed. In addition, a highly reliable refrigeration air conditioning system can be obtained.

なお、複数の冷媒系統に冷媒漏洩検知信号を送信する際に同時に送信する例を説明したが、他の方法として、まず、冷媒漏れを検知した冷媒漏洩検知装置103の冷媒系統(以下、冷媒漏洩検知系統という)のみのポンプダウン運転を実施させるようにしてもよい。以下、この場合の制御を次の図15で説明する。   In addition, although the example which transmits simultaneously when transmitting a refrigerant | coolant leak detection signal to several refrigerant | coolant systems was demonstrated, as another method, first, the refrigerant | coolant system | strain (hereinafter, refrigerant | coolant leak) of the refrigerant | coolant leak detection apparatus 103 which detected the refrigerant | coolant leak. A pump-down operation of only the detection system) may be performed. Hereinafter, the control in this case will be described with reference to FIG.

図15は、図11の冷凍空調システムの漏洩検知時の別の動作例を示す制御フローチャートである。図15においてステップS41〜S43の動作は図14と同様であるため、それ以降の動作について説明する。
上位コントローラ200は、受信した冷媒漏洩検知信号に含まれる識別番号に基づいて、その識別番号の冷媒漏洩検知装置103を有する冷媒系統を特定する(S51)。そして、上位コントローラ200は、特定した冷媒漏洩検知系統へ冷媒漏洩検知信号を送信する(S52)。冷媒漏洩検知信号を受信した冷媒漏洩検知系統は、上記実施の形態1と同様の均圧回収運転を含むポンプダウン運転(S4〜S7)を行う。
FIG. 15 is a control flowchart showing another example of the operation at the time of leakage detection of the refrigeration air conditioning system of FIG. In FIG. 15, the operations in steps S41 to S43 are the same as those in FIG. 14, and the subsequent operations will be described.
Based on the identification number included in the received refrigerant leakage detection signal, the host controller 200 identifies the refrigerant system having the refrigerant leakage detection device 103 with the identification number (S51). Then, the host controller 200 transmits a refrigerant leak detection signal to the specified refrigerant leak detection system (S52). The refrigerant leak detection system that has received the refrigerant leak detection signal performs the pump-down operation (S4 to S7) including the pressure equalization recovery operation as in the first embodiment.

そして、冷媒漏洩検知系統におけるポンプダウン運転により冷媒漏洩検知装置103の冷媒漏洩検知が無効になれば(S53)、これでポンプダウン運転は終了する。なお、冷媒漏洩検知系統と同一エリアの他の冷媒系統は、冷媒漏洩検知系統がポンプダウン運転を行っている間、通常運転を継続していてもよいし、運転を停止してもよい。運転を停止している場合は、冷媒漏洩検知系統におけるポンプダウン運転によって冷媒漏洩検知が無効になれば、通常運転を開始させる。   And if the refrigerant | coolant leak detection of the refrigerant | coolant leak detection apparatus 103 becomes invalid by the pump down driving | operation in a refrigerant | coolant leakage detection system (S53), a pump down driving | operation will be complete | finished now. Note that other refrigerant systems in the same area as the refrigerant leak detection system may continue normal operation or stop operation while the refrigerant leak detection system performs the pump-down operation. When the operation is stopped, the normal operation is started if the refrigerant leak detection becomes invalid by the pump-down operation in the refrigerant leak detection system.

一方、冷媒漏洩検知系統のみのポンプダウン運転後にまだ冷媒漏洩検知が有効のままであれば、冷媒漏洩検知系統と同一エリアの他の冷媒系統に冷媒漏洩検知信号を送信(S54)して上記実施の形態1と同様の均圧回収運転を含むポンプダウン運転(S4〜S7)を行わせる。この時、最初にポンプダウン運転を行った冷媒検知漏洩系統については、冷媒漏洩の可能性がないことから、通常運転へ戻してもよい。   On the other hand, if the refrigerant leak detection is still effective after the pump down operation of only the refrigerant leak detection system, the refrigerant leak detection signal is transmitted to another refrigerant system in the same area as the refrigerant leak detection system (S54). The pump-down operation (S4 to S7) including the pressure equalization recovery operation as in the first embodiment is performed. At this time, the refrigerant detection / leakage system that has first performed the pump-down operation may be returned to the normal operation because there is no possibility of refrigerant leakage.

実施の形態6.
上記実施の形態1〜5では、ポンプダウン運転中において室内機Bから室内に送風する空気の風向きについて特に説明しなかったが、実施の形態6は、室内へと漏れた冷媒の拡散(濃度低下)に効果的な風向・風量制御に関するものである。冷凍空調装置及び冷凍空調システムの構成は上記実施の形態1〜5と同様である。
Embodiment 6 FIG.
In the first to fifth embodiments, the direction of the air blown into the room from the indoor unit B during the pump-down operation is not particularly described. However, in the sixth embodiment, the diffusion (concentration decrease) of the refrigerant leaking into the room ) For effective wind direction and air volume control. The configuration of the refrigeration air conditioner and the refrigeration air conditioning system is the same as in the first to fifth embodiments.

図16は、本発明の実施の形態6に係る冷凍空調装置の室内機の概略断面図である。図17(a)は、本発明の実施の形態6に係る冷凍空調装置の室内機における、風向・風量制御の説明図、図17(b)は、比較例として従来の風向制御を示した図であり、どちらも室内機Bが設置された空調エリアを横から見た状態を示している。図17においてハッチングで示した部分は、室内に漏れた冷媒を示している。なお、図16、図17には一例として天井カセットタイプの室内機Bを示しているが、以下に説明する風向・風量制御は、天井埋め込みのダクト吹き出し口や、天吊形、壁掛け形、床置き形についても同様に適用できる。   FIG. 16 is a schematic cross-sectional view of an indoor unit of a refrigeration air conditioner according to Embodiment 6 of the present invention. FIG. 17 (a) is an explanatory diagram of wind direction / air volume control in an indoor unit of a refrigerating and air-conditioning apparatus according to Embodiment 6 of the present invention, and FIG. 17 (b) is a diagram showing conventional wind direction control as a comparative example. In both cases, the air conditioning area where the indoor unit B is installed is viewed from the side. In FIG. 17, hatched portions indicate refrigerant that has leaked into the room. 16 and 17 show a ceiling cassette type indoor unit B as an example. However, the air direction and air volume control described below can be performed by using a ceiling-embedded duct outlet, ceiling-suspended, wall-mounted, or floor-mounted. The same applies to the shape.

室内機Bは、吹き出し口300から吹き出す空気の風向を変更する風向ベーン301を備えている。風量は室内側送風機130を駆動するモータ131の回転数によって制御でき、その回転数制御及び風向ベーン301の風向制御は、室内機側制御装置500Bにより行われる。   The indoor unit B includes a wind direction vane 301 that changes the wind direction of the air blown from the air outlet 300. The air volume can be controlled by the number of rotations of the motor 131 that drives the indoor fan 130, and the rotation number control and the wind direction control of the wind direction vane 301 are performed by the indoor unit side control device 500B.

図17(b)に示すように、従来は、冷媒漏洩を検知した場合、室内機B’の風向ベーンを水平から45〜70°の角度にセットして送風運転し、室内下部へ滞留しやすい比重の高い冷媒を攪拌させ、空気中の酸素濃度低下防止を目的とした運転を行っている。しかし、冷媒漏洩検知時に風向ベーンを45°として送風運転しても、実際には遠くへ拡散できず、渦wを巻いて滞留してしまう。また、比重の高い冷媒は室内機B’の直下で床面に滞留する可能性があり、室内の人に近い空間で十分に冷媒濃度を抑制することができない可能性がある。   As shown in FIG. 17B, conventionally, when refrigerant leakage is detected, the airflow direction vane of the indoor unit B ′ is set at an angle of 45 to 70 ° from the horizontal, and the air blowing operation is performed, so that it is likely to stay in the lower part of the room. The operation is carried out for the purpose of preventing a decrease in oxygen concentration in the air by stirring a refrigerant having a high specific gravity. However, even if the airflow vane is set at 45 ° when the refrigerant leakage is detected, the airflow vane cannot actually be diffused far away, and the vortex w is wound and stays. In addition, the refrigerant having a high specific gravity may stay on the floor directly under the indoor unit B ', and the refrigerant concentration may not be sufficiently suppressed in a space close to a person in the room.

そこで、本実施の形態6では、冷媒漏洩検知装置103にて冷媒漏洩を検知した場合、室内機側制御装置500Bは、熱源機Aによるポンプダウン運転の開始にかかわらず、図17(a)に示すように、風向ベーン301を鉛直下向きとし、鉛直下向きに風を送る。そして、風向ベーン301により風向が鉛直下向きになったと同時に風量を最大とする(図17(a)の矢印(1))。この時、床面に滞留しやすい比重の高い冷媒を攪拌し、床面から剥離させる(浮き上がらせる)。   Therefore, in the sixth embodiment, when refrigerant leakage is detected by the refrigerant leakage detection device 103, the indoor unit side control device 500B is shown in FIG. 17 (a) regardless of the start of the pump-down operation by the heat source device A. As shown, the wind direction vane 301 is set vertically downward and the wind is sent vertically downward. Then, simultaneously with the wind direction vane 301 being lowered vertically, the air volume is maximized (arrow (1) in FIG. 17A). At this time, a refrigerant having a high specific gravity that tends to stay on the floor is agitated and separated (floated) from the floor.

次に、室内機側制御装置500Bは、鉛直下向きから水平に向かい風向ベーン301を連続移動させ、この時、風量を最小として、床面から剥離された冷媒を更に上方へゆっくり攪拌させる(図17(a)の矢印(2))。この時、大風量とすると、床面から剥離させた冷媒をまた床面へ押し返してしまう可能性があることから、確実に冷媒を上方へ移動させるため、最小もしくは最大以外の風量としている。   Next, the indoor unit side control device 500B continuously moves the wind direction vane 301 from vertically downward to horizontally, and at this time, the air volume is minimized and the refrigerant separated from the floor surface is slowly stirred further upward (FIG. 17). (A) arrow (2)). At this time, if the air volume is large, the refrigerant peeled off from the floor surface may be pushed back to the floor surface again, so that the air volume is other than the minimum or maximum in order to surely move the refrigerant upward.

そして、風向ベーン301により風向が水平向きとなったと同時に再度風量最大とする(図17(a)の矢印(3))。この時、床面から移動してきた冷媒を更に遠方へ攪拌させる。以上のこの下向きから水平までの連続的な風向ベーン301の動作と、風量可変動作を連続的に繰り返す。   Then, at the same time as the wind direction becomes horizontal by the wind direction vane 301, the air volume is maximized again (arrow (3) in FIG. 17A). At this time, the refrigerant that has moved from the floor surface is further stirred away. The continuous operation of the wind direction vane 301 from the downward direction to the horizontal direction and the air volume variable operation are repeated continuously.

以上説明したように本実施の形態6によれば、実施の形態1〜5と同様の効果が得られると共に、冷媒漏洩検知時に室内機Bから室内に送風する風の風向・風量制御により、床面に滞留しやすい比重の高い冷媒を床面から効率的に剥離させて室内に拡散するようにしたので、効率的に室内の冷媒濃度を低下(室内の冷媒濃度拡散)させることができる。また、風向ベーン301の風向及び風量を、通常運転とは異なるエマージェンシー動作(使用者が意図しない動作)に強制的に変更するため、在室中の人へ異常状態であることを五感で知らせる効果も期待でき、異常通報ともなりえる。   As described above, according to the sixth embodiment, the same effects as those of the first to fifth embodiments can be obtained, and the floor direction can be controlled by controlling the direction and amount of wind blown into the room from the indoor unit B when refrigerant leakage is detected. Since the refrigerant having a high specific gravity that tends to stay on the surface is efficiently separated from the floor surface and diffused into the room, the refrigerant concentration in the room can be efficiently reduced (the refrigerant concentration in the room is diffused). In addition, since the wind direction and the air volume of the wind direction vane 301 are forcibly changed to emergency operation (operation unintended by the user) different from normal operation, the effect of informing the person in the room that there is an abnormal condition with the five senses Can also be expected, and can be an abnormal report.

実施の形態7.
上記実施の形態1〜5ではポンプダウン運転により室内機B内の冷媒を熱源機A側に回収するプロセスの説明を行ったが、実施の形態7では、熱源機A側でより多く冷媒を回収する方法を説明する。
Embodiment 7 FIG.
In the first to fifth embodiments, the process of recovering the refrigerant in the indoor unit B to the heat source unit A side by the pump-down operation has been described. In the seventh embodiment, more refrigerant is recovered from the heat source unit A side. How to do it.

図18は、本発明の実施の形態7の冷凍空調装置の冷媒回路図である。
実施の形態7の冷凍空調装置は、実施の形態1の冷凍空調装置に更に、各種センサを追加した構成を有している。具体的には、熱源機Aの熱源側熱交換器3のガス側入り口に温度センサ12を取付ける。温度センサ12の代わりに圧力センサを取付けてもよい。また、アキュムレータ入口配管に低圧圧力検知装置13を取付ける。また利用側熱交換器101の液側配管に温度センサ104を取付ける。アキュムレータ4には液面を検知する液面検知センサ14を取付ける。また、図18には、過冷却回路50を設けた構成を示しているが、これは省略可能である。但し、均圧側開閉弁6は、開度調整が可能なものとする。なお、実施の形態7の冷凍空調装置においてポンプダウン運転までのプロセスは上記実施の形態1と同様である。
FIG. 18 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 7 of the present invention.
The refrigerating and air-conditioning apparatus according to the seventh embodiment has a configuration in which various sensors are further added to the refrigerating and air-conditioning apparatus according to the first embodiment. Specifically, the temperature sensor 12 is attached to the gas side inlet of the heat source side heat exchanger 3 of the heat source machine A. A pressure sensor may be attached instead of the temperature sensor 12. Further, the low pressure detector 13 is attached to the accumulator inlet pipe. Further, the temperature sensor 104 is attached to the liquid side pipe of the use side heat exchanger 101. A liquid level detection sensor 14 for detecting the liquid level is attached to the accumulator 4. Further, FIG. 18 shows a configuration in which the supercooling circuit 50 is provided, but this can be omitted. However, the pressure equalization side opening / closing valve 6 can be adjusted in opening. In the refrigeration air conditioner of the seventh embodiment, the process up to the pump down operation is the same as that of the first embodiment.

ポンプダウン運転を行う際、均圧側開閉弁6を開ける場合で、均圧回路5の配管径が大きく、アキュムレータ4側に流れる冷媒量が冷媒流出量より大きい場合には、熱源側熱交換器3が冷媒で満たされる前にアキュムレータ4がオーバーフローする。オーバーフローすると圧縮機1に液バックし、冷媒回収が完了する前にポンプダウン運転を中断してしまい、漏洩量を十分に抑制できなくなる問題があった。   When performing the pump-down operation, if the pressure equalizing side opening / closing valve 6 is opened, and the pipe diameter of the pressure equalizing circuit 5 is large and the amount of refrigerant flowing to the accumulator 4 side is larger than the refrigerant outflow amount, the heat source side heat exchanger 3 Accumulator 4 overflows before is filled with refrigerant. When the overflow occurs, the liquid is returned to the compressor 1, and the pump-down operation is interrupted before the refrigerant recovery is completed, so that there is a problem that the leakage amount cannot be sufficiently suppressed.

図19は、図18の冷凍空調装置のポンプダウン運転時の動作を示す制御フローチャートである。図19により、ポンプダウン運転時の冷媒の貯蔵方法の説明を行う。
ポンプダウン運転を開始した際、利用側膨張弁102を開、均圧側開閉弁6及び液ライン側開閉弁7を全閉にし(S61)、まず熱源側熱交換器3に冷媒を貯蔵する。そして、アキュムレータ4が満液になっていないかをチェックし(S62)、満液になっていなければ、熱源側熱交換器3のガス側入り口の温度センサ12の検知温度T1が、高圧圧力検知装置が検出した高圧圧力Pdを凝縮温度に対応する飽和温度に換算して得られた熱源側飽和温度Tcc以下か否かをチェックする(S63)。検知温度T1が熱源側飽和温度Tccよりも大きければ、ステップS62に戻って同様の処理を繰り返す。
FIG. 19 is a control flowchart showing an operation during a pump-down operation of the refrigeration air conditioner of FIG. The refrigerant storage method during the pump-down operation will be described with reference to FIG.
When the pump-down operation is started, the use side expansion valve 102 is opened, the pressure equalization side opening / closing valve 6 and the liquid line side opening / closing valve 7 are fully closed (S61). First, the refrigerant is stored in the heat source side heat exchanger 3. Then, it is checked whether or not the accumulator 4 is full (S62). If the accumulator 4 is not full, the detected temperature T1 of the temperature sensor 12 at the gas side inlet of the heat source side heat exchanger 3 is the high pressure detection. It is checked whether or not the high pressure Pd detected by the apparatus is equal to or lower than the heat source side saturation temperature Tcc obtained by converting into a saturation temperature corresponding to the condensation temperature (S63). If the detected temperature T1 is higher than the heat source side saturation temperature Tcc, the process returns to step S62 and the same processing is repeated.

そして、温度センサ12の検知温度T1が熱源側飽和温度Tcc以下となると、熱源側熱交換器3が満液になったと判断し、均圧側開閉弁6を所定の開度に開く(S64)。均圧側開閉弁6を開くことにより、熱源側熱交換器3に貯蔵された冷媒が均圧回路5を介してアキュムレータ4に貯蔵される。ここで、所定の開度としたのは、以下の理由による。すなわち、ポンプダウン運転により熱源側熱交換器3に冷媒が溜まり始めると、高圧圧力が上昇していき高圧圧力異常となって運転停止する可能性がある。高圧圧力異常を回避し、アキュムレータ4に冷媒をより溜めるため、熱源側熱交換器3からアキュムレータ4への一定以上の流量を確保する必要がある。よって、まず均圧側開閉弁6を所定の開度まで開けることとしている。   When the detected temperature T1 of the temperature sensor 12 becomes equal to or lower than the heat source side saturation temperature Tcc, it is determined that the heat source side heat exchanger 3 is full, and the pressure equalization side opening / closing valve 6 is opened to a predetermined opening (S64). By opening the pressure equalization side opening / closing valve 6, the refrigerant stored in the heat source side heat exchanger 3 is stored in the accumulator 4 via the pressure equalization circuit 5. Here, the predetermined opening is set for the following reason. That is, when the refrigerant starts to accumulate in the heat source side heat exchanger 3 due to the pump-down operation, the high pressure increases and the operation may be stopped due to an abnormal high pressure. In order to avoid a high-pressure pressure abnormality and accumulate more refrigerant in the accumulator 4, it is necessary to ensure a certain flow rate from the heat source side heat exchanger 3 to the accumulator 4. Therefore, first, the pressure equalization side opening / closing valve 6 is opened to a predetermined opening degree.

そして、低圧圧力Pisと低圧圧力検知装置13により検知された低圧圧力Psとを比較する(S65)。Pis≦Psの場合には、圧力差がないため、利用側熱交換器101からの冷媒回収が不可能な状態である。よって、均圧側開閉弁6の開度を小さくし(S66)、圧力差をつけて利用側熱交換器101からアキュムレータ4への冷媒回収を可能とする。一方、Pis>Psの場合には、圧力差があるため、利用側熱交換器101からの冷媒回収が可能な状態である。よって、均圧側開閉弁6の開度を大きくし(S67)、利用側熱交換器101からアキュムレータ4に流れる流量を大きくする。   Then, the low pressure Pis and the low pressure Ps detected by the low pressure detector 13 are compared (S65). In the case of Pis ≦ Ps, since there is no pressure difference, refrigerant recovery from the use side heat exchanger 101 is impossible. Therefore, the opening of the pressure equalizing side opening / closing valve 6 is reduced (S66), and the refrigerant can be recovered from the use side heat exchanger 101 to the accumulator 4 with a pressure difference. On the other hand, when Pis> Ps, since there is a pressure difference, the refrigerant can be recovered from the use side heat exchanger 101. Therefore, the opening degree of the pressure equalizing side opening / closing valve 6 is increased (S67), and the flow rate flowing from the use side heat exchanger 101 to the accumulator 4 is increased.

そして、アキュムレータ4の液面検知センサ14が満液を検知する(S68)か、又は高圧圧力検知装置11で検知した高圧圧力Pdが予め設定した設定圧力Py以上(S69)の場合(つまり、高圧異常の場合)、ポンプダウン運転を終了する。また、ステップS62の満液チェックでアキュムレータ4が満液になったと判断した場合も、ポンプダウンを終了する。   Then, when the liquid level detection sensor 14 of the accumulator 4 detects full liquid (S68) or the high pressure Pd detected by the high pressure detector 11 is equal to or higher than a preset pressure Py (S69) (that is, high pressure). In case of abnormality), the pump down operation is terminated. In addition, when it is determined that the accumulator 4 is full in the full liquid check in step S62, the pump-down is ended.

以上説明したように本実施の形態7によれば、実施の形態1と同様の効果が得られると共に、熱源側熱交換器3に満液で貯蔵され、アキュムレータ4にも冷媒が貯蔵できるため、従来と比較し、より多量に冷媒を貯蔵できる。   As described above, according to the seventh embodiment, the same effect as in the first embodiment can be obtained, and the heat source side heat exchanger 3 can be stored in a full liquid, and the accumulator 4 can store the refrigerant. Compared to the conventional case, a larger amount of refrigerant can be stored.

実施の形態8.
実施の形態7では、一般的な冷凍空調装置において熱源機A側でより多く冷媒を回収する方法を述べたが、実施の形態8では、複数の熱源機Aを組み合わせて構成した大容量の冷凍空調装置において、熱源機A側でより多く冷媒を回収する方法を説明する。
Embodiment 8 FIG.
In the seventh embodiment, the method of recovering more refrigerant on the heat source unit A side in the general refrigeration air conditioner has been described. However, in the eighth embodiment, a large-capacity refrigeration configured by combining a plurality of heat source units A. A method of recovering more refrigerant on the heat source unit A side in the air conditioner will be described.

図20は、本発明の実施の形態8の冷凍空調装置の冷媒回路図である。なお、図20において一方の熱源機AをA1、他方の熱源機AをA2とする。各熱源機A1、A2を区別する必要がない場合は総称して熱源機Aという。
実施の形態8の冷凍空調装置は、冷媒回路の構成自体は図5に示した実施の形態2と同様であり、図5の構成に更に、各種センサを取付けたものである。具体的には、熱源機Aの熱源側熱交換器3のガス側入り口に温度センサ12を取付ける。熱源機A1に取付けた温度センサを12A、熱源機A2に取付けた温度センサを12Bとする。なお、温度センサ12の代わりに圧力センサを取付けてもよい。
FIG. 20 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 8 of the present invention. In FIG. 20, one heat source machine A is A1, and the other heat source machine A is A2. When it is not necessary to distinguish between the heat source devices A1 and A2, they are collectively referred to as a heat source device A.
The refrigerating and air-conditioning apparatus of the eighth embodiment is the same as the second embodiment shown in FIG. 5 in the configuration of the refrigerant circuit, and further includes various sensors attached to the configuration in FIG. Specifically, the temperature sensor 12 is attached to the gas side inlet of the heat source side heat exchanger 3 of the heat source machine A. The temperature sensor attached to the heat source machine A1 is 12A, and the temperature sensor attached to the heat source machine A2 is 12B. A pressure sensor may be attached instead of the temperature sensor 12.

また、アキュムレータ入口配管に低圧圧力検知装置13を取付ける。低圧圧力検知装置13についても同様に熱源機A1に取付けた低圧圧力検知装置13を13A、熱源機A2に取付けた低圧圧力検知装置を13Bとする。また利用側熱交換器101の液側配管に温度センサ104を取付ける。アキュムレータ4には液面を検知する液面検知センサ14を取付ける。液面検知センサ14についても同様に、熱源機A1に取付けた液面検知センサ14を14A、熱源機A2に取付けた液面検知センサ14を14Bとする。また、図20には、熱源機Aに過冷却回路50を設けた構成を示しているが、これは省略可能である。但し、均圧側開閉弁6は、開度調整が可能なものとする。なお、実施の形態8の冷凍空調装置においてポンプダウン運転までのプロセスは上記実施の形態1と同様である。   Further, the low pressure detector 13 is attached to the accumulator inlet pipe. Similarly, for the low-pressure detector 13, the low-pressure detector 13 attached to the heat source machine A1 is 13A, and the low-pressure detector 13 attached to the heat source machine A2 is 13B. Further, the temperature sensor 104 is attached to the liquid side pipe of the use side heat exchanger 101. A liquid level detection sensor 14 for detecting the liquid level is attached to the accumulator 4. Similarly, for the liquid level detection sensor 14, the liquid level detection sensor 14 attached to the heat source unit A1 is 14A, and the liquid level detection sensor 14 attached to the heat source unit A2 is 14B. FIG. 20 shows a configuration in which the supercooling circuit 50 is provided in the heat source machine A, but this can be omitted. However, the pressure equalization side opening / closing valve 6 can be adjusted in opening. In the refrigerating and air-conditioning apparatus according to the eighth embodiment, the process up to the pump down operation is the same as that in the first embodiment.

熱源機Aを複数組み合わせる場合、冷媒回路内の冷媒量も大量となり、単一熱源機Aだけでポンプダウン回収できる量ではなく、全ての熱源機Aで分散して回収する必要があることは上述した。しかし、各熱源機Aのアキュムレータ4の冷媒量は異なるため、全ての熱源側熱交換器3が冷媒で満たされる前に、熱源機Aのどれか一つのアキュムレータ4がオーバーフローする可能性がある。オーバーフローすると圧縮機1に液バックし、冷媒回収が完了する前にポンプダウン運転を中断してしまい、漏洩量を十分に抑制できなくなる問題があった。   When a plurality of heat source devices A are combined, the amount of refrigerant in the refrigerant circuit also becomes large, and it is necessary to disperse and collect all the heat source devices A instead of the amount that can be recovered by pumping down with only the single heat source device A. did. However, since the amount of refrigerant in the accumulator 4 of each heat source apparatus A is different, there is a possibility that any one accumulator 4 of the heat source apparatus A will overflow before all the heat source side heat exchangers 3 are filled with the refrigerant. When the overflow occurs, the liquid is returned to the compressor 1, and the pump-down operation is interrupted before the refrigerant recovery is completed, so that there is a problem that the leakage amount cannot be sufficiently suppressed.

図21は、図20の冷凍空調装置のポンプダウン運転時の動作を示す制御フローチャートである。図21により、ポンプダウン運転時の冷媒の貯蔵方法の説明を行う。
ポンプダウン運転を開始した際、利用側膨張弁102を開、均圧側開閉弁6及び液ライン側開閉弁7を全閉にし(S71)、まず熱源側熱交換器3に冷媒を貯蔵する。そして、全てのアキュムレータ4が満液になっていないかをチェックし(S72)、満液になっていなければ、熱源側熱交換器3のガス側入り口の温度センサ12A、12Bの検知温度T1A、T1Bが熱源側飽和温度Tcc以下か否かをチェックする(S73〜S74)。
FIG. 21 is a control flowchart showing an operation during a pump-down operation of the refrigeration air conditioner of FIG. The refrigerant storage method during the pump-down operation will be described with reference to FIG.
When the pump-down operation is started, the use side expansion valve 102 is opened, the pressure equalization side opening / closing valve 6 and the liquid line side opening / closing valve 7 are fully closed (S71). First, the refrigerant is stored in the heat source side heat exchanger 3. Then, it is checked whether or not all the accumulators 4 are full (S72), and if not full, the detected temperatures T1A of the temperature sensors 12A and 12B at the gas side inlet of the heat source side heat exchanger 3 are checked. It is checked whether or not T1B is equal to or lower than the heat source side saturation temperature Tcc (S73 to S74).

どちらかの温度センサ12A、12Bの検知温度T1A、T1Bが熱源側飽和温度Tcc以下の場合、熱源側飽和温度Tcc以下となった温度センサ12を有する熱源機A側の熱源側熱交換器3は満液と判断し、その満液になった熱源機Aの均圧側開閉弁6を開くと共に、同熱源機Aの圧縮機1の周波数を装置的に可能な最小周波数とし冷媒回収速度を遅くする(S76、S77)。満液になった熱源機Aの冷媒回収速度を遅くするのは、最終的に各熱源側熱交換器3が満液となるようにするためである。なお、ここでは最小周波数とするとしたが、最小周波数に限らず、少なくとも減少させればよい。   When the detected temperatures T1A and T1B of either one of the temperature sensors 12A and 12B are equal to or lower than the heat source side saturation temperature Tcc, the heat source side heat exchanger 3 on the heat source apparatus A side having the temperature sensor 12 that is equal to or lower than the heat source side saturation temperature Tcc is It is determined that the liquid is full, and the pressure equalizing side opening / closing valve 6 of the heat source machine A that has become full is opened, and the refrigerant recovery rate is slowed by setting the frequency of the compressor 1 of the heat source machine A to the lowest possible frequency. (S76, S77). The reason why the refrigerant recovery rate of the heat source machine A that has become full is slowed is that the heat source side heat exchangers 3 eventually become full. Although the minimum frequency is assumed here, it is not limited to the minimum frequency and may be reduced at least.

熱源機A全ての温度センサ12の検知温度T1が熱源側飽和温度Tcc以上の場合、熱源機A同士の温度センサ12の検知温度T1を比較する(S78)。温度の最も高い熱源機Aは、最も冷媒回収が遅れている熱源機であることに相当するため、温度の最も高い熱源機Aの圧縮機1の周波数を上昇させて冷媒回収速度を速くする(S79、S80)。   When the detected temperature T1 of the temperature sensors 12 of all the heat source devices A is equal to or higher than the heat source side saturation temperature Tcc, the detected temperatures T1 of the temperature sensors 12 of the heat source devices A are compared (S78). Since the heat source machine A with the highest temperature corresponds to the heat source machine with the most delayed refrigerant recovery, the frequency of the compressor 1 of the heat source machine A with the highest temperature is increased to increase the refrigerant recovery speed ( S79, S80).

以上のステップS72〜S80の処理を、熱源機A全ての温度センサ12の検知温度T1が熱源側飽和温度Tcc以下となるまで繰り返す。そして、熱源機A全ての温度センサ12の検知温度T1が熱源側飽和温度Tcc以下となると、熱源側熱交換器3の全ては満液と判断し、全熱源機Aの均圧側開閉弁6を所定の開度に開く(S81)。その際、圧縮機1の周波数を上昇(S79、S80)、圧縮機1の周波数を最小周波数(S76、S77)とした熱源機Aの周波数は元の周波数に戻す。   The processes in steps S72 to S80 described above are repeated until the detected temperature T1 of all the temperature sensors 12 of the heat source machine A becomes equal to or lower than the heat source side saturation temperature Tcc. When the detection temperature T1 of all the temperature sensors 12 of the heat source machine A becomes equal to or lower than the heat source side saturation temperature Tcc, it is determined that all of the heat source side heat exchangers 3 are full, and the pressure equalization side opening / closing valve 6 of all the heat source machines A is turned on. It opens to a predetermined opening (S81). At that time, the frequency of the compressor 1 is increased (S79, S80), and the frequency of the heat source unit A with the frequency of the compressor 1 being the minimum frequency (S76, S77) is returned to the original frequency.

そして、利用側熱交換器101に取付けた温度センサ104で検知した温度に基づき算出した低圧圧力Pisと低圧圧力Psとの比較結果に応じて実施の形態7と同様に全熱源機Aの均圧側開閉弁6を制御する(S82〜S84)。すなわち、Pis≦Psの場合には、均圧側開閉弁6の開度を小さくし(S83)、Pis>Psの場合には、均圧側開閉弁6の開度を大きくする(S84)。   Then, according to the comparison result between the low pressure Pis calculated based on the temperature detected by the temperature sensor 104 attached to the use side heat exchanger 101 and the low pressure Ps, the pressure equalization side of the total heat source A as in the seventh embodiment. The on-off valve 6 is controlled (S82 to S84). That is, when Pis ≦ Ps, the opening degree of the pressure equalization side opening / closing valve 6 is reduced (S83), and when Pis> Ps, the opening degree of the pressure equalization side opening / closing valve 6 is increased (S84).

熱源機A1、A2のどちらかの液面検知センサ14が満液を検知する(S85)か、又は熱源機A1、A2のどちらかの高圧圧力検知装置11で検知した高圧圧力Pdが予め設定した設定圧力Py以上(S86)の場合、ポンプダウン運転を終了する。また、ステップS72の満液チェックで全てのアキュムレータ4が満液になったと判断した場合も、ポンプダウンを終了する。   The liquid level detection sensor 14 of either the heat source machine A1 or A2 detects full liquid (S85), or the high pressure Pd detected by the high pressure sensor 11 of either the heat source machine A1 or A2 is preset. If the pressure is equal to or higher than the set pressure Py (S86), the pump-down operation is terminated. Also, when it is determined that all the accumulators 4 are full in the full liquid check in step S72, the pump-down is terminated.

なお、上記実施の形態8で示した方法は、熱源機Aの組合せが実施の形態3のように異容量の場合でも同様である。熱源側熱交換器3の容量に偏りがあるため、同一容量に比べ圧縮機の周波数をより大きく変化させることが好ましい。   The method shown in the eighth embodiment is the same even when the combination of the heat source devices A has different capacities as in the third embodiment. Since the capacity of the heat source side heat exchanger 3 is biased, it is preferable to change the frequency of the compressor more greatly than the same capacity.

以上説明したように本実施の形態8によれば、実施の形態2と同様の効果が得られると共に、各熱源側熱交換器3の冷媒回収状況をチェックし、その結果に応じて圧縮機1の周波数を制御して冷媒回収速度を変化させるようにしたため、以下の効果が得られる。すなわち、各熱源側熱交換器3及びアキュムレータ4に貯蔵される冷媒量を均等にすることができ、従来と比較し、より多量に冷媒を貯蔵できる。   As described above, according to the eighth embodiment, the same effects as those of the second embodiment can be obtained, the refrigerant recovery status of each heat source side heat exchanger 3 is checked, and the compressor 1 is determined according to the result. Since the refrigerant recovery rate is changed by controlling the frequency, the following effects can be obtained. That is, the amount of refrigerant stored in each heat source side heat exchanger 3 and accumulator 4 can be made equal, and a larger amount of refrigerant can be stored compared to the conventional case.

なお、上記では、各実施の形態1〜8においてそれぞれ別の実施の形態として説明したが、各実施の形態の特徴的な構成及び処理を、適宜組み合わせた構成としてもよい。   In addition, in the above, although each Embodiment 1-8 demonstrated as another embodiment, it is good also as a structure which combined the characteristic structure and process of each embodiment suitably.

1 圧縮機、2 四方弁、3 熱源側熱交換器、4 アキュムレータ、5 均圧回路、6 均圧側開閉弁、7 液ライン側開閉弁、10a 液ライン(高圧液ライン)、10b ガスライン(低圧ガスライン)、11 高圧圧力検知装置、12(12A、12B) 温度センサ、13(13A、13B) 低圧圧力検知装置、14(14A、14B) 液面検知センサ、50 過冷却回路、51 過冷却熱交換器、52 過冷却膨張弁、101 利用側熱交換器、102 利用側膨張弁、103 冷媒漏洩検知装置、104 温度センサ、110 冷媒配管、120 冷媒配管、130 室内側送風機、131 モータ、200 上位コントローラ、201 エリア登録情報、300 吹き出し口、301 風向ベーン、500 制御装置、500A 熱源機側制御装置、500B 室内機側制御装置、501 通信線、A 熱源機、B 室内機、C1 冷凍空調装置(冷媒系統)、C2 冷凍空調装置(冷媒系統)。   1 compressor, 2 four-way valve, 3 heat source side heat exchanger, 4 accumulator, 5 pressure equalizing circuit, 6 pressure equalizing side on / off valve, 7 liquid line side on / off valve, 10a liquid line (high pressure liquid line), 10b gas line (low pressure) Gas line), 11 High pressure detection device, 12 (12A, 12B) Temperature sensor, 13 (13A, 13B) Low pressure detection device, 14 (14A, 14B) Liquid level detection sensor, 50 Supercooling circuit, 51 Supercooling heat Exchanger, 52 Supercooling expansion valve, 101 Utilization side heat exchanger, 102 Utilization side expansion valve, 103 Refrigerant leak detection device, 104 Temperature sensor, 110 Refrigerant piping, 120 Refrigerant piping, 130 Indoor fan, 131 Motor, 200 Controller, 201 area registration information, 300 outlet, 301 wind direction vane, 500 controller, 500A heat source side control Device 500B indoor unit side controller 501 communication line, A heat source unit, B indoor unit, C1 refrigeration air conditioning system (refrigerant system), C2 refrigeration air conditioning system (refrigerant system).

Claims (11)

圧縮機と熱源側熱交換器とアキュムレータとを備えた熱源機と、
利用側絞り装置と利用側熱交換器とを備えた1又は複数の室内機と、
前記熱源機と前記1又は複数の室内機とを接続するための高圧液ライン及び低圧ガスラインと、
前記高圧液ラインに設けられた第一開閉弁と、
前記圧縮機、前記熱源側熱交換器、前記第一開閉弁、前記利用側絞り装置、前記利用側熱交換器及び前記アキュムレータとが順次、前記高圧液ライン及び前記低圧ガスラインを含む冷媒配管で接続されて冷媒が循環する冷媒回路と、
前記高圧液ラインから分岐し、第二開閉弁を介して前記アキュムレータの吸入側の前記低圧ガスラインに接続される均圧回路と、
前記室内機に配置され、前記冷媒回路からの冷媒漏れを検知する冷媒漏洩検知装置と、
前記圧縮機から吐出する冷媒の高圧圧力を検知する高圧圧力検知装置と、
前記冷媒漏洩検知装置により冷媒漏れが検知されると、前記利用側絞り装置を全開状態、前記第二開閉弁を開状態、前記第一開閉弁を閉状態としたまま前記圧縮機を起動させるポンプダウン運転を開始する制御装置とを備え、
前記制御装置は、
前記ポンプダウン運転開始時、前記高圧圧力検知装置により検知された高圧圧力が予め設定した設定圧力以上の場合には、前記ポンプダウン運転の前に、前記圧縮機を停止させると共に前記利用側絞り装置を全開状態、前記第一開閉弁を開状態としたまま、前記第二開閉弁を開いて前記高圧液ラインを前記低圧ガスラインに連通させる均圧回収運転を行うことを特徴とする冷凍空調装置。
A heat source machine including a compressor, a heat source side heat exchanger, and an accumulator;
One or a plurality of indoor units including a use side expansion device and a use side heat exchanger;
A high-pressure liquid line and a low-pressure gas line for connecting the heat source unit and the one or more indoor units;
A first on-off valve provided in the high-pressure liquid line;
The compressor, the heat source side heat exchanger, the first on-off valve, the usage side expansion device, the usage side heat exchanger, and the accumulator are refrigerant pipes including the high pressure liquid line and the low pressure gas line in sequence. A refrigerant circuit connected to circulate the refrigerant;
A pressure equalizing circuit branched from the high-pressure liquid line and connected to the low-pressure gas line on the suction side of the accumulator via a second on-off valve;
A refrigerant leakage detection device that is disposed in the indoor unit and detects refrigerant leakage from the refrigerant circuit;
A high-pressure detector that detects the high-pressure of the refrigerant discharged from the compressor;
When the refrigerant leak is detected by the refrigerant leak detector, the pump starts the compressor with the use side throttle device fully opened, the second on-off valve opened, and the first on-off valve closed. A control device for starting the down operation,
The controller is
If the high pressure detected by the high pressure detection device is equal to or higher than a preset pressure at the start of the pump down operation, the compressor is stopped and the use side throttle device before the pump down operation. A refrigerating and air-conditioning apparatus for performing a pressure equalization recovery operation for opening the second on-off valve and communicating the high-pressure liquid line to the low-pressure gas line while keeping the first on-off valve open. .
前記熱源側熱交換器のガス側入り口に温度センサを備え、前記ポンプダウン運転時、前記温度センサで検知した検知温度と熱源側飽和温度とを比較し、前記検知温度が前記熱源側飽和温度以下の場合、前記第二開閉弁を開とすることを特徴とする請求項1記載の冷凍空調装置。   A temperature sensor is provided at the gas side inlet of the heat source side heat exchanger, the detected temperature detected by the temperature sensor and the heat source side saturation temperature are compared during the pump down operation, and the detected temperature is equal to or lower than the heat source side saturation temperature. 2. The refrigeration air conditioner according to claim 1, wherein the second on-off valve is opened. 圧縮機と熱源側熱交換器とアキュムレータとを備え、互いに並列接続される複数の同一容量の熱源機と、
前記複数の熱源機のそれぞれから延びる各高圧液ラインを合流するメイン高圧液ラインと前記複数の熱源機から延びる各低圧ガスラインを合流するメイン低圧ガスラインとの間に並列接続され、利用側絞り装置及び利用側熱交換器を備える複数の室内機と、
前記複数の熱源機のそれぞれと前記複数の室内機との間で構成され、前記圧縮機、前記熱源側熱交換器、前記利用側絞り装置、前記利用側熱交換器及び前記アキュムレータが順次、前記高圧液ライン、前記メイン高圧液ライン、前記低圧ガスライン及び前記メイン低圧ガスラインを含む冷媒配管で接続されて冷媒が循環する一系統の冷媒回路と、
前記各高圧液ラインのそれぞれに設けられた第一開閉弁と、
前記複数の熱源機のそれぞれに設けられ、自己の高圧液ラインから分岐し、第二開閉弁を介して自己のアキュムレータの吸入側の前記低圧ガスラインに接続される均圧回路と、
前記複数の室内機のそれぞれに設けられ、自己の室内機からの冷媒漏れを検知する冷媒漏洩検知装置と、
前記複数の熱源機のそれぞれに設けられ、自己の圧縮機から吐出する冷媒の高圧圧力を検知する高圧圧力検知装置と、
複数の前記冷媒漏洩検知装置のうちの何れかにより冷媒漏れが検知されると、前記各利用側絞り装置を全開状態、前記各第二開閉弁を開状態としたまま前記複数の熱源機の全ての圧縮機を同時起動させるポンプダウン運転を開始する制御装置とを備え、
前記制御装置は、
前記ポンプダウン運転開始時、前記各高圧圧力検知装置のそれぞれにより検知された高圧圧力のうちの少なくとも一つが予め設定した設定圧力以上の場合には、前記ポンプダウン運転の前に、前記複数の熱源機の全ての圧縮機を停止し、前記各利用側絞り装置を全開にすると同時に、前記複数の熱源機の全ての前記第一開閉弁を開状態としたまま、前記複数の熱源機の全ての前記第二開閉弁を同時に開として、前記各高圧液ラインを前記各低圧ガスラインに連通させる均圧回収運転を行うことを特徴とする冷凍空調装置。
A plurality of heat source units having the same capacity, each having a compressor, a heat source side heat exchanger, and an accumulator;
A use-side throttle connected in parallel between a main high-pressure liquid line joining each high-pressure liquid line extending from each of the plurality of heat source machines and a main low-pressure gas line joining each low-pressure gas line extending from the plurality of heat source machines A plurality of indoor units equipped with a device and a use side heat exchanger;
Each of the plurality of heat source units and the plurality of indoor units, the compressor, the heat source side heat exchanger, the use side expansion device, the use side heat exchanger, and the accumulator are sequentially, A high-pressure liquid line, a main high-pressure liquid line, a low-pressure gas line, and a system of refrigerant circuits that circulate through the refrigerant connected by refrigerant piping including the main low-pressure gas line;
A first on-off valve provided in each of the high-pressure liquid lines;
A pressure equalization circuit provided in each of the plurality of heat source units, branched from its own high-pressure liquid line, and connected to the low-pressure gas line on the suction side of its own accumulator via a second on-off valve;
A refrigerant leakage detection device that is provided in each of the plurality of indoor units and detects refrigerant leakage from the indoor unit;
A high-pressure detector that is provided in each of the plurality of heat source units and detects a high-pressure of refrigerant discharged from its own compressor;
When refrigerant leakage is detected by any one of the plurality of refrigerant leakage detection devices, all of the plurality of heat source devices are maintained with the respective use-side throttle devices in a fully open state and the second on-off valves in an open state. A control device for starting pump down operation for simultaneously starting the compressors of
The controller is
When at least one of the high pressures detected by each of the high pressure detectors is equal to or higher than a preset pressure at the start of the pump down operation, the plurality of heat sources are provided before the pump down operation. Stop all the compressors of the machine, fully open each of the use side expansion devices, and at the same time leave all the first on-off valves of the plurality of heat source machines open, all of the plurality of heat source machines A refrigerating and air-conditioning apparatus that performs a pressure equalization recovery operation in which the second on-off valve is opened at the same time and the high-pressure liquid lines communicate with the low-pressure gas lines.
圧縮機と熱源側熱交換器とアキュムレータとを備え、互いに並列接続される複数の互いに異容量の熱源機と、
前記複数の熱源機のそれぞれから延びる各高圧液ラインを合流するメイン高圧液ラインと前記複数の熱源機から延びる各低圧ガスラインを合流するメイン低圧ガスラインとの間に並列接続され、利用側熱交換器及び利用側絞り装置を備える複数の室内機と、
前記複数の熱源機のそれぞれと前記複数の室内機との間で構成され、前記圧縮機、前記熱源側熱交換器、前記利用側絞り装置、前記利用側熱交換器及び前記アキュムレータが順次、前記高圧液ライン、前記メイン高圧液ライン、前記低圧ガスライン及び前記メイン低圧ガスラインを含む冷媒配管で接続されて冷媒が循環する一系統の冷媒回路と、
前記各高圧液ラインそれぞれに設けられた第一開閉弁と、
前記複数の熱源機のそれぞれに設けられ、自己の高圧液ラインから分岐し、第二開閉弁を介して自己のアキュムレータの吸入側の前記低圧ガスラインに接続される均圧回路と、
前記複数の室内機のそれぞれに設けられ、自己の室内機からの冷媒漏れを検知する冷媒漏洩検知装置と、
前記複数の熱源機のそれぞれに設けられ、自己の圧縮機から吐出する冷媒の高圧圧力を検知する高圧圧力検知装置と、
複数の前記冷媒漏洩検知装置のうちの何れかにより冷媒漏れが検知されると、前記複数の熱源機の前記第一開閉弁を閉状態、前記各利用側絞り装置を全開状態、前記複数の第二開閉弁を開状態としたまま、前記複数の熱源機のうちの予め設定した先行熱源機の圧縮機を先行して起動し、その後、他の熱源機の圧縮機を順次起動させるポンプダウン運転を開始する制御装置とを備え、
前記制御装置は、
前記ポンプダウン運転開始時、前記各高圧圧力検知装置のそれぞれにより検知された高圧圧力のうちの少なくとも一つが予め設定した設定圧力以上の場合には、前記ポンプダウン運転の前に、前記複数の熱源機の全ての圧縮機を停止させ、前記各利用側絞り装置を全開にすると共に、前記先行熱源機の前記第一開閉弁を開状態、その他の熱源機の前記第一開閉弁を閉状態、前記その他の熱源機の前記第二開閉弁を閉状態としたまま、前記先行熱源機の前記第二開閉弁を開いて前記先行熱源機の前記高圧液ラインを前記先行熱源機の前記低圧ガスラインに連通させる均圧回収運転を行うことを特徴とする冷凍空調装置。
A plurality of heat source units having different capacities, each having a compressor, a heat source side heat exchanger, and an accumulator, connected in parallel to each other;
The use side heat is connected in parallel between a main high pressure liquid line joining each high pressure liquid line extending from each of the plurality of heat source machines and a main low pressure gas line joining each low pressure gas line extending from the plurality of heat source machines. A plurality of indoor units including an exchanger and a use-side throttle device;
Each of the plurality of heat source units and the plurality of indoor units, the compressor, the heat source side heat exchanger, the use side expansion device, the use side heat exchanger, and the accumulator are sequentially, A high-pressure liquid line, a main high-pressure liquid line, a low-pressure gas line, and a system of refrigerant circuits that circulate through the refrigerant connected by refrigerant piping including the main low-pressure gas line;
A first on-off valve provided in each of the high-pressure liquid lines;
A pressure equalization circuit provided in each of the plurality of heat source units, branched from its own high-pressure liquid line, and connected to the low-pressure gas line on the suction side of its own accumulator via a second on-off valve;
A refrigerant leakage detection device that is provided in each of the plurality of indoor units and detects refrigerant leakage from the indoor unit;
A high-pressure detector that is provided in each of the plurality of heat source units and detects a high-pressure of refrigerant discharged from its own compressor;
When refrigerant leakage is detected by any one of the plurality of refrigerant leakage detection devices, the first on-off valves of the plurality of heat source units are closed, the respective use-side throttle devices are fully opened, and the plurality of first A pump-down operation in which the compressor of the preset preceding heat source machine among the plurality of heat source machines is started in advance with the two on-off valves being opened, and then the compressors of the other heat source machines are sequentially started. And a control device for starting
The controller is
When at least one of the high pressures detected by each of the high pressure detectors is equal to or higher than a preset pressure at the start of the pump down operation, the plurality of heat sources are provided before the pump down operation. All compressors of the machine are stopped, each use side expansion device is fully opened, the first on-off valve of the preceding heat source machine is opened, the first on-off valve of the other heat source machine is closed, While the second on-off valve of the other heat source unit is in a closed state, the second on-off valve of the preceding heat source unit is opened to connect the high pressure liquid line of the preceding heat source unit to the low pressure gas line of the preceding heat source unit. A refrigeration air conditioner that performs a pressure equalization recovery operation that communicates with the refrigeration system.
前記制御装置は、前記先行熱源機でのみ冷媒回収を行う前記均圧回収運転後、他の熱源機の前記第一開閉弁及び前記第二開閉弁を開いて他の熱源機の均圧回収運転を順次行うことを特徴とする請求項4記載の冷凍空調装置。   The control device opens the first on-off valve and the second on-off valve of the other heat source unit after the pressure equalization recovery operation for collecting the refrigerant only at the preceding heat source unit, and the equal pressure recovery operation of the other heat source unit The refrigerating and air-conditioning apparatus according to claim 4, wherein: 前記先行熱源機は、前記複数の熱源機のうち、容量の最も大きい熱源機とすることを特徴とする請求項4又は請求項5記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 4 or 5, wherein the preceding heat source unit is a heat source unit having a largest capacity among the plurality of heat source units. 前記複数の熱源機のそれぞれの熱源側熱交換器のガス側入り口に温度センサを備え、ポンプダウン運転時、前記複数の熱源機のそれぞれについて、自己の前記温度センサで検知した検知温度と自己の熱源側飽和温度とを比較し、
(1)全熱源機において前記検知温度が前記熱源側飽和温度より高い場合、全熱源機のうち前記検知温度が最も高い熱源機の圧縮機周波数を上昇させ、
(2)全熱源機において前記検知温度が前記熱源側飽和温度以下の場合、全圧縮機の前記第二開閉弁を開とし、
(3)上記(1)、(2)以外の場合は、全熱源機のうち、前記検知温度が前記熱源側飽和温度より高い熱源機の第二開閉弁を開とすると共に、その熱源機の圧縮機周波数を減少させることを特徴とする請求項3乃至請求項6の何れか一項に記載の冷凍空調装置。
A temperature sensor is provided at the gas side inlet of each heat source side heat exchanger of each of the plurality of heat source units. Compare with the saturation temperature on the heat source side,
(1) When the detected temperature is higher than the heat source side saturation temperature in the total heat source unit, the compressor frequency of the heat source unit having the highest detected temperature among all the heat source units is increased,
(2) When the detected temperature is equal to or lower than the heat source side saturation temperature in the total heat source unit, the second on-off valve of the total compressor is opened,
(3) In cases other than (1) and (2) above, the second on-off valve of the heat source device whose detected temperature is higher than the heat source side saturation temperature is opened among all the heat source devices, and the heat source device The refrigeration air conditioner according to any one of claims 3 to 6, wherein the compressor frequency is decreased.
前記(3)の場合、前記検知温度が前記熱源側飽和温度より高い熱源機の圧縮機周波数を装置的に可能な最小周波数とすることを特徴とする請求項7記載の冷凍空調装置。   8. The refrigeration air conditioner according to claim 7, wherein in the case of (3), the compressor frequency of the heat source unit whose detected temperature is higher than the heat source side saturation temperature is set to the lowest possible frequency. 前記熱源機は、前記熱源側熱交換器と前記利用側絞り装置との間から分岐し、過冷却膨張弁を介して前記アキュムレータの吸入側に至る過冷却回路を備え、
前記過冷却回路は、前記熱源側熱交換器と前記利用側絞り装置との間の冷媒と、前記過冷却回路において前記過冷却膨張弁を通過した冷媒との熱交換を行う過冷却熱交換器を有し、前記過冷却膨張弁が前記第二開閉弁を兼ねることを特徴とする請求項1乃至請求項8の何れか一項に記載の冷凍空調装置。
The heat source device includes a supercooling circuit that branches from between the heat source side heat exchanger and the use side expansion device and reaches a suction side of the accumulator through a supercooling expansion valve,
The supercooling circuit is a supercooling heat exchanger that exchanges heat between the refrigerant between the heat source side heat exchanger and the use side expansion device and the refrigerant that has passed through the supercooling expansion valve in the supercooling circuit. The refrigerating and air-conditioning apparatus according to any one of claims 1 to 8, wherein the supercooling expansion valve also serves as the second opening / closing valve.
前記熱源機は、前記圧縮機から吐出した冷媒の流れ方向を冷房運転時に前記熱源側熱交換器側、暖房運転時に前記利用側熱交換器側となるように切り換える四方弁を備え、前記四方弁が暖房運転側に切り換えられているときに前記冷媒漏洩検知装置により冷媒漏れが検知された場合には、前記四方弁を冷房運転側に切り換えることを特徴とする請求項1乃至請求項9の何れか一項に記載の冷媒空調装置。   The heat source unit includes a four-way valve that switches a flow direction of the refrigerant discharged from the compressor to be on the heat source side heat exchanger side during cooling operation and to the use side heat exchanger side during heating operation, The four-way valve is switched to a cooling operation side when refrigerant leakage is detected by the refrigerant leakage detection device when the refrigerant is switched to a heating operation side. A refrigerant air conditioner according to claim 1. 請求項1乃至請求項10の何れか一項に記載の冷凍空調装置を複数と、
複数の前記冷凍空調装置を制御する上位コントローラとを備え、
前記上位コントローラは、複数の前記冷媒漏洩検知装置のうちの何れかにより冷媒漏れが検知されると、冷媒漏れを検知した前記冷媒漏洩検知装置が設置されたエリアを通過する冷媒配管を有する全ての前記冷凍空調装置に、前記ポンプダウン運転を開始させることを特徴とする冷凍空調システム。
A plurality of the refrigerating and air-conditioning apparatuses according to any one of claims 1 to 10,
A host controller for controlling a plurality of the refrigeration air conditioners,
The upper controller has all the refrigerant pipes that pass through an area where the refrigerant leakage detection device that detects the refrigerant leakage is installed when refrigerant leakage is detected by any of the plurality of refrigerant leakage detection devices. A refrigerating and air-conditioning system, wherein the refrigerating and air-conditioning apparatus starts the pump-down operation.
JP2012094704A 2011-11-07 2012-04-18 Refrigeration air conditioner and refrigeration air conditioning system Active JP5975714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012094704A JP5975714B2 (en) 2011-11-07 2012-04-18 Refrigeration air conditioner and refrigeration air conditioning system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011243038 2011-11-07
JP2011243038 2011-11-07
JP2012094704A JP5975714B2 (en) 2011-11-07 2012-04-18 Refrigeration air conditioner and refrigeration air conditioning system

Publications (2)

Publication Number Publication Date
JP2013122364A true JP2013122364A (en) 2013-06-20
JP5975714B2 JP5975714B2 (en) 2016-08-23

Family

ID=48774411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094704A Active JP5975714B2 (en) 2011-11-07 2012-04-18 Refrigeration air conditioner and refrigeration air conditioning system

Country Status (1)

Country Link
JP (1) JP5975714B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178073A (en) * 2012-02-06 2013-09-09 Daikin Industries Ltd Refrigeration device
JP2013178075A (en) * 2012-02-06 2013-09-09 Daikin Industries Ltd Refrigeration device
CN104214985A (en) * 2014-09-01 2014-12-17 广东志高暖通设备股份有限公司 Multi-split air conditioning system and low-temperature refrigeration method
JP2015075272A (en) * 2013-10-09 2015-04-20 株式会社富士通ゼネラル Air conditioner
JP2015087071A (en) * 2013-10-31 2015-05-07 株式会社富士通ゼネラル Air conditioner
WO2015132959A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Air conditioning device
JP2015206517A (en) * 2014-04-18 2015-11-19 ダイキン工業株式会社 Refrigeration device
JP2016011783A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Heating/cooling simultaneous operation type air conditioner
WO2016088653A1 (en) * 2014-12-05 2016-06-09 ダイキン工業株式会社 Air conditioner
WO2016157519A1 (en) * 2015-04-03 2016-10-06 三菱電機株式会社 Air-conditioning device
WO2017002214A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Refrigeration cycle system
JP6081033B1 (en) * 2016-05-24 2017-02-15 三菱電機株式会社 Air conditioner
JP2017090041A (en) * 2014-11-18 2017-05-25 三菱電機株式会社 Air conditioner
WO2017154161A1 (en) * 2016-03-10 2017-09-14 三菱電機株式会社 Refrigeration cycle device
WO2017179117A1 (en) * 2016-04-12 2017-10-19 三菱電機株式会社 Air conditioner
WO2017212599A1 (en) * 2016-06-08 2017-12-14 三菱電機株式会社 Air-conditioning device
WO2018092299A1 (en) * 2016-11-21 2018-05-24 三菱電機株式会社 Air conditioner
JP6377299B1 (en) * 2017-10-05 2018-08-22 三菱電機株式会社 Air conditioner
JPWO2017175300A1 (en) * 2016-04-05 2018-08-30 三菱電機株式会社 Air conditioner
WO2018167811A1 (en) * 2017-03-13 2018-09-20 三菱電機株式会社 Refrigeration cycle device
WO2019030885A1 (en) 2017-08-10 2019-02-14 三菱電機株式会社 Refrigeration cycle device
JPWO2018003096A1 (en) * 2016-06-30 2019-02-14 三菱電機株式会社 Air conditioner
WO2019073870A1 (en) * 2017-10-12 2019-04-18 ダイキン工業株式会社 Refrigeration device
JP2019143877A (en) * 2018-02-21 2019-08-29 株式会社富士通ゼネラル Air conditioning system
JP2019143876A (en) * 2018-02-21 2019-08-29 株式会社富士通ゼネラル Air conditioning system
WO2020021661A1 (en) * 2018-07-25 2020-01-30 ダイキン工業株式会社 Air conditioning system
EP3633277A4 (en) * 2017-05-24 2020-05-27 Mitsubishi Electric Corporation Air conditioning system
US11181303B2 (en) * 2016-11-22 2021-11-23 Mitsubishi Electric Corporation Air-conditioning apparatus and air-conditioning system
WO2021241108A1 (en) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 Air conditioning system
US11293672B2 (en) * 2017-06-19 2022-04-05 Mitsubishi Electric Corporation Heat-pump using apparatus
WO2022163058A1 (en) * 2021-01-28 2022-08-04 パナソニックIpマネジメント株式会社 Air-conditioning device
WO2022202571A1 (en) * 2021-03-26 2022-09-29 株式会社富士通ゼネラル Air conditioner
US11609031B2 (en) * 2017-03-13 2023-03-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2023526623A (en) * 2020-05-20 2023-06-22 ダイキン工業株式会社 Heat pump system and controller for controlling the operation of the heat pump system
JP2023527765A (en) * 2020-05-20 2023-06-30 ダイキン工業株式会社 Heat pump system and controller for controlling the operation of the heat pump system
WO2024103793A1 (en) * 2022-11-14 2024-05-23 青岛海信日立空调系统有限公司 Air conditioning system, and control method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257875A (en) * 1993-03-08 1994-09-16 Daikin Ind Ltd Refrigerating device
JPH08219583A (en) * 1995-02-08 1996-08-30 Yamaha Motor Co Ltd Air conditioning apparatus
JPH109692A (en) * 1996-06-25 1998-01-16 Hitachi Ltd Air conditioner
JP2000179971A (en) * 1998-12-16 2000-06-30 Daikin Ind Ltd Refrigerating device
JP2001280749A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerating device
JP2006118827A (en) * 2004-10-25 2006-05-11 Sanyo Electric Co Ltd Air conditioner
JP2007271097A (en) * 2006-03-30 2007-10-18 Sanyo Electric Co Ltd Cooling system
JP2009300041A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06257875A (en) * 1993-03-08 1994-09-16 Daikin Ind Ltd Refrigerating device
JPH08219583A (en) * 1995-02-08 1996-08-30 Yamaha Motor Co Ltd Air conditioning apparatus
JPH109692A (en) * 1996-06-25 1998-01-16 Hitachi Ltd Air conditioner
JP2000179971A (en) * 1998-12-16 2000-06-30 Daikin Ind Ltd Refrigerating device
JP2001280749A (en) * 2000-03-31 2001-10-10 Daikin Ind Ltd Refrigerating device
JP2006118827A (en) * 2004-10-25 2006-05-11 Sanyo Electric Co Ltd Air conditioner
JP2007271097A (en) * 2006-03-30 2007-10-18 Sanyo Electric Co Ltd Cooling system
JP2009300041A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178073A (en) * 2012-02-06 2013-09-09 Daikin Industries Ltd Refrigeration device
JP2013178075A (en) * 2012-02-06 2013-09-09 Daikin Industries Ltd Refrigeration device
JP2015075272A (en) * 2013-10-09 2015-04-20 株式会社富士通ゼネラル Air conditioner
JP2015087071A (en) * 2013-10-31 2015-05-07 株式会社富士通ゼネラル Air conditioner
WO2015132959A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Air conditioning device
JP5797354B1 (en) * 2014-03-07 2015-10-21 三菱電機株式会社 Air conditioner
KR101810809B1 (en) * 2014-03-07 2017-12-19 미쓰비시덴키 가부시키가이샤 Air conditioning device
CN106062490A (en) * 2014-03-07 2016-10-26 三菱电机株式会社 Air conditioning apparatus
US10655900B2 (en) 2014-03-07 2020-05-19 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2015206517A (en) * 2014-04-18 2015-11-19 ダイキン工業株式会社 Refrigeration device
JP2016011783A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Heating/cooling simultaneous operation type air conditioner
CN104214985A (en) * 2014-09-01 2014-12-17 广东志高暖通设备股份有限公司 Multi-split air conditioning system and low-temperature refrigeration method
JP2017090041A (en) * 2014-11-18 2017-05-25 三菱電機株式会社 Air conditioner
JP2018044766A (en) * 2014-11-18 2018-03-22 三菱電機株式会社 Air conditioner
CN107003052A (en) * 2014-12-05 2017-08-01 大金工业株式会社 Air conditioner
JP2016109356A (en) * 2014-12-05 2016-06-20 ダイキン工業株式会社 Air conditioner
WO2016088653A1 (en) * 2014-12-05 2016-06-09 ダイキン工業株式会社 Air conditioner
CN107003052B (en) * 2014-12-05 2018-05-25 大金工业株式会社 Air conditioner
US10527310B2 (en) 2014-12-05 2020-01-07 Daikin Industries, Ltd. Air conditioner
AU2015356144B2 (en) * 2014-12-05 2018-05-10 Daikin Industries, Ltd. Air conditioner
JPWO2016157519A1 (en) * 2015-04-03 2017-11-02 三菱電機株式会社 Air conditioner
WO2016157519A1 (en) * 2015-04-03 2016-10-06 三菱電機株式会社 Air-conditioning device
EP3279580A4 (en) * 2015-04-03 2019-05-15 Mitsubishi Electric Corporation Air-conditioning device
WO2017002214A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Refrigeration cycle system
JPWO2017002214A1 (en) * 2015-06-30 2018-01-11 三菱電機株式会社 Refrigeration cycle system
EP3318823A4 (en) * 2015-06-30 2019-03-20 Mitsubishi Electric Corporation Refrigeration cycle system
JP6253853B1 (en) * 2016-03-10 2017-12-27 三菱電機株式会社 Refrigeration cycle equipment
CN108779948B (en) * 2016-03-10 2020-09-22 三菱电机株式会社 Refrigeration cycle device
US10794611B2 (en) 2016-03-10 2020-10-06 Mitsubishi Electric Company Refrigeration cycle apparatus
WO2017154161A1 (en) * 2016-03-10 2017-09-14 三菱電機株式会社 Refrigeration cycle device
CN108779948A (en) * 2016-03-10 2018-11-09 三菱电机株式会社 Refrigerating circulatory device
JPWO2017175300A1 (en) * 2016-04-05 2018-08-30 三菱電機株式会社 Air conditioner
WO2017179117A1 (en) * 2016-04-12 2017-10-19 三菱電機株式会社 Air conditioner
EP3467406A4 (en) * 2016-05-24 2019-05-08 Mitsubishi Electric Corporation Air conditioner
JP6081033B1 (en) * 2016-05-24 2017-02-15 三菱電機株式会社 Air conditioner
WO2017203606A1 (en) * 2016-05-24 2017-11-30 三菱電機株式会社 Air conditioner
JPWO2017212599A1 (en) * 2016-06-08 2019-01-17 三菱電機株式会社 Air conditioner
GB2564367A (en) * 2016-06-08 2019-01-09 Mitsubishi Electric Corp Air-conditioning device
GB2564367B (en) * 2016-06-08 2020-11-04 Mitsubishi Electric Corp Air-conditioning apparatus
WO2017212599A1 (en) * 2016-06-08 2017-12-14 三菱電機株式会社 Air-conditioning device
JPWO2018003096A1 (en) * 2016-06-30 2019-02-14 三菱電機株式会社 Air conditioner
JPWO2018092299A1 (en) * 2016-11-21 2019-06-24 三菱電機株式会社 Air conditioner
WO2018092299A1 (en) * 2016-11-21 2018-05-24 三菱電機株式会社 Air conditioner
US11181303B2 (en) * 2016-11-22 2021-11-23 Mitsubishi Electric Corporation Air-conditioning apparatus and air-conditioning system
JPWO2018167811A1 (en) * 2017-03-13 2020-01-16 三菱電機株式会社 Refrigeration cycle device
US11143439B2 (en) 2017-03-13 2021-10-12 Mitsubishi Electric Corporation Heat pump with refrigerant leak detection and pump-down method
US11609031B2 (en) * 2017-03-13 2023-03-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2018167811A1 (en) * 2017-03-13 2018-09-20 三菱電機株式会社 Refrigeration cycle device
US11098916B2 (en) 2017-05-24 2021-08-24 Mitsubishi Electric Corporation Air conditioning system
EP3633277A4 (en) * 2017-05-24 2020-05-27 Mitsubishi Electric Corporation Air conditioning system
US11293672B2 (en) * 2017-06-19 2022-04-05 Mitsubishi Electric Corporation Heat-pump using apparatus
US11473821B2 (en) 2017-08-10 2022-10-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2019030885A1 (en) 2017-08-10 2019-02-14 三菱電機株式会社 Refrigeration cycle device
JP6377299B1 (en) * 2017-10-05 2018-08-22 三菱電機株式会社 Air conditioner
WO2019073870A1 (en) * 2017-10-12 2019-04-18 ダイキン工業株式会社 Refrigeration device
CN111201411A (en) * 2017-10-12 2020-05-26 大金工业株式会社 Refrigerating device
JP2019074222A (en) * 2017-10-12 2019-05-16 ダイキン工業株式会社 Refrigeration device
CN111201411B (en) * 2017-10-12 2021-11-30 大金工业株式会社 Refrigerating device
US11415345B2 (en) 2017-10-12 2022-08-16 Daikin Industries, Ltd. Refrigeration apparatus
JP2019143876A (en) * 2018-02-21 2019-08-29 株式会社富士通ゼネラル Air conditioning system
JP2019143877A (en) * 2018-02-21 2019-08-29 株式会社富士通ゼネラル Air conditioning system
US11898763B2 (en) 2018-07-25 2024-02-13 Daikin Industries, Ltd. Air conditioning system with refrigerant leak management
WO2020021661A1 (en) * 2018-07-25 2020-01-30 ダイキン工業株式会社 Air conditioning system
JP2023526623A (en) * 2020-05-20 2023-06-22 ダイキン工業株式会社 Heat pump system and controller for controlling the operation of the heat pump system
US12130059B2 (en) 2020-05-20 2024-10-29 Daikin Industries, Ltd. Heat pump system and controller for controlling operation of the same
JP7574324B2 (en) 2020-05-20 2024-10-28 ダイキン工業株式会社 HEAT PUMP SYSTEM AND CONTROL DEVICE FOR CONTROLLING OPERATION OF HEAT PUMP SYSTEM - Patent application
JP7574323B2 (en) 2020-05-20 2024-10-28 ダイキン工業株式会社 HEAT PUMP SYSTEM AND CONTROL DEVICE FOR CONTROLLING OPERATION OF HEAT PUMP SYSTEM - Patent application
JP2023527765A (en) * 2020-05-20 2023-06-30 ダイキン工業株式会社 Heat pump system and controller for controlling the operation of the heat pump system
JP7462186B2 (en) 2020-05-29 2024-04-05 パナソニックIpマネジメント株式会社 Air Conditioning System
EP4160118A4 (en) * 2020-05-29 2023-11-15 Panasonic Intellectual Property Management Co., Ltd. Air conditioning system
JP2021188826A (en) * 2020-05-29 2021-12-13 パナソニックIpマネジメント株式会社 Air conditioning system
WO2021241108A1 (en) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 Air conditioning system
WO2022163058A1 (en) * 2021-01-28 2022-08-04 パナソニックIpマネジメント株式会社 Air-conditioning device
JP7168022B2 (en) 2021-03-26 2022-11-09 株式会社富士通ゼネラル air conditioner
JP2022150997A (en) * 2021-03-26 2022-10-07 株式会社富士通ゼネラル air conditioner
WO2022202571A1 (en) * 2021-03-26 2022-09-29 株式会社富士通ゼネラル Air conditioner
WO2024103793A1 (en) * 2022-11-14 2024-05-23 青岛海信日立空调系统有限公司 Air conditioning system, and control method therefor

Also Published As

Publication number Publication date
JP5975714B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5975714B2 (en) Refrigeration air conditioner and refrigeration air conditioning system
JP4394709B2 (en) Apparatus and method for preventing accumulation of liquid refrigerant in air conditioner
JP5306449B2 (en) Air conditioner
JP6479162B2 (en) Air conditioner
JP5383816B2 (en) Air conditioner
JP4475278B2 (en) Refrigeration apparatus and air conditioner
JP3943092B2 (en) Air conditioner and control method thereof
US20130192283A1 (en) Air-conditioning apparatus
JP5931189B2 (en) Air conditioner
JP2009243719A (en) Oil return operation method for multi-air conditioner and multi-air conditioner
JP6548742B2 (en) Air conditioner
JP6417750B2 (en) Cooling and heating simultaneous operation type air conditioner
JP2004085179A (en) Multi-air conditioner and operation control method of outdoor fan
US20140290298A1 (en) Refrigeration cycle apparatus
JP2015145742A (en) Refrigeration device
KR20190005445A (en) Method for controlling multi-type air conditioner
KR101754685B1 (en) Heat pump type speed heating apparatus
US11415343B2 (en) Air conditioning apparatus and control method thereof
JP2008025919A (en) Air conditioner
JP5645413B2 (en) Air conditioner
JP5627564B2 (en) Refrigeration cycle system
US11761697B2 (en) Multi-air conditioner for heating and cooling operations
CN113874662B (en) air conditioner
JP7258616B2 (en) chiller unit
JP7258618B2 (en) chiller unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160719

R150 Certificate of patent or registration of utility model

Ref document number: 5975714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250