Nothing Special   »   [go: up one dir, main page]

JP2013108668A - Non-catalytic denitrification method for stoker type incinerator - Google Patents

Non-catalytic denitrification method for stoker type incinerator Download PDF

Info

Publication number
JP2013108668A
JP2013108668A JP2011253471A JP2011253471A JP2013108668A JP 2013108668 A JP2013108668 A JP 2013108668A JP 2011253471 A JP2011253471 A JP 2011253471A JP 2011253471 A JP2011253471 A JP 2011253471A JP 2013108668 A JP2013108668 A JP 2013108668A
Authority
JP
Japan
Prior art keywords
combustion
exhaust gas
combustion exhaust
post
stoker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011253471A
Other languages
Japanese (ja)
Inventor
Ryoji Samejima
良二 鮫島
Daisuke Ayukawa
大祐 鮎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2011253471A priority Critical patent/JP2013108668A/en
Publication of JP2013108668A publication Critical patent/JP2013108668A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-catalytic denitrification method for a stoker type incinerator capable of suppressing lost heat and improving a NOx removal rate.SOLUTION: In a stoker type incinerator 2 equipped with a main combustion chamber 10a for the drying, combustion and post-combustion of wastes while moving them on stages of a plurality of stokers 11, 12, 13 sequentially and a secondary combustion chamber 10b for the secondary combustion of unburned gas contained in the combustion exhaust gas generated in the main combustion chamber 10a, a combustion exhaust gas is extracted from a post-combustion zone 22 in which post-combustion in the main combustion chamber 10a is executed, an ammonia containing combustion exhaust gas containing an ammonia gas is generated by blowing urea aqueous into the extracted combustion exhaust gas and then the generated ammonia containing combustion exhaust gas is blown into a NOx reduction zone 23 arranged downstream of the combustion exhaust gas flow of a secondary combustion zone 14.

Description

本発明は、一般廃棄物や産業廃棄物を焼却処理するストーカ式焼却炉の無触媒脱硝方法に関するものである。   The present invention relates to a non-catalytic denitration method for a stoker-type incinerator that incinerates general waste and industrial waste.

一般に、ストーカ式焼却炉は、燃焼室内に供給される廃棄物をその燃焼室内にて複数のストーカ段上を順次移動させながら乾燥、燃焼、後燃焼させるように構成されている(例えば、特許文献1参照。)。   In general, a stoker-type incinerator is configured to dry, burn, and post-combust waste that is supplied into a combustion chamber while sequentially moving the plurality of stoker stages on the combustion chamber (for example, Patent Documents). 1).

特開平11−230517号公報Japanese Patent Laid-Open No. 11-230517

この種のストーカ式焼却炉において、窒素酸化物(NOx)の発生を抑制する技術として、二段燃焼法や排ガス循環法等による燃焼法の改善以外に、触媒を用いて還元剤と反応させる触媒脱硝法や、炉内に還元剤を吹き込む無触媒脱硝法などがある。   In this type of stoker-type incinerator, as a technology for suppressing the generation of nitrogen oxides (NOx), a catalyst that reacts with a reducing agent using a catalyst in addition to improvements in combustion methods such as a two-stage combustion method and exhaust gas circulation method There are a denitration method and a non-catalytic denitration method in which a reducing agent is blown into the furnace.

触媒脱硝法は、例えば燃焼排ガス処理流れの途中に設けられた集塵装置の下流側に排ガス加熱装置と触媒脱硝装置とが組み込まれることで達成されるものである。ここで、排ガス加熱装置は、集塵装置からの150℃程度の排ガスを210℃程度にまで加熱するものであり、熱源としてはボイラ付き廃棄物焼却処理施設の場合にはボイラからの過熱蒸気(400℃または300℃)が使用される。また、触媒脱硝装置は、触媒上でアンモニア(NH)とNOxの反応を起こさせ、NOxをNとHOに分解する装置であるが、分解率は反応温度に大きく依存するため、排ガス温度を少なくとも200℃以上に保つ必要がある。 The catalyst denitration method is achieved, for example, by incorporating an exhaust gas heating device and a catalyst denitration device downstream of a dust collector provided in the middle of a combustion exhaust gas treatment flow. Here, the exhaust gas heating device heats about 150 ° C. exhaust gas from the dust collector to about 210 ° C. As a heat source, in the case of a waste incineration treatment facility with a boiler, superheated steam from the boiler ( 400 ° C. or 300 ° C.) is used. Further, the catalytic denitration device is a device that causes ammonia (NH 3 ) and NOx to react on the catalyst and decomposes NOx into N 2 and H 2 O. However, since the decomposition rate greatly depends on the reaction temperature, It is necessary to keep the exhaust gas temperature at least 200 ° C. or higher.

無触媒脱硝法は、例えば尿素水吹込装置が焼却炉に付設されることで達成されるものである。ここで、尿素水吹込装置は、尿素水を焼却炉内の所定温度域に噴霧ノズルを介して吹き込むものであり、この尿素水吹込装置にて尿素水を炉内に霧状に吹くことにより、NOxを還元して脱硝処理することができるようになっている。   The non-catalytic denitration method is achieved, for example, by attaching a urea water blowing device to an incinerator. Here, the urea water blowing device blows urea water into a predetermined temperature region in the incinerator through a spray nozzle, and by blowing urea water into the furnace in a mist state with this urea water blowing device, NOx can be reduced and denitrated.

しかしながら、上記の触媒脱硝法では、触媒脱硝装置に加えてその触媒脱硝装置に導入される排ガスを加熱する排ガス加熱装置が必要であるため、設備費が高くなるという問題点がある。また、排ガス加熱装置で使用される熱源のエネルギーは損失エネルギーとなり、例えば発電効率の低下の原因になるという問題点がある。   However, the above catalyst denitration method requires an exhaust gas heating device that heats the exhaust gas introduced into the catalyst denitration device in addition to the catalyst denitration device, and thus has a problem that the equipment cost increases. Further, there is a problem that the energy of the heat source used in the exhaust gas heating device becomes lost energy, which causes a decrease in power generation efficiency, for example.

一方、従来の無触媒脱硝法では、以下のような問題点がある。
(1)焼却炉内に吹き込む尿素水の噴霧状態を一定として炉内での混合を良くするために10倍程度の水で希釈する必要があるため、回収可能な熱量がその希釈水の蒸発潜熱分だけ減少する。
(2)尿素水を10倍の水で希釈したとしても少量であり、燃焼排ガスとの混合が十分にできず、NOx除去率が当量比1.2で30〜40%に止まってしまう。
On the other hand, the conventional non-catalytic denitration method has the following problems.
(1) Since it is necessary to dilute with about 10 times the water in order to improve the mixing in the furnace while keeping the spray state of urea water blown into the incinerator constant, the recoverable heat amount is the latent heat of evaporation of the diluted water Decrease by minutes.
(2) Even if urea water is diluted with 10 times the amount of water, the amount is small, and mixing with combustion exhaust gas is not sufficient, and the NOx removal rate stops at 30 to 40% with an equivalent ratio of 1.2.

本発明は、前述のような問題点に鑑みてなされたもので、損失熱を抑えることができるとともに、NOx除去率を向上させることができるストーカ式焼却炉の無触媒脱硝方法を提供することを目的とするものである。   The present invention has been made in view of the above-described problems, and provides a non-catalytic denitration method for a stoker-type incinerator that can suppress heat loss and improve the NOx removal rate. It is the purpose.

前記目的を達成するために、本発明によるストーカ式焼却炉の無触媒脱硝方法は、
複数のストーカ段上で廃棄物を順次移動させながら乾燥、燃焼、後燃焼させる主燃焼室と、この主燃焼室で発生した燃焼排ガスに含まれる未燃ガスを二次燃焼させる二次燃焼室とを備えるストーカ式焼却炉において、
前記主燃焼室における後燃焼が行われる後燃焼ゾーンから燃焼排ガスを引き抜き、この引き抜いた燃焼排ガスに尿素水を吹き込んでアンモニアガスを含んだアンモニア含有燃焼排ガスを生成し、このアンモニア含有燃焼排ガスを前記二次燃焼が行われる二次燃焼ゾーンの燃焼排ガス流れの下流側に吹き込むことを特徴とするものである。
In order to achieve the above object, a non-catalytic denitration method for a stoker-type incinerator according to the present invention includes:
A main combustion chamber for drying, burning, and post-combusting while sequentially moving waste on a plurality of stoker stages; and a secondary combustion chamber for secondary combustion of unburned gas contained in the combustion exhaust gas generated in the main combustion chamber; In a stoker-type incinerator equipped with
Combustion exhaust gas is extracted from a post-combustion zone where post-combustion is performed in the main combustion chamber, urea water is blown into the extracted combustion exhaust gas to generate ammonia-containing combustion exhaust gas containing ammonia gas, and the ammonia-containing combustion exhaust gas is It blows in the downstream of the combustion exhaust gas flow of the secondary combustion zone in which secondary combustion is performed.

本発明において、前記後燃焼ゾーンから引き抜かれる燃焼排ガスに除塵処理が施されるのが好ましい(第2発明)。   In the present invention, it is preferable that dust removal is performed on the combustion exhaust gas extracted from the post-combustion zone (second invention).

本発明によれば、酸素濃度が高く、CO等の未燃ガスやHCl、SOx等の酸性ガス濃度が低い後燃焼ゾーンからの燃焼排ガスに尿素水を吹き込むことで生成されるアンモニア含有燃焼排ガスが二次燃焼ゾーンの燃焼排ガス流れの下流側に吹き込まれるので、炉内燃焼排ガスとの混合が十分に行われ、高いNOx除去効果を得ることができ、NOx除去率を向上させることができる。
また、後燃焼ゾーンからの比較的高温(500℃以上)の燃焼排ガスに尿素水が水で希釈されることなく吹き込まれ、しかもその燃焼排ガスの熱エネルギーで尿素水を蒸発させた結果発生するアンモニアガスを含有するアンモニア含有燃焼排ガスが二次燃焼ゾーンの燃焼排ガス流れの下流側に吹き込まれるので、損失熱を抑えることができる。
According to the present invention, an ammonia-containing combustion exhaust gas produced by blowing urea water into a combustion exhaust gas from a post-combustion zone having a high oxygen concentration and an unburned gas such as CO or an acidic gas concentration such as HCl or SOx is low. Since it is blown into the downstream side of the combustion exhaust gas flow in the secondary combustion zone, it is sufficiently mixed with the in-furnace combustion exhaust gas, a high NOx removal effect can be obtained, and the NOx removal rate can be improved.
Ammonia generated as a result of urea water being blown into the combustion exhaust gas at a relatively high temperature (500 ° C. or higher) from the post-combustion zone without being diluted with water and vaporizing the urea water with the thermal energy of the combustion exhaust gas Since the ammonia-containing combustion exhaust gas containing gas is blown into the downstream side of the combustion exhaust gas flow in the secondary combustion zone, heat loss can be suppressed.

本発明の一実施形態に係るストーカ式焼却炉を備えた廃棄物焼却処理施設の概略システム構成図Schematic system configuration diagram of a waste incineration facility equipped with a stoker-type incinerator according to an embodiment of the present invention

次に、本発明によるストーカ式焼却炉の無触媒脱硝方法の具体的な実施の形態について、図面を参照しつつ説明する。   Next, a specific embodiment of a non-catalytic denitration method for a stoker type incinerator according to the present invention will be described with reference to the drawings.

<廃棄物焼却処理施設の概略構成の説明>
図1に示される廃棄物焼却処理施設1において、廃棄物は焼却炉2で燃焼される。この焼却炉2での廃棄物の燃焼に伴い発生する排ガスは、ボイラ3での熱交換に供されるとともに、エコノマイザ4でのボイラ3への給水の加熱に供された後に、減温塔5で所定温度まで冷却されてからバグフィルタを用いた集塵装置6に送られる。この集塵装置6でダストが除去された排ガスは、誘引通風機7により、煙突8を介して系外に排出される。
<Description of schematic configuration of waste incineration facility>
In the waste incineration treatment facility 1 shown in FIG. 1, the waste is burned in the incinerator 2. The exhaust gas generated by the combustion of the waste in the incinerator 2 is used for heat exchange in the boiler 3 and is also used for heating the feed water to the boiler 3 in the economizer 4, and then the temperature reducing tower 5. After being cooled down to a predetermined temperature, it is sent to a dust collector 6 using a bag filter. The exhaust gas from which dust has been removed by the dust collector 6 is discharged out of the system by the induction fan 7 via the chimney 8.

<焼却炉の説明>
焼却炉2は、ストーカ式焼却炉であって、廃棄物を燃焼する燃焼室10を備えている。この燃焼室10は、主燃焼室10aと二次燃焼室10bとから構成されている。
主燃焼室10aにおいては、下部に配置された複数のストーカ、すなわち上段から下段に向かって順に配される乾燥ストーカ11、燃焼ストーカ12および後燃焼ストーカ13上で廃棄物を順次移動させながら乾燥、燃焼、後燃焼が行われる。
二次燃焼室10bにおいては、主燃焼室10aで発生した燃焼排ガスに含まれる未燃ガスが、室内に吹き込まれた二次燃焼空気によって二次燃焼される二次燃焼ゾーン14が設けられている。
<Description of incinerator>
The incinerator 2 is a stoker-type incinerator and includes a combustion chamber 10 for burning waste. The combustion chamber 10 includes a main combustion chamber 10a and a secondary combustion chamber 10b.
In the main combustion chamber 10a, drying is performed while sequentially moving waste on a plurality of stokers arranged in the lower part, that is, on the drying stoker 11, the combustion stoker 12, and the post-combustion stoker 13 arranged in order from the upper stage to the lower stage. Combustion and post-combustion are performed.
In the secondary combustion chamber 10b, a secondary combustion zone 14 is provided in which unburned gas contained in the combustion exhaust gas generated in the main combustion chamber 10a is subjected to secondary combustion by the secondary combustion air blown into the chamber. .

焼却炉2には、従来公知の一次燃焼空気吹込装置15および二次燃焼空気吹込装置16とは別に、排ガス還流装置17が付設されている。   In addition to the conventionally known primary combustion air blowing device 15 and secondary combustion air blowing device 16, an exhaust gas recirculation device 17 is attached to the incinerator 2.

<排ガス還流装置の説明>
排ガス還流装置17は、燃焼排ガス引抜管路18と、集塵装置19と、還流ガス送風機20と、吹込ノズル21とを備えている。
燃焼排ガス引抜管路18は、後燃焼ストーカ13上での後燃焼が行われる後燃焼ゾーン22から燃焼排ガスを引き抜くための管路であって、主燃焼室10aを構成する炉壁における後燃焼ストーカ13の上方に位置する炉壁に接続されている。
集塵装置19は、耐熱性・耐薬品性に優れるセラミックフィルタを用いたもので、燃焼排ガス引抜管路18によって引き抜かれた比較的高温(500℃以上)の燃焼排ガス中に含まれるダストを効果的に除去する機能を有している。
還流ガス送風機20は、セラミック製等の耐熱性に優れる送風機であって、集塵装置19によってダストが除去された燃焼排ガスを還流ガスとして吹込ノズル21に向けて送り出す機能を有している。
吹込ノズル21は、焼却炉2の上部において二次燃焼ゾーン14の燃焼排ガス流れの下流側に設けられるNOx還元ゾーン23に臨ませて配設されている。なお、この吹込ノズル21においては、焼却炉2内が均一に攪拌されるようにその配置や設置個数が決められている。
還流ガス送風機20と吹込ノズル21とは、還流ガス流通管路24によって接続されており、還流ガス送風機20の作動により、集塵装置19からの還流ガス(後燃焼ゾーン22から引き抜いて除塵処理した後の燃焼排ガス)を、還流ガス流通管路24を通して吹込ノズル21からNOx還元ゾーン23に向けて吹き出すことができるようになっている。
<Description of exhaust gas recirculation device>
The exhaust gas recirculation device 17 includes a combustion exhaust gas extraction pipe 18, a dust collector 19, a recirculation gas blower 20, and a blowing nozzle 21.
The flue gas extraction line 18 is a line for extracting flue gas from the post-combustion zone 22 where post-combustion is performed on the post-combustion stoker 13, and the post-combustion stoker in the furnace wall constituting the main combustion chamber 10a. 13 is connected to the furnace wall located above 13.
The dust collector 19 uses a ceramic filter having excellent heat resistance and chemical resistance, and is effective for dust contained in the combustion exhaust gas at a relatively high temperature (500 ° C. or higher) extracted by the combustion exhaust gas extraction pipe 18. It has the function to remove automatically.
The recirculation gas blower 20 is a blower excellent in heat resistance such as made of ceramics, and has a function of sending the combustion exhaust gas from which dust is removed by the dust collector 19 toward the blow nozzle 21 as a recirculation gas.
The blowing nozzle 21 is disposed in the upper part of the incinerator 2 so as to face the NOx reduction zone 23 provided on the downstream side of the combustion exhaust gas flow in the secondary combustion zone 14. Note that the arrangement and the number of the nozzles 21 are determined so that the inside of the incinerator 2 is uniformly stirred.
The recirculation gas blower 20 and the blowing nozzle 21 are connected by a recirculation gas flow line 24. By the operation of the recirculation gas blower 20, the recirculation gas from the dust collector 19 (withdrawn from the post-combustion zone 22 and subjected to dust removal treatment). The subsequent combustion exhaust gas) can be blown out from the blowing nozzle 21 toward the NOx reduction zone 23 through the recirculation gas flow pipe 24.

<尿素水混入装置の説明>
排ガス還流装置17には、尿素水混入装置25が付設されている。
尿素水混入装置25は、尿素水貯留タンク26に貯留されている尿素水を送給ポンプ27の作動にて尿素水流通管路28を通して還流ガス流通管路24内に混入するように構成されている。
この尿素水混入装置25において、還流ガス流通管路24内への尿素水の混入量の調節は、送給ポンプ27を駆動する電動モータ29の回転制御によって達成される。電動モータ29には、モータ制御器30が付設されており、このモータ制御器30からの制御信号に応じて電動モータ29の回転が制御される。
モータ制御器30は、煙突8から排出される直前の燃焼排ガスのNOx濃度を測定するNOx濃度計31からの測定信号をフィードバックして、かかる燃焼排ガス中のNOx濃度が規制値以下となるように制御信号を電動モータ29へ送信する。
<Description of urea water mixing device>
A urea water mixing device 25 is attached to the exhaust gas recirculation device 17.
The urea water mixing device 25 is configured to mix the urea water stored in the urea water storage tank 26 into the reflux gas flow line 24 through the urea water flow line 28 by the operation of the feed pump 27. Yes.
In this urea water mixing device 25, the adjustment of the amount of urea water mixed into the reflux gas flow pipe 24 is achieved by rotational control of the electric motor 29 that drives the feed pump 27. A motor controller 30 is attached to the electric motor 29, and the rotation of the electric motor 29 is controlled according to a control signal from the motor controller 30.
The motor controller 30 feeds back a measurement signal from a NOx concentration meter 31 that measures the NOx concentration of the combustion exhaust gas immediately before being discharged from the chimney 8 so that the NOx concentration in the combustion exhaust gas becomes a regulation value or less. A control signal is transmitted to the electric motor 29.

<作用効果の説明>
本実施形態においては、酸素濃度が高く、CO等の未燃ガスやHCl、SOx等の酸性ガス濃度が低い後燃焼ゾーン22の燃焼排ガスが燃焼排ガス引抜管路18を介して引き抜かれる。後燃焼ゾーン22から引き抜かれた燃焼排ガスは、セラミックフィルタを用いた集塵装置19で除塵処理が施された後、還流ガス送風機20によって還流ガス流通管路24を介して吹込ノズル21へと送られる。
還流ガス流通管路24には、尿素水貯留タンク26に貯留されている尿素水が送給ポンプ27の作動にて尿素水流通管路28を通して混入される。
還流ガス流通管路24を流れる燃焼排ガスは、500℃以上の高温の排ガスであり、還流ガス流通管路24に吹き込まれた尿素水を容易に蒸発させることができる。
還流ガス流通管路24に吹き込まれた尿素水は、蒸発・分解してアンモニアガスになり、このアンモニアガスを含んだアンモニア含有燃焼排ガスが吹込ノズル21を介してNOx還元ゾーン23へと吹き込まれる。
<Description of effects>
In the present embodiment, the combustion exhaust gas in the post-combustion zone 22 having a high oxygen concentration and a low concentration of unburned gas such as CO and acidic gas such as HCl and SOx is extracted via the combustion exhaust gas extraction pipe 18. The flue gas extracted from the post-combustion zone 22 is subjected to dust removal processing by a dust collector 19 using a ceramic filter, and then sent to the blowing nozzle 21 by the recirculating gas blower 20 via the recirculating gas circulation pipe 24. It is done.
The urea water stored in the urea water storage tank 26 is mixed into the reflux gas circulation pipe 24 through the urea water circulation pipe 28 by the operation of the feed pump 27.
The combustion exhaust gas flowing through the reflux gas circulation pipe 24 is a high-temperature exhaust gas of 500 ° C. or higher, and the urea water blown into the reflux gas circulation pipe 24 can be easily evaporated.
The urea water blown into the reflux gas flow line 24 is evaporated and decomposed to become ammonia gas, and the ammonia-containing combustion exhaust gas containing this ammonia gas is blown into the NOx reduction zone 23 through the blow nozzle 21.

本実施形態によれば、酸素濃度が高く、CO等の未燃ガスやHCl、SOx等の酸性ガス濃度が低い後燃焼ゾーン22からの燃焼排ガスに尿素水を吹き込むことで生成されるアンモニア含有燃焼排ガスがNOx還元ゾーン23に吹き込まれるので、炉内燃焼排ガスとの混合が十分に行われ、高いNOx除去効果を得ることができ、NOx除去率を向上させることができる。
また、後燃焼ゾーン22からの500℃以上の燃焼排ガスに尿素水が水で希釈されることなく吹き込まれ、しかもその燃焼排ガスの熱エネルギーで尿素水を蒸発させた結果発生するアンモニアガスを含有するアンモニア含有燃焼排ガスがNOx還元ゾーン23に吹き込まれるので、損失熱を抑えることができるとともに、燃焼促進効果も大きく貢献して残存している未燃ガスも完全燃焼させることができる。
According to the present embodiment, ammonia-containing combustion generated by blowing urea water into the combustion exhaust gas from the post-combustion zone 22 having a high oxygen concentration and a low concentration of unburned gas such as CO and acidic gas such as HCl and SOx. Since the exhaust gas is blown into the NOx reduction zone 23, the exhaust gas is sufficiently mixed with the in-furnace combustion exhaust gas, a high NOx removal effect can be obtained, and the NOx removal rate can be improved.
Further, urea water is blown into the combustion exhaust gas of 500 ° C. or higher from the post-combustion zone 22 without being diluted with water, and further contains ammonia gas generated as a result of evaporation of the urea water by the thermal energy of the combustion exhaust gas. Since the ammonia-containing combustion exhaust gas is blown into the NOx reduction zone 23, the heat loss can be suppressed, and the remaining unburned gas can be completely burned with a significant contribution to the combustion promoting effect.

また、NOx除去率が当量比1.2で30〜40%程度であった従来の無触媒脱硝法と比べて格段に高いNOx除去率(70〜80%程度)を達成することができ、触媒脱硝法を併用したり、触媒脱硝法を単独で採用したりする必要がなくなるので、触媒脱硝装置が不要になり、また触媒の活性を維持するための排ガス加熱装置も不要となって発電効率の向上につながる。
さらに、尿素水を燃焼排ガスで蒸発させてから焼却炉2内に吹き込む構成とされており、従来のように尿素水を直接炉内に吹き込む構成では尿素水噴霧ノズルの詰まり等で噴霧不良になった場合、ボイラ水管に尿素水が当たり、ボイラ水管を損傷させる恐れがあったが、かかる不具合の発生を未然に防ぐことができる。
In addition, the NOx removal rate can be achieved at a much higher NOx removal rate (about 70 to 80%) than the conventional non-catalytic denitration method in which the equivalent ratio is about 30 to 40%, and the catalyst Since there is no need to use a denitration method or a catalyst denitration method alone, no catalyst denitration device is required, and no exhaust gas heating device is required to maintain the activity of the catalyst. It leads to improvement.
Further, the urea water is evaporated into the incinerator 2 after evaporating with the combustion exhaust gas, and in the conventional structure in which the urea water is directly blown into the furnace, the spraying of the urea water spray nozzle becomes defective due to clogging. In such a case, the urea water hits the boiler water pipe and may damage the boiler water pipe, but it is possible to prevent the occurrence of such a problem.

以上、本発明のストーカ式焼却炉の無触媒脱硝方法について、一実施形態に基づいて説明したが、本発明は上記実施形態に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the non-catalytic denitration method of the stoker type incinerator of this invention was demonstrated based on one embodiment, this invention is not limited to the structure described in the said embodiment, The range which does not deviate from the meaning The configuration can be changed as appropriate.

本発明のストーカ式焼却炉の無触媒脱硝方法は、損失熱を抑えることができるとともに、NOx除去率を向上させることができるという特性を有していることから、一般廃棄物や産業廃棄物を焼却処理するストーカ式焼却炉の排ガスの処理の用途に好適に用いることができる。   The non-catalytic denitration method for a stoker-type incinerator according to the present invention has the characteristics that it can suppress heat loss and improve the NOx removal rate. It can use suitably for the use of the waste gas treatment of the stoker type incinerator to incinerate.

1 廃棄物焼却処理施設
2 焼却炉
10a 主燃焼室
10b 二次燃焼室
14 二次燃焼ゾーン
18 燃焼排ガス引抜管路
19 集塵装置
20 還流ガス送風機
21 吹込ノズル
22 後燃焼ゾーン
23 NOx還元ゾーン
24 還流ガス流通管路
26 尿素水貯留タンク
27 送給ポンプ
28 尿素水流通管路
DESCRIPTION OF SYMBOLS 1 Waste incineration processing facility 2 Incinerator 10a Main combustion chamber 10b Secondary combustion chamber 14 Secondary combustion zone 18 Flue gas extraction pipe line 19 Dust collector 20 Reflux gas blower 21 Blowing nozzle 22 Post combustion zone 23 NOx reduction zone 24 Reflux Gas distribution line 26 Urea water storage tank 27 Feed pump 28 Urea water distribution line

Claims (2)

複数のストーカ段上で廃棄物を順次移動させながら乾燥、燃焼、後燃焼させる主燃焼室と、この主燃焼室で発生した燃焼排ガスに含まれる未燃ガスを二次燃焼させる二次燃焼室とを備えるストーカ式焼却炉において、
前記主燃焼室における後燃焼が行われる後燃焼ゾーンから燃焼排ガスを引き抜き、この引き抜いた燃焼排ガスに尿素水を吹き込んでアンモニアガスを含んだアンモニア含有燃焼排ガスを生成し、このアンモニア含有燃焼排ガスを前記二次燃焼が行われる二次燃焼ゾーンの燃焼排ガス流れの下流側に吹き込むことを特徴とするストーカ式焼却炉の無触媒脱硝方法。
A main combustion chamber for drying, burning, and post-combusting while sequentially moving waste on a plurality of stoker stages; and a secondary combustion chamber for secondary combustion of unburned gas contained in the combustion exhaust gas generated in the main combustion chamber; In a stoker-type incinerator equipped with
Combustion exhaust gas is extracted from a post-combustion zone where post-combustion is performed in the main combustion chamber, urea water is blown into the extracted combustion exhaust gas to generate ammonia-containing combustion exhaust gas containing ammonia gas, and the ammonia-containing combustion exhaust gas is A non-catalytic denitration method for a stoker-type incinerator, characterized in that it is blown downstream of a combustion exhaust gas flow in a secondary combustion zone in which secondary combustion is performed.
前記後燃焼ゾーンから引き抜かれる燃焼排ガスに除塵処理が施される請求項1に記載のストーカ式焼却炉の無触媒脱硝方法。   The non-catalytic denitration method for a stoker type incinerator according to claim 1, wherein a dust removal treatment is performed on the combustion exhaust gas withdrawn from the post-combustion zone.
JP2011253471A 2011-11-21 2011-11-21 Non-catalytic denitrification method for stoker type incinerator Pending JP2013108668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011253471A JP2013108668A (en) 2011-11-21 2011-11-21 Non-catalytic denitrification method for stoker type incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253471A JP2013108668A (en) 2011-11-21 2011-11-21 Non-catalytic denitrification method for stoker type incinerator

Publications (1)

Publication Number Publication Date
JP2013108668A true JP2013108668A (en) 2013-06-06

Family

ID=48705602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253471A Pending JP2013108668A (en) 2011-11-21 2011-11-21 Non-catalytic denitrification method for stoker type incinerator

Country Status (1)

Country Link
JP (1) JP2013108668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944348A (en) * 2020-12-27 2021-06-11 上海康恒环境股份有限公司 Waste incineration grate furnace reburning denitration methane treatment system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294724A (en) * 1998-04-07 1999-10-29 Takuma Co Ltd Incinerator
JP2002267101A (en) * 2001-03-06 2002-09-18 Takuma Co Ltd Method for superheating steam in incinerator
JP2006242490A (en) * 2005-03-04 2006-09-14 Mitsubishi Heavy Ind Ltd Stoker-type incinerator and its operation method
JP2008070103A (en) * 2006-09-13 2008-03-27 Martin Gmbh Fuer Umwelt- & Energietechnik Combustion gas supply method in incineration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294724A (en) * 1998-04-07 1999-10-29 Takuma Co Ltd Incinerator
JP2002267101A (en) * 2001-03-06 2002-09-18 Takuma Co Ltd Method for superheating steam in incinerator
JP2006242490A (en) * 2005-03-04 2006-09-14 Mitsubishi Heavy Ind Ltd Stoker-type incinerator and its operation method
JP2008070103A (en) * 2006-09-13 2008-03-27 Martin Gmbh Fuer Umwelt- & Energietechnik Combustion gas supply method in incineration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944348A (en) * 2020-12-27 2021-06-11 上海康恒环境股份有限公司 Waste incineration grate furnace reburning denitration methane treatment system

Similar Documents

Publication Publication Date Title
JP7207810B2 (en) Method and system for improving boiler efficiency
US8211391B2 (en) Biomass boiler SCR NOx and CO reduction system
JP5302597B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CN102644922B (en) Incineration treatment device for nitrogen-containing organic wastes and incineration treatment process
JP3924150B2 (en) Gas combustion treatment method and apparatus
EP2876370B1 (en) Waste processing method
JP2008070103A (en) Combustion gas supply method in incineration system
JP2014514134A (en) Selective catalyst NOX reduction method and apparatus in power generation boiler
CN206540138U (en) A kind of flue gas of refuse burning recirculating system
JP5812630B2 (en) Waste incineration plant
KR101495087B1 (en) Combustion system
CN203744265U (en) Denitration system of incinerator
CN109647158B (en) Flue gas desulfurization and denitrification system of circulating fluidized bed boiler and treatment method thereof
JP2011185500A (en) Waste heat recovery system for stoker type incinerator
JP2004309079A (en) White smoke preventing device for combustion facility
JP2013072571A (en) Exhaust gas treating system
US9746177B2 (en) Urea decomposition and improved SCR NOx reduction on industrial and small utility boilers
JP2013108668A (en) Non-catalytic denitrification method for stoker type incinerator
JP6458298B2 (en) Incineration equipment
JP2013142481A (en) Method and apparatus for denitration in incinerator
JP2010099603A (en) Method for treating exhaust gas and apparatus for treating exhaust gas
JP5016240B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
KR101560713B1 (en) The combustion chamber equipped with a drop-in FGR duct boiler furnace stoker
JP2019039644A (en) Incineration plant
JP6413034B1 (en) Combustion control method for an incinerator with a biogas combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201