JP2013104071A - Raw material for form rolling made of copper alloy, and form-rolled product - Google Patents
Raw material for form rolling made of copper alloy, and form-rolled product Download PDFInfo
- Publication number
- JP2013104071A JP2013104071A JP2011247153A JP2011247153A JP2013104071A JP 2013104071 A JP2013104071 A JP 2013104071A JP 2011247153 A JP2011247153 A JP 2011247153A JP 2011247153 A JP2011247153 A JP 2011247153A JP 2013104071 A JP2013104071 A JP 2013104071A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- mass
- rolling
- rolled
- contained
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Forging (AREA)
Abstract
Description
本発明は、転造加工用素材及びこれを転造加工してなる転造加工品に関するものであり、特に転造加工部分が強度及び耐食性に優れた銅合金製の転造加工品及びこれを得るための銅合金製の転造加工用素材に関するものである。 The present invention relates to a rolling material and a rolled product obtained by rolling the material, and in particular, a rolled product made of a copper alloy in which the rolled part has excellent strength and corrosion resistance, and the same. The present invention relates to a material for rolling process made of copper alloy.
転造加工は、(a)高い生産性、(b)安定した加工精度、(c)面粗度の向上、(d)高強度など特徴を持っており、各種合金で実用されている。具体的には、(a)生産性は、材料を盛り上げて成形するため材料のロスが出ず、歩留が向上する。また、加工時間が短く、工具であるロールの寿命も長いため、切削工程に比べ生産性は向上する。(b)ロール寿命が長いので、加工精度は安定し、中大量生産向けの工程である。(c)研削したロールによる強加工であるため、表面状態は改善される。(d)切削加工のように金属組織は分断されず、鍛造品のように連続した金属組織になる。また、表面は加工硬化するので、強度は向上するといった長所がある。しかし、局所的な応力による強加工であり、拘束されていない製品部分の加工精度の維持は困難である。 The rolling process has features such as (a) high productivity, (b) stable processing accuracy, (c) improved surface roughness, and (d) high strength, and is used in various alloys. Specifically, (a) productivity increases the material, so that the material loss is not generated and the yield is improved. Further, since the processing time is short and the life of the roll as a tool is long, productivity is improved as compared with the cutting process. (B) Since the roll life is long, the processing accuracy is stable, and it is a process for medium mass production. (C) The surface condition is improved because of strong processing by the ground roll. (D) The metal structure is not divided as in the cutting process, but becomes a continuous metal structure like a forged product. Further, since the surface is work hardened, there is an advantage that the strength is improved. However, since it is strong processing by local stress, it is difficult to maintain the processing accuracy of the unconstrained product part.
転造加工は、ステンレスなどの各種鋼材・非鉄金属・プラスチック素材へも適用されており、ステアリングシャフト・モーターシャフトなどの軸製品、ドアロックアクチュエータ・サンルーフモータ・パワーウィンドモータなどに利用されるウォームギア、ラックダイス方式で製造されるインボリュートスプライン軸・インボリュートセレーション軸などの製品にも利用されている。 Rolling processing is also applied to various steel materials such as stainless steel, non-ferrous metals and plastic materials, shaft products such as steering shafts and motor shafts, worm gears used for door lock actuators, sunroof motors, power window motors, etc. It is also used in products such as involute spline shafts and involute serration shafts manufactured by rack die method.
黄銅では、転造加工はネジ・ウォームギアなどの製品で利用されており、数多くの製品が生産されている。また、インサートナットは、自動車・産業機械などの各種基盤と樹脂成形したカバーの締結に使用されている。精密機器であるため、切削加工時の切屑が樹脂成形時に樹脂側に流出すると、使用時にショートを起こす危険性がある。そのため、インサートナットの加工時に切削工程不可として、転造加工を指定する製品も見受けられる。また、ネジなど安価で大量生産する製品や切削加工ほどの精度を必要としない製品でも転造は多用されている。 In brass, the rolling process is used for products such as screws and worm gears, and many products are produced. In addition, insert nuts are used for fastening various substrates such as automobiles and industrial machines and resin-molded covers. Because it is a precision instrument, there is a risk of short-circuiting during use if chips during cutting flow out to the resin side during resin molding. For this reason, there are also products that specify the rolling process as the cutting process is not possible when processing the insert nut. Rolling is also frequently used for inexpensive and mass-produced products such as screws and products that do not require as much precision as cutting.
昨今の鉛規制強化により、素材からの鉛フリー化が急速に進んでいる。当初は、水栓分野が主体であり、転造加工分野での鉛フリー化の動きは見られなかった。しかし、水栓分野での鉛フリー化の実績が増えていることや世界的な環境問題への関心の高まりから、電機電子分野や自動車分野への鉛フリー化の検討・進展も進んできている。現在、鉛フリー銅合金としては、PbをBiに置き換えた材料が利用され始めている。 Due to the recent tightening of lead regulations, lead-free materials are rapidly becoming free. Initially, it was mainly in the faucet field, and there was no movement toward lead-free in the rolling process field. However, due to the growing record of lead-free products in the faucet field and the growing interest in global environmental issues, the study and development of lead-free products in the electrical / electronics and automotive fields is also progressing. . At present, as lead-free copper alloys, materials in which Pb is replaced with Bi are beginning to be used.
転造加工される黄銅は、JIS C3604や銅量を60%に増やしたJIS C3602が使用されることが多い(例えば、特許文献1の段落番号[0007]を参照)。転造は冷間での強加工であるため、銅量を増やしてβ相量を減らすことで冷間での変形能が向上するため、JIS C3602が多用される。前述のPbフリー銅合金の転造加工性を考えると、PbをBiに置き換えたBi系鉛フリー黄銅は、従来のJIS C3604と同等と考えてよい。 As the brass to be rolled, JIS C3604 and JIS C3602 whose copper amount is increased to 60% are often used (for example, refer to paragraph [0007] of Patent Document 1). Since rolling is a strong work in the cold, JIS C3602 is frequently used because the deformability in the cold is improved by increasing the amount of copper and decreasing the amount of β phase. Considering the rolling processability of the Pb-free copper alloy described above, Bi-based lead-free brass in which Pb is replaced with Bi may be considered equivalent to the conventional JIS C3604.
また、転造加工は冷間での強加工であり、ネジの場合、ネジ底部の残留圧縮応力が高くなることで締結力の向上・寿命改善を図っている。しかし、残留応力が高くなることは、同時に応力腐食割れの危険性が高くなる。一般的な黄銅では、応力腐食割れ対策として低温焼鈍による残留応力の除去を実施している(例えば、特許文献2の段落番号[0063]を参照)。転造加工した黄銅製品を低温焼鈍により残留応力除去することで応力腐食割れの対策を施すことは、余分なコストが生じるだけでなく、転造加工による強度向上のメリットを捨て去ることであり、本末転倒になってしまう。 Further, the rolling process is a strong process in the cold, and in the case of a screw, the residual compressive stress at the bottom of the screw is increased to improve the fastening force and improve the life. However, increasing the residual stress also increases the risk of stress corrosion cracking. In general brass, residual stress is removed by low-temperature annealing as a measure against stress corrosion cracking (see, for example, paragraph [0063] of Patent Document 2). Taking measures against stress corrosion cracking by removing residual stress by low-temperature annealing of rolled brass products not only creates extra costs, but also throws away the benefits of improving strength by rolling. Become.
昨今の鉛規制の動向から、水栓分野に限らず電子電機・自動車などあらゆる産業分野での鉛規制は強化される方向にある。銅合金でも、切削性はもとより強度・耐食性・加工性といった相反する特性を併せ持った合金が求められている。 Due to recent trends in lead regulations, lead regulations are not only limited to the faucet field, but are being strengthened in all industrial fields such as electronics and automobiles. Even for copper alloys, there is a demand for alloys having not only machinability but also conflicting properties such as strength, corrosion resistance, and workability.
本発明は、かかる点に鑑みてなされたものであり、転造加工部分が少なくとも強度及び耐食性に優れた銅合金製の転造加工品及びこれを転造加工により得ることができる転造加工性に優れた銅合金製の転造加工用素材を提供することを目的とするものである。 The present invention has been made in view of the above points, and a rolling process product made of a copper alloy having at least a strength and corrosion resistance at a rolling process part and a rolling processability that can be obtained by the rolling process. An object of the present invention is to provide a material for rolling process made of a copper alloy excellent in the above.
本発明は、上記の目的を達成すべく、次のような銅合金製の転造加工用素材及び転造加工品を提案する。 In order to achieve the above object, the present invention proposes the following copper alloy material for rolling process and rolled product.
すなわち、本発明は、被転造加工部分が、Cu:73.5〜79.5mass%と、Si:2.5〜3.7mass%と、Zn:残部及び不可避不純物とからなり且つ条件(1)を満足する合金組成をなし、α相マトリックスに少なくともκ相を含み且つ条件(2)を満足する金属組織をなすと共に、条件(3)を満足する硬度を有するCu−Zn−Si合金であることを特徴とする銅合金製の転造加工用素材(以下「第1発明素材」という)を提案する。 That is, according to the present invention, the part to be rolled is composed of Cu: 73.5-79.5 mass%, Si: 2.5-3.7 mass%, Zn: balance and inevitable impurities, and the condition (1 Is a Cu-Zn-Si alloy having a metal composition satisfying the condition (2) and having a hardness satisfying the condition (3). A material for rolling process made of copper alloy (hereinafter referred to as “first invention material”) is proposed.
また、本発明は、被転造加工部分が、Cu:73.5〜79.5mass%と、Si:2.5〜3.7mass%と、P:0.015〜0.2mass%、Sb:0.015〜0.2mass%、As:0.015〜0.15mass%、Sn:0.03〜1.0mass%及びAl:0.03〜1.5mass%から選択された1種以上の元素と、Zn:残部及び不可避不純物とからなり且つ条件(1)を満足する合金組成をなし、α相マトリックスに少なくともκ相を含み且つ条件(2)を満足する金属組織をなすと共に、条件(3)を満足する硬度を有するCu−Zn−Si合金であることを特徴とする銅合金製の転造加工用素材(以下「第2発明素材」という)を提案する。 Moreover, as for this invention, a to-be-rolled part is Cu: 73.5-79.5 mass%, Si: 2.5-3.7 mass%, P: 0.015-0.2 mass%, Sb: One or more elements selected from 0.015 to 0.2 mass%, As: 0.015 to 0.15 mass%, Sn: 0.03 to 1.0 mass%, and Al: 0.03 to 1.5 mass% And Zn: the balance and inevitable impurities, and an alloy composition that satisfies the condition (1), a metal structure that includes at least the κ phase in the α phase matrix and satisfies the condition (2), and a condition (3 A material for rolling work made of a copper alloy (hereinafter referred to as “second invention material”), characterized in that it is a Cu—Zn—Si alloy having a hardness satisfying the above.
また、本発明は、被転造加工部分が、Cu:73.5〜79.5mass%と、Si:2.5〜3.7mass%と、Pb:0.003〜0.25mass%及び/又はBi:0.003〜0.30mass%と、Zn:残部及び不可避不純物とからなり且つ条件(1)を満足する合金組成をなし、α相マトリックスに少なくともκ相を含み且つ条件(2)を満足する金属組織をなすと共に、条件(3)を満足する硬度を有するCu−Zn−Si合金であることを特徴とする銅合金製の転造加工用素材(以下「第3発明素材」という)を提案する。 Further, in the present invention, the rolled part is Cu: 73.5-79.5 mass%, Si: 2.5-3.7 mass%, Pb: 0.003-0.25 mass%, and / or An alloy composition comprising Bi: 0.003 to 0.30 mass%, Zn: balance and inevitable impurities and satisfying the condition (1), including an at least κ phase in the α phase matrix and satisfying the condition (2) A copper alloy rolling material (hereinafter referred to as “third invention material”), characterized in that it is a Cu—Zn—Si alloy having a hardness that satisfies the condition (3). suggest.
また、本発明は、被転造加工部分が、Cu:73.5〜79.5mass%と、Si:2.5〜3.7mass%と、P:0.015〜0.2mass%、Sb:0.015〜0.2mass%、As:0.015〜0.15mass%、Sn:0.03〜1.0mass%及びAl:0.03〜1.5mass%から選択された1種以上の元素と、Pb:0.003〜0.25mass%及び/又はBi:0.003〜0.30mass%と、Zn:残部及び不可避不純物とからなり且つ条件(1)を満足する合金組成をなし、α相マトリックスに少なくともκ相を含み且つ条件(2)を満足する金属組織をなすと共に、条件(3)を満足する硬度を有するCu−Zn−Si合金であることを特徴とする銅合金製の転造加工用素材(以下「第4発明素材」という)を提案する。 Moreover, as for this invention, a to-be-rolled part is Cu: 73.5-79.5 mass%, Si: 2.5-3.7 mass%, P: 0.015-0.2 mass%, Sb: One or more elements selected from 0.015 to 0.2 mass%, As: 0.015 to 0.15 mass%, Sn: 0.03 to 1.0 mass%, and Al: 0.03 to 1.5 mass% And Pb: 0.003-0.25 mass% and / or Bi: 0.003-0.30 mass%, Zn: balance and inevitable impurities, and an alloy composition satisfying the condition (1) is satisfied, α A copper alloy made of a copper alloy, characterized in that it is a Cu—Zn—Si alloy having a metal structure containing at least a κ phase in the phase matrix and satisfying the condition (2) and having a hardness satisfying the condition (3). Materials for manufacturing (hereinafter referred to as “No. 4 invention material ").
また、本発明は、被転造加工部分が、Cu:73.5〜79.5mass%と、Si:2.5〜3.7mass%と、Mn:0.05〜2.0mass%、Ni:0.05〜2.0mass%、Ti:0.003〜0.3mass%、B:0.001〜0.1mass%及びZr:0.0005〜0.03から選択された1種以上の元素と、Zn:残部及び不可避不純物とからなり且つ条件(1)を満足する合金組成をなし、α相マトリックスに少なくともκ相を含み且つ条件(2)を満足する金属組織をなすと共に、条件(3)を満足する硬度を有するCu−Zn−Si合金であることを特徴とする銅合金製の転造加工用素材(以下「第5発明素材」という)を提案する。 Further, in the present invention, the part to be rolled is Cu: 73.5-79.5 mass%, Si: 2.5-3.7 mass%, Mn: 0.05-2.0 mass%, Ni: One or more elements selected from 0.05 to 2.0 mass%, Ti: 0.003 to 0.3 mass%, B: 0.001 to 0.1 mass%, and Zr: 0.0005 to 0.03 Zn: an alloy composition comprising the balance and inevitable impurities and satisfying the condition (1), forming a metal structure containing at least a κ phase in the α phase matrix and satisfying the condition (2), and the condition (3) A copper alloy rolling material (hereinafter referred to as “fifth invention material”), characterized in that it is a Cu—Zn—Si alloy having a hardness satisfying the above requirements.
また、本発明は、被転造加工部分が、Cu:73.5〜79.5mass%と、Si:2.5〜3.7mass%と、P:0.015〜0.2mass%、Sb:0.015〜0.2mass%、As:0.015〜0.15mass%、Sn:0.03〜1.0mass%及びAl:0.03〜1.5mass%から選択された1種以上の元素と、Mn:0.05〜2.0mass%、Ni:0.05〜2.0mass%、Ti:0.003〜0.3mass%、B:0.001〜0.1mass%及びZr:0.0005〜0.03から選択された1種以上の元素と、Zn:残部及び不可避不純物とからなり且つ条件(1)を満足する合金組成をなし、α相マトリックスに少なくともκ相を含み且つ条件(2)を満足する金属組織をなすと共に、条件(3)を満足する硬度を有するCu−Zn−Si合金であることを特徴とする銅合金製の転造加工用素材(以下「第6発明素材」という)を提案する。 Moreover, as for this invention, a to-be-rolled part is Cu: 73.5-79.5 mass%, Si: 2.5-3.7 mass%, P: 0.015-0.2 mass%, Sb: One or more elements selected from 0.015 to 0.2 mass%, As: 0.015 to 0.15 mass%, Sn: 0.03 to 1.0 mass%, and Al: 0.03 to 1.5 mass% Mn: 0.05 to 2.0 mass%, Ni: 0.05 to 2.0 mass%, Ti: 0.003 to 0.3 mass%, B: 0.001 to 0.1 mass%, and Zr: 0.00. An alloy composition comprising one or more elements selected from 0005 to 0.03, Zn: balance and inevitable impurities and satisfying the condition (1), the α-phase matrix including at least a κ phase and the conditions ( If the metal structure that satisfies 2) is made Both propose a copper alloy rolling material (hereinafter referred to as “sixth invention material”) characterized in that it is a Cu—Zn—Si alloy having a hardness satisfying the condition (3).
また、本発明は、被転造加工部分が、Cu:73.5〜79.5mass%と、Si:2.5〜3.7mass%と、Pb:0.003〜0.25mass%及び/又はBi:0.003〜0.30mass%と、Mn:0.05〜2.0mass%、Ni:0.05〜2.0mass%、Ti:0.003〜0.3mass%、B:0.001〜0.1mass%及びZr:0.0005〜0.03から選択された1種以上の元素と、Zn:残部及び不可避不純物とからなり且つ条件(1)を満足する合金組成をなし、α相マトリックスに少なくともκ相を含み且つ条件(2)を満足する金属組織をなすと共に、条件(3)を満足する硬度を有するCu−Zn−Si合金であることを特徴とする銅合金製の転造加工用素材(以下「第7発明素材」という)を提案する。 Further, in the present invention, the rolled part is Cu: 73.5-79.5 mass%, Si: 2.5-3.7 mass%, Pb: 0.003-0.25 mass%, and / or Bi: 0.003-0.30 mass%, Mn: 0.05-2.0 mass%, Ni: 0.05-2.0 mass%, Ti: 0.003-0.3 mass%, B: 0.001 ~ 0.1 mass% and Zr: one or more elements selected from 0.0005 to 0.03, Zn: balance and inevitable impurities, and has an alloy composition satisfying the condition (1), α phase Rolling made of a copper alloy, characterized in that it is a Cu-Zn-Si alloy having a matrix containing at least a κ phase and satisfying the condition (2) and having a hardness satisfying the condition (3) Material for processing (hereinafter referred to as “Seventh Inventive Element” "Material").
また、本発明は、被転造加工部分が、Cu:73.5〜79.5mass%と、Si:2.5〜3.7mass%と、P:0.015〜0.2mass%、Sb:0.015〜0.2mass%、As:0.015〜0.15mass%、Sn:0.03〜1.0mass%及びAl:0.03〜1.5mass%から選択された1種以上の元素と、Pb:0.003〜0.25mass%及び/又はBi:0.003〜0.30mass%と、Mn:0.05〜2.0mass%、Ni:0.05〜2.0mass%、Ti:0.003〜0.3mass%、B:0.001〜0.1mass%及びZr:0.0005〜0.03から選択された1種以上の元素と、Zn:残部及び不可避不純物とからなり且つ条件(1)を満足する合金組成をなし、α相マトリックスに少なくともκ相を含み且つ条件(2)を満足する金属組織をなすと共に、条件(3)を満足する硬度を有するCu−Zn−Si合金であることを特徴とする銅合金製の転造加工用素材(以下「第8発明素材」という)を提案する。 Moreover, as for this invention, a to-be-rolled part is Cu: 73.5-79.5 mass%, Si: 2.5-3.7 mass%, P: 0.015-0.2 mass%, Sb: One or more elements selected from 0.015 to 0.2 mass%, As: 0.015 to 0.15 mass%, Sn: 0.03 to 1.0 mass%, and Al: 0.03 to 1.5 mass% And Pb: 0.003-0.25 mass% and / or Bi: 0.003-0.30 mass%, Mn: 0.05-2.0 mass%, Ni: 0.05-2.0 mass%, Ti : One or more elements selected from 0.003 to 0.3 mass%, B: 0.001 to 0.1 mass% and Zr: 0.0005 to 0.03, and Zn: the balance and inevitable impurities And an alloy set satisfying the condition (1) Characterized in that it is a Cu—Zn—Si alloy having a metal structure that includes at least a κ phase in an α phase matrix and satisfies the condition (2), and has a hardness that satisfies the condition (3) An alloy rolling material (hereinafter referred to as “eighth invention material”) is proposed.
条件(1):構成元素の含有量間に63.0≦[Cu]−3.6×[Si]−3×[P]−0.3×[Sb]+0.5×[As]−1×[Sn]−1.9×[Al]+0.5×[Pb]+0.5×[Bi]+2×[Mn]+1.7×[Ni]+1×[Ti]+2×[B]+2×[Zr]≦67.5の関係を有する合金組成をなすこと。 Condition (1): 63.0 ≦ [Cu] −3.6 × [Si] −3 × [P] −0.3 × [Sb] + 0.5 × [As] −1 between the constituent element contents * [Sn] -1.9 * [Al] + 0.5 * [Pb] + 0.5 * [Bi] + 2 * [Mn] + 1.7 * [Ni] + 1 * [Ti] + 2 * [B] + 2 * An alloy composition having a relationship of [Zr] ≦ 67.5.
なお、条件(1)においては、構成元素xの含有量を[x]mass%とする(以下の説明においても同じ)。例えば、Cuの含有量は[Cu]mass%である。また、含有されていない元素xについては[x]=0とする。例えば、第1発明素材においては、[P]=[Sb]=[As]=[Sn]=[Al]=[Pb]=[Bi]=[Mn]=[Ni]=[Ti]=[B]=[Zr]=0であるから、条件(1)は63.0≦[Cu]−3.6×[Si]≦67.5となる。 In the condition (1), the content of the constituent element x is [x] mass% (the same applies to the following description). For example, the Cu content is [Cu] mass%. For the element x not contained, [x] = 0. For example, in the first invention material, [P] = [Sb] = [As] = [Sn] = [Al] = [Pb] = [Bi] = [Mn] = [Ni] = [Ti] = [ Since B] = [Zr] = 0, the condition (1) is 63.0 ≦ [Cu] −3.6 × [Si] ≦ 67.5.
条件(2):含有相の面積率間に60≦[α]≦84、15≦[κ]≦40、[α]+[κ]≧96、0.2≦[κ]/[α]≦0.65、[β]≦2、[μ]≦2、[β]+[μ]≦2、[γ]≦2、[β]+[μ]+[γ]≦4の関係を有する金属組織をなすこと。 Condition (2): 60 ≦ [α] ≦ 84, 15 ≦ [κ] ≦ 40, [α] + [κ] ≧ 96, 0.2 ≦ [κ] / [α] ≦ between the area ratios of the contained phases 0.65, [β] ≦ 2, [μ] ≦ 2, [β] + [μ] ≦ 2, [γ] ≦ 2, [β] + [μ] + [γ] ≦ 4 Make an organization.
なお、条件(2)においては、含有相yの面積率を[y]%とする(以下の説明においても同じ)。例えば、α相の面積率は[α]%である。また、含有しない相yについては[y]=0とする。例えば、β相を含有しない場合、[β]=0であるから、[β]+[μ]+[γ]≦4は[μ]+[γ]≦4となる。但し、当該式はβ相、μ相及びγ相のうち少なくとも2相が含有される場合に適用されるものであって、β相、μ相又はγ相の1相が含有される場合には、[β]≦2、[μ]≦2、又は[γ]≦2が適用される。 In the condition (2), the area ratio of the contained phase y is [y]% (the same applies to the following description). For example, the area ratio of the α phase is [α]%. For the phase y not contained, [y] = 0. For example, when [beta] phase is not contained, [[beta]] = 0, so [[beta]] + [[mu]] + [[gamma]] ≤4 is [[mu] + [[gamma]] ≤4. However, this formula is applied when at least two phases are included among β phase, μ phase and γ phase, and when one phase of β phase, μ phase or γ phase is included. , [Β] ≦ 2, [μ] ≦ 2, or [γ] ≦ 2.
また、各相の面積率(%)は画像解析により測定されるものであり、具体的には、200倍又は500倍の光学顕微鏡組織を画像処理ソフト「WinROOF」(株式会社テックジャム製)で2値化することにより求められるものであり、3視野で測定された平均値である。 Further, the area ratio (%) of each phase is measured by image analysis. Specifically, an optical microscope structure of 200 times or 500 times is obtained with image processing software “WinROOF” (manufactured by Techjam Co., Ltd.). It is obtained by binarization and is an average value measured in three fields of view.
条件(3):被転造加工部分の硬度(ビッカース硬度)がHV1:125〜165であること。 Condition (3): Hardness (Vickers hardness) of the part to be rolled is HV1: 125 to 165.
第1〜第8発明素材にあって、被転造加工部分の金属組織にγ相(及びκ相)が含有される場合においては、当該金属組織が条件(2)に加えて条件(4)も満足するものであることが好ましい。 In the first to eighth invention materials, when the γ phase (and κ phase) is contained in the metal structure of the processed part to be rolled, the metal structure is in condition (4) in addition to condition (2). Is preferably satisfied.
条件(4):被転造加工部分の金属組織が、23≦[γ]+[κ]≦33の関係を有するものであること。 Condition (4): The metal structure of the part to be rolled has a relationship of 23 ≦ [γ] + [κ] ≦ 33.
また、第1〜第8発明素材は、一般に、鋳造材、押出材、抽伸材又は鍛造材として提供されるが、被転造加工部分の金属組織及び/又は硬度が上記した条件を満足しない場合には、かかる条件を満足させるために焼鈍等の熱処理が施される。熱処理は、500〜600℃で0.5〜8.0時間保持し且つ400℃以下での冷却速度を0.3℃/min.以上とする条件で行われることが好ましい。第1〜第8発明素材が鋳造材、押出材、抽伸材及び鍛造材の何れかである場合、少なくとも抽伸材については当該熱処理を施しておくことが好ましい。 In addition, the first to eighth invention materials are generally provided as a cast material, an extruded material, a drawn material, or a forged material, but the metal structure and / or hardness of the processed part to be rolled does not satisfy the above-described conditions. In order to satisfy these conditions, a heat treatment such as annealing is performed. The heat treatment is held at 500 to 600 ° C. for 0.5 to 8.0 hours, and the cooling rate at 400 ° C. or less is 0.3 ° C./min. It is preferable to carry out under the above conditions. When the first to eighth invention materials are any of a cast material, an extruded material, a drawn material, and a forged material, it is preferable that at least the drawn material is subjected to the heat treatment.
さらに、本発明は、第1〜第8発明素材の被転造加工部分を転造加工してなる転造加工品であって、転造加工部分の硬度(ビッカース硬度)がHV1:220〜270である銅合金製の転造加工品(以下「本発明加工品」という)を提案する。転造加工部分の断面硬さがHV1:220未満では実用的な転造加工品としての強度が十分でなく、優れた耐摩耗性を確保することができない。逆に、HV1:270を超える場合には、銅合金材料(Cu−Zn−Si合金)の加工限度を超えてしまい、転造加工時に転造加工部分の破砕が生じたり、転造加工製品の使用中に転造加工加工部分が破損する虞れがある。これらの点から、本発明加工品の転造加工部分における硬度はHV1:220〜270であることが必要であり、HV1:230〜260であることが好ましい。 Furthermore, the present invention is a rolled product obtained by rolling a rolled processed portion of the first to eighth invention materials, and the hardness (Vickers hardness) of the rolled processed portion is HV1: 220 to 270. A copper alloy rolled processed product (hereinafter referred to as “processed product of the present invention”) is proposed. If the cross-sectional hardness of the rolled portion is less than HV1: 220, the strength as a practical rolled product is not sufficient, and excellent wear resistance cannot be ensured. On the contrary, when HV1: 270 is exceeded, the processing limit of the copper alloy material (Cu—Zn—Si alloy) is exceeded, and the rolling process portion is crushed during the rolling process. There is a possibility that the rolling process part is damaged during use. From these points, the hardness of the rolled processed portion of the processed product of the present invention needs to be HV1: 220-270, and preferably HV1: 230-260.
なお、第1〜第8発明素材及びその被転造加工部分を転造した本発明加工品にあって、被転造加工部分以外の部分又は転造加工部分以外の部分が上記した合金組成、金属組織又は硬度を有することを妨げるものでないことは云うまでもない。また、第1〜第8発明素材及び本発明加工品には、その一部分を被転造加工部分又は転造加工部分とする場合の他、全体を被転造加工部分又は転造加工部分とする場合が含まれる。 In addition, in this invention processed product which rolled the 1st-8th invention raw material and its rolling process part, parts other than a rolling process part or parts other than a rolling process part are the above-mentioned alloy compositions, Needless to say, it does not prevent having a metal structure or hardness. In addition, in the first to eighth invention materials and the processed product of the present invention, in addition to a case where a part thereof is a rolled part or a rolled part, the whole is a rolled part or a rolled part. Includes cases.
而して、第1〜第8発明素材及びこれを転造加工した本発明加工品にあって、Cuは当該素材を構成する主要元素であり、Siの含有量との関係もあるが、転造加工部分の耐食性に悪影響を与えるβ相を出現させないためには、或いはβ相の出現を最小限に抑制するためには一定量以上の含有量が必要である。また、一定量以上のCuを含有させることにより、転造加工部分の応力腐食割れ感受性を低くし、転造加工部分の高強度、耐摩耗性、延性及び衝撃特性を確保することができる。これらの点から、Cuの含有量は73.5mass%以上であることが必要であり、74.0mass%以上であることが好ましい。 Thus, in the first to eighth invention materials and the processed products of the present invention obtained by rolling this material, Cu is a main element constituting the material and has a relationship with the Si content. In order to prevent the β phase that adversely affects the corrosion resistance of the processed part from appearing or to suppress the appearance of the β phase to a minimum, a content of a certain amount or more is required. Further, by containing a certain amount or more of Cu, it is possible to reduce the stress corrosion cracking susceptibility of the rolled portion, and to ensure high strength, wear resistance, ductility and impact characteristics of the rolled portion. From these points, the content of Cu needs to be 73.5 mass% or more, and preferably 74.0 mass% or more.
一方、Cuを79.5mass%を超えて含有させても、Si含有量との関係もあるが、転造加工部分の耐食性が飽和する上、かえって転造加工用素材の製造段階での鋳造性や鍛造性に問題が生じ、また十分な被削性を確保できず当該素材の製造段階や転造加工品の製造段階で切削加工を良好に行い得ない。これらの点から、Cuの含有量は79.5mass%以下としておくことが必要であり、79.0mass%以下としておくことが好ましい。 On the other hand, even if Cu is contained in excess of 79.5 mass%, there is also a relationship with the Si content, but the corrosion resistance of the rolled portion is saturated, and on the contrary, the castability at the manufacturing stage of the rolling material. As a result, problems arise in forgeability, and sufficient machinability cannot be ensured, and cutting cannot be performed satisfactorily in the production stage of the material and the rolled product. From these points, the Cu content needs to be 79.5 mass% or less, and is preferably 79.0 mass% or less.
第1〜第8発明素材及びこれらを転造加工した本発明加工品にあって、SiはCu及びZnと共に当該素材を構成する主要元素であるが、Si含有量が2.5mass%未満であると、Siによる固溶硬化が生じたり或いはκ相の形成が不十分となって、転造加工部分の強度が不足する虞れがある。また、十分な被削性を確保することができず、当該素材の製造段階や転造加工品の製造段階での切削加工が行われる場合にあって、当該切削加工を良好に行い得ない。これらの点からSi含有量は2.5mass%以上としておく必要があり、2.7mass%以上としておくことが好ましい。 In the first to eighth invention materials and the processed products of the present invention obtained by rolling these, Si is a main element constituting the material together with Cu and Zn, but the Si content is less than 2.5 mass%. Then, solid solution hardening by Si occurs, or the formation of the κ phase becomes insufficient, and the strength of the rolled portion may be insufficient. In addition, sufficient machinability cannot be ensured, and the cutting process cannot be performed satisfactorily in the case where the cutting process is performed in the manufacturing stage of the material or the manufacturing process of the rolled product. From these points, the Si content needs to be 2.5 mass% or more, and is preferably 2.7 mass% or more.
一方、Si含有量が3.7mass%を超えると、転造加工部分の強度が飽和する上、α相の占める割合が小さくなるために、転造加工が困難となり、転造加工部分の延性、耐食性、衝撃特性に問題が生じる。また、κ相及び/又はγ相の占める割合が高くなってα相の占める割合が少なくなるために、十分な被削性を確保できず、当該素材の製造段階や転造加工品の製造段階における切削加工を良好に行い得ない。また、耐食性等に有害なβ相が形成され易くなり、μ相及び/又はγ相の占める割合が多くなり、転造加工部分の耐食性、延性、衝撃特性が低下する虞れある。これらの点から、Si含有量は3.7mass%以下としておく必要があり、3.5mass%以下としておくことが好ましい。 On the other hand, when the Si content exceeds 3.7 mass%, the strength of the rolled portion is saturated and the proportion of the α phase is small, so that the rolling process becomes difficult, the ductility of the rolled portion, Problems arise in corrosion resistance and impact properties. In addition, since the proportion of the κ phase and / or γ phase increases and the proportion of the α phase decreases, sufficient machinability cannot be secured, and the production stage of the material and the production stage of the rolled product The cutting process cannot be performed well. Further, a β phase harmful to corrosion resistance or the like is easily formed, and the proportion of the μ phase and / or γ phase increases, and the corrosion resistance, ductility, and impact characteristics of the rolled portion may be deteriorated. From these points, the Si content needs to be 3.7 mass% or less, and is preferably 3.5 mass% or less.
Znは、Cu、Siと共に第1〜第8発明素材及びこれを転造加工した本発明加工品の合金組成を構成する主要元素であり、被削性向上・耐食性向上・機械的性質向上の効果がある。よって、各構成元素の残部と規定する。 Zn is the main element constituting the alloy composition of the first to eighth invention materials and the processed product of the present invention obtained by rolling this together with Cu and Si, and the effect of improving machinability, corrosion resistance, and mechanical properties There is. Therefore, it is defined as the balance of each constituent element.
第2、第4、第6及び第8発明素材及びこれらを転造加工した本発明加工品にあって、P、Sb、As、Sn及びAlは転造加工部分の耐食性を向上させるために1種以上が含有される。 In the second, fourth, sixth and eighth invention materials and the processed products of the present invention obtained by rolling these, P, Sb, As, Sn, and Al are 1 for improving the corrosion resistance of the rolled parts. More than seeds are contained.
すなわち、P、Sb及びAsは、何れも、α相の耐食性を向上させるものであり、特に、As及び/又はPの含有による耐食性の向上効果は大きい。一方、Sbはκ相の耐食性を向上させ、μ、γ及びβ相の耐食性も改善する。P及びAsもκ相の耐食性を改善させるが、その効果はSbよりも低く、μ、γ及びβ相の耐食性の改善効果はSbよりも少ない。一般に、転造加工のように銅合金材料に大きな塑性変形が加えられた場合、その変形部分(転造加工部分)における耐食性は低下するが、これらの元素を含有させておくことにより十分な耐食性を確保することができる。また、Pは熱間鍛造材の結晶粒を微細化し、Zrとの共添加で鋳物の結晶粒を微細化するが、結晶粒の成長を抑制する点においてはP又はAsとSbとを共添させることが好ましい。このような耐食性や強度の向上効果は、P、Sb及びAsの何れについても、含有量が0.015mass%未満ではさほど期待できない。しかし、As含有量が0.15mass%を超え、またSb含有量又はP含有量が0.2mass%を超えても、当該効果は飽和する。これらの点から、P含有量を0.015〜0.2mass%、Sb含有量を0.015〜0.2mass%及びAs含有量を0.015〜0.15mass%とした。 That is, P, Sb, and As all improve the corrosion resistance of the α phase, and the effect of improving the corrosion resistance due to the inclusion of As and / or P is particularly great. On the other hand, Sb improves the corrosion resistance of the κ phase and improves the corrosion resistance of the μ, γ and β phases. P and As also improve the corrosion resistance of the κ phase, but its effect is lower than that of Sb, and the effect of improving the corrosion resistance of the μ, γ and β phases is less than that of Sb. In general, when a large plastic deformation is applied to a copper alloy material as in the rolling process, the corrosion resistance of the deformed part (rolling process part) decreases, but sufficient corrosion resistance can be obtained by adding these elements. Can be secured. In addition, P refines the crystal grains of the hot forged material and refines the crystal grains of the casting by co-addition with Zr. However, P or As and Sb are co-added in terms of suppressing crystal grain growth. It is preferable to make it. Such an effect of improving corrosion resistance and strength cannot be expected so much for any of P, Sb, and As if the content is less than 0.015 mass%. However, even if the As content exceeds 0.15 mass% and the Sb content or the P content exceeds 0.2 mass%, the effect is saturated. From these points, the P content was 0.015 to 0.2 mass%, the Sb content was 0.015 to 0.2 mass%, and the As content was 0.015 to 0.15 mass%.
また、Sn及びAlは、P、Sb及びAsと同様に耐食性を向上させる元素であり、特に高速の流水のもと、特に物理的作用が特に生じる流水条件下での耐食性つまりエロージョンコロージョン性及びキャビテーション性を向上させ、更には水質の悪い環境下での耐食性を向上させる効果を発揮する。さらに、Sn及びAlは、α相及びκ相を硬化させて強度及び耐摩耗性を向上させる効果を発揮する。Snについては、上記効果が十分に発揮されるためには、その含有量を0.03mass%以上としておくことが必要であり、0.2mass%以上であることが好ましく、0.3mass%以上であることがより好ましい。しかし、Sn含有量が1.0mass%を超えても当該効果は飽和し、γ相の量が多くなって、かえって伸びが損なわれることから、Sn含有量は1.0mass%以下とする必要があり、0.8mass%以下としておくことが好ましい。また、Alについては、上記効果が十分に発揮されるためには、その含有量を0.03mass%以上としておくことが必要であり、0.25mass%以上であることが好ましく、0.45mass%以上であることがより好ましい。しかし、Al含有量が1.5mass%を超えても当該効果は飽和し、かえって鋳造性や延性が損なわれることから、Al含有量は1.5mass%以下としておくことが必要であり、1.2mass%以下としておくことが好ましく、0.9mass%以下としておくことがより好ましい。 Sn and Al are elements that improve the corrosion resistance like P, Sb, and As, and particularly under high-speed flowing water, particularly corrosion resistance under flowing water conditions where physical action occurs particularly, that is, erosion corrosion resistance and cavitation. The effect of improving the corrosion resistance in an environment with poor water quality is further exhibited. Furthermore, Sn and Al exhibit the effect of hardening the α phase and κ phase to improve the strength and wear resistance. About Sn, in order for the said effect to fully be exhibited, it is necessary to make the content 0.03 mass% or more, it is preferable that it is 0.2 mass% or more, 0.3 mass% or more More preferably. However, even if the Sn content exceeds 1.0 mass%, the effect is saturated, the amount of γ phase increases, and the elongation is damaged. On the contrary, the Sn content needs to be 1.0 mass% or less. Yes, it is preferably set to 0.8 mass% or less. Further, for Al, in order for the above effect to be sufficiently exerted, the content needs to be 0.03 mass% or more, preferably 0.25 mass% or more, and 0.45 mass%. More preferably. However, even if the Al content exceeds 1.5 mass%, the effect is saturated, and the castability and ductility are impaired. Therefore, the Al content needs to be 1.5 mass% or less. It is preferable to set it to 2 mass% or less, and it is more preferable to set it to 0.9 mass% or less.
第3、第4、第7及び第8発明素材及びこれらを転造加工した本発明加工品にあって、Pb及び/又はBiは、当該素材又は当該部材の製造段階で切削加工が必要となる場合(例えば、鋳塊ないし鋳造材を切削して当該素材を製造する場合や当該部材における転造加工部分以外の部分を切削して最終的な転造加工品を製造する場合)において優れた被削性を発揮させるために含有される。Cu、Si及びZnを上記した範囲で含有するCu−Zn−Si合金にあって、Pb及びBiは、各々の含有量を0.003mass%以上とすることによって被削性向上効果を発揮する。しかし、Pbは人体に有害であり、その含有量が規制される傾向にあること、更にはPbを必要以上に含有させると延性や衝撃特性を損なうことから、Pbの含有量は0.25mass%以下としておく必要があり、0.15mass%以下としておくことが好ましく、0.08mass%以下としておくことがより好ましい。また、Biはレアメタルであることから、更にはPbと同様に必要以上の含有は延性や衝撃特性を損なうことがあることから、Bi含有量は0.30mass%以下としておく必要があり、0.2mass%以下としておくことが好ましく、0.1mass%以下としておくことがより好ましい。なお、Pb及びBiを共添させる場合にあっては、その合計含有量は0.25mass%以下に抑えることが好ましく、0.15mass%以下としておくことがより好ましい。また、Pb及びBiはマトリックスに固溶せず、粒状で存在することになるが、Pb及びBiを共添させると、これらは共存して、その共存物粒子の融点が低下し、切削加工中に割れを生じる虞れがあることから、各々0.02mass%以上のPb及びBiが共添される場合には、それらの含有量比[Bi]/[Pb]が7以上となる([Bi]/[Pb]≧7)ようにしておくことが好ましく、[Bi]/[Pb]≧0.35となるようにしておくことがより好ましい。この場合においても、上記の如く、Pb及びBiの合計含有量を0.25mass%以下(より好ましくは0.15mass%」以下)に抑えておくことが好ましいことは言うまでもない。 In the third, fourth, seventh and eighth invention materials and the processed products of the present invention obtained by rolling these, Pb and / or Bi needs to be cut at the manufacturing stage of the material or the member. In the case (for example, when cutting the ingot or cast material to manufacture the material, or cutting the portion other than the rolling portion of the member to manufacture the final rolled product) It is contained in order to exhibit machinability. In the Cu—Zn—Si alloy containing Cu, Si and Zn in the above-described range, Pb and Bi exhibit a machinability improving effect by setting each content to 0.003 mass% or more. However, Pb is harmful to the human body, and its content tends to be regulated. Further, if Pb is contained more than necessary, ductility and impact properties are impaired, so the content of Pb is 0.25 mass%. It is necessary to keep it below, and it is preferable to set it as 0.15 mass% or less, and it is more preferable to set it as 0.08 mass% or less. In addition, since Bi is a rare metal, and if it is contained more than necessary as in Pb, ductility and impact characteristics may be impaired, the Bi content must be 0.30 mass% or less. It is preferable to set it to 2 mass% or less, and it is more preferable to set it to 0.1 mass% or less. When Pb and Bi are co-added, the total content is preferably suppressed to 0.25 mass% or less, and more preferably 0.15 mass% or less. In addition, Pb and Bi are not dissolved in the matrix but are present in a granular form. However, when Pb and Bi are co-added, they coexist and the melting point of the coexisting particles is lowered, and the cutting process is in progress. Therefore, when 0.02 mass% or more of Pb and Bi are added together, the content ratio [Bi] / [Pb] is 7 or more ([Bi ] / [Pb] ≧ 7), and more preferably [Bi] / [Pb] ≧ 0.35. Even in this case, it is needless to say that the total content of Pb and Bi is preferably suppressed to 0.25 mass% or less (more preferably 0.15 mass%) or less as described above.
第5〜第8発明素材及びこれらを転造加工した本発明加工品にあって、Mn、Ni、Ti、B及びZrは主として転造加工部分の強度を向上させるために1種以上が含有される。 In the fifth to eighth invention materials and the processed products of the present invention obtained by rolling these, Mn, Ni, Ti, B, and Zr are mainly included in order to improve the strength of the rolled portion. The
すなわち、Mn及びNiは、主としてSiと金属間化合物を形成することにより、強度と耐摩耗性を向上させる効果があるが、かかる効果が発揮されるためにはMn及びNiの含有量は夫々0.05mass%以上としておくことが必要である。しかし、Mn及びNiを夫々2.0mass%を超えて添加しても、その効果は概ね飽和し、かえって転造加工性が悪くなり、また被削性が低下すると共に延性及び衝撃特性も低下することになる。したがって、Mn及びNiの含有量は、夫々、0.05〜2.0mass%とする。 That is, Mn and Ni have the effect of improving strength and wear resistance mainly by forming an intermetallic compound with Si. However, in order to exert such effects, the contents of Mn and Ni are 0 respectively. .05 mass% or more is necessary. However, even if Mn and Ni are added in excess of 2.0 mass%, the effect is almost saturated, and on the contrary, the rolling processability is deteriorated, and the machinability and the ductility and impact properties are also reduced. It will be. Therefore, the contents of Mn and Ni are 0.05 to 2.0 mass%, respectively.
また、Ti及びBは、微量の添加で強度を向上させるために含有される。かかる強度の向上は、主として鍛造ないし鋳物の段階で結晶粒を微細化させて結晶粒成長を抑制することによるものであるが、その効果はTi含有量が0.003mass%以上である場合、又はB含有量が0.001mass%以上である場合に発揮される。しかし、Ti含有量が0.3mass%を超え、或いはB含有量が0.1mass%を超えても、当該効果は飽和し、むしろ、活性な金属であるTi又はBの含有量が多いと、大気中での溶解時に酸化物の巻き込みが生じるといった弊害がある。したがって、Ti含有量は0.003〜0.3mass%とし、B含有量は0.001〜0.1mass%とする。 Ti and B are contained in order to improve the strength by adding a small amount. Such an improvement in strength is mainly due to the suppression of crystal grain growth by refining crystal grains at the forging or casting stage, but the effect is when the Ti content is 0.003 mass% or more, or This is exhibited when the B content is 0.001 mass% or more. However, even if the Ti content exceeds 0.3 mass%, or the B content exceeds 0.1 mass%, the effect is saturated, rather, if the content of Ti or B that is an active metal is large, There is an adverse effect that oxides are involved when dissolved in the atmosphere. Therefore, the Ti content is 0.003 to 0.3 mass%, and the B content is 0.001 to 0.1 mass%.
また、Zrは、微量の添加で強度を向上させる効果を発揮する。かかる効果は、主として鋳物の段階で結晶粒が著しく微細化することによるものであり、結晶粒の微細化により強度が向上する。このような結晶粒の微細化による強度の向上効果は、Zr含有量が0.0005mass%以上で発揮される。しかし、Zrを0.03mass%を超えて添加しても、当該効果は飽和することになり、寧ろ結晶粒の微細化を阻害する虞れが生じる。したがって、Zr含有量は0.0005〜0.03mass%とする。なお、Zrによる結晶粒微細化の効果はPと共添されることにより更に発揮されることになる。かかる効果は、特にZrとPとの共添割合[P]/[Zr]が1≦[P]/[Zr]≦80である場合においてより顕著に発揮されることになる。 Zr exhibits the effect of improving the strength by adding a small amount. Such an effect is mainly due to remarkably refining of the crystal grains at the casting stage, and the strength is improved by refining the crystal grains. The effect of improving the strength by such refinement of crystal grains is exhibited when the Zr content is 0.0005 mass% or more. However, even if Zr is added in excess of 0.03 mass%, the effect is saturated, and there is a possibility that the refinement of crystal grains may be hindered. Therefore, the Zr content is set to 0.0005 to 0.03 mass%. The effect of crystal grain refinement by Zr is further exhibited by co-addition with P. Such an effect is more prominent particularly when the co-addition ratio [P] / [Zr] of Zr and P is 1 ≦ [P] / [Zr] ≦ 80.
ところで、Cu−Zn−Si合金等の銅合金はリサイクル性に優れ、高いリサイクル率で回収されリサイクルされる。一方、リサイクルの際に他の銅合金の混入や、例えば切削加工時に、工具の摩耗によりFe等が不可避的に混入することがある。したがって、第1〜第8発明素材においても、JIS等の各種規格で不可避不純物として規格化されているものについては、その含有を許容している。例えば、JIS H3250の銅及び銅合金棒で記載されている快削性銅合金棒C3601においては0.3mass%以下のFeが不純物として規定されているが、かかるFeは第1〜第8発明素材においても不可避不純物として扱うものとする。 By the way, copper alloys such as Cu—Zn—Si alloys are excellent in recyclability, and are collected and recycled at a high recycling rate. On the other hand, Fe may be inevitably mixed due to mixing of other copper alloys during recycling, for example, due to tool wear during cutting. Therefore, even in the first to eighth invention materials, the inclusion of those standardized as inevitable impurities in various standards such as JIS is allowed. For example, in the free-cutting copper alloy rod C3601 described in JIS H3250 copper and copper alloy rod, 0.3 mass% or less of Fe is defined as an impurity, and such Fe is the first to eighth invention materials. Are treated as inevitable impurities.
また、転造加工部分が高い強度を有し且つ優れた衝撃特性や延性に有するためには、そして、これらの特性に大きく影響する良好な金属組織を得るためには、第1〜第8発明素材の合金組成を構成する元素の含有量は、上記した範囲において個々に決定するのみでは不十分であり、第1発明素材にあってはCu及びSiの含有量相互の関係を考慮して決定することが必要であり、また第2〜第8発明素材にあっては、Cu及びSiの含有量と選択的に含有される元素(P、Sb、As、Sn、Al、Pb、Bi、Mn、Ni、Ti、B及びZrから選択される1種以上の元素)の含有量との相互関係を考慮して決定することが必要であり、第1〜第8発明素材の合金組成が条件(1)を満足するものであることが必要である。 In addition, in order to obtain a good metal structure that greatly affects these properties in order that the rolling processed portion has high strength and excellent impact properties and ductility, and the first to eighth inventions. The content of the elements constituting the alloy composition of the material is not enough to be determined individually within the above range, and the first invention material is determined in consideration of the mutual relationship between the contents of Cu and Si. In addition, in the second to eighth invention materials, the contents of Cu and Si and elements contained selectively (P, Sb, As, Sn, Al, Pb, Bi, Mn , Ni, Ti, B, and Zr must be determined in consideration of the interrelation with the content of the element, and the alloy composition of the first to eighth invention materials is a condition ( It is necessary to satisfy 1).
すなわち、条件(1)の含有量式f(=[Cu]−3.6×[Si]−3×[P]−0.3×[Sb]+0.5×[As]−1×[Sn]−1.9×[Al]+0.5×[Pb]+0.5×[Bi]+2×[Mn]+1.7×[Ni]+1×[Ti]+2×[B]+2×[Zr])は、多くの実験、試行錯誤を積み重ねることにより案出されたものであり、f<63.0であると、高温加熱時にマクロ結晶粒が粗大化して、特に衝撃特性及び延性が低下し、耐食性及び引張強さも低下する。また、f>67.5であると、α相の占める割合が大きくなりすぎ、高温加熱時にα相結晶粒が成長し、引張強さ及び耐力が低下する。これらの点から、第1〜第8発明素材の合金組成を、その構成元素の含有量が前記した範囲内において63≦f≦67.5となるようにする必要があり、fの下限値は63.5であることが好ましく、64.0であることがより好ましい。また、fの上限値は67.0であることが好ましく、66.5であることがより好ましい。なお、第3、第4、第7及び第8発明素材並びにこれらを転造加工してなる本発明加工品にあって、Pb及びBiを共添する場合、その合計含有量が0.003mass%を超えると、衝撃特性、延性、及び引張強さが低下し始めることから、63.0+2([Pb]+[Bi]−0.003)≦f≦67.5−2([Pb]+[Bi]−0.003)であることが好ましく(63.5+2([Pb]+[Bi]−0.003)≦f≦67.0−2([Pb]+[Bi]−0.003)であることがより好ましい)、転造加工用素材及び/又は転造加工品の製造段階で切削加工が行われる場合においては、f<63.0+2([Pb]+[Bi]−0.003)又はf>67.5−2([Pb]+[Bi]−0.003)であると、優れた被削性が得られず、良好な切削加工を行い難い。また、第1〜第8発明素材及びこれらを転造加工してなる本発明加工品にあって、Fe等の不可避的不純物の合計含有量が0.7mass%以下であれば当該不純物による悪影響はないと考えられるが、当該不純物による影響を考慮するならば条件(1)を63.7≦f≦66.8としておくことが好ましい。また、不可避不純物の合計含有量が0.7mass%を超える場合には、その合計含有量を[X]mass%とすると、条件(1)を63.0+([X]−0.7)≦f≦67.5−([X]−0.7)つまり62.3+[X]≦f≦68.2−[X]としておくことが好ましく、63.0+[X]≦f≦67.5−[X]としておくことがより好ましい。 That is, the content formula f (= [Cu] −3.6 × [Si] −3 × [P] −0.3 × [Sb] + 0.5 × [As] −1 × [Sn) in the condition (1) ] -1.9 × [Al] + 0.5 × [Pb] + 0.5 × [Bi] + 2 × [Mn] + 1.7 × [Ni] + 1 × [Ti] + 2 × [B] + 2 × [Zr] ) Was devised by accumulating many experiments and trials and errors. When f <63.0, macrocrystal grains coarsen during high-temperature heating, particularly impact properties and ductility are reduced. Corrosion resistance and tensile strength are also reduced. In addition, when f> 67.5, the proportion of the α phase becomes too large, α phase crystal grains grow during high temperature heating, and the tensile strength and proof stress decrease. From these points, the alloy composition of the first to eighth invention materials must be such that the content of the constituent elements is 63 ≦ f ≦ 67.5 within the above-described range, and the lower limit value of f is 63.5 is preferable, and 64.0 is more preferable. The upper limit value of f is preferably 67.0, and more preferably 66.5. In addition, in the 3rd, 4th, 7th and 8th invention materials and the processed products of the present invention formed by rolling these, when Pb and Bi are co-added, the total content is 0.003 mass% If it exceeds C, impact properties, ductility, and tensile strength begin to decrease, so that 63.0 + 2 ([Pb] + [Bi] −0.003) ≦ f ≦ 67.5-2 ([Pb] + [ Bi] −0.003) is preferable (63.5 + 2 ([Pb] + [Bi] −0.003) ≦ f ≦ 67.0-2 ([Pb] + [Bi] −0.003) In the case where cutting is performed in the manufacturing stage of the rolling material and / or the rolled product, f <63.0 + 2 ([Pb] + [Bi] −0.003). ) Or f> 67.5-2 ([Pb] + [Bi] −0.003) Sex can not be obtained, hardly make good cutting. In addition, in the first to eighth invention materials and the processed products of the present invention formed by rolling these, if the total content of inevitable impurities such as Fe is 0.7 mass% or less, the adverse effects due to the impurities are not However, if the influence of the impurity is taken into consideration, it is preferable to set the condition (1) to 63.7 ≦ f ≦ 66.8. Moreover, when the total content of inevitable impurities exceeds 0.7 mass%, when the total content is [X] mass%, the condition (1) is 63.0 + ([X] −0.7) ≦ It is preferable that f ≦ 67.5 − ([X] −0.7), that is, 62.3+ [X] ≦ f ≦ 68.2− [X], and 63.0+ [X] ≦ f ≦ 67.5. -[X] is more preferable.
また、転造加工用素材にあっては、一般に、これが種々の加熱工程(例えば、熱間押出や焼鈍等)を経て製造されるものであるから、マトリックスのα相に加え、β相、κ相、γ相、μ相、場合にはよってはδ相、ζ相、χ相等、種々の相が出現する可能性があり、押出条件や焼鈍条件等によって出現する相の種類やこれらの相の占める割合が大きく変動することになるが、第1〜第8発明素材及びこれらを転造加工してなる本発明加工品にあっては、上記した合金組成をなすことに加えて、α相マトリックスに少なくともκ相を含み且つ条件(2)を満足する金属組織となすことが必要である(γ相を含む場合には、更に条件(4)を満足する金属組織となすことが好ましい)。 In addition, in the case of a rolling material, since it is generally manufactured through various heating processes (for example, hot extrusion, annealing, etc.), in addition to the α phase of the matrix, the β phase, κ Various phases such as γ phase, γ phase, μ phase, and in some cases δ phase, ζ phase, χ phase, etc. may appear, and the types of phases appearing depending on extrusion conditions, annealing conditions, etc. The ratio of the occupancy varies greatly. In the first to eighth invention materials and the processed products of the present invention formed by rolling these, in addition to the above-described alloy composition, the α phase matrix It is necessary to form a metal structure that includes at least the κ phase and satisfies the condition (2) (in the case where the γ phase is included, it is preferable that the metal structure further satisfies the condition (4)).
すなわち、金属組織中におけるα相及びκ相の占める合計面積率が96%未満であると、良好な転造加工を行い難く、また高い強度、延性及び衝撃特性を確保することができず、耐食性も不十分なものとなる。基本的にはα相はマトリックスであり、延性や耐食性に富む。そして、転造加工後の金属組織においてα相の周りをκ相が取り巻く、或いはα相とκ相とが均一に混合し合うことにより、α相及びκ相の結晶粒成長が抑制され、高い強度が得られると同時に、優れた転造加工性を確保し、高い延性、衝撃特性及び優れた耐食性が得られる。したがって、これらの特性をより優れたものにするためには、[α]+[κ]≧96であることが必要であり、[α]+[κ]≧97であることが好ましく、[α]+[κ]≧98であることがより好ましい。 That is, when the total area ratio of the α phase and the κ phase in the metal structure is less than 96%, it is difficult to perform a good rolling process, and high strength, ductility and impact properties cannot be ensured, and the corrosion resistance. Will be insufficient. Basically, the α phase is a matrix and is rich in ductility and corrosion resistance. In the metal structure after the rolling process, the κ phase surrounds the α phase, or the α phase and the κ phase are uniformly mixed, so that the growth of crystal grains of the α phase and the κ phase is suppressed and high. At the same time as obtaining strength, excellent rolling processability is ensured, and high ductility, impact properties and excellent corrosion resistance are obtained. Therefore, in order to make these characteristics more excellent, it is necessary that [α] + [κ] ≧ 96, and it is preferable that [α] + [κ] ≧ 97, and [α] ] + [Κ] ≧ 98 is more preferable.
また、高い強度、高い延性、衝撃特性及び優れた耐食性を得るためには、α相の周りをκ相が取り巻いた金属組織となるか、或いはα相とκ相とが均一に混合し合う金属組織となることが好ましいが、このような金属組織を形成するためにα相及びκ相は必要であり、両相の面積率関係が極めて重要である。すなわち、[κ]/[α]<0.2であると、α相が過多となり、延性、耐食性及び衝撃性に優れるものの、強度及び耐摩耗性は低下することになるから、[κ]/[α]≧0.2であることが必要であり、[κ]/[α]≧0.3であることが好ましく、[κ]/[α]≧0.4であることがより好ましい。一方、[κ]/[α]>0.65であると、逆にκ相が過多となり、特に延性に問題が生じ、また転造困難及び衝撃特性も悪くなり、強度の向上も飽和する。したがって、[κ]/[α]≦0.65であることが必要であり、[κ]/[α]≦0.6であることが好ましく、[κ]/[α]≦0.5であることがより好ましい。 In addition, in order to obtain high strength, high ductility, impact properties, and excellent corrosion resistance, a metal structure in which the κ phase surrounds the α phase, or a metal in which the α phase and κ phase are uniformly mixed is used. Although it is preferable to form a structure, an α phase and a κ phase are necessary to form such a metal structure, and the area ratio relationship between both phases is extremely important. That is, if [κ] / [α] <0.2, the α phase becomes excessive and the ductility, corrosion resistance and impact resistance are excellent, but the strength and wear resistance are reduced. [Α] ≧ 0.2 is required, [κ] / [α] ≧ 0.3 is preferable, and [κ] / [α] ≧ 0.4 is more preferable. On the other hand, if [κ] / [α]> 0.65, on the other hand, the κ phase is excessive, particularly a problem occurs in ductility, the rolling difficulty and impact properties are deteriorated, and the strength improvement is saturated. Therefore, it is necessary that [κ] / [α] ≦ 0.65, preferably [κ] / [α] ≦ 0.6, and [κ] / [α] ≦ 0.5. More preferably.
また、転造加工部分が高い強度、延性、衝撃特性及び耐食性を有するためには、上記したα相及びκ相の面積率関係に加えて、α相及びκ相の個々の面積率が一定範囲となることが必要である。すなわち、60≦[α]≦84及び15≦[κ]≦40であることが必要であり、63≦[α]≦81及び20≦[κ]≦35であることが好ましく、66≦[α]≦78及び25≦[κ]≦30であることがより好ましい。 In addition to the above-described relationship between the area ratios of the α phase and the κ phase, the individual area ratios of the α phase and the κ phase are within a certain range in order that the rolled part has high strength, ductility, impact characteristics, and corrosion resistance. It is necessary to become. That is, it is necessary that 60 ≦ [α] ≦ 84 and 15 ≦ [κ] ≦ 40, 63 ≦ [α] ≦ 81 and 20 ≦ [κ] ≦ 35, and 66 ≦ [α ] ≦ 78 and 25 ≦ [κ] ≦ 30 are more preferable.
また、β相及びμ相は、何れも、転造加工性を悪くし、転造加工品の銅合金の強度、延性、耐食性及び衝撃特性を阻害するものである。単独では、β相は2%を超えると耐食性に悪影響を与え、延性及び衝撃特性にも悪い影響を与える。したがって、[β]≦2であることが必要であり、[β]≦1.5%であることが好ましく、[β]≦0.5%であることが好ましい。一方、μ相は2%を超えると、耐食性、延性、強度及び衝撃特性に悪い影響を与えることから、[μ]≦2であることが必要であり、[μ]≦1.5であることが好ましく、[μ]≦0.5であることがより好ましい。さらに、金属組織中にβ相及びμ相が含まれる場合にあっては、それらの耐食性及び延性等への影響を考慮して、[β]+[μ]≦2としておく必要があり、[β]+[μ]≦1としておくことが好ましく、[β]+[μ]≦0.5としておくことがより好ましい。 Further, both the β phase and the μ phase deteriorate the rolling processability, and hinder the strength, ductility, corrosion resistance, and impact characteristics of the copper alloy of the rolled product. Alone, if the β phase exceeds 2%, the corrosion resistance is adversely affected, and the ductility and impact properties are also adversely affected. Therefore, [β] ≦ 2 is required, [β] ≦ 1.5% is preferable, and [β] ≦ 0.5% is preferable. On the other hand, if the μ phase exceeds 2%, the corrosion resistance, ductility, strength and impact properties are adversely affected. Therefore, it is necessary that [μ] ≦ 2, and [μ] ≦ 1.5. Is preferable, and [μ] ≦ 0.5 is more preferable. Furthermore, when the β phase and the μ phase are included in the metal structure, it is necessary to set [β] + [μ] ≦ 2 in consideration of the influence on the corrosion resistance, ductility, and the like. β] + [μ] ≦ 1 is preferable, and [β] + [μ] ≦ 0.5 is more preferable.
また、γ相は、被削性を向上させる相であるが、転造加工性を悪くし、金属組織中にγ相の占める面積率が2%を超えると、転造品の延性、耐食性、衝撃特性に悪影響を与える。好ましくは、1.5%以下であり、最適には1.0%以下である。ただし、強度は、少量のγ相が分散して存在すると向上する。その効果はγ相が0.05%を超え効果を発揮し、少量で分散してγ相が分布しておれば延性や耐食性に悪影響を与えない。したがって、0≦[γ]≦2であり、好ましくは0≦[γ]≦1.5、最適には0.05≦[γ]≦1.0である。ただし、冷間加工した素材を転造加工する場合は、γ相量はより限定され、0≦[γ]≦1.5、23≦[κ]+[γ]≦33、好ましくは、0≦γ≦0.5、最適は0≦γ≦0.2とする。更に、β、μ、γ相の占める割合をその合計量でもって評価しなければならない。すなわち、β、μ、γ相の占める割合の合計量が4%を超えると、転造後の延性、耐食性、衝撃特性、強度が悪くなる。好ましくは、3%以下であり、最適には2%以下である。すなわち数式で表すと、0≦[β]+[μ]+[γ]≦4であり、好ましくは0≦[β]+[μ]+[γ]≦3であり、最適には0.05≦[β]+[μ]+[γ]≦2である。 In addition, the γ phase is a phase that improves machinability, but worsens the rolling processability, and when the area ratio of the γ phase in the metal structure exceeds 2%, the ductility, corrosion resistance, Adversely affects impact properties. Preferably, it is 1.5% or less, and optimally 1.0% or less. However, the strength is improved when a small amount of γ phase is dispersed. The effect is such that the γ phase exceeds 0.05% and the effect is exhibited. If the γ phase is dispersed in a small amount and distributed, the ductility and corrosion resistance are not adversely affected. Therefore, 0 ≦ [γ] ≦ 2, preferably 0 ≦ [γ] ≦ 1.5, and most preferably 0.05 ≦ [γ] ≦ 1.0. However, when rolling a cold-worked material, the amount of γ phase is more limited, and 0 ≦ [γ] ≦ 1.5, 23 ≦ [κ] + [γ] ≦ 33, preferably 0 ≦ γ ≦ 0.5, and optimally 0 ≦ γ ≦ 0.2. Furthermore, the proportion of β, μ, and γ phases must be evaluated by the total amount. That is, if the total amount of β, μ and γ phases exceeds 4%, ductility after rolling, corrosion resistance, impact properties, and strength deteriorate. Preferably, it is 3% or less, and optimally 2% or less. That is, when expressed by a mathematical expression, 0 ≦ [β] + [μ] + [γ] ≦ 4, preferably 0 ≦ [β] + [μ] + [γ] ≦ 3, and optimally 0.05 ≦ [β] + [μ] + [γ] ≦ 2.
なお、α、κ、γ、β、μの各相は、X線マイクロアナライザーを用いた定量分析結果から、本発明の基本であるCu−Zn−Si合金において次のように定義できる。
マトリックスのα相は、Cu:73〜80mass%、Si:1.7mass%〜3.1mass%で、残部がZn及びその他添加元素である。典型的な組成は、76Cu−2.4Si−残Znである。
必須の相であるκ相は、Cu:73〜79mass%、Si:3.2mass%〜4.7mass%で、残部がZn及びその他添加元素である。典型的な組成は、76Cu−3.9Si−残Znである。
γ相は、Cu:66〜75mass%、Si:4.8mass%〜7.2mass%で、残部がZn及びその他添加元素である。典型的な組成は、72Cu−6.0Si−残Znである。
β相は、Cu:63〜72mass%、Si:1.8mass%〜4.0mass%で、残部がZn及びその他添加元素である。典型的な組成は、69Cu−2.4Si−残Znである。
μ相は、Cu:76〜89mass%、Si:7.3mass%〜11mass%で、残部がZn及びその他添加元素である。典型的な組成は、83Cu−9.0Si−残Znである。
このように、μ相は、α、κ、γ、β相とSi濃度で区別がつき、γ相は、α、κ、β、μ相とSi濃度で区別がつく。μ相とγ相は、Si含有量は近接しているが、Cu濃度において76%を境にして区別される。β相は、γ相とSi濃度で区別がつき、α、κ、μ相とは、Cu濃度で区別がつく。α相とκ相は近接しているが、Si濃度3.15mass%又は3.1〜3.2mass%を境にして区別される。また、EBSD(electron backscatter diffraction)で結晶構造を調べたところ、α相は、fccであり、β相は、bccであり、γ相はbccであり、κ相はhcpであり、それぞれを区別することができる。なお、β相は、CuZn型すなわちW型のbcc構造をとり、γ相は、Cu5Zn8型のbcc構造をとり、両者は区別がつく。本来なら、κ相の結晶構造:hcpは、延性に乏しいが、α相の存在のもと0.2≦[κ]/[α]≦0.65を満足すれば、良好な、転造加工性、延性を有する。尚、金属組織中の相の割合を示すものであり、非金属介在物、Pb粒子、Bi粒子、NiとSi、MnとSiとの化合物は含まれない。
The α, κ, γ, β, and μ phases can be defined as follows in the Cu—Zn—Si alloy that is the basis of the present invention, based on the quantitative analysis results using an X-ray microanalyzer.
The α phase of the matrix is Cu: 73 to 80 mass%, Si: 1.7 mass% to 3.1 mass%, and the balance is Zn and other additive elements. A typical composition is 76Cu-2.4Si-residual Zn.
The κ phase, which is an essential phase, is Cu: 73 to 79 mass%, Si: 3.2 mass% to 4.7 mass%, and the balance is Zn and other additive elements. A typical composition is 76Cu-3.9Si-residual Zn.
The γ phase is Cu: 66 to 75 mass%, Si: 4.8 mass% to 7.2 mass%, and the balance is Zn and other additive elements. A typical composition is 72Cu-6.0Si-residual Zn.
The β phase is Cu: 63 to 72 mass%, Si: 1.8 mass% to 4.0 mass%, and the balance is Zn and other additive elements. A typical composition is 69Cu-2.4Si-residual Zn.
The μ phase is Cu: 76 to 89 mass%, Si: 7.3 mass% to 11 mass%, and the balance is Zn and other additive elements. A typical composition is 83Cu-9.0Si-residual Zn.
Thus, the μ phase can be distinguished from the α, κ, γ, β phase and the Si concentration, and the γ phase can be distinguished from the α, κ, β, μ phase and the Si concentration. The μ phase and the γ phase are close to each other in Si content, but are distinguished at a Cu concentration of 76%. The β phase can be distinguished from the γ phase by the Si concentration, and the α, κ, and μ phases can be distinguished from the Cu concentration. The α phase and the κ phase are close to each other, but are distinguished on the basis of the Si concentration of 3.15 mass% or 3.1 to 3.2 mass%. Further, when the crystal structure was examined by EBSD (electron backscatter diffraction), the α phase was fcc, the β phase was bcc, the γ phase was bcc, and the κ phase was hcp, which are distinguished from each other. be able to. Note that the β phase has a CuZn type, that is, a W type bcc structure, and the γ phase has a Cu 5 Zn 8 type bcc structure, which can be distinguished from each other. Originally, the crystal structure of the κ phase: hcp is poor in ductility, but it is satisfactory if it satisfies 0.2 ≦ [κ] / [α] ≦ 0.65 in the presence of the α phase. And ductility. In addition, the ratio of the phase in a metal structure is shown, and the compound of a nonmetallic inclusion, Pb particle | grains, Bi particle | grains, Ni and Si, Mn and Si is not contained.
ところで、転造加工用素材にあっては、その製造工程に押出工程が含まれる場合、押出温度の影響により主要構成相(α相、κ相、γ相)以外にも複数種の相が出現する可能性があるため、転造加工を可能にし、且つ各種特性が最適になるように押出温度を最適化する必要がある。最適押出温度は、650〜750℃である。この範囲よりも低温で押出すると、γ相が多く析出し、転造加工性が低下するとともに、焼鈍後もγ相が残留してしまう。また、変形抵抗が高くなり、細径での押出ができない。この範囲よりも高温で押出すると、κ相,β相が多くなり、焼鈍してもβ相,κ相が残留し、耐食性などを低下させることになる。 By the way, in the case of a rolling process material, when the manufacturing process includes an extrusion process, multiple types of phases appear in addition to the main constituent phases (α phase, κ phase, γ phase) due to the influence of the extrusion temperature. Therefore, it is necessary to optimize the extrusion temperature so that the rolling process is possible and various characteristics are optimized. The optimum extrusion temperature is 650-750 ° C. When extrusion is performed at a temperature lower than this range, a lot of γ phase is precipitated, the rolling processability is lowered, and the γ phase remains even after annealing. Moreover, deformation resistance becomes high and extrusion with a small diameter cannot be performed. When extruded at a temperature higher than this range, the κ phase and β phase increase, and even after annealing, the β phase and κ phase remain, and the corrosion resistance and the like deteriorate.
また、転造加工用素材にあっては、その製造工程に抽伸工程ないし伸線工程が含まれる場合、かかる冷間加工により加工硬化して転造加工性が低下する。したがって、良質な転造加工品を得るためには、焼鈍により材料を軟らかい状態にする必要がある。良好な転造加工性を確保するためには、上述した如く、α相マトリックスに少なくともκ相を含み且つ条件(2)を満足する金属組織をなすことが必要であり、転造加工性の更なる向上を図るためには、熱処理(焼鈍)後の金属組織において[γ]≦1.5であることが好ましく、[γ]≦0.5であることがより好ましく、[γ]≦0.2であることが最適である。しかし、加熱により金属組織を構成する相の種類、相の占める割合が変化することになるが、500℃未満の低温で熱処理した場合、焼鈍前における金属組織の影響が残り、特に高温で生成するβ相の消滅させること及びγ相を所定の量にまで減らすことが困難となり、また硬さをHV1:165以下にまで減少させることが困難な場合がある。一方、熱処理温度が600℃を超えると、多くの場合、硬さがHV1:165以下となるが、γ相やκ相の占める割合が増え、転造加工性が低下する。したがって、熱処理時間(焼鈍時間)はバッチ式や連続焼鈍などの処理炉の種類にも左右されるので、物温が500〜600℃に達してから、0.5〜8時間保持することが望ましい。また、熱処理後の冷却速度は、400℃以下の温度領域では炉冷に相当する0.1℃/minの冷却速度ではμ相が析出し、転造加工性及び耐食性を低下させることになるため、400℃以下において0.3℃/min以上の冷却速度で冷却する必要がある。 Further, in the case of a rolling process material, when the manufacturing process includes a drawing process or a drawing process, the workability is hardened by such cold processing and the rolling processability is lowered. Therefore, in order to obtain a high-quality rolled product, it is necessary to make the material soft by annealing. In order to ensure good rolling processability, as described above, it is necessary to form a metal structure containing at least the κ phase in the α phase matrix and satisfying the condition (2). In order to achieve this improvement, the metal structure after heat treatment (annealing) preferably has [γ] ≦ 1.5, more preferably [γ] ≦ 0.5, and [γ] ≦ 0. 2 is optimal. However, although the kind of phase constituting the metal structure and the proportion of the phase are changed by heating, when heat treatment is performed at a low temperature of less than 500 ° C., the influence of the metal structure before annealing remains, particularly at a high temperature. It may be difficult to eliminate the β phase and reduce the γ phase to a predetermined amount, and it may be difficult to reduce the hardness to HV1: 165 or less. On the other hand, when the heat treatment temperature exceeds 600 ° C., in many cases, the hardness becomes HV1: 165 or less, but the proportion of the γ phase and κ phase increases, and the rolling processability decreases. Therefore, since the heat treatment time (annealing time) depends on the type of processing furnace such as batch type or continuous annealing, it is desirable to hold for 0.5 to 8 hours after the material temperature reaches 500 to 600 ° C. . Further, the cooling rate after the heat treatment is such that the μ phase is precipitated at a cooling rate of 0.1 ° C./min corresponding to furnace cooling in the temperature region of 400 ° C. or lower, and the rolling workability and corrosion resistance are lowered. It is necessary to cool at 400 ° C. or lower at a cooling rate of 0.3 ° C./min or higher.
また、転造加工品に要求される重要な特性として耐摩耗性があるが、これは硬さに依存し、硬さを一定範囲に制御することにより、延性や衝撃特性を損なうことなく、強度及び耐摩耗性に優れた転造加工品を得ることが可能となる。したがって、転造用加工素材の硬さは、条件(3)のようにHV1:125〜165であることが必要である。すなわち、HV1:165(引張強さで620N/mm2に相当)は転造加工を可能にするための上限の硬さであり、HV1:125(引張強さで550N/mm2に相当)は転造加工後の材料強度を目標となる強度水準にするための下限の硬さである。 In addition, wear resistance is an important characteristic required for rolled products, but this depends on hardness, and by controlling the hardness within a certain range, strength is not impaired without impairing ductility and impact characteristics. In addition, it is possible to obtain a rolled product having excellent wear resistance. Therefore, the hardness of the work material for rolling needs to be HV1: 125-165 like condition (3). That is, HV1: 165 (corresponding to 620 N / mm 2 in tensile strength) is the upper limit hardness for enabling rolling, and HV1: 125 (corresponding to 550 N / mm 2 in tensile strength) is This is the lower limit hardness for setting the material strength after the rolling process to the target strength level.
また、転造加工品の硬さ(転造加工部分の断面硬さ)がHV1:220未満であると、転造加工品の強度が不十分であり、耐摩耗性が低下する虞れがある。逆に、転造加工品の硬さがHV1:270を超える場合には、材料の加工限界を超えて転造加工時に転造加工部分が破砕される虞れがあり、更には当該転造加工品の使用中に転造加工部分が破損する虞れがある。したがって、転造加工品の硬さはHV1:220〜270であることが必要であり、230〜260であることが好ましい。 Further, if the hardness of the rolled product (cross section hardness of the rolled product) is less than HV1: 220, the strength of the rolled product is insufficient and the wear resistance may be reduced. . On the other hand, if the hardness of the rolled product exceeds HV1: 270, there is a possibility that the rolling process part may be crushed during the rolling process exceeding the processing limit of the material. There is a risk that the rolled part may be damaged during use of the product. Accordingly, the hardness of the rolled product is required to be HV1: 220 to 270, and preferably 230 to 260.
本発明の転造加工用素材(第1〜第8発明素材)は、転造加工性に優れるものであり、被転造加工部分の転造加工を容易且つ適正に行うことができるものであり、転造加工部分(被転造加工部分を転造加工してなる部分)が強度、耐摩耗性、耐応力腐食割れ性及び耐食性に優れた転造加工品を得ることができるものである。例えば、ステアリングシャフト・モーターシャフト等の軸製品、ドアロックアクチュエータ・サンルーフモータ・パワーウィンドモータ等に利用されるウォームギアやラックダイス方式で製造されるインボリュートスプライン軸・インボリュートセレーション軸等の転造加工品の構成材として好適に使用することができるものである。特に、第2、第4、第6及び第8発明素材によれば、耐食性及び耐応力腐食割れ性に極めて優れた転造加工品を得ることができる。また、第3、第4、第7及び第8発明素材は被削性に極めて優れるもので、当該素材又はその転造加工品の製造段階において切削加工を必要とする場合においても当該加工をより良好に行うことできるものである。また、第5〜第8発明素材によれば、強度及び耐摩耗性に極めて優れた転造加工品を得ることができる。 The material for rolling process (the first to eighth invention materials) of the present invention is excellent in rolling processability, and can easily and appropriately perform the rolling process of the part to be rolled. In addition, a rolled product can be obtained in which a rolled part (a part formed by rolling a part to be rolled) is excellent in strength, wear resistance, stress corrosion cracking resistance and corrosion resistance. For example, shaft products such as steering shafts and motor shafts, worm gears used for door lock actuators, sunroof motors, power window motors, etc., and rolled products such as involute spline shafts and involute serration shafts manufactured by the rack die method. It can be suitably used as a constituent material. In particular, according to the second, fourth, sixth and eighth invention materials, it is possible to obtain a rolled product that is extremely excellent in corrosion resistance and stress corrosion cracking resistance. The materials of the third, fourth, seventh and eighth inventions are extremely excellent in machinability, and even when cutting is required in the manufacturing stage of the material or its rolled product, the processing is further performed. It can be performed well. Moreover, according to the 5th-8th invention material, the rolling processed goods excellent in intensity | strength and abrasion resistance can be obtained.
また、本発明の転造加工品は、第1〜第8発明素材の被加工部分を転造加工してなるものであり、強度、耐摩耗性、耐応力腐食割れ性及び耐食性に優れたものであるから、従来の銅合金製の転造加工品では使用が困難とされていた分野或いは使用不可能とされていた分野にまで用途を拡大できるものであり、極めて実用性に富むものである。例えば、本発明の転造加工品は、転造加工部分が雄ネジ、雌ネジ、スプライン、歯車又はローレット等の連続した凹凸形状をなす各種転造加工材、転造加工部品、転造加工部材や転造加工製品(ステアリングシャフト・モーターシャフト等の軸製品、ドアロックアクチュエータ・サンルーフモータ・パワーウィンドモータ等に利用されるウォームギアやラックダイス方式で製造されるインボリュートスプライン軸・インボリュートセレーション軸等)として好適に使用することができるものである。特に、第2、第4、第6及び第8発明素材を転造加工してなる本発明の転造加工品は、耐食性及び耐応力腐食割れ性に極めて優れたものであり、高度の耐食性が必要とされる用途にも好適に使用することができる。また、第3、第4、第7及び第8発明素材を転造加工してなる本発明の転造加工品は被削性に極めて優れるもので、製造工程に切削加工が含まれる製品にも好適に使用することができる。また、第5〜第8発明素材を転造加工してなる本発明の転造加工品は、強度及び耐摩耗性に極めて優れたものであり、高強度ないし耐久性が強く要求される分野においても好適に使用することができる。 In addition, the rolled product of the present invention is formed by rolling the processed parts of the materials of the first to eighth inventions, and is excellent in strength, wear resistance, stress corrosion cracking resistance and corrosion resistance. Therefore, the application can be expanded to fields that have been difficult or impossible to use with conventional rolled products made of copper alloys, and are extremely practical. For example, the rolled processed product of the present invention is a rolled processed material, a rolled processed part, a rolled processed member, in which the rolled processed portion has a continuous concavo-convex shape such as a male screw, a female screw, a spline, a gear, or a knurl. And rolling products (shaft products such as steering shafts and motor shafts, worm gears used in door lock actuators, sunroof motors, power window motors, etc., involute spline shafts and involute serration shafts manufactured by rack dies) It can be used suitably. In particular, the rolled product of the present invention formed by rolling the materials of the second, fourth, sixth, and eighth inventions is extremely excellent in corrosion resistance and stress corrosion cracking resistance, and has high corrosion resistance. It can be suitably used for required applications. In addition, the rolled products of the present invention formed by rolling the materials of the third, fourth, seventh and eighth inventions are extremely excellent in machinability, and are also included in products that include cutting in the manufacturing process. It can be preferably used. In addition, the rolled product of the present invention formed by rolling the materials of the fifth to eighth inventions is extremely excellent in strength and wear resistance, and in a field where high strength or durability is strongly required. Can also be suitably used.
このように、本発明によれば、転造加工分野における銅合金材の用途を大幅に拡大することができる。 Thus, according to the present invention, the use of the copper alloy material in the rolling process field can be greatly expanded.
実施例として、表1に示す合金組成をなし且つ表2に示す金属組織及び硬度(ビッカース硬度HV1)を有する本発明に係る転造加工用素材(以下「実施例素材」という)No.1〜No.23を得た。なお、実施例素材No.1は第1発明素材に、実施例素材No.2〜No.8は第2発明素材に、実施例素材No.9は第3発明素材に、実施例素材No.10〜No.13、No.18、No.19及びNo.23は第4発明素材に、実施例素材No.14は第5発明素材に、実施例素材No.21及びNo.22は第6発明素材に、No.15は第7発明素材に、また実施例素材No.16、No.17及びNo.20は第8発明素材に、夫々該当するものである。 As an example, a rolling material (hereinafter referred to as “Example material”) No. 1 having the alloy composition shown in Table 1 and the metal structure and hardness (Vickers hardness HV1) shown in Table 2 according to the present invention. 1-No. 23 was obtained. In addition, Example material No. 1 is the first invention material, Example material No. 2-No. No. 8 is the material of the second invention, the example material No. No. 9 is the third invention material, Example material No. 10-No. 13, no. 18, no. 19 and No. No. 23 is the fourth invention material, Example material No. No. 14 is the material of the fifth invention, the example material No. 21 and no. No. 22 is the sixth invention material. 15 is the seventh invention material, and the example material No. 16, no. 17 and no. 20 corresponds to each of the eighth invention materials.
すなわち、実施例素材No.1〜No.17は押出材であり、夫々、表1に示す合金組成をなす円柱状の鋳塊(外径100mm、長さ150mm)を670℃の条件で押出して、外径20mmの丸棒材を得た上、この丸棒材に一般的な矯正を施したものである。 That is, Example material No. 1-No. Reference numeral 17 denotes an extruded material, and cylindrical ingots having an alloy composition shown in Table 1 (outer diameter 100 mm, length 150 mm) were extruded at 670 ° C. to obtain a round bar with an outer diameter of 20 mm. Above, this round bar material is a general correction.
また、実施例素材No.18及びNo.19は抽伸材であり、夫々、表1に示す合金組成をなす円柱状の鋳塊(外径100mm、長さ150mm)を670℃の条件で外径20mmの丸棒形状に押出し、この押出材を外径19mmの丸棒状に抽伸した上、この抽伸材をマッフル炉により熱処理(焼鈍)したものである。焼鈍は、実施例素材No.18については、520℃で1時間保持すると共に400℃以下における冷却速度を1℃/minとしたものであり、また実施例素材No.19については、580℃で1時間保持すると共に400℃以下における冷却速度を1℃/minとしたものである。なお、実施例素材No.18及びNo.19は合金組成を同一とするものであり、熱処理条件(焼鈍温度)のみを異にするものである。 In addition, Example Material No. 18 and no. 19 is a drawing material, and each of the cylindrical ingots (outer diameter 100 mm, length 150 mm) having the alloy composition shown in Table 1 is extruded into a round bar shape having an outer diameter of 20 mm under the condition of 670 ° C. Is drawn into a round bar shape having an outer diameter of 19 mm, and the drawn material is heat-treated (annealed) in a muffle furnace. Annealing is performed in Example Material No. No. 18 was held at 520 ° C. for 1 hour and the cooling rate at 400 ° C. or lower was set to 1 ° C./min. No. 19 is maintained at 580 ° C. for 1 hour and the cooling rate at 400 ° C. or lower is 1 ° C./min. In addition, Example material No. 18 and no. No. 19 has the same alloy composition, and differs only in heat treatment conditions (annealing temperature).
また、実施例素材No.20〜No.22は鋳造材であり、夫々、溶湯を金型(直径35mm,深さ200mm)に鋳込んで、表1に示す合金組成をなす円柱状の鋳塊を得た上、これを旋盤により外径17mmの丸棒に切削したものである。 In addition, Example Material No. 20-No. Reference numeral 22 denotes a cast material, in which a molten metal was cast into a mold (diameter 35 mm, depth 200 mm) to obtain a cylindrical ingot having an alloy composition shown in Table 1, and this was turned by a lathe. It was cut into a 17 mm round bar.
また、実施例素材No.23は鍛造材であり、表1に示す合金組成をなす円柱状の鋳塊(外径100mm、長さ150mm)を670℃の条件で押出して、外径40mmの丸棒材を得た上、これを厚さ20mmに適正鍛造温度である700℃で平板状に鍛造した後、外径20mmの丸棒形状に切削加工したものである。 In addition, Example Material No. 23 is a forging material, and a cylindrical ingot having an alloy composition shown in Table 1 (outer diameter 100 mm, length 150 mm) was extruded at 670 ° C. to obtain a round bar with an outer diameter of 40 mm. This was forged into a flat plate shape at a suitable forging temperature of 700 ° C. to a thickness of 20 mm, and then cut into a round bar shape with an outer diameter of 20 mm.
そして、実施例素材No.1〜No.23の金属組織及び硬度(ビッカース硬度:HV1)を測定したところ、表2に示す通りであり、何れも条件(2)〜(4)を満足するものであった。なお、金属組織については、試料の横断面を研磨して鏡面とし、これを過酸化水素とアンモニア水との混合液でエッチングし、各相の面積率(%)を画像解析により測定した。すなわち、200倍又は500倍の光学顕微鏡組織を画像処理ソフト[WinROOF](株式会社テックジャム製)で2値化することにより、各相の面積率を求めた。面積率の測定は3視野で行い、その平均値を各相の相比率とした。相の特定が困難な場合は、FE−SEM−EBSP(Electron Back Scattering diffraction Pattern)法によって、相を特定し、各相の面積率を求めた。FE−SEMは日本電子株式会社製JSM−7000F、解析には株式会社TSLソリューションズ製OIM−Ver.5.1を使用し、解析倍率500倍と2000倍の相マップ(Phaseマップ)から求めた。 And Example material No. 1-No. When the metal structure and hardness (Vickers hardness: HV1) of No. 23 were measured, they were as shown in Table 2 and all satisfied the conditions (2) to (4). In addition, about the metal structure, the cross section of the sample was grind | polished and it was set as the mirror surface, this was etched with the liquid mixture of hydrogen peroxide and ammonia water, and the area ratio (%) of each phase was measured by image analysis. That is, the area ratio of each phase was determined by binarizing a 200-fold or 500-fold optical microscope structure with image processing software [WinROOF] (manufactured by Techjam Corporation). The area ratio was measured in three fields, and the average value was used as the phase ratio of each phase. When it was difficult to specify the phase, the phase was specified by the FE-SEM-EBSP (Electron Back Scattering Diffraction Pattern) method, and the area ratio of each phase was obtained. FE-SEM is JSM-7000F manufactured by JEOL Ltd., and OIM-Ver. 5.1 was used, and it was obtained from a phase map (Phase map) with an analysis magnification of 500 times and 2000 times.
また、比較例として、表4に示す合金組成をなし且つ表5に示す金属組織及び硬度(ビッカース硬度:HV1)を有する転造加工用素材(以下「比較例素材」という)No.101〜No.112を得た。 Further, as a comparative example, a rolling process material (hereinafter referred to as “comparative material”) No. 1 having the alloy composition shown in Table 4 and the metal structure and hardness (Vickers hardness: HV1) shown in Table 5 was used. 101-No. 112 was obtained.
すなわち、比較例素材No.101〜No.108は押出材であり、夫々、表4に示す合金組成をなす円柱状の鋳塊(外径100mm、長さ150mm)を620℃、670℃又は780℃の条件で押出して、外径20mmの丸棒材を得た上、この丸棒材に一般的な矯正を施したものである。押出温度は、比較例素材No.101〜No.106について670℃とし、比較例素材No.107については780℃とし、また比較例素材No.108については620℃とした。 That is, the comparative material No. 101-No. 108 is an extruded material, and each of the cylindrical ingots (outer diameter 100 mm, length 150 mm) having the alloy composition shown in Table 4 is extruded under the conditions of 620 ° C., 670 ° C. or 780 ° C., and the outer diameter is 20 mm. In addition to obtaining a round bar, this round bar was subjected to general correction. Extrusion temperature is comparative example material No. 101-No. No. 106 was set to 670 ° C., and comparative material No. No. 107 was set to 780 ° C., and comparative material No. About 108, it was set as 620 degreeC.
また、比較例素材No.109〜No.112は抽伸材であり、夫々、表4に示す合金組成をなす円柱状の鋳塊(外径100mm、長さ150mm)を670℃の条件で外径20mmの丸棒形状に押出し、この押出材を外径19mmの丸棒状に抽伸した上、この抽伸材をマッフル炉により熱処理(焼鈍)したものである。熱処理は比較例素材No.109については行わず、比較例素材No.110については、480℃で1時間保持すると共に400℃以下における冷却速度を1℃/minとして焼鈍を行い、比較例素材No.111については、620℃で1時間保持すると共に400℃以下における冷却速度を1℃/minとして焼鈍を行い、また比較例素材No.112については、580℃で1時間保持すると共に400℃以下における冷却速度を0.1℃/minとして焼鈍を行った。なお、比較例素材No.107〜No.112は、実施例素材No.18及びNo.19と同一の合金組成をなすものである。 Comparative material No. 109-No. 112 is a drawing material, and each of the cylindrical ingots (outer diameter 100 mm, length 150 mm) having the alloy composition shown in Table 4 is extruded into a round bar shape having an outer diameter of 20 mm under the condition of 670 ° C. Is drawn into a round bar shape having an outer diameter of 19 mm, and the drawn material is heat-treated (annealed) in a muffle furnace. The heat treatment was performed in Comparative Example Material No. No comparison is made for Comparative Example Material No. 109. About 110, it hold | maintained at 480 degreeC for 1 hour, and also annealed by making the cooling rate in 400 degrees C or less into 1 degree-C / min. No. 111 was held at 620 ° C. for 1 hour and annealed at a cooling rate of 400 ° C. or lower at 1 ° C./min. About 112, it hold | maintained at 580 degreeC for 1 hour, and also annealed by making the cooling rate in 400 degrees C or less into 0.1 degrees C / min. In addition, comparative example material No. 107-No. 112, Example material No. 18 and no. 19 has the same alloy composition.
これらの比較例素材No.101〜No.112についての合金組成、金属組織及び硬度(ビッカース硬度:HV1)は表4及び表5に示す通りであり、何れも、第1〜第8発明素材において特定される合金組成、金属組織及び硬度に関する条件の少なくとも一部を満足しないものである。 These comparative material No. 101-No. The alloy composition, metal structure, and hardness (Vickers hardness: HV1) of No. 112 are as shown in Tables 4 and 5, all of which relate to the alloy composition, metal structure, and hardness specified in the first to eighth invention materials. It does not satisfy at least some of the conditions.
而して、各実施例素材No.1〜No.23及び各比較例素材No.101〜No.112(夫々5本)を転造加工して、それらの外周部分にM5、M7、M10、M12及びM14の5種類のメートル並目ネジを形成し、得られた各転造加工品の転造加工部分(ネジ部分)について外観評価、硬度測定及び脱亜鉛腐食試験(ISO6509)等を行った。以下の説明においては、各転造加工品についてはその素材番号と同一の番号を付して、実施例素材No.mを転造加工してなる転造加工品は「実施例加工品No.m」といい、比較例素材No.nを転造加工してなる転造加工品は「比較例加工品No.n」ということとする。なお、図1は実施例素材No.10を転造加工してなる実施例加工品No.10の外観形態を示す正面図であり、図2は実施例加工品No.10の転造加工部分(ネジ部分)におけるミクロ組織を示す縦断正面図である。 Thus, each example material No. 1-No. 23 and each comparative example material No. 101-No. 112 (five each) are rolled to form five types of metric coarse screws, M5, M7, M10, M12 and M14, on the outer periphery of each of the obtained rolled products. Appearance evaluation, hardness measurement, dezincification corrosion test (ISO 6509) and the like were performed on the processed portion (screw portion). In the following description, each rolled product is given the same number as its material number, and the example material No. A rolled product obtained by rolling m is referred to as “Example processed product No. m”. A rolled product obtained by rolling n is referred to as a “comparative example processed product No. n”. Note that FIG. Example processed product No. 10 formed by rolling and processing No. 10 10 is a front view showing the external appearance of No. 10, and FIG. It is a vertical front view which shows the microstructure in 10 rolling process parts (screw part).
転造加工にあっては、各素材No.1〜No.23及びNo.101〜No.112の外径を、上記各メートル並目ネジ所定の外径寸法に対して10%減少させた寸法(公差は±0.02)となる丸棒(外径:d)に切削加工した上、この丸棒を、冷間において丸ダイスの間を通過させることにより、丸棒の外周部分にメートル並目ネジM5、M7、M10、M12及びM14を形成した実施例加工品(本発明加工品)No.1〜No.23及び比較例加工品No.101〜No.112(各5種類)を得た。なお、各実施例加工品No.1〜No.22及び比較例加工品No.101〜No.112におけるネジの転造加工前の外径寸法(上記丸棒の外径寸法)d及び「ひっかかりの高さ」H1は、夫々、M5:d=4.5mm,H1=0.433m、M7:d=6.3mm,H1=0.541mm、M10:d=9.0mm,H1=0.812mm、M12:d=10.8mm,H1=0.947mm及びM14:d=12.6mm,H1=1.083mmである。 In rolling processing, each material No. 1-No. 23 and no. 101-No. The outer diameter of 112 is cut into a round bar (outer diameter: d) having a dimension (tolerance is ± 0.02) reduced by 10% with respect to the predetermined outer diameter dimension of each metric coarse screw, This round bar is passed between the round dies in the cold state, and the processed product of the example in which metric coarse screws M5, M7, M10, M12 and M14 are formed on the outer peripheral portion of the round bar (the processed product of the present invention) No. 1-No. 23 and comparative example processed product No. 101-No. 112 (5 types each) were obtained. In addition, each Example processed product No. 1-No. 22 and comparative processed product No. 101-No. The outer diameter dimension (outer diameter dimension of the round bar) d and the “hanging height” H 1 before thread rolling in 112 are M5: d = 4.5 mm, H 1 = 0.433 m, respectively. M7: d = 6.3mm, H 1 = 0.541mm, M10: d = 9.0mm, H 1 = 0.812mm, M12: d = 10.8mm, H 1 = 0.947mm and M14: d = 12 0.6 mm, H 1 = 1.083 mm.
かくして得られた各実施例加工品No.1〜No.23及び各比較例加工品No.101〜No.112のネジ部分(転造加工部分)について、その外観を対物顕微鏡で25倍及び200倍に拡大して観察して、その外観評価を行った。その結果は表3及び表4に示す通りであった。表3及び表6においては、200倍でも割れが認められなかったものを転造良好と評価して「○」で表示し、25倍では割れが認められなかったものの200倍では割れが認められたものを転造やや良好と評価して「△」で表示し、また25倍で割れが認められたものを転造不良と評価して「×」で表示した。 The processed product No. of each Example obtained in this way. 1-No. No. 23 and each comparative example processed product No. 101-No. About 112 thread part (rolling processed part), the external appearance was magnified 25 times and 200 times with the objective microscope, and the external appearance evaluation was performed. The results were as shown in Tables 3 and 4. In Tables 3 and 6, those that were not cracked even at 200 times were evaluated as good rolling and indicated by “O”, and cracks were found at 200 times that were not seen at 25 times. The rolls were evaluated as slightly good by rolling and indicated by “Δ”, and those with cracks observed at 25 times were evaluated as poor rolling and indicated by “x”.
そして、この外観評価の結果に基づいて、各素材の転造加工性を評価した。その結果は表3及び表6に示す通りであった、表3及び表6においては、5種類のネジ(M5、M7,M10、M12及びM14)のすべてについて外観評価が「○」又は「△」であったものを「転造加工性に優れる」と評価して「A」で表示し、少なくともM5、M7及びM10について外観評価が「○」又は「△」であったものを「実用上転造可能」と評価して「B」で表示し、M10について外観評価が「×」であったものを「実用上転造不可」と評価して「C」で表示した。 And based on the result of this external appearance evaluation, the rolling workability of each raw material was evaluated. The results were as shown in Tables 3 and 6. In Tables 3 and 6, the appearance evaluations of all five types of screws (M5, M7, M10, M12 and M14) were “◯” or “Δ” Is evaluated as “excellent in rolling processability” and indicated by “A”, and at least M5, M7 and M10 were evaluated as “○” or “△” in appearance evaluation as “practical” It was evaluated as “rollable” and displayed as “B”, and the appearance evaluation of “M” for M10 was evaluated as “impossible to roll in practice” and displayed as “C”.
また、各実施例加工品No.1〜No.23及び各比較例加工品No.101〜No.112(比較例加工品No.109を除く)の転造加工部分(ネジ部分)の硬度(ビッカース硬度HV1)を測定した。この硬度測定は、ネジ山の頂点から谷部方向に0.3mm隔たった箇所において行った。その結果は表3及び表6に示す通りであった。なお、比較例加工品No.109は、比較例素材No.109の硬さがHV1:188と極めて高いことから、転造加工において加工限界に達して何れの種類のネジ部分も破砕してしまったため、ネジ部分の硬度測定及び後述する応力腐食割れ試験及び脱亜鉛腐食試験は実施していない。 In addition, each processed product No. 1-No. No. 23 and each comparative example processed product No. 101-No. The hardness (Vickers hardness HV1) of the rolling processed part (screw part) of 112 (excluding comparative example processed product No. 109) was measured. This hardness measurement was performed at a location 0.3 mm away from the top of the screw thread in the valley direction. The results were as shown in Tables 3 and 6. In addition, comparative example processed goods No. No. 109 is a comparative material No. Since the hardness of 109 is extremely high (HV1: 188), the processing limit was reached in the rolling process, and any kind of screw part was crushed. Therefore, the hardness measurement of the screw part and the stress corrosion cracking test and removal described later were performed. No zinc corrosion test was conducted.
さらに、各実施例加工品No.1〜No.23及び各比較例加工品No.105〜No.112(比較例加工品No.109を除く)について、応力腐食割れ試験及び脱亜鉛腐食試験を行った。 Further, each processed product No. 1-No. No. 23 and each comparative example processed product No. 105-No. A stress corrosion cracking test and a dezincification corrosion test were conducted on 112 (excluding the comparative example processed product No. 109).
すなわち、応力腐食割れ試験は、各転造加工品No.1〜No.23及びNo.101〜No.112について、「JIS K8085」で規定されているアンモニア試験法と、よりマイルドで実環境に近い試験方法である「ASTM B858」の2種類の方法で行った。 That is, the stress corrosion cracking test was conducted for each rolled product No. 1-No. 23 and no. 101-No. For 112, the ammonia test method defined in “JIS K8085” and “ASTM B858”, which is a milder test method closer to the actual environment, were used.
アンモニア試験法「JIS K8085」においては、28%のアンモニア水900mlに水900mlを加えた水溶液雰囲気中に各転造加工品から採取した試料を常温で2hr保持した上、当該試料を取出して、対物顕微鏡20倍での割れの有無を確認した。その結果は表3及び表6に示す通りであった。表3及び表6においては、割れが認められなかったものを「○」で表示し、割れが確認されたものを「×」で表示した。 In the ammonia test method “JIS K8085”, a sample collected from each rolled product is held at room temperature for 2 hours in an aqueous solution atmosphere in which 900 ml of water is added to 900 ml of 28% ammonia water. The presence or absence of cracking under a microscope 20 times was confirmed. The results were as shown in Tables 3 and 6. In Table 3 and Table 6, those in which no cracks were observed were indicated by “◯”, and those in which cracks were confirmed were indicated by “x”.
「ASTM B858」による試験では、107g/500mlのNH4OH水溶液に30〜35%のNaOH水溶液を加え、pH10.1に調整した水溶液雰囲気中に各転造加工品から採取した試料を常温で24hr暴露した後、対物顕微鏡10倍での割れの有無を確認した。その結果は、その結果は表3及び表6に示す通りであった。表3及び表6においては、割れが認められなかったものを「○」で表示し、割れが確認されたものを「×」で表示した。 In the test by “ASTM B858”, a sample taken from each rolled product in an aqueous solution atmosphere adjusted to pH 10.1 by adding 30-35% NaOH aqueous solution to 107 g / 500 ml NH 4 OH aqueous solution at room temperature for 24 hr. After the exposure, the presence or absence of cracking with an objective microscope 10 times was confirmed. The results were as shown in Tables 3 and 6. In Table 3 and Table 6, those in which no cracks were observed were indicated by “◯”, and those in which cracks were confirmed were indicated by “x”.
また、脱亜鉛腐食試験は「ISO6509」によるものであり、まず、各転造加工品から採取した試料を、その曝露面が当該転造加工用素材の押出方向もしくは鋳造材の長手方向に対して直角となるようにしてフェノール樹脂材に埋めこみ、試料の表面を1200番のエメリー紙にて研磨した後、純水中で超音波洗浄して乾燥した。かくして得られた各試料を1.0%の塩化第2銅2水和塩CuCl2・2H2Oの水溶液12.7g/L中に浸漬し、75℃で24時間保持した後、水溶液中から取出し、その脱亜鉛腐食の最大深さを次のようにして測定した。すなわち、水溶液中から取出した試料の暴露表面が当該転造加工用素材の押出方向もしくは鋳造材の長手方向に対して直角を保つように、フェノール樹脂材に再び埋め込まれ、次に最も長い切断部が得られるように当該試料を切断した。続いて当該試料を研磨し、100倍から500倍の金属顕微鏡を用い、顕微鏡の視野10ヶ所において、腐食深さを測定し、最も深い腐食ポイントを最大脱亜鉛腐食深さ(μm)として記録した。その結果は、表3及び表6に示す通りであった。また、表3及び表6においては、最大腐食深さが50μm以下であれば「耐食性に優れる」と評価して「○」で表示し、最大腐食深さが200μm以下であれば[実用上使用可能]と評価して「△」で表示し、また最大腐食深さが200μmを超える場合は[実用上耐食性に問題あり]として「×」で表示した。 In addition, the dezincification corrosion test is based on “ISO 6509”. First, a sample taken from each rolled product is exposed to the extrusion direction of the rolling material or the longitudinal direction of the cast material. The sample was embedded in a phenol resin material so as to form a right angle, and the surface of the sample was polished with No. 1200 emery paper, and then ultrasonically washed in pure water and dried. Each sample thus obtained was immersed in a 12.7 g / L aqueous solution of 1.0% cupric chloride dihydrate CuCl 2 .2H 2 O, kept at 75 ° C. for 24 hours, and then out of the aqueous solution. The maximum depth of removal and dezincification corrosion was measured as follows. That is, the exposed surface of the sample taken out from the aqueous solution is re-embedded in the phenolic resin material so that the exposed surface of the sample is perpendicular to the extrusion direction of the rolling material or the longitudinal direction of the cast material, and then the longest cut portion is obtained. The sample was cut so as to obtain Subsequently, the sample was polished, and the corrosion depth was measured at 10 points of view of the microscope using a metal microscope of 100 to 500 times, and the deepest corrosion point was recorded as the maximum dezincification corrosion depth (μm). . The results were as shown in Table 3 and Table 6. In Tables 3 and 6, if the maximum corrosion depth is 50 μm or less, it is evaluated as “Excellent corrosion resistance” and indicated by “◯”, and if the maximum corrosion depth is 200 μm or less, it is used in practical use. It was evaluated as “possible” and indicated by “Δ”, and when the maximum corrosion depth exceeded 200 μm, it was indicated by “x” as [practical corrosion resistance has a problem].
而して、実施例素材No.1〜No.23については、押出材、抽伸材、鍛造材、鋳造材の区別なく、何れも、表1及び表2に示す如く、条件(1)を満足する合金組成及び条件(2)(4)を満足する金属組織をなしており、硬さについても条件(3)を満足するものであり、表3に示す如く、強度,耐食性等に優れた良質の転造加工品(実施例加工品)No.1〜No.22を得られることが確認された。 Thus, the example material No. 1-No. As for No. 23, regardless of whether it is an extruded material, a drawn material, a forged material, or a cast material, as shown in Tables 1 and 2, the alloy composition satisfying the condition (1) and the conditions (2) and (4) are satisfied. As shown in Table 3, a high-quality rolled processed product (Example processed product) No. 1 having excellent strength, corrosion resistance, etc. is satisfied. 1-No. 22 was obtained.
一方、比較例素材No.101〜No.106については、表4及び表5に示す如く、本発明で特定する合金組成及び金属組織の条件を満足しないものであり、表6に示す如く、その殆どが転造加工性に劣る(転造加工性がC評価である)ものであり、良質の転造加工品を得ることができない。転造加工性がA評価である比較例素材No.105および転造加工性がB評価である比較例素材No.106についても、表6に示す如く、その転造加工品(比較例加工品No.105、No.106)の耐食性は頗る悪い。 On the other hand, comparative material No. 101-No. As shown in Table 4 and Table 5, 106 does not satisfy the alloy composition and metallographic conditions specified in the present invention, and as shown in Table 6, most of them are inferior in rolling workability (rolling). The workability is C evaluation), and a high-quality rolled product cannot be obtained. Comparative example material No. whose rolling processability is A evaluation 105 and comparative material No. whose rolling processability is B evaluation. As for Table 106, as shown in Table 6, the corrosion resistance of the rolled processed products (Comparative Example processed products No. 105, No. 106) is very poor.
かかる点から、第1〜第8発明素材において特定される合金組成及び金属組織をなし且つ条件(3)の硬度を有することが、優れた転造加工性を有し且つ強度,耐食性等に優れた良質の転造加工品を得るために必要であることが確認される。 From this point, having the alloy composition and metal structure specified in the first to eighth invention materials and having the hardness of the condition (3) has excellent rolling processability and excellent strength, corrosion resistance, etc. It is confirmed that it is necessary to obtain a good quality rolled product.
また、比較例素材No.107〜No.112は、表1及び表3に示す如く、実施例素材No.18及びNo.19と同一の合金組成をなすものであるが、比較例素材No.109を除いて、表5に示す如く、押出温度、焼鈍温度又は焼鈍時の冷却速度が不適切なために適正な金属組織をなしていない。その結果、比較例素材No.107、No.108、No.110及びNo.112は、表6に示す如く、転造加工性が悪く(C評価)、転造加工用素材として実用できない。また、比較例素材No.111については、転造加工性は良い(A評価)ものの、表6に示す如く、転造加工度が低い場合(M5、M7、M10)には高硬度の転造加工品が得られず(HV1:220未満)、強度及び耐摩耗性に優れた転造加工品を得ることができない。また、比較例素材No.109は、表4及び表5に示す如く、適正な合金組成及び金属組織をなすものであるが、抽伸後の熱処理(焼鈍)を行っていないことから素材硬度が高く、条件(3)を満足していない。その結果、転造加工性が極めて悪く、上述した如く、転造加工部分(ネジ部分)が破砕するといった加工不良を招いている。 Comparative material No. 107-No. 112, as shown in Tables 1 and 3, Example material No. 18 and no. 19 having the same alloy composition as that of Comparative Example Material No. Except for 109, as shown in Table 5, the extrusion temperature, the annealing temperature, or the cooling rate at the time of annealing is not appropriate, so that an appropriate metal structure is not formed. As a result, the comparative material No. 107, no. 108, no. 110 and No. As shown in Table 6, No. 112 has poor rolling processability (C evaluation) and cannot be used as a rolling process material. Comparative material No. About 111, although rolling workability is good (A evaluation), as shown in Table 6, when the degree of rolling work is low (M5, M7, M10), a rolled product with high hardness cannot be obtained ( HV1: less than 220), a rolled product excellent in strength and wear resistance cannot be obtained. Comparative material No. No. 109 has an appropriate alloy composition and metal structure as shown in Tables 4 and 5. However, since the heat treatment (annealing) after drawing is not performed, the material hardness is high and the condition (3) is satisfied. Not done. As a result, the rolling processability is extremely poor, and as described above, a processing defect such as the rolling process portion (screw portion) being crushed is caused.
かかる点から、転造加工においては、転造加工用素材の押出温度、焼鈍温度及び焼鈍時の冷却速度を適正に制御して本発明で特定する金属組織となしておくこと、或いは金属組織(及び合金組成)が適正であっても抽伸等により加工硬化を生じている転造加工用素材については熱処理により条件(3)を満足する硬度に調整しておくことが極めて重要であることが理解される。 From this point, in the rolling process, the extrusion temperature of the raw material for rolling process, the annealing temperature, and the cooling rate at the time of annealing are appropriately controlled to be the metal structure specified in the present invention, or the metal structure ( It is understood that it is extremely important to adjust the hardness to satisfy the condition (3) by heat treatment for the material for rolling processing that has undergone work hardening by drawing or the like even if the alloy composition is appropriate. Is done.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011247153A JP5763504B2 (en) | 2011-11-11 | 2011-11-11 | Copper alloy rolling materials and rolled products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011247153A JP5763504B2 (en) | 2011-11-11 | 2011-11-11 | Copper alloy rolling materials and rolled products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013104071A true JP2013104071A (en) | 2013-05-30 |
JP5763504B2 JP5763504B2 (en) | 2015-08-12 |
Family
ID=48623857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011247153A Active JP5763504B2 (en) | 2011-11-11 | 2011-11-11 | Copper alloy rolling materials and rolled products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5763504B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103740974A (en) * | 2014-01-27 | 2014-04-23 | 苏州乾雄金属材料有限公司 | Practical metal material |
CN105648265A (en) * | 2015-12-29 | 2016-06-08 | 宁波会德丰铜业有限公司 | Brass tube and preparation method thereof |
CN107541613A (en) * | 2016-06-28 | 2018-01-05 | 铁岭富兴铜业有限公司 | One Albatra metal and its preparation method and application |
WO2018034284A1 (en) * | 2016-08-15 | 2018-02-22 | 三菱伸銅株式会社 | Free-cutting copper alloy, and method for producing free-cutting copper alloy |
JP6448166B1 (en) * | 2017-08-15 | 2019-01-09 | 三菱伸銅株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
JP6448167B1 (en) * | 2017-08-15 | 2019-01-09 | 三菱伸銅株式会社 | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy |
JP6448168B1 (en) * | 2017-08-15 | 2019-01-09 | 三菱伸銅株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
WO2020261666A1 (en) | 2019-06-25 | 2020-12-30 | 三菱マテリアル株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
WO2020261603A1 (en) | 2019-06-25 | 2020-12-30 | 三菱マテリアル株式会社 | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy |
WO2020261636A1 (en) | 2019-06-25 | 2020-12-30 | 三菱マテリアル株式会社 | Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting |
US11155909B2 (en) | 2017-08-15 | 2021-10-26 | Mitsubishi Materials Corporation | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy |
WO2021225165A1 (en) * | 2020-05-08 | 2021-11-11 | 三菱マテリアル株式会社 | Wire rod of cu-zn-si alloy obtained by up-drawing continuous casting |
KR20220059528A (en) | 2019-12-11 | 2022-05-10 | 미쓰비시 마테리알 가부시키가이샤 | A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy |
KR20240145044A (en) | 2019-12-11 | 2024-10-04 | 미쓰비시 마테리알 가부시키가이샤 | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000119774A (en) * | 1998-10-09 | 2000-04-25 | Sanbo Copper Alloy Co Ltd | Free cutting copper alloy |
JP2000119775A (en) * | 1998-10-12 | 2000-04-25 | Sanbo Copper Alloy Co Ltd | Lead-free free cutting copper alloy |
-
2011
- 2011-11-11 JP JP2011247153A patent/JP5763504B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000119774A (en) * | 1998-10-09 | 2000-04-25 | Sanbo Copper Alloy Co Ltd | Free cutting copper alloy |
JP2000119775A (en) * | 1998-10-12 | 2000-04-25 | Sanbo Copper Alloy Co Ltd | Lead-free free cutting copper alloy |
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103740974A (en) * | 2014-01-27 | 2014-04-23 | 苏州乾雄金属材料有限公司 | Practical metal material |
CN105648265A (en) * | 2015-12-29 | 2016-06-08 | 宁波会德丰铜业有限公司 | Brass tube and preparation method thereof |
CN107541613B (en) * | 2016-06-28 | 2019-03-08 | 沈阳慧坤新材料科技有限公司 | One Albatra metal and its preparation method and application |
CN107541613A (en) * | 2016-06-28 | 2018-01-05 | 铁岭富兴铜业有限公司 | One Albatra metal and its preparation method and application |
CN110268077A (en) * | 2016-08-15 | 2019-09-20 | 三菱伸铜株式会社 | The manufacturing method of free-cutting machinability copper alloy and free-cutting machinability copper alloy |
JPWO2018034282A1 (en) * | 2016-08-15 | 2018-08-16 | 三菱伸銅株式会社 | Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting |
WO2018034280A1 (en) * | 2016-08-15 | 2018-02-22 | 三菱伸銅株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
WO2018034282A1 (en) * | 2016-08-15 | 2018-02-22 | 三菱伸銅株式会社 | Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting |
JPWO2018034280A1 (en) * | 2016-08-15 | 2018-08-16 | 三菱伸銅株式会社 | Free-cutting copper alloy processed material and method for producing free-cutting copper alloy processed material |
KR102048671B1 (en) | 2016-08-15 | 2019-11-25 | 미쓰비시 신도 가부시키가이샤 | Free cutting copper alloy and manufacturing method of free cutting copper alloy |
JPWO2018034284A1 (en) * | 2016-08-15 | 2018-08-16 | 三菱伸銅株式会社 | Free-cutting copper alloy processed material and method for producing free-cutting copper alloy processed material |
JPWO2018034283A1 (en) * | 2016-08-15 | 2018-08-16 | 三菱伸銅株式会社 | Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting |
JPWO2018034281A1 (en) * | 2016-08-15 | 2018-08-23 | 三菱伸銅株式会社 | Free-cutting copper alloy processed material and method for producing free-cutting copper alloy processed material |
TWI635191B (en) * | 2016-08-15 | 2018-09-11 | 日商三菱伸銅股份有限公司 | Free cutting copper alloy and method for manufacturing the same (1) |
TWI636145B (en) * | 2016-08-15 | 2018-09-21 | 日商三菱伸銅股份有限公司 | Free cutting copper alloy and method for manufacturing the same (3) |
US11434548B2 (en) | 2016-08-15 | 2022-09-06 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for producing free-cutting copper alloy |
US11421301B2 (en) | 2016-08-15 | 2022-08-23 | Mitsubishi Materials Corporation | Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting |
US11421302B2 (en) | 2016-08-15 | 2022-08-23 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for producing free-cutting copper alloy |
TWI649436B (en) * | 2016-08-15 | 2019-02-01 | 日商三菱伸銅股份有限公司 | Method for manufacturing easily cut copper alloy castings and easy-to-cut copper alloy castings (1) |
TWI649438B (en) * | 2016-08-15 | 2019-02-01 | 日商三菱伸銅股份有限公司 | Method for manufacturing easily cut copper alloy castings and easy-to-cut copper alloy castings (2) |
WO2019035226A1 (en) * | 2016-08-15 | 2019-02-21 | 三菱伸銅株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
US11313013B2 (en) | 2016-08-15 | 2022-04-26 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for producing free-cutting copper alloy |
WO2019035225A1 (en) | 2016-08-15 | 2019-02-21 | 三菱伸銅株式会社 | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy |
KR20190018538A (en) * | 2016-08-15 | 2019-02-22 | 미쓰비시 신도 가부시키가이샤 | Preparation method of free-cutting copper alloy and free-cutting copper alloy |
KR20190018534A (en) * | 2016-08-15 | 2019-02-22 | 미쓰비시 신도 가부시키가이샤 | Manufacturing method of free-cutting copper alloy and free-cutting copper alloy |
KR20190018540A (en) * | 2016-08-15 | 2019-02-22 | 미쓰비시 신도 가부시키가이샤 | Preparation method of free-cutting copper alloy and free-cutting copper alloy |
KR20190018539A (en) * | 2016-08-15 | 2019-02-22 | 미쓰비시 신도 가부시키가이샤 | Manufacturing method of free-cutting cast copper alloy and free-cutting cast copper alloy casting |
KR20190018537A (en) * | 2016-08-15 | 2019-02-22 | 미쓰비시 신도 가부시키가이샤 | Manufacturing method of free-cutting copper alloy castings and free-cutting cast copper alloy castings |
WO2018034281A1 (en) * | 2016-08-15 | 2018-02-22 | 三菱伸銅株式会社 | Free-cutting copper alloy, and method for producing free-cutting copper alloy |
CN109563567A (en) * | 2016-08-15 | 2019-04-02 | 三菱伸铜株式会社 | The manufacturing method of free-cutting machinability copper alloy and free-cutting machinability copper alloy |
CN109563569A (en) * | 2016-08-15 | 2019-04-02 | 三菱伸铜株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
CN109563568A (en) * | 2016-08-15 | 2019-04-02 | 三菱伸铜株式会社 | Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting |
CN109642272A (en) * | 2016-08-15 | 2019-04-16 | 三菱伸铜株式会社 | Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting |
KR101991227B1 (en) | 2016-08-15 | 2019-06-19 | 미쓰비시 신도 가부시키가이샤 | Preparation method of free-cutting copper alloy and free-cutting copper alloy |
KR102046756B1 (en) | 2016-08-15 | 2019-11-19 | 미쓰비시 신도 가부시키가이샤 | Free cutting copper alloy and manufacturing method of free cutting copper alloy |
KR20190095520A (en) | 2016-08-15 | 2019-08-14 | 미쓰비시 신도 가부시키가이샤 | Free cutting copper alloy and manufacturing method of free cutting copper alloy |
KR20190095508A (en) | 2016-08-15 | 2019-08-14 | 미쓰비시 신도 가부시키가이샤 | Free cutting copper alloy and manufacturing method of free cutting copper alloy |
KR20190100418A (en) | 2016-08-15 | 2019-08-28 | 미쓰비시 신도 가부시키가이샤 | High strength free cutting copper alloy, and manufacturing method of high strength free cutting copper alloy |
KR102020185B1 (en) | 2016-08-15 | 2019-09-09 | 미쓰비시 신도 가부시키가이샤 | Free cutting copper alloy and manufacturing method of free cutting copper alloy |
KR102021723B1 (en) | 2016-08-15 | 2019-09-16 | 미쓰비시 신도 가부시키가이샤 | Free cutting copper alloy casting, and manufacturing method of free cutting copper alloy casting |
KR102021724B1 (en) | 2016-08-15 | 2019-09-16 | 미쓰비시 신도 가부시키가이샤 | Free cutting copper alloy and manufacturing method of free cutting copper alloy |
CN110249065A (en) * | 2016-08-15 | 2019-09-17 | 三菱伸铜株式会社 | The manufacturing method of free-cutting machinability copper alloy and free-cutting machinability copper alloy |
WO2018034284A1 (en) * | 2016-08-15 | 2018-02-22 | 三菱伸銅株式会社 | Free-cutting copper alloy, and method for producing free-cutting copper alloy |
KR102027740B1 (en) | 2016-08-15 | 2019-10-01 | 미쓰비시 신도 가부시키가이샤 | Free cutting copper alloy casting and manufacturing method of free cutting copper alloy casting |
US11136648B2 (en) | 2016-08-15 | 2021-10-05 | Mitsubishi Materials Corporation | Free-cutting copper alloy, and method for producing free-cutting copper alloy |
US20190241999A1 (en) * | 2016-08-15 | 2019-08-08 | Mitsubishi Shindoh Co., Ltd. | Free-cutting copper alloy, and method for producing free-cutting copper alloy |
WO2018034283A1 (en) * | 2016-08-15 | 2018-02-22 | 三菱伸銅株式会社 | Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting |
KR102055534B1 (en) | 2016-08-15 | 2019-12-12 | 미쓰비시 신도 가부시키가이샤 | High strength free cutting copper alloy, and manufacturing method of high strength free cutting copper alloy |
US10538827B2 (en) | 2016-08-15 | 2020-01-21 | Mitsubishi Shindoh Co., Ltd. | Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting |
US10538828B2 (en) | 2016-08-15 | 2020-01-21 | Mitsubishi Shindoh Co., Ltd. | Free-cutting copper alloy, and method for producing free-cutting copper alloy |
CN109642272B (en) * | 2016-08-15 | 2020-02-07 | 三菱伸铜株式会社 | Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting |
US10557185B2 (en) | 2016-08-15 | 2020-02-11 | Mitsubishi Shindoh Co., Ltd. | Free-cutting copper alloy, and method for producing free-cutting copper alloy |
CN110268077B (en) * | 2016-08-15 | 2020-06-12 | 三菱伸铜株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
CN110337499B (en) * | 2016-08-15 | 2020-06-23 | 三菱伸铜株式会社 | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy |
EP3656883A4 (en) * | 2016-08-15 | 2020-07-29 | Mitsubishi Shindoh Co., Ltd. | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy |
CN109563569B (en) * | 2016-08-15 | 2020-09-18 | 三菱伸铜株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
CN110249065B (en) * | 2016-08-15 | 2020-09-25 | 三菱伸铜株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
US11131009B2 (en) | 2016-08-15 | 2021-09-28 | Mitsubishi Materials Corporation | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy |
CN110337499A (en) * | 2016-08-15 | 2019-10-15 | 三菱伸铜株式会社 | The manufacturing method of high-strength simple-cutting copper alloy and high-strength simple-cutting copper alloy |
US11155909B2 (en) | 2017-08-15 | 2021-10-26 | Mitsubishi Materials Corporation | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy |
JP6448166B1 (en) * | 2017-08-15 | 2019-01-09 | 三菱伸銅株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
JP6448167B1 (en) * | 2017-08-15 | 2019-01-09 | 三菱伸銅株式会社 | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy |
WO2019035224A1 (en) * | 2017-08-15 | 2019-02-21 | 三菱伸銅株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
JP6448168B1 (en) * | 2017-08-15 | 2019-01-09 | 三菱伸銅株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
WO2021117528A1 (en) | 2019-06-25 | 2021-06-17 | 三菱マテリアル株式会社 | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy |
KR20210080590A (en) | 2019-06-25 | 2021-06-30 | 미쓰비시 마테리알 가부시키가이샤 | A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy |
WO2020261636A1 (en) | 2019-06-25 | 2020-12-30 | 三菱マテリアル株式会社 | Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting |
KR20210083364A (en) | 2019-06-25 | 2021-07-06 | 미쓰비시 마테리알 가부시키가이샤 | A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy |
KR20230174286A (en) | 2019-06-25 | 2023-12-27 | 미쓰비시 마테리알 가부시키가이샤 | Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy |
US11814712B2 (en) | 2019-06-25 | 2023-11-14 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for producing free-cutting copper alloy |
KR20210142165A (en) | 2019-06-25 | 2021-11-24 | 미쓰비시 마테리알 가부시키가이샤 | A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy |
KR20210148347A (en) | 2019-06-25 | 2021-12-07 | 미쓰비시 마테리알 가부시키가이샤 | Free-machining copper alloy castings, and methods of manufacturing free-machining copper alloy castings |
WO2020261603A1 (en) | 2019-06-25 | 2020-12-30 | 三菱マテリアル株式会社 | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy |
WO2020261611A1 (en) | 2019-06-25 | 2020-12-30 | 三菱マテリアル株式会社 | Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy |
US11788173B2 (en) | 2019-06-25 | 2023-10-17 | Mitsubishi Materials Corporation | Free-cutting copper alloy, and manufacturing method of free-cutting copper alloy |
WO2020261666A1 (en) | 2019-06-25 | 2020-12-30 | 三菱マテリアル株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
WO2020261604A1 (en) | 2019-06-25 | 2020-12-30 | 三菱マテリアル株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
KR20210152562A (en) | 2019-06-25 | 2021-12-15 | 미쓰비시 마테리알 가부시키가이샤 | A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy |
US11479834B2 (en) | 2019-06-25 | 2022-10-25 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy |
US11512370B2 (en) | 2019-06-25 | 2022-11-29 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for producing free-cutting copper alloy |
KR20220059528A (en) | 2019-12-11 | 2022-05-10 | 미쓰비시 마테리알 가부시키가이샤 | A free-machining copper alloy, and a manufacturing method of a free-machining copper alloy |
KR20240145044A (en) | 2019-12-11 | 2024-10-04 | 미쓰비시 마테리알 가부시키가이샤 | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy |
CN115443343A (en) * | 2020-05-08 | 2022-12-06 | 三菱综合材料株式会社 | Up-drawing continuous casting wire rod of Cu-Zn-Si alloy |
JP7347321B2 (en) | 2020-05-08 | 2023-09-20 | 三菱マテリアル株式会社 | Upward continuous casting wire rod of Cu-Zn-Si alloy |
JP2021176983A (en) * | 2020-05-08 | 2021-11-11 | 三菱マテリアル株式会社 | WIRE ROD OF Cu-Zn-Si ALLOY OBTAINED BY UP-DRAWING CONTINUOUS CASTING |
WO2021225165A1 (en) * | 2020-05-08 | 2021-11-11 | 三菱マテリアル株式会社 | Wire rod of cu-zn-si alloy obtained by up-drawing continuous casting |
EP4148154A4 (en) * | 2020-05-08 | 2024-05-22 | Mitsubishi Materials Corporation | Wire rod of cu-zn-si alloy obtained by up-drawing continuous casting |
Also Published As
Publication number | Publication date |
---|---|
JP5763504B2 (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5763504B2 (en) | Copper alloy rolling materials and rolled products | |
JP5847987B2 (en) | Copper alloy containing silver | |
EP2761042B1 (en) | Leadless free-cutting copper alloy | |
JP6795872B1 (en) | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy | |
EP3690069B1 (en) | Free-cutting lead-free copper alloy to which lead and bismuth are not added | |
KR20140021554A (en) | Cu-ni-zn-mn alloy | |
JP6796356B1 (en) | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy | |
WO2018034284A1 (en) | Free-cutting copper alloy, and method for producing free-cutting copper alloy | |
KR20150008422A (en) | Improved free-machining wrought aluminium alloy product and manufacturing process thereof | |
JP5247010B2 (en) | Cu-Zn alloy with high strength and excellent bending workability | |
JPWO2005093108A1 (en) | Brass | |
JP6448167B1 (en) | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy | |
JP6796355B1 (en) | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy | |
JP6874923B1 (en) | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy | |
JP3732305B2 (en) | Copper base alloy having excellent corrosion resistance, hot workability and stress corrosion cracking resistance, and method for producing the copper base alloy | |
WO2024228355A1 (en) | Free-machining copper alloy and production method for free-machining copper alloy | |
JP2012241202A (en) | Lead-free brass alloy for hot working | |
CN116024454B (en) | Method for producing copper alloy material having workability and machinability, and copper alloy material produced thereby | |
JP6448168B1 (en) | Free-cutting copper alloy and method for producing free-cutting copper alloy | |
CN114761592B (en) | Free-cutting copper alloy and method for producing free-cutting copper alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140512 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150331 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150514 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150611 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5763504 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |